1
|
Rajabzadeh K, Sardarian AR. Well-defined nanomagnetic nitrilotriacetic acid complex of Cu(ii) supported on silica-coated nanosized magnetite: a new highly efficient and magnetically separable catalyst for C-N bond formation. RSC Adv 2024; 14:21954-21970. [PMID: 38993503 PMCID: PMC11237964 DOI: 10.1039/d4ra03675a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 06/27/2024] [Indexed: 07/13/2024] Open
Abstract
A nitrilotriacetic acid (NTA) complex of Cu(ii) supported on silica-coated nanosized magnetite Fe3O4@SiO2-Pr-DEA-[NTA-Cu(ii)]2 was prepared as a new well-defined magnetically separable nanomaterial and fully characterized via IR, XRD, FESEM, TEM, TGA, DLS, BET, VSM, solid-state UV-vis spectroscopy, EDX, ICP-OES, and FESEM-EDX map analyses. Thereafter, it was successfully applied as a new easily magnetically separable and reusable heterogeneous nanocatalyst for the Buchwald-Hartwig C-N bond formation reaction in DMF at 110 °C. Using this method, various kinds of nitrogen heterocycles, such as imidazoles, 2-methyl-1H-imidazole, benzimidazole, indole, and 10H-phenothiazine as well as aliphatic secondary amines such as piperidine, piperazine, morpholine, dimethylamine, and diethylamine, were reacted with aryl halide compounds, and the desired products were obtained with good to excellent yields. In all cases, the applied catalyst could be recovered easily and rapidly using an external magnet and reused 7 times without significant loss of catalytic activity.
Collapse
|
2
|
Omar RA, Talreja N, Chuhan D, Ashfaq M. Waste-derived carbon nanostructures (WD-CNs): An innovative step toward waste to treasury. ENVIRONMENTAL RESEARCH 2024; 246:118096. [PMID: 38171470 DOI: 10.1016/j.envres.2023.118096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/05/2023] [Accepted: 12/31/2023] [Indexed: 01/05/2024]
Abstract
With the growing population, the accumulation of waste materials (WMs) (industrial/household waste) in the environment incessantly increases, affecting human health. Additionally, it affects the climate and ecosystem of terrestrial and water habitats, thereby needing effective management technology to control environmental pollution. In this aspect, managing these WMs to develop products that mitigate the associated issues is necessary. Researchers continue to focus on WMs management by adopting a circular economy. These WMs convert into useful/value-added products such as polymers and nanomaterials (NMs), especially carbon nanomaterials (CNs). The conversion/transformation of waste material into useful products is one of the best solutions for managing waste. Waste-derived CNs (WD-CNs) have established boundless promises for numerous applications like environmental remediation, energy, catalysts, sensors, and biomedical applications. This review paper discusses the several sources of waste material (agricultural, plastic, industrial, biomass, and other) transforming into WD-CNs, such as carbon nanotubes (CNTs), biochar, graphene, carbon nanofibers (CNFs), carbon dots, etc., are extensively elaborated and their application. The impact of metal doping within the WD-CNs is briefly discussed, along with their applicability to end applications.
Collapse
Affiliation(s)
- Rishabh Anand Omar
- Centre for Environmental Science and Engineering, Indian Institute of Technology Kanpur, Kanpur, 208016, India
| | - Neetu Talreja
- Department of Science, Faculty of Science and Technology, Alliance University, Anekal, Bengaluru-562 106, Karnataka, India.
| | - Divya Chuhan
- Department of Drinking Water and Sanitation, Ministry of Jal Shakti, 1208-A, Pandit Deendayal Antyodaya Bhawan, CGO Complex, Lodhi Road, New Delhi 110003 India
| | - Mohammad Ashfaq
- Department of Biotechnology, University Centre for Research & Development (UCRD), Chandigarh University, Gharaun, Mohali, 140413, Punjab, India.
| |
Collapse
|
3
|
Jelodar DF, Rouhi M, Taheri-Ledari R, Hajizadeh Z, Maleki A. A magnetic X-band frequency microwave nanoabsorbent made of iron oxide/halloysite nanostructures combined with polystyrene. RSC Adv 2023; 13:6643-6655. [PMID: 36860539 PMCID: PMC9969233 DOI: 10.1039/d2ra08339f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 02/20/2023] [Indexed: 03/02/2023] Open
Abstract
A novel nanocomposite has been designed and fabricated through an in situ polymerization process, based on iron oxide nanoparticles (Fe3O4 NPs), halloysite nanotubes (HNTs), and polystyrene (PS). The prepared nanocomposite (formulated as Fe3O4/HNT-PS) has been fully characterized through various methods, and its applicability in microwave absorption was investigated by using some single-layer and bilayer pellets containing nanocomposite and resin. The efficiency of the Fe3O4/HNT-PS composite with different weight ratios and pellets with the thickness of 3.0 and 4.0 mm were examined. Vector network analysis (VNA) revealed that the microwave (12 GHz) can be noticeably absorbed by Fe3O4/HNT-60% PS particles in a bilayer structure with 4.0 mm thickness and 85% resin of the pellets, resulting in a microwave absorption value of ca. -26.9 dB. The observed bandwidth (RL < -10 dB) was about 1.27 GHz, where ca. 95% of the radiated wave is absorbed. Ultimately, due to low-cost raw materials and high performance of the presented absorbent system, the Fe3O4/HNT-PS nanocomposite and the construction of the presented bilayer system can be subjected to further investigations to test and compare with other compounds for industrialization.
Collapse
Affiliation(s)
- Diana Fallah Jelodar
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology Tehran 16846-13114 Iran +98-21-73021584 +98-21-73228313
| | - Mojtaba Rouhi
- Department of Physics, Iran University of Science and Technology Tehran 16846-13114 Iran
| | - Reza Taheri-Ledari
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology Tehran 16846-13114 Iran +98-21-73021584 +98-21-73228313
| | - Zoleikha Hajizadeh
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology Tehran 16846-13114 Iran +98-21-73021584 +98-21-73228313
| | - Ali Maleki
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology Tehran 16846-13114 Iran +98-21-73021584 +98-21-73228313
| |
Collapse
|
4
|
Patra S, Sahu KM, Reddy AA, Swain SK. Polymer and biopolymer based nanocomposites for glucose sensing. INT J POLYM MATER PO 2023. [DOI: 10.1080/00914037.2023.2175824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Affiliation(s)
- Swapnita Patra
- Department of Chemistry, Veer Surendra Sai University of Technology, Burla, Sambalpur, Odisha, India
| | - Krishna Manjari Sahu
- Department of Chemistry, Veer Surendra Sai University of Technology, Burla, Sambalpur, Odisha, India
| | - A. Amulya Reddy
- Department of Chemistry, Veer Surendra Sai University of Technology, Burla, Sambalpur, Odisha, India
| | - Sarat K. Swain
- Department of Chemistry, Veer Surendra Sai University of Technology, Burla, Sambalpur, Odisha, India
| |
Collapse
|
5
|
Essate A, Achiou B, Benkhaya S, Chakraborty S, Ouammou M, Alami Younssi S. Low‐cost polysulfone/polystyrene ultrafiltration membrane with efficient azoic dyes removal and excellent antifouling performance for colored wastewater. POLYM ADVAN TECHNOL 2022. [DOI: 10.1002/pat.5969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Ahlam Essate
- Laboratory of Materials, Membranes and Environment, Faculty of Sciences and Technologies of Mohammedia Hassan II University of Casablanca Mohammedia Morocco
| | - Brahim Achiou
- Laboratory of Materials, Membranes and Environment, Faculty of Sciences and Technologies of Mohammedia Hassan II University of Casablanca Mohammedia Morocco
| | - Said Benkhaya
- Department of Civil and Environmental Engineering Shantou University Shantou China
| | | | - Mohamed Ouammou
- Laboratory of Materials, Membranes and Environment, Faculty of Sciences and Technologies of Mohammedia Hassan II University of Casablanca Mohammedia Morocco
| | - Saad Alami Younssi
- Laboratory of Materials, Membranes and Environment, Faculty of Sciences and Technologies of Mohammedia Hassan II University of Casablanca Mohammedia Morocco
| |
Collapse
|
6
|
Tomaszewska J, Wieczorek M, Skórczewska K, Klapiszewska I, Lewandowski K, Klapiszewski Ł. Preparation, Characterization and Tailoring Properties of Poly(Vinyl Chloride) Composites with the Addition of Functional Halloysite-Lignin Hybrid Materials. MATERIALS (BASEL, SWITZERLAND) 2022; 15:8102. [PMID: 36431589 PMCID: PMC9693884 DOI: 10.3390/ma15228102] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/07/2022] [Accepted: 11/12/2022] [Indexed: 06/16/2023]
Abstract
In this article, halloysite-lignin hybrid materials (HL) were designed and obtained. The weak hydrogen bonds found between the components were determined based on Fourier transform infrared spectroscopy (FTIR), proving the achievement of class I hybrid systems. The HL systems were characterized by very good thermal stability and relatively good homogeneity, which increased as the proportion of the inorganic part increased. This was confirmed by analyzing scanning electron microscope (SEM) images and assessing particle size distributions and polydispersity indexes. Processing rigid poly(vinyl chloride) (PVC) with HL systems with a content of up to 10 wt% in a Brabender torque rheometer allowed us to obtain composites with a relatively homogeneous structure confirmed by SEM observations; simultaneously, a reduction in the fusion time was noted. An improvement in PVC thermal stability of approximately 40 °C for composites with HL with a ratio of 1:5 wt/wt was noted. Regardless of the concentration of the HL system, PVC composites exhibited inconsiderably higher Young's modulus, but the incorporation of 2.5 wt% of fillers increased Charpy impact strength by 5-8 kJ/m2 and doubled elongation at break. This study demonstrated that favorable mechanical properties of PVC composites can be achieved, especially with an HL system with a ratio of 5:1 wt/wt.
Collapse
Affiliation(s)
- Jolanta Tomaszewska
- Faculty of Chemical Technology and Engineering, Bydgoszcz University of Science and Technology, PL-85326 Bydgoszcz, Poland
| | - Martina Wieczorek
- Faculty of Chemical Technology and Engineering, Bydgoszcz University of Science and Technology, PL-85326 Bydgoszcz, Poland
| | - Katarzyna Skórczewska
- Faculty of Chemical Technology and Engineering, Bydgoszcz University of Science and Technology, PL-85326 Bydgoszcz, Poland
| | - Izabela Klapiszewska
- Faculty of Civil and Transport Engineering, Poznan University of Technology, PL-60965 Poznan, Poland
| | - Krzysztof Lewandowski
- Faculty of Chemical Technology and Engineering, Bydgoszcz University of Science and Technology, PL-85326 Bydgoszcz, Poland
| | - Łukasz Klapiszewski
- Faculty of Chemical Technology, Poznan University of Technology, PL-60965 Poznan, Poland
| |
Collapse
|
7
|
Khan A, Ali Shah SF, Majeed K, Hameed I, Najam M, Hasan M, Ullah M, Khan MS, Ahmad Z, Akhtar MS. Polymeric membranes for environmental remediation: A product space model perspective. CHEMOSPHERE 2022; 304:135236. [PMID: 35688204 DOI: 10.1016/j.chemosphere.2022.135236] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 05/27/2022] [Accepted: 06/02/2022] [Indexed: 06/15/2023]
Abstract
The development of polymeric membranes from polymers such as polystyrene (PS), polyvinylchloride (PVC), and their associated family has brought great momentum to the environmental remediation universe, mainly due to their surprisingly diverse and multi-purpose nature. Their usage has surged 20 times in the last half-century and is likely to double again in the coming 20 years. As a result, the polymeric materials economy and commercialization of research become increasingly important as a possible option for a country to boost prosperity while decreasing its reliance on limited raw resources and mitigating negative externalities. This transformation demands a systematic strategy, which involves progress beyond improving the existing models and building new avenues for collaboration. In this work, a sophisticated system, i.e., product space model (PSM), has been presented, explicitly appraising the opportunity space for United Kingdom, Italy, Poland, India, Canada, Indonesia, Brazil, Saudi Arabia, Russia and Colombia for their potential future industrialization and commercialization of polymeric membranes for environmental remediation. The results revealed that UK, Italy, Poland and India are at advantageous positions owing to their close proximity of (distance<2) and their placement in Parsimonious policy, which is the most desired quadrant of Policy Map of PSM, Canada and Indonesia have medium level opportunities, while Russia and Saudi Arabia have opportunities with more challenges to fully exploit the unexploited polymers products in terms of membranes for environmental remediation and prove favorable for export diversification, sustainable economic growth, and commercialization.
Collapse
Affiliation(s)
- Amin Khan
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China.
| | | | - Khaliq Majeed
- Department of Chemical Engineering, COMSATS University Islamabad (CUI), Lahore Campus, Defense Road, Off Raiwind Road, Lahore, Pakistan.
| | - Iqra Hameed
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China.
| | - Mohsin Najam
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China.
| | - Mudassir Hasan
- College of Engineering, Department of Chemical Engineering, King Khalid University, Abha, 61411, Saudi Arabia.
| | - Mansoor Ullah
- Department of Management Sciences, University of Chitral, 17200, KPK, Pakistan.
| | - Mohd Shariq Khan
- Department of Chemical Engineering, Dhofar University, Salalah, 211, Oman.
| | - Zubair Ahmad
- School of Chemical Engineering, Yeungnam University, Gyeongsan, 712-749, Republic of Korea.
| | - Muhammad Saeed Akhtar
- School of Chemical Engineering, Yeungnam University, Gyeongsan, 712-749, Republic of Korea.
| |
Collapse
|
8
|
Al-Shaeli M, Al-Juboori RA, Al Aani S, Ladewig BP, Hilal N. Natural and recycled materials for sustainable membrane modification: Recent trends and prospects. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:156014. [PMID: 35584751 DOI: 10.1016/j.scitotenv.2022.156014] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 05/12/2022] [Accepted: 05/12/2022] [Indexed: 06/15/2023]
Abstract
Despite water being critical for human survival, its uneven distribution, and exposure to countless sources of pollution make water shortages increasingly urgent. Membrane technology offers an efficient solution for alleviating the water shortage impact. The selectivity and permeability of membranes can be improved by incorporating additives of different nature and size scales. However, with the vast debate about the environmental and economic feasibility of the common nanoscale materials in water treatment applications, we can infer that there is a long way before the first industrial nanocomposite membrane is commercialized. This stumbling block has motivated the scientific community to search for alternative modification routes and/or materials with sustainable features. Herein, we present a pragmatic review merging the concept of sustainability, nanotechnology, and membrane technology through the application of natural additives (e.g., Clays, Arabic Gum, zeolite, lignin, Aquaporin), recycled additives (e.g., Biochar, fly ash), and recycled waste (e.g., Polyethylene Terephthalate, recycled polystyrene) for polymeric membrane synthesis and modification. Imparted features on polymeric membranes, induced by the presence of sustainable natural and waste-based materials, are scrutinized. In addition, the strategies harnessed to eliminate the hurdles associated with the application of these nano and micro size additives for composite membranes modification are elaborated. The expanding research efforts devoted recently to membrane sustainability and the prospects for these materials are discussed. The findings of the investigations reported in this work indicate that the application of natural and waste-based additives for composite membrane fabrication/modification is a nascent research area that deserves the attention of both research and industry.
Collapse
Affiliation(s)
- Muayad Al-Shaeli
- Institute for Micro Process Engineering (IMVT), Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Raed A Al-Juboori
- Water and Environmental Engineering Research Group, Department of Built Environment, Aalto University, P.O. Box 15200, Aalto, FI-00076 Espoo, Finland.
| | - Saif Al Aani
- The State Company of Energy Production - Middle Region, Ministry of Electricity, Iraq
| | - Bradley P Ladewig
- Institute for Micro Process Engineering (IMVT), Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany; Faculty of Science, Technology and Medicine, University of Luxembourg, 2, avenue de l'Université, 4365 Esch-sur-Alzette, Luxembourg
| | - Nidal Hilal
- NYUAD Water Research Center, New York University-Abu Dhabi Campus, Abu Dhabi, P.O. Box 129188, Abu Dhabi, United Arab Emirates
| |
Collapse
|
9
|
Bayat A, Sadjadi S, Arabi H, Bahri-Laleh N. Catalytic hydrofinishing of polyalphaolefins under mild condition using Pd on amino acid-functionalized clay: study of the kinetic parameters. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
10
|
Liao P, You L, Zheng WJ, Zou W, Yan J, Yang H, Yang F. Self-cleaning expanded polytetrafluoroethylene-based hybrid membrane for water filtration. RSC Adv 2022; 12:13228-13234. [PMID: 35527732 PMCID: PMC9067432 DOI: 10.1039/d2ra01026g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 04/22/2022] [Indexed: 01/11/2023] Open
Abstract
Membrane surface fouling is a key problem for water filtration. Compositing photocatalytic substances with a base membrane is a widely used strategy, but most of the membrane will be decomposed by photocatalysis. Herein, expanded polytetrafluoroethylene (ePTFE) with extremely stable chemical properties is grafted with polyacrylic acid (PAA) and then modified with titanium dioxide (TiO2) to realize a self-cleaning TiO2-PAA-ePTFE filtration membrane. It can recover its flux under UV irradiation after fouling. With 20 rounds of self-cleaning, the membrane microstructure still remains intact. Moreover, in addition to retaining bovine serum albumin, TiO2 particles on the membrane surface are capable of absorbing small organic pollutants and degrading them. Thus, this membrane is potentially used as an anti-fouling membrane for water filtration.
Collapse
Affiliation(s)
- Peng Liao
- Sichuan University of Science and Engineering Zigong 643000 PR China
| | - Lan You
- Sichuan University of Science and Engineering Zigong 643000 PR China
| | - Wen Jiang Zheng
- Sichuan University of Science and Engineering Zigong 643000 PR China
| | - Wei Zou
- Sichuan University of Science and Engineering Zigong 643000 PR China
| | - Jie Yan
- Sichuan University of Science and Engineering Zigong 643000 PR China
| | - Hu Yang
- Sichuan University of Science and Engineering Zigong 643000 PR China
| | - Fan Yang
- Organic Fluorine Material Key Laboratory of Sichuan Province, Zhonghao Chenguang Chemical Research Institute Zigong 643201 PR China
| |
Collapse
|
11
|
Vatanpour V, Jouyandeh M, Mousavi Khadem SS, Paziresh S, Dehqan A, Ganjali MR, Moradi H, Mirsadeghi S, Badiei A, Munir MT, Mohaddespour A, Rabiee N, Habibzadeh S, Mashhadzadeh AH, Nouranian S, Formela K, Saeb MR. Highly antifouling polymer-nanoparticle-nanoparticle/polymer hybrid membranes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 810:152228. [PMID: 34890675 DOI: 10.1016/j.scitotenv.2021.152228] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 11/12/2021] [Accepted: 12/03/2021] [Indexed: 06/13/2023]
Abstract
We introduce highly antifouling Polymer-Nanoparticle-Nanoparticle/Polymer (PNNP) hybrid membranes as multi-functional materials for versatile purification of wastewater. Nitrogen-rich polyethylenimine (PEI)-functionalized halloysite nanotube (HNT-SiO2-PEI) nanoparticles were developed and embedded in polyvinyl chloride (PVC) membranes for protein and dye filtration. Bulk and surface characteristics of the resulting HNT-SiO2-PEI nanocomposites were determined using Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), and thermogravimetric analysis (TGA). Moreover, microstructure and physicochemical properties of HNT-SiO2-PEI/PVC membranes were investigated by scanning electron microscopy (SEM), atomic force microscopy (AFM), and attenuated total reflectance (ATR)-FTIR. Results of these analyses indicated that the overall porosity and mean pore size of nanocomposite membranes were enhanced, but the surface roughness was reduced. Additionally, surface hydrophilicity and flexibility of the original PVC membranes were significantly improved by incorporating HNT-SiO2-PEI nanoparticles. Based on pure water permeability and bovine serum albumin (BSA)/dye rejection tests, the highest nanoparticle-embedded membrane performance was observed at 2 weight percent (wt%) of HNT-SiO2-PEI. The nanocomposite incorporation in the PVC membranes further improved its antifouling performance and flux recovery ratio (96.8%). Notably, dye separation performance increased up to 99.97%. Overall, hydrophobic PVC membranes were successfully modified by incorporating HNT-SiO2-PEI nanomaterial and better-quality wastewater treatment performance was obtained.
Collapse
Affiliation(s)
- Vahid Vatanpour
- Department of Applied Chemistry, Faculty of Chemistry, Kharazmi University, Tehran 15719-14911, Iran.
| | - Maryam Jouyandeh
- Center of Excellence in Electrochemistry, School of Chemistry, University of Tehran, Tehran 14176-14411, Iran
| | | | - Shadi Paziresh
- Department of Applied Chemistry, Faculty of Chemistry, Kharazmi University, Tehran 15719-14911, Iran
| | - Ahmad Dehqan
- Department of Applied Chemistry, Faculty of Chemistry, Kharazmi University, Tehran 15719-14911, Iran
| | - Mohammad Reza Ganjali
- Center of Excellence in Electrochemistry, School of Chemistry, University of Tehran, Tehran 14176-14411, Iran; School of Resources and Environment, University of Electronic Science and Technology of China, Chengdu 611731, China; Biosensor Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran 14117-13137, Iran
| | - Hiresh Moradi
- Research and Development Unit, Ghaffari Chemical Industries Corporation, Tehran, Iran
| | - Somayeh Mirsadeghi
- Endocrinology and Metabolism Center, Endocrinology and Metabolism Clinical Medical Institute, Tehran University of Medical Science, Tehran 14117-13137, Iran
| | - Alireza Badiei
- School of Chemistry, University of Tehran, Tehran 14176-14411, Iran
| | - Muhammad Tajammal Munir
- College of Engineering and Technology, American University of the Middle East, Egaila, Kuwait
| | - Ahmad Mohaddespour
- College of Engineering and Technology, American University of the Middle East, Egaila, Kuwait
| | - Navid Rabiee
- Department of Physics, Sharif University of Technology, Tehran 11155-9161, Iran
| | - Sajjad Habibzadeh
- Department of Chemical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran 15916-34311, Iran
| | - Amin Hamed Mashhadzadeh
- Department of Mechanical and Aerospace Engineering, School of Engineering and Digital Sciences, Nazarbayev University, Nur-Sultan 010000, Kazakhstan
| | - Sasan Nouranian
- Department of Chemical Engineering, University of Mississippi, MS 38677, United States
| | - Krzysztof Formela
- Department of Polymer Technology, Gdańsk University of Technology, G. Narutowicza 11/12, 80-233 Gdańsk, Poland
| | | |
Collapse
|
12
|
Dehghankar M, Mohammadi T, Tavakolmoghadam M, Tofighy MA. Polyvinylidene Fluoride/Nanoclays (Cloisite 30B and Palygorskite) Mixed Matrix Membranes with Improved Performance and Antifouling Properties. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c01656] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Mona Dehghankar
- Research and Technology Center of Membrane Processes, Department of Chemical, Petroleum and Gas Engineering, Iran University of Science and Technology (IUST), Narmak, 16846 Tehran, Iran
- Center of Excellence for Membrane Science and Technology, Iran University of Science and Technology (IUST), Narmak, Tehran 16846, Iran
| | - Toraj Mohammadi
- Research and Technology Center of Membrane Processes, Department of Chemical, Petroleum and Gas Engineering, Iran University of Science and Technology (IUST), Narmak, 16846 Tehran, Iran
- Center of Excellence for Membrane Science and Technology, Iran University of Science and Technology (IUST), Narmak, Tehran 16846, Iran
| | - Maryam Tavakolmoghadam
- Polymer, Chemical and Petrochemical Science and Technology Division, Research Institute of Petroleum Industry, Tehran 1485733111, Iran
| | - Maryam Ahmadzadeh Tofighy
- Research and Technology Center of Membrane Processes, Department of Chemical, Petroleum and Gas Engineering, Iran University of Science and Technology (IUST), Narmak, 16846 Tehran, Iran
- Center of Excellence for Membrane Science and Technology, Iran University of Science and Technology (IUST), Narmak, Tehran 16846, Iran
| |
Collapse
|
13
|
Manufacturing and Characterisation of Polymeric Membranes for Water Treatment and Numerical Investigation of Mechanics of Nanocomposite Membranes. Polymers (Basel) 2021; 13:polym13101661. [PMID: 34065285 PMCID: PMC8161102 DOI: 10.3390/polym13101661] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 05/17/2021] [Accepted: 05/18/2021] [Indexed: 12/13/2022] Open
Abstract
In this study, polyethersulfone (PES) and polyvinylidene fluoride (PVDF) microfiltration membranes containing polyvinylpyrrolidone (PVP) with and without support layers of 130 and 150 μm thickness are manufactured using the phase inversion method and then experimentally characterised. For the characterisation of membranes, Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and pore size analysis are performed, the contact angle and water content of membranes are measured and the tensile test is applied to membranes without support layers. Using the results obtained from the tensile tests, the mechanical properties of the halloysite nanotube (HNT) and nano-silicon dioxide (nano SiO2) reinforced nanocomposite membranes are approximately determined by the Mori–Tanaka homogenisation method without applying any further mechanical tests. Then, plain polymeric and PES and PVDF based nanocomposite membranes are modelled using the finite element method to determine the effect of the geometry of the membrane on the mechanical behaviour for fifteen different geometries. The modelled membranes compared in terms of three different criteria: equivalent stress (von Mises), displacement, and in-plane principal strain. Based on the data obtained from the characterisation part of the study and the numerical analysis, the membrane with the best performance is determined. The most appropriate shape and material for a membrane for water treatment is specified as a 1% HNT doped PVDF based elliptical membrane.
Collapse
|
14
|
Tang H, Han D, Zhang J. Electrospinning fabrication of polystyrene-silica hybrid fibrous membrane for high-efficiency air filtration. NANO EXPRESS 2021. [DOI: 10.1088/2632-959x/abfe3d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Abstract
The development of new materials for air filtration and particulate matter (PM) pollution is critical to solving global environmental issues that threaten human health and accelerate the greenhouse effect. In this study, a novel electrospun polystyrene-SiO2 nanoparticle (PS-SNP) fibrous membrane was explored by a single-step strategy to obtain the composite multi-layered filter masks. In addition, the air filtration performance of this fibrous membrane for PM was evaluated. The effects of SiO2 on the composition, morphology, mechanical property, and surface wetting of PS-SNP membranes were studied. Allowing SiO2 to be incorporated into the PS polymer was endowed with promising superhydrophobicity and demonstrated excellent mechanical properties. As-prepared PS-SNP membranes possess significantly better filtration efficiency than pure PS membrane. Furthermore, a three-layered air filter media (viscose/PS-SNP/polyethylene terephthalate) used in this study has considerable performances compared to the commercial masks. Since this air filtration membrane has excellent features such as high air filtration and permeability, we anticipate it to have huge potential application in air filtration systems, including cleanroom, respirator, and protective clothing.
Collapse
|
15
|
Grylewicz A, Szymański K, Darowna D, Mozia S. Influence of Polymer Solvents on the Properties of Halloysite-Modified Polyethersulfone Membranes Prepared by Wet Phase Inversion. Molecules 2021; 26:2768. [PMID: 34066689 PMCID: PMC8125839 DOI: 10.3390/molecules26092768] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/04/2021] [Accepted: 05/05/2021] [Indexed: 11/29/2022] Open
Abstract
Ultrafiltration polyethersulfone (PES) membranes were prepared by wet phase inversion. Commercial halloysite nanotubes (HNTs) in the quantities of 0.5 wt% vs. PES (15 wt%) were introduced into the casting solution containing the polymer and different solvents: N,N-dimethylformamide (DMF), N,N-dimethylacetamide (DMA), or 1-methyl-2-pyrrolidinone (NMP). The type of solvent influenced the membranes' morphology and topography, as well as permeability, separation characteristics, and antifouling and antibacterial properties. The membranes prepared using DMA exhibited the loosest cross-section structure with the thinnest skin and the roughest surface, while the densest and smoothest were the DMF-based membranes. The advanced contact angles were visibly lower in the case of the membranes prepared using DMF compared to the other solvents. The highest water permeability was observed for the DMA-based membranes, however, the most significant effect of the modification with HNTs was found for the NMP-based series. Regardless of the solvent, the introduction of HNTs resulted in an improvement of the separation properties of membranes. A noticeable enhancement of antifouling performance upon application of HNTs was found only in the case of DMF-based membranes. The study of the antibacterial properties showed that the increase in surface roughness had a positive effect on the inhibition of E. coli growth.
Collapse
Affiliation(s)
| | | | | | - Sylwia Mozia
- Department of Inorganic Chemical Technology and Environment Engineering, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, ul. Pułaskiego 10, 70-322 Szczecin, Poland; (A.G.); (K.S.); (D.D.)
| |
Collapse
|
16
|
|
17
|
Grylewicz A, Mozia S. Polymeric mixed-matrix membranes modified with halloysite nanotubes for water and wastewater treatment: A review. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.117827] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
18
|
Idress H, Zaidi SZJ, Sabir A, Shafiq M, Khan RU, Harito C, Hassan S, Walsh FC. Cellulose acetate based Complexation-NF membranes for the removal of Pb(II) from waste water. Sci Rep 2021; 11:1806. [PMID: 33469047 PMCID: PMC7815919 DOI: 10.1038/s41598-020-80384-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 12/02/2020] [Indexed: 01/21/2023] Open
Abstract
This study investigates the removal of Pb(II) using polymer matrix membranes, cellulose acetate/vinyl triethoxysilane modified graphene oxide and gum Arabic (GuA) membranes. These complexation-NF membranes were successfully synthesized via dissolution casting method for better transport phenomenon. The varied concentrations of GuA were induced in the polymer matrix membrane. The prepared membranes M-GuA2–M-GuA10 were characterized by Fourier transform infrared spectroscopy, scanning electron microscopy, transmission electron microscopy, atomic force microscope and bio-fouling studies. Thermal stability of the membranes was determined by thermogravimetric analysis under nitrogen atmosphere. Dead end nanofiltration was carried out to study the perm- selectivity of all the membranes under varied pressure and concentration of Pb(NO3)2. The complexation-NF membrane performances were significantly improved after the addition of GuA in the polymer matrix membrane system. M-GuA8 membrane showed optimum result of permeation flux 8.6 l m−2 h−1. Rejection of Pb(II) ions was observed to be around 97.6% at pH 9 for all the membranes due to electrostatic interaction between CA and Gum Arabic. Moreover, with the passage of time, the rate of adsorption was also increased up to 15.7 mg g−1 until steady state was attained. Gum Arabic modified CA membranes can open up new possibilities in enhancing the permeability, hydrophilicity and anti-fouling properties.
Collapse
Affiliation(s)
- H Idress
- Department of Polymer Engineering and Technology, University of the Punjab, Lahore, 54590, Pakistan.
| | - S Z J Zaidi
- Institute of Chemical Engineering and Technology, University of the Punjab, Lahore, Pakistan.
| | - A Sabir
- Department of Polymer Engineering and Technology, University of the Punjab, Lahore, 54590, Pakistan
| | - M Shafiq
- Department of Polymer Engineering and Technology, University of the Punjab, Lahore, 54590, Pakistan
| | - R U Khan
- Department of Polymer Engineering and Technology, University of the Punjab, Lahore, 54590, Pakistan
| | - C Harito
- Industrial Engineering Department, Faculty of Engineering, Bina Nusantara University, Jakarta, 11480, Indonesia
| | - S Hassan
- Mechanical Engineering, Faculty of Engineering and Physical Sciences, University of Southampton, Highfield, Southampton, SO17 1BJ, UK
| | - F C Walsh
- Electrochemical Engineering Laboratory, Faculty of Engineering and Environment, Engineering Sciences, University of Southampton, Highfield, Southampton, SO17 1BJ, UK
| |
Collapse
|
19
|
Shan B, Wang P, Zhang Y, Guo Z. Discrete unified gas kinetic scheme for all Knudsen number flows. IV. Strongly inhomogeneous fluids. Phys Rev E 2020; 101:043303. [PMID: 32422810 DOI: 10.1103/physreve.101.043303] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 03/02/2020] [Indexed: 11/07/2022]
Abstract
This work is an extension of the discrete unified gas kinetic scheme (DUGKS) from rarefied gas dynamics to strongly inhomogeneous dense fluid systems. The fluid molecular size can be ignored for dilute gases, while the nonlocal intermolecular collisions and the competition of solid-fluid and fluid-fluid interactions play an important role for surface-confined fluid flows at the nanometer scale. The nonequilibrium state induces strong fluid structural-confined inhomogeneity and anomalous fluid flow dynamics. According to the previous kinetic model [Guo et al., Phys. Rev. E 71, 035301(R) (2005)10.1103/PhysRevE.71.035301], the long-range intermolecular attraction is modeled by the mean-field approximation, and the volume exclusion effect is considered by the hard-sphere potential in the collision operator. The kinetic model is solved by the DUGKS, which has the characteristics of asymptotic preserving, low dissipation, second-order accuracy, and multidimensional nature. Both static fluid structure and dynamic flow behaviors are calculated and validated with Monte Carlo or molecular dynamics results. It is shown that the flow of dense fluid systems tends to that of rarefied gases as the dense degree decreases or the mean flow path increases. The DUGKS is proved to be applicable to simulate such nonequilibrium dense fluid systems.
Collapse
Affiliation(s)
- Baochao Shan
- State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology, Wuhan, Hubei 430000, China
| | - Peng Wang
- State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology, Wuhan, Hubei 430000, China
| | - Yonghao Zhang
- James Weir Fluids Laboratory, Department of Mechanical and Aerospace Engineering, University of Strathclyde, Glasgow G1 1XJ, United Kingdom
| | - Zhaoli Guo
- State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology, Wuhan, Hubei 430000, China
| |
Collapse
|
20
|
Performance improvement of polyethersulfone ultrafiltration membrane containing variform inorganic nano-additives. POLYMER 2020. [DOI: 10.1016/j.polymer.2020.122160] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
21
|
Kamal N, Kochkodan V, Zekri A, Ahzi S. Polysulfone Membranes Embedded with Halloysites Nanotubes: Preparation and Properties. MEMBRANES 2019; 10:membranes10010002. [PMID: 31881742 PMCID: PMC7023047 DOI: 10.3390/membranes10010002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 12/21/2019] [Accepted: 12/23/2019] [Indexed: 01/31/2023]
Abstract
In the present study, nanocomposite ultrafiltration membranes were prepared by incorporating nanotubes clay halloysite (HNTs) into polysulfone (PSF) and PSF/polyvinylpyrrolidone (PVP) dope solutions followed by membrane casting using phase inversion method. Characterization of HNTs were conducted using scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD), and thermogravimetric (TGA) analysis. The pore structure, morphology, hydrophilicity and mechanical properties of the composite membranes were characterized by using SEM, water contact angle (WCA) measurements, and dynamic mechanical analysis. It was shown that the incorporation of HNTs enhanced hydrophilicity and mechanical properties of the prepared PSF membranes. Compared to the pristine PSF membrane, results show that the total porosity and pore size of PSF/HNTs composite membranes increased when HNTs loadings were more than 0.5 wt % and 1.0 wt %, respectively. These findings correlate well with changes in water flux of the prepared membranes. It was observed that HNTs were homogenously dispersed within the PSF membrane matrix at HNTs content of 0.1 to 0.5 wt % and the PSF/HNTs membranes prepared by incorporating 0.2 wt % HNTs loading possess the optimal mechanical properties in terms of elastic modulus and yield stress. In the case of the PSF/PVP matrix, the optimal mechanical properties were obtained with 0.3 wt % of HNTs because PVP enhances the HNTs distribution. Results of bovine serum albumin (BSA) filtration tests indicated that PSF/0.2 wt % HNTs membrane exhibited high BSA rejection and notable anti-fouling properties.
Collapse
Affiliation(s)
- Nagla Kamal
- College of Science and Engineering, Hamad Bin Khalifa University (HBKU), P.O. Box 34110 Doha, Qatar;
- Qatar Environment and Energy Research Institute (QEERI), Hamad Bin Khalifa University (HBKU), P.O. Box 34110 Doha, Qatar;
- Correspondence: (N.K.); (V.K.)
| | - Viktor Kochkodan
- Qatar Environment and Energy Research Institute (QEERI), Hamad Bin Khalifa University (HBKU), P.O. Box 34110 Doha, Qatar;
- Correspondence: (N.K.); (V.K.)
| | - Atef Zekri
- Qatar Environment and Energy Research Institute (QEERI), Hamad Bin Khalifa University (HBKU), P.O. Box 34110 Doha, Qatar;
| | - Said Ahzi
- College of Science and Engineering, Hamad Bin Khalifa University (HBKU), P.O. Box 34110 Doha, Qatar;
- Qatar Environment and Energy Research Institute (QEERI), Hamad Bin Khalifa University (HBKU), P.O. Box 34110 Doha, Qatar;
| |
Collapse
|
22
|
Kordnezhadian R, Shekouhy M, Karimian S, Khalafi-Nezhad A. DBU-functionalized MCM-41-coated nanosized hematite (DBU-F-MCM-41-CNSH): A new magnetically separable basic nanocatalyst for the synthesis of some nucleoside-containing heterocycles. J Catal 2019. [DOI: 10.1016/j.jcat.2019.10.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
23
|
Buruga K, Song H, Shang J, Bolan N, Jagannathan TK, Kim KH. A review on functional polymer-clay based nanocomposite membranes for treatment of water. JOURNAL OF HAZARDOUS MATERIALS 2019; 379:120584. [PMID: 31419722 DOI: 10.1016/j.jhazmat.2019.04.067] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 03/12/2019] [Accepted: 04/20/2019] [Indexed: 06/10/2023]
Abstract
Water is essential for every living being. Increasing population, mismanagement of water sources, urbanization, industrialization, globalization, and global warming have all contributed to the scarcity of fresh water sources and the growing demand of such resources. Securing and allocating sufficient water resources has thus become one of the current major global challenges. Membrane technology has dominated the field of water purification due to its ease of usage and fabrication with high efficiency. The development of novel membrane materials can hence play a central role in advancing the field of membrane technology. It is noted that polymer-clay nanocomposites have been used widely for treatment of waste water. Nonetheless, not much efforts have been put to functionalize their membranes to be selective for specific targets. This review was organized to offer better insights into various types of functional polymer and clays composite membranes developed for efficient treatment and purification of water/wastewater. Our discussion was extended further to evaluate the efficacy of membrane techniques employed in the water industry against major chemical (e.g., heavy metal, dye, and phenol) and biological contaminants (e.g., biofouling).
Collapse
Affiliation(s)
- Kezia Buruga
- Department of Chemical Engineering, National Institute of Technology Karnataka Surathkal 575025, India
| | - Hocheol Song
- Department of Environment and Energy, Sejong University, Seoul 05006, South Korea
| | - Jin Shang
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Nanthi Bolan
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul, 04763, South Korea
| | | | - Ki-Hyun Kim
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul, 04763, South Korea.
| |
Collapse
|
24
|
Mozia S, Grylewicz A, Zgrzebnicki M, Darowna D, Czyżewski A. Investigations on the Properties and Performance of Mixed-Matrix Polyethersulfone Membranes Modified with Halloysite Nanotubes. Polymers (Basel) 2019; 11:polym11040671. [PMID: 30979086 PMCID: PMC6523960 DOI: 10.3390/polym11040671] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 04/04/2019] [Accepted: 04/09/2019] [Indexed: 12/03/2022] Open
Abstract
Ultrafiltration (UF) polyethersulfone (PES) membranes were prepared by wet phase inversion method. Commercial halloysite nanotubes (HNTs) in the amount of 0.5–4 wt % vs PES (15 wt %) were introduced into the casting solution containing the polymer and N,N-dimethylformamide as a solvent. The morphology, physicochemical properties and performance of the membranes were characterized by scanning electron microscopy (SEM) and atomic force microscopy (AFM), zeta potential, porosity and contact angle analyses, as well as permeability measurements. Moreover, the antifouling properties of the membranes were evaluated during UF of a model solution of bovine serum albumin (BSA). The research revealed a positive influence of modification with HNTs on hydrophilicity, water permeability and antifouling properties of the PES membranes. The most significant improvement of permeability was obtained in case of the membrane containing 2 wt % of HNTs, whereas the highest fouling resistance was observed for 0.5 wt % HNTs content. It was found that a good dispersion of HNTs can be obtained only at loadings below 2 wt %. Based on the results a relation between severity of membrane fouling and surface roughness was proved. Moreover, an increase of the roughness of the modified membranes was found to be accompanied by an increase of isoelectric point values.
Collapse
Affiliation(s)
| | - Amanda Grylewicz
- Faculty of Chemical Technology and Engineering, Institute of Inorganic Chemical Technology and Environment Engineering, West Pomeranian University of Technology, Pułaskiego 10, 70-322 Szczecin, Poland.
| | | | | | | |
Collapse
|
25
|
Mohamed El-Hadi A, Alamri HR. The New Generation from Biomembrane with Green Technologies for Wastewater Treatment. Polymers (Basel) 2018; 10:E1174. [PMID: 30961099 PMCID: PMC6403578 DOI: 10.3390/polym10101174] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 10/19/2018] [Accepted: 10/19/2018] [Indexed: 11/16/2022] Open
Abstract
A biopolymer of polylactic acid (PLLA)/polypropylene carbonate (PPC)/poly (3-hydroxybutrate) (PHB)/triethyl citrate (TEC) blends was prepared by the solution-casting method at different proportions. The thermal characteristics were studied by differential scanning calorimetry (DSC) and thermogravimetry (TG). PHB and TEC were added to improve the interfacial adhesion, crystallization behavior, and mechanical properties of the immiscible blend from PLLA and PPC (20%). The addition of more than 20% of PPC as an amorphous part hindered the crystallization of PLLA. PPC, PHB, and TEC also interacted with the PLLA matrix, which reduced the glass transition temperature (Tg), the cold crystallization temperature (Tcc), and the melting point (Tm) to about 53, 57 and 15 °C, respectively. The Tg shifted from 60 to 7 °C; therefore, the elongation at break improved from 6% (pure PLLA) to 285% (PLLA blends). In this article, biomembranes of PLLA with additives were developed and made by an electrospinning process. The new generation from biopolymer membranes can be used to absorb suspended pollutants in the water, which helps in the purification of drinking water in the household.
Collapse
Affiliation(s)
- Ahmed Mohamed El-Hadi
- Department of Physics, Faculty of Applied Science, Umm Al-Qura University, Al-Abidiyya, P.O. Box 13174, Makkah 21955, Saudi Arabia.
- Department of Basic Science, Higher Institute of Engineering and Technology, El Arish, North Sinai 9004, Egypt.
| | - Hatem Rashad Alamri
- Physics Department, Jamoum University College, Umm Al-Qura University, Makkah 21955, Saudi Arabia.
| |
Collapse
|