1
|
Robby AI, Jiang S, Jin EJ, Park SY. Semiconducting polymer dot-based wireless electrochemical aptasensor for detection of aging-related TGF-β1 and IL-6. Anal Chim Acta 2025; 1360:344139. [PMID: 40409909 DOI: 10.1016/j.aca.2025.344139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 04/01/2025] [Accepted: 04/30/2025] [Indexed: 05/25/2025]
Abstract
BACKGROUND The senescence-associated secretory phenotype (SASP) is closely linked to aging by promoting inflammation and tissue degradation. Sensing SASP is crucial for early detection of and intervention in age-related diseases to enhance therapeutic outcomes. Herein, SASP-selective sensors (transforming growth factor [TGF]-β1 and interleukin [IL]-6 probes) were designed by utilizing TGF-β1/IL-6 aptamers-functionalized copper-immobilized polymer dots that promoted specific binding between TGF-β1/IL-6 aptamers on the probe surface with aging factors (TGF-β1 and IL-6). RESULTS The selective binding was reflected by changes in the conductivity of the probes. The TGF-β1 and IL-6 probes showed high sensitivity towards TGF-β1 and IL-6, with limits of detection of 193.09 pg/mL for the TGF-β1 (R2 = 0.9989) and 16.49 pg/mL (R2 = 0.9998) for IL-6 probes. In vitro study using senescent cells confirmed that the probes could selectively detect TGF-β1 and IL-6, indicated by increased resistance with longer incubation times (TGF-β172h = 2.775 MΩ, IL-672h = 2.401 MΩ). Furthermore, the TGF-β1 and IL-6 probes exhibited excellent detection performance in in vivo samples from aging mouse models when monitoring the levels of TGF-β1 and IL-6 at different times after lenti soup injection and at different mouse ages (6-20 months). Additionally, the electrical signals generated during sensing can be displayed on a smartphone via a wireless sensing system. SIGNIFICANCE TGF-β1 and IL-6 probes provide a sensitive, specific and accessible diagnostic platform for senescence aging factors monitoring, which are expected to be an essential tool that transforms the analysis of aging and age-related diseases.
Collapse
Affiliation(s)
- Akhmad Irhas Robby
- Chemical Industry Institute, Korea National University of Transportation, Chungju, 27469, Republic of Korea; Department of Chemical & Biological Engineering, Korea National University of Transportation, Chungju, 27469, Republic of Korea
| | - Songling Jiang
- Integrated Omics Institute, Wonkwang University, Iksan, Chungbuk, 54538, Republic of Korea
| | - Eun-Jung Jin
- Integrated Omics Institute, Wonkwang University, Iksan, Chungbuk, 54538, Republic of Korea; Department of Biomedical Materials Science, Graduate School of JABA, Wonkwang University, Iksan, Jeonbuk State, 54538, Republic of Korea.
| | - Sung Young Park
- Chemical Industry Institute, Korea National University of Transportation, Chungju, 27469, Republic of Korea; Department of Chemical & Biological Engineering, Korea National University of Transportation, Chungju, 27469, Republic of Korea; Department of IT and Energy Convergence (BK21 FOUR), Korea National University of Transportation, Chungju, 27469, Republic of Korea.
| |
Collapse
|
2
|
Gaviria-Soteras L, Sharma AK, Sanmartín C, Plano D. Recent Insights into Bioactive Dichalcogen Derivatives: From Small Molecules to Complex Materials. Int J Mol Sci 2025; 26:2436. [PMID: 40141080 PMCID: PMC11942125 DOI: 10.3390/ijms26062436] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 03/04/2025] [Accepted: 03/05/2025] [Indexed: 03/28/2025] Open
Abstract
Organodichalcogenides have been explored due to their therapeutic properties. They have been demonstrated to be active against several diseases such as cancer, bacteria, viruses, parasites, or neurological diseases. Among the different classes of dichalcogenides, disulfide derivatives have been widely studied, and many studies cover their therapeutical use. For this reason, this review includes the latest studies of diselenides and ditellurides derivatives with biological applications. With this aim, several bioactive small molecules containing the diselenide or ditelluride bond in their structure have been discussed. Furthermore, it should be highlighted that, in recent years, there has been an increasing interest in the development of nanomaterials for drug delivery due to their therapeutic advantages. In this context, diselenide and ditelluride-containing nanocarriers have emerged as novel approaches. The information compiled in this review includes small molecules and more complex materials containing diselenide or ditelluride bonds in their structure for different therapeutical applications, which could be helpful for the further development of novel drugs for the treatment of different diseases.
Collapse
Affiliation(s)
- Leire Gaviria-Soteras
- Department of Pharmaceutical Sciences, University of Navarra, Irunlarrea 1, E-31008 Pamplona, Spain; (L.G.-S.); (D.P.)
| | - Arun K. Sharma
- Department of Molecular and Precision Medicine, Penn State Cancer Institute, CH72, 500 University Drive, Hershey, PA 17033, USA;
| | - Carmen Sanmartín
- Department of Pharmaceutical Sciences, University of Navarra, Irunlarrea 1, E-31008 Pamplona, Spain; (L.G.-S.); (D.P.)
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea 3, E-31008 Pamplona, Spain
| | - Daniel Plano
- Department of Pharmaceutical Sciences, University of Navarra, Irunlarrea 1, E-31008 Pamplona, Spain; (L.G.-S.); (D.P.)
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea 3, E-31008 Pamplona, Spain
| |
Collapse
|
3
|
Kim TM, Bae HJ, Park SY. Polyphenol-Inorganic Sulfate Complex-Enriched Straightening Shampoo for Reinforcing and Restoring Reduced Hair Integrity. Biomimetics (Basel) 2025; 10:132. [PMID: 40136785 PMCID: PMC11939901 DOI: 10.3390/biomimetics10030132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 02/21/2025] [Accepted: 02/21/2025] [Indexed: 03/27/2025] Open
Abstract
Conventional hair-straightening methods that use chemical treatments to break disulfide bonds cause severe damage to the hair shaft, leading to weakened hair that is prone to reverting to its curly form in high humidity. Therefore, a unique haircare coating technology is required to protect hair integrity and provide a long-lasting straightening effect. Herein, we designed a hair-straightening technology by integrating a nature-inspired polyphenol-inorganic sulfate (PIS) redox agent into formulated shampoo, which achieves a desirable straightening effect through sulfate-induced disulfide breakage while preserving hair integrity through a polyphenol-reinforced structure. The interaction between polyphenols and residual thiols from the straightening process maintained a long-lasting straight hair structure and hair strength. Ellman's assay showed a lower free thiol content from reductant-induced damaged keratin in PIS shampoo-treated hair than in sulfate-treated hair as the polyphenol-thiol bond was formed through the Michael addition reaction, thereby restoring the natural structure of the hair and enhancing its mechanical properties. Owing to the polyphenol coating, PIS shampoo-treated hair exhibited an antistatic effect and high hydrophobicity, indicating healthy hair. Furthermore, the polyphenol coating effectively scavenged radical oxygen species (ROS) in the hair, thereby improving damage protection. Thus, PIS shampoo offers an alternative approach for effective hair straightening.
Collapse
Affiliation(s)
- Tae Min Kim
- Department of IT and Energy Convergence (BK21 FOUR), Korea National University of Transportation, Chungju 27469, Republic of Korea;
| | - Heung Jin Bae
- Department of IT and Energy Convergence (BK21 FOUR), Korea National University of Transportation, Chungju 27469, Republic of Korea;
- MODAMODA Corporation, Ltd., Songpa-gu, Seoul 05546, Republic of Korea
| | - Sung Young Park
- Department of IT and Energy Convergence (BK21 FOUR), Korea National University of Transportation, Chungju 27469, Republic of Korea;
- Department of Chemical and Biological Engineering, Korea National University of Transportation, Chungju 27469, Republic of Korea
| |
Collapse
|
4
|
Kim TM, Subba SH, Hwang YK, Kim SG, Park J, Jin EJ, Park SY. Electrical and fluorescence in situ monitoring of tumor microenvironment-based pH-responsive polymer dot coated surface. Talanta 2025; 281:126840. [PMID: 39265419 DOI: 10.1016/j.talanta.2024.126840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 09/03/2024] [Accepted: 09/07/2024] [Indexed: 09/14/2024]
Abstract
A boronate-ester structure forming a pH-responsive polymer dot (Plu-PD) coated biosensor between carbonized-sp2 rich dopamine-alginate [PD(Alg)] and boronic acid-grafted Pluronic (BA-Pluronic) was developed for the electrochemical and fluorescence detection of cancer cells. The reduced fluorescence (FL) resulting from fluorescence resonance energy transfer (FRET) mediated by π-π interactions within Plu-PD was successfully reinvigorated through the specific cleavage of the boronate-ester bond, triggered by the acidic conditions prevailing in the cancer microenvironment. The anomalous variations in extracellular pH levels observed in cancer (pH ∼6.8), as opposed to the normal cellular pH range of approximately 7.4, serve as robust indicators for discerning cancer cells from their healthy counterparts. Moreover, the Plu-PD coated surface demonstrated remarkable adaptability in modulating its surface structure, concurrently exhibiting tunable electroconductivity under reduced pH conditions, thereby imparting selective responsiveness to cancer cells. The pH-modulated conductivity change was validated by a reduction in resistance from 211 ± 9.7 kΩ at pH 7.4 to 73.9 ± 9.4 kΩ and 61.5 ± 11.5 kΩ at pH 6.8 and 6.0, respectively. The controllable electrochemical characteristics were corroborated through in vitro treatment of cancer cells (HeLa, B16F10, and SNU-C2A) via LED experiments and wireless output analysis. In contrast, identical treatments yielded a limited response in normal cell line (CHO-K1). Notably, the Plu-PD coated surface can be seamlessly integrated with a wireless system to facilitate real-time monitoring of the sensing performance in the presence of cancer and normal cells, enabling rapid and accurate cancer diagnosis using a smartphone.
Collapse
Affiliation(s)
- Tae Min Kim
- Department of IT and Energy Convergence (BK21 FOUR), Korea National University of Transportation, Chungju, 27469, Republic of Korea
| | - Sunu Hangma Subba
- Department of IT and Energy Convergence (BK21 FOUR), Korea National University of Transportation, Chungju, 27469, Republic of Korea
| | - Yoon Kil Hwang
- Department of IT and Energy Convergence (BK21 FOUR), Korea National University of Transportation, Chungju, 27469, Republic of Korea
| | - Seul Gi Kim
- Department of Green Bio Engineering, Korea National University of Transportation, Chungju, 27469, Republic of Korea
| | - Junyoung Park
- Department of Biological Sciences, College of Health Sciences, Wonkwang University, Jeonbuk, 54538, Iksan, Republic of Korea
| | - Eun-Jung Jin
- Department of Biological Sciences, College of Health Sciences, Wonkwang University, Jeonbuk, 54538, Iksan, Republic of Korea
| | - Sung Young Park
- Department of IT and Energy Convergence (BK21 FOUR), Korea National University of Transportation, Chungju, 27469, Republic of Korea; Department of Green Bio Engineering, Korea National University of Transportation, Chungju, 27469, Republic of Korea; Department of Chemical and Biological Engineering, Korea National University of Transportation, Chungju, 27469, Republic of Korea.
| |
Collapse
|
5
|
Dey A, Roy K, Subba SH, Lee G, Park SY. MXene/polymer dot-decorated flexible sensor for cancer cell-responsive hydrogel with tunable elastic modulus, porosity, and conductivity. Talanta 2025; 281:126874. [PMID: 39277932 DOI: 10.1016/j.talanta.2024.126874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/06/2024] [Accepted: 09/10/2024] [Indexed: 09/17/2024]
Abstract
This study reports a facile strategy for cancer cell modulated mechanically and electronically tunable hydrogel based on MXene-immobilized hyaluronic acid polymer dot (M-PD). Elevated levels of reactive oxygen species (ROS), such as H2O2 in cancer cells cleave MXene owing to the oxygen-titanium affinity of Ti3C2Tx, altering the physico-mechanical, electrochemical, and fluorescence (FL) properties of the sensor. The H2O2-induced cleavage of M-PD in the hydrogel causes the quenched FL intensity by the Forster resonance energy transfer effect (FRET) to recover, alongside an increase in pore size, influencing shifts in hydrogen bonding and inducing viscoelastic changes in the flexible sensor. This caused physico-mechanical alterations in the sensor, modified the viscosity (G' decreased by 98.7%), and enhanced the stretchability. Further, in vitro electrochemical impedance spectroscopy (EIS) highlighted the distinct results for cancer cells (B16F10: 8.10 kΩ, MDA-MB-231: 8.30 kΩ), and normal cells (CHO-K1: 3.40 kΩ), showcasing electrochemical differentiation between these cells. Additionally, the flexible M-PD hydrogel sensor exhibits high sensitivity, with detection limits of 2.58 cells/well (CHO-K1), 0.96 cells/well (B16F10), and 1.20 cells/well (MDA-MB-231). Finally, real-time cancer monitoring was achieved by integrating the M-PD hydrogel with a wireless setup on a smartphone.
Collapse
Affiliation(s)
- Anneshwa Dey
- Department of IT and Energy Convergence, (BK21 FOUR), Korea National University of Transportation, Chungju, 27469, Republic of Korea
| | - Kaustuv Roy
- Department of IT and Energy Convergence, (BK21 FOUR), Korea National University of Transportation, Chungju, 27469, Republic of Korea
| | - Sunu Hangma Subba
- Department of IT and Energy Convergence, (BK21 FOUR), Korea National University of Transportation, Chungju, 27469, Republic of Korea
| | - Gibaek Lee
- Department of Chemical and Biological Engineering, Korea National University of Transportation, Chungju, 27469, Republic of Korea.
| | - Sung Young Park
- Department of IT and Energy Convergence, (BK21 FOUR), Korea National University of Transportation, Chungju, 27469, Republic of Korea; Department of Chemical and Biological Engineering, Korea National University of Transportation, Chungju, 27469, Republic of Korea.
| |
Collapse
|
6
|
Liu Y, Li C, Yang X, Yang B, Fu Q. Stimuli-responsive polymer-based nanosystems for cardiovascular disease theranostics. Biomater Sci 2024; 12:3805-3825. [PMID: 38967109 DOI: 10.1039/d4bm00415a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/06/2024]
Abstract
Stimulus-responsive polymers have found widespread use in biomedicine due to their ability to alter their own structure in response to various stimuli, including internal factors such as pH, reactive oxygen species (ROS), and enzymes, as well as external factors like light. In the context of atherosclerotic cardiovascular diseases (CVDs), stimulus-response polymers have been extensively employed for the preparation of smart nanocarriers that can deliver therapeutic and diagnostic drugs specifically to inflammatory lesions. Compared with traditional drug delivery systems, stimulus-responsive nanosystems offer higher sensitivity, greater versatility, wider applicability, and enhanced biosafety. Recent research has made significant contributions towards designing stimulus-responsive polymer nanosystems for CVDs diagnosis and treatment. This review summarizes recent advances in this field by classifying stimulus-responsive polymer nanocarriers according to different responsiveness types and describing numerous stimuli relevant to these materials. Additionally, we discuss various applications of stimulus-responsive polymer nanomaterials in CVDs theranostics. We hope that this review will provide valuable insights into optimizing the design of stimulus-response polymers for accelerating their clinical application in diagnosing and treating CVDs.
Collapse
Affiliation(s)
- Yuying Liu
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China.
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao 266003, China.
| | - Congcong Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China.
| | - Xiao Yang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China.
| | - Bin Yang
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao 266003, China.
| | - Qinrui Fu
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China.
| |
Collapse
|
7
|
Robby AI, Jiang S, Jin EJ, Park SY. Electrochemical and Fluorescence MnO 2-Polymer Dot Electrode Sensor for Osteoarthritis-Based Peroxisomal β-Oxidation Knockout Model. BIOSENSORS 2024; 14:357. [PMID: 39056633 PMCID: PMC11275033 DOI: 10.3390/bios14070357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/16/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024]
Abstract
A coenzyme A (CoA-SH)-responsive dual electrochemical and fluorescence-based sensor was designed utilizing an MnO2-immobilized-polymer-dot (MnO2@D-PD)-coated electrode for the sensitive detection of osteoarthritis (OA) in a peroxisomal β-oxidation knockout model. The CoA-SH-responsive MnO2@D-PD-coated electrode interacted sensitively with CoA-SH in OA chondrocytes, triggering electroconductivity and fluorescence changes due to cleavage of the MnO2 nanosheet on the electrode. The MnO2@D-PD-coated electrode can detect CoA-SH in immature articular chondrocyte primary cells, as indicated by the significant increase in resistance in the control medium (R24h = 2.17 MΩ). This sensor also sensitively monitored the increase in resistance in chondrocyte cells in the presence of acetyl-CoA inducers, such as phytol (Phy) and sodium acetate (SA), in the medium (R24h = 2.67, 3.08 MΩ, respectively), compared to that in the control medium, demonstrating the detection efficiency of the sensor towards the increase in the CoA-SH concentration. Furthermore, fluorescence recovery was observed owing to MnO2 cleavage, particularly in the Phy- and SA-supplemented media. The transcription levels of OA-related anabolic (Acan) and catabolic factors (Adamts5) in chondrocytes also confirmed the interaction between CoA-SH and the MnO2@D-PD-coated electrode. Additionally, electrode integration with a wireless sensing system provides inline monitoring via a smartphone, which can potentially be used for rapid and sensitive OA diagnosis.
Collapse
Affiliation(s)
- Akhmad Irhas Robby
- Chemical Industry Institute, Korea National University of Transportation, Chungju 27469, Republic of Korea;
- Department of Chemical & Biological Engineering, Korea National University of Transportation, Chungju 27469, Republic of Korea
| | - Songling Jiang
- Integrated Omics Institute, Wonkwang University, Iksan 54538, Republic of Korea;
| | - Eun-Jung Jin
- Integrated Omics Institute, Wonkwang University, Iksan 54538, Republic of Korea;
- Department of Biological Sciences, College of Health Sciences, Wonkwang University, Iksan 54538, Republic of Korea
| | - Sung Young Park
- Chemical Industry Institute, Korea National University of Transportation, Chungju 27469, Republic of Korea;
- Department of Chemical & Biological Engineering, Korea National University of Transportation, Chungju 27469, Republic of Korea
| |
Collapse
|
8
|
Robby AI, Jiang S, Jin EJ, Park SY. Coenzyme-A-Responsive Nanogel-Coated Electrochemical Sensor for Osteoarthritis-Detection-Based Genetic Models. Gels 2024; 10:451. [PMID: 39057474 PMCID: PMC11276253 DOI: 10.3390/gels10070451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/01/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
An electrochemical sensor sensitive to coenzyme A (CoA) was designed using a CoA-responsive polyallylamine-manganese oxide-polymer dot nanogel coated on the electrode surface to detect various genetic models of osteoarthritis (OA). The CoA-responsive nanogel sensor responded to the abundance of CoA in OA, causing the breakage of MnO2 in the nanogel, thereby changing the electroconductivity and fluorescence of the sensor. The CoA-responsive nanogel sensor was capable of detecting CoA depending on the treatment time and distinguishing the response towards different OA genetic models that contained different levels of CoA (wild type/WT, NudT7 knockout/N7KO, and Acot12 knockout/A12KO). The WT, N7KO, and A12KO had distinct resistances, which further increased as the incubation time were changed from 12 h (R12h = 2.11, 2.40, and 2.68 MΩ, respectively) to 24 h (R24h = 2.27, 2.59, and 2.92 MΩ, respectively) compared to the sensor without treatment (Rcontrol = 1.63 MΩ). To simplify its application, the nanogel sensor was combined with a wireless monitoring device to allow the sensing data to be directly transmitted to a smartphone. Furthermore, OA-indicated anabolic (Acan) and catabolic (Adamts5) factor transcription levels in chondrocytes provided evidence regarding CoA and nanogel interactions. Thus, this sensor offers potential usage in simple and sensitive OA diagnostics.
Collapse
Affiliation(s)
- Akhmad Irhas Robby
- Chemical Industry Institute, Korea National University of Transportation, Chungju 27469, Chungcheongbuk-do, Republic of Korea;
- Department of Chemical & Biological Engineering, Korea National University of Transportation, Chungju 27469, Chungcheongbuk-do, Republic of Korea
| | - Songling Jiang
- Integrated Omics Institute, Wonkwang University, Iksan 54538, Jeonbuk, Republic of Korea;
| | - Eun-Jung Jin
- Integrated Omics Institute, Wonkwang University, Iksan 54538, Jeonbuk, Republic of Korea;
- Department of Biological Sciences, College of Health Sciences, Wonkwang University, Iksan 54538, Jeonbuk, Republic of Korea
| | - Sung Young Park
- Chemical Industry Institute, Korea National University of Transportation, Chungju 27469, Chungcheongbuk-do, Republic of Korea;
- Department of Chemical & Biological Engineering, Korea National University of Transportation, Chungju 27469, Chungcheongbuk-do, Republic of Korea
| |
Collapse
|
9
|
Hu Y, Liu P. Diselenide-Bridged Doxorubicin Dimeric Prodrug: Synthesis and Redox-Triggered Drug Release. Molecules 2024; 29:1709. [PMID: 38675530 PMCID: PMC11052396 DOI: 10.3390/molecules29081709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/02/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
The diselenide bond has attracted intense interest in redox-responsive drug delivery systems (DDSs) in tumor chemotherapy, due to its higher sensitivity than the most investigated bond, namely the disulfide bond. Here, a diselenide-bridged doxorubicin dimeric prodrug (D-DOXSeSe) was designed by coupling two doxorubicin molecules with a diselenodiacetic acid (DSeDAA) molecule via α-amidation, as a redox-triggered drug self-delivery system (DSDS) for tumor-specific chemotherapy. The drug release profiles indicated that the D-DOXSeSe could be cleaved to release the derivatives selenol (DOX-SeH) and seleninic acid (DOX-SeOOH) with the triggering of high GSH and H2O2, respectively, indicating the double-edged sword effect of the lower electronegativity of the selenide atom. The resultant solubility-controlled slow drug release performance makes it a promising candidate as a long-acting DSDS in future tumor chemotherapy. Moreover, the interaction between the conjugations in the design of self-immolation traceless linkers was also proposed for the first time as another key factor for a desired precise tumor-specific chemotherapy, besides the conjugations themselves.
Collapse
Affiliation(s)
| | - Peng Liu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China;
| |
Collapse
|
10
|
Qi Q, Shen Q, Geng J, An W, Wu Q, Wang N, Zhang Y, Li X, Wang W, Yu C, Li L. Stimuli-responsive biodegradable silica nanoparticles: From native structure designs to biological applications. Adv Colloid Interface Sci 2024; 324:103087. [PMID: 38278083 DOI: 10.1016/j.cis.2024.103087] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 12/24/2023] [Accepted: 01/05/2024] [Indexed: 01/28/2024]
Abstract
Due to their inherent advantages, silica nanoparticles (SiNPs) have greatly potential applications as bioactive materials in biosensors/biomedicine. However, the long-term and nonspecific accumulation in healthy tissues may give rise to toxicity, thereby impeding their widespread clinical application. Hence, it is imperative and noteworthy to develop biodegradable and clearable SiNPs for biomedical purposes. Recently, the design of multi-stimuli responsive SiNPs to improve degradation efficiency under specific pathological conditions has increased their clinical trial potential as theranostic nanoplatform. This review comprehensively summaries the rational design and recent progress of biodegradable SiNPs under various internal and external stimuli for rapid in vivo degradation and clearance. In addition, the factors that affect the biodegradation of SiNPs are also discussed. We believe that this systematic review will offer profound stimulus and timely guide for further research in the field of SiNP-based nanosensors/nanomedicine.
Collapse
Affiliation(s)
- Qianhui Qi
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China; Future Food Laboratory, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing 314100, China
| | - Qian Shen
- Key Laboratory of Flexible Electronics (KLOFE) and School of Flexible Electronics (Future Technologies), Nanjing Tech University, Nanjing 211800, China
| | - Jiaying Geng
- Key Laboratory of Flexible Electronics (KLOFE) and School of Flexible Electronics (Future Technologies), Nanjing Tech University, Nanjing 211800, China
| | - Weizhen An
- Key Laboratory of Flexible Electronics (KLOFE) and School of Flexible Electronics (Future Technologies), Nanjing Tech University, Nanjing 211800, China
| | - Qiong Wu
- Key Laboratory of Flexible Electronics (KLOFE) and School of Flexible Electronics (Future Technologies), Nanjing Tech University, Nanjing 211800, China
| | - Nan Wang
- College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015, China
| | - Yu Zhang
- Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Xue Li
- Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Wei Wang
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China.
| | - Changmin Yu
- Key Laboratory of Flexible Electronics (KLOFE) and School of Flexible Electronics (Future Technologies), Nanjing Tech University, Nanjing 211800, China; State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210023, China.
| | - Lin Li
- The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen 361005, China.
| |
Collapse
|
11
|
Wei D, Sun Y, Zhu H, Fu Q. Stimuli-Responsive Polymer-Based Nanosystems for Cancer Theranostics. ACS NANO 2023; 17:23223-23261. [PMID: 38041800 DOI: 10.1021/acsnano.3c06019] [Citation(s) in RCA: 92] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2023]
Abstract
Stimuli-responsive polymers can respond to internal stimuli, such as reactive oxygen species (ROS), glutathione (GSH), and pH, biological stimuli, such as enzymes, and external stimuli, such as lasers and ultrasound, etc., by changing their hydrophobicity/hydrophilicity, degradability, ionizability, etc., and thus have been widely used in biomedical applications. Due to the characteristics of the tumor microenvironment (TME), stimuli-responsive polymers that cater specifically to the TME have been extensively used to prepare smart nanovehicles for the targeted delivery of therapeutic and diagnostic agents to tumor tissues. Compared to conventional drug delivery nanosystems, TME-responsive nanosystems have many advantages, such as high sensitivity, broad applicability among different tumors, functional versatility, and improved biosafety. In recent years, a great deal of research has been devoted to engineering efficient stimuli-responsive polymeric nanosystems, and significant improvement has been made to both cancer diagnosis and therapy. In this review, we summarize some recent research advances involving the use of stimuli-responsive polymer nanocarriers in drug delivery, tumor imaging, therapy, and theranostics. Various chemical stimuli will be described in the context of stimuli-responsive nanosystems. Accordingly, the functional chemical groups responsible for the responsiveness and the strategies to incorporate these groups into the polymer will be discussed in detail. With the research on this topic expending at a fast pace, some innovative concepts, such as sequential and cascade drug release, NIR-II imaging, and multifunctional formulations, have emerged as popular strategies for enhanced performance, which will also be included here with up-to-date illustrations. We hope that this review will offer valuable insights for the selection and optimization of stimuli-responsive polymers to help accelerate their future applications in cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Dengshuai Wei
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao 266021, China
| | - Yong Sun
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao 266021, China
| | - Hu Zhu
- Maoming People's Hospital, Guangdong 525000, China
| | - Qinrui Fu
- Institute for Translational Medicine, College of Medicine, Qingdao University, Qingdao 266021, China
| |
Collapse
|
12
|
Nguyen Cao TG, Truong Hoang Q, Kang JH, Kang SJ, Ravichandran V, Rhee WJ, Lee M, Ko YT, Shim MS. Bioreducible exosomes encapsulating glycolysis inhibitors potentiate mitochondria-targeted sonodynamic cancer therapy via cancer-targeted drug release and cellular energy depletion. Biomaterials 2023; 301:122242. [PMID: 37473534 DOI: 10.1016/j.biomaterials.2023.122242] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 07/01/2023] [Accepted: 07/06/2023] [Indexed: 07/22/2023]
Abstract
Nanocarrier-assisted sonodynamic therapy (SDT) has shown great potential for the effective and targeted treatment of deep-seated tumors by overcoming the critical limitations of sonosensitizers. However, in vivo SDT using nanocarriers is still constrained by their intrinsic toxicity and nonspecific cargo release. In this study, we developed bioreducible exosomes for the safe and tumor-specific delivery of mitochondria-targeting sonosensitizers [triphenylphosphonium-conjugated chlorin e6 (T-Ce6)] and glycolysis inhibitors (FX11). Redox-cleavable diselenide linker-bearing lipids were embedded into exosomes to trigger drug release in response to overexpressed glutathione in the tumor microenvironment. Bioreducible exosomes facilitate the cytoplasmic release of their payload in the reducing environment of tumor cells. They significantly enhance drug release and sonodynamic effects when irradiated with ultrasound (US). The mitochondria-targeted accumulation of T-Ce6 efficiently damaged the mitochondria of the cells under US irradiation, accelerating apoptotic cell death. FX11 substantially inhibited cellular energy metabolism, potentiating the antitumor efficacy of mitochondria-targeted SDT. Bioreducible exosomes effectively suppressed tumor growth in mice without significant systemic toxicity, via a combination of mitochondria-targeted SDT and energy metabolism-targeted therapy. This study offers new insights into the use of dual stimuli-responsive exosomes encapsulating sonosensitizers for safe and targeted sonodynamic cancer therapy.
Collapse
Affiliation(s)
- Thuy Giang Nguyen Cao
- Division of Bioengineering, Incheon National University, Incheon, 22012, Republic of Korea
| | - Quan Truong Hoang
- Division of Bioengineering, Incheon National University, Incheon, 22012, Republic of Korea
| | - Ji Hee Kang
- College of Pharmacy, Gachon University, Incheon, 21936, Republic of Korea
| | - Su Jin Kang
- Division of Bioengineering, Incheon National University, Incheon, 22012, Republic of Korea
| | - Vasanthan Ravichandran
- Division of Bioengineering, Incheon National University, Incheon, 22012, Republic of Korea
| | - Won Jong Rhee
- Division of Bioengineering, Incheon National University, Incheon, 22012, Republic of Korea; Research Center for Bio Materials & Process Development, Incheon National University, 119 Academy-ro, Yeonsu-gu, Incheon, 22012, Republic of Korea.
| | - Minjong Lee
- Department of Internal Medicine, Ewha Womans University College of Medicine, Seoul, 07804, Republic of Korea; Department of Internal Medicine, Ewha Womans University Medical Center, Seoul, 07804, Republic of Korea.
| | - Young Tag Ko
- College of Pharmacy, Gachon University, Incheon, 21936, Republic of Korea.
| | - Min Suk Shim
- Division of Bioengineering, Incheon National University, Incheon, 22012, Republic of Korea.
| |
Collapse
|
13
|
Subba SH, Park SY. In Situ Cancer-Cell-Triggered Visible Changes in Mechanical Properties, Electroconductivity, and Adhesiveness of a MnO 2@PD-Based Mineralized Hydrogel. ACS APPLIED MATERIALS & INTERFACES 2023; 15:38357-38366. [PMID: 37548176 DOI: 10.1021/acsami.3c08501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Herein, a cancer-specific dopamine-conjugated sp2-rich carbonized polymer dot (PD)-encapsulated mesoporous MnO2 (MnO2@PD)-mineralized hydrogel biosensor was developed that offers cancer-induced observable in situ alterations in fluorescence (FL), electrochemical, and mechanophysical properties. Cancer-triggered MnO2 degradation in the hydrogel, prompted by increased levels of glutathione (GSH) and reactive oxygen species (ROS) such as H2O2, leads to PD release and FL restoration, thereby controlling changes in the pore structure and increasing hydrogen bonding, resulting in physiologically visible alterations in mechanical stretchability, viscosity, swelling behavior, and adhesiveness. The pore size of the matrix increased from 21.83 to 36.81 m2/g upon GSH treatment, affecting the viscosity and swellability of the system. The resistance increased from 21.96 ± 1.16 to 30.69 ± 2.01 and 32.21 ± 2.54 kΩ, respectively, confirming the dependence of conductivity changes on H2O2 and GSH treatments. The in vitro treatment with cancer cells (HeLa, PC-3, and B16F10) facilitated a tunable electrochemical sensing performance via redox-mediated MnO2 breakdown by intracellular ROS and GSH, whereas hydrogels treated with normal cells (CHO-K1) showed minimal changes. Cancer-microenvironment-derived water-drop sensing showed three times higher response as compared to the normal cell-treated hydrogel. The sensing capability of the fabricated sensor was validated based on bending-induced relative resistance changes under dry and wet conditions. Moreover, the integration of the developed sensor with a wireless sensor enabled real-time monitoring with a smartphone.
Collapse
Affiliation(s)
- Sunu Hangma Subba
- Department of IT and Energy Convergence (BK21 FOUR), Korea National University of Transportation, Chungju 27469, Republic of Korea
| | - Sung Young Park
- Department of IT and Energy Convergence (BK21 FOUR), Korea National University of Transportation, Chungju 27469, Republic of Korea
- Department of Chemical and Biological Engineering, Korea National University of Transportation, Chungju 27469, Republic of Korea
| |
Collapse
|
14
|
Luo S, Lv Z, Yang Q, Chang R, Wu J. Research Progress on Stimulus-Responsive Polymer Nanocarriers for Cancer Treatment. Pharmaceutics 2023; 15:1928. [PMID: 37514114 PMCID: PMC10386740 DOI: 10.3390/pharmaceutics15071928] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/28/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
As drug carriers for cancer treatment, stimulus-responsive polymer nanomaterials are a major research focus. These nanocarriers respond to specific stimulus signals (e.g., pH, redox, hypoxia, enzymes, temperature, and light) to precisely control drug release, thereby improving drug uptake rates in cancer cells and reducing drug damage to normal cells. Therefore, we reviewed the research progress in the past 6 years and the mechanisms underpinning single and multiple stimulus-responsive polymer nanocarriers in tumour therapy. The advantages and disadvantages of various stimulus-responsive polymeric nanomaterials are summarised, and the future outlook is provided to provide a scientific and theoretical rationale for further research, development, and utilisation of stimulus-responsive nanocarriers.
Collapse
Affiliation(s)
- Shicui Luo
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Yunnan University of Chinese Medicine, Kunming 650500, China
- Key Laboratory of Microcosmic Syndrome Differentiation, Yunnan University of Chinese Medicine, Kunming 650500, China
| | - Zhuo Lv
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Yunnan University of Chinese Medicine, Kunming 650500, China
- Key Laboratory of Microcosmic Syndrome Differentiation, Yunnan University of Chinese Medicine, Kunming 650500, China
| | - Qiuqiong Yang
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Yunnan University of Chinese Medicine, Kunming 650500, China
| | - Renjie Chang
- Center of Digestive Endoscopy, The First Affiliated Hospital of Yunnan University of Chinese Medicine, Kunming 650021, China
| | - Junzi Wu
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Yunnan University of Chinese Medicine, Kunming 650500, China
- Key Laboratory of Microcosmic Syndrome Differentiation, Yunnan University of Chinese Medicine, Kunming 650500, China
| |
Collapse
|
15
|
Won HJ, Kim TM, An IS, Bae HJ, Park SY. Protection and Restoration of Damaged Hair via a Polyphenol Complex by Promoting Mechanical Strength, Antistatic, and Ultraviolet Protection Properties. Biomimetics (Basel) 2023; 8:296. [PMID: 37504184 PMCID: PMC10807499 DOI: 10.3390/biomimetics8030296] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/06/2023] [Accepted: 07/07/2023] [Indexed: 07/29/2023] Open
Abstract
In this study, we developed a hair-coating polyphenol complex (PPC) that showed ultraviolet (UV) protection properties, antistatic features, and the capability to enhance the mechanical strength of damaged hair. PPCs prepared with different ratios of tannic acid (TA), gallic acid (GA), and caffeic acid (CA) simultaneously increased the self-recovery of damaged hair by protecting the cuticle. PPC prevented light from passing through the damaged hair during exposure to UV radiation. Moreover, surfaces coated with PPC1 (TA:GA:CA, 100:20:0.5) exhibited a higher conductivity than surfaces coated with PPCs with other ratios of TA, GA, and CA, with a resistance of 0.72 MΩ. This influenced the antistatic performance of the surface, which exhibited no electrical attraction after being subjected to an electrostatic force. Additionally, damaged hair exhibited a significant increase in durability and elasticity after coating with a PPC1-containing shampoo, with a tensile strain of up to 2.06× post-treatment, indicating the recovery of the damaged cuticle by the PPC complex. Furthermore, PPC1-containing shampoo prevented damage by scavenging excess reactive oxygen species in the hair. The combination effect promoted by the natural PPC offers new insights into hair treatment and paves the way for further exploration of hair restoration technology.
Collapse
Affiliation(s)
- Hyun Jeong Won
- Department of Chemical and Biological Engineering, Korea National University of Transportation, Chungju 27469, Republic of Korea; (H.J.W.); (T.M.K.)
| | - Tae Min Kim
- Department of Chemical and Biological Engineering, Korea National University of Transportation, Chungju 27469, Republic of Korea; (H.J.W.); (T.M.K.)
| | - In-sook An
- Korea Institute of Dermatological Sciences, Seoul 05836, Republic of Korea;
| | - Heung Jin Bae
- MODAMODA Corporation, Ltd., Seoul 05546, Republic of Korea
| | - Sung Young Park
- Department of Chemical and Biological Engineering, Korea National University of Transportation, Chungju 27469, Republic of Korea; (H.J.W.); (T.M.K.)
- Department of IT and Energy Convergence (BK21 FOUR), Korea National University of Transportation, Chungju 27469, Republic of Korea
| |
Collapse
|
16
|
Kim SG, Lee HK, Subba SH, Oh MH, Lee G, Park SY. Electrochemical and fluorescent dual-mode sensor of acetylcholinesterase activity and inhibition based on MnO 2@PD-coated surface. Anal Chim Acta 2023; 1257:341171. [PMID: 37062569 DOI: 10.1016/j.aca.2023.341171] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/28/2023] [Accepted: 03/31/2023] [Indexed: 04/18/2023]
Abstract
We developed an electrochemical and fluorescent dual-mode sensor for assessing acetylcholinesterase (AChE) activity and inhibition by taking advantage of the high redox sensitivity of surface-coated mesoporous MnO2@polymer dot (MnO2@PD) towards AChE. The following phenomena constitute the basis of the detection mechanism: fluorescence resonance energy transfer (FRET) effect between MnO2 and PD; catalytic hydrolysis of acetylthiocholine (ATCh) to thiocholine (TCh) by AChE expressed by PC-12 cells, inducing fluorescence restoration and change in the conductivity of the system due to MnO2 decomposition; the presence of the inhibitor neostigmine preventing the conversion of ATCh to TCh. The surface-coated biosensor presents both fluorescence-based and electrochemical approaches for effectively monitoring AChE activity and inhibition. The fluorescence approach is based on the fluorescent "on/off" property of the system caused by MnO2 breakdown after interaction with TCh and the subsequent release of PDs. The conductivity of the coated electrode decreased dramatically as AChE concentration increased, resulting in electrochemical sensing of AChE activity and inhibition screening. Real-time wireless sensing can be conducted using a smartphone to monitor the resistance change, investigating the potential use of MnO2@PD nanocomposites in biological studies, and offering a real-time redox-fluorescent test for AChE activity monitoring and inhibitor screening.
Collapse
Affiliation(s)
- Seul Gi Kim
- Department of Chemical and Biological Engineering, Korea National University of Transportation, Chungju, 27469, Republic of Korea; Department of Green Bio Engineering, Korea National University of Transportation, Chungju, 27469, Republic of Korea
| | - Hye Kyung Lee
- Department of Chemical and Biological Engineering, Korea National University of Transportation, Chungju, 27469, Republic of Korea
| | - Sunu Hangma Subba
- Department of IT and Energy Convergence (BK21 FOUR), Korea National University of Transportation, Chungju, 27469, Republic of Korea
| | - Min Hee Oh
- Department of Chemical and Biological Engineering, Korea National University of Transportation, Chungju, 27469, Republic of Korea
| | - Gibaek Lee
- Department of Chemical and Biological Engineering, Korea National University of Transportation, Chungju, 27469, Republic of Korea.
| | - Sung Young Park
- Department of Chemical and Biological Engineering, Korea National University of Transportation, Chungju, 27469, Republic of Korea; Department of Green Bio Engineering, Korea National University of Transportation, Chungju, 27469, Republic of Korea; Department of IT and Energy Convergence (BK21 FOUR), Korea National University of Transportation, Chungju, 27469, Republic of Korea.
| |
Collapse
|
17
|
Yang S, Sun B, Liu F, Li N, Wang M, Wu P, Wu GL, Fang H, He Y, Zhou W, Xiao H, Tan X, Tang L, Zhu S, Yang Q. NIR-II Imaging-Guided Mitochondrial-Targeting Organic Nanoparticles for Multimodal Synergistic Tumor Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2207995. [PMID: 36942859 DOI: 10.1002/smll.202207995] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/17/2023] [Indexed: 06/18/2023]
Abstract
Effectively interfering energy metabolism in tumor cells and simultaneously activating the in vivo immune system to perform immune attacks are meaningful for tumor treatment. However, precisely targeted therapy is still a huge challenge. Herein, a mitochondrial-targeting phototheranostic system, FE-T nanoparticles (FE-T NPs) are developed to damage mitochondria in tumor cells and change the tumor immunosuppressive microenvironment. FE-T NPs are engineered by encapsulating the near-infrared (NIR) absorbed photosensitizer IR-FE-TPP within amphiphilic copolymer DSPE-SS-PEG-COOH for high-performing with simultaneous mitochondrial-targeting, near-infrared II (NIR-II) fluorescence imaging, and synchronous photothermal therapy (PTT) /photodynamic therapy (PDT) /immune therapy (IMT). In tumor treatment, the disulfide in the copolymer can be cleaved by excess intracellular glutathione (GSH) to release IR-FE-TPP and accumulate in mitochondria. After 808 nm irradiation, the mitochondrial localization of FE-T NPs generated reactive oxygen species (ROS), and hyperthermia, leading to mitochondrial dysfunction, photoinductive apoptosis, and immunogenic cell death (ICD). Notably, in situ enhanced PDT/PTT in vivo via mitochondrial-targeting with FE-T NPs boosts highly efficient ICD toward excellent antitumor immune response. FE-T NPs provide an effective mitochondrial-targeting phototheranostic nanoplatform for imaging-guided tumor therapy.
Collapse
Affiliation(s)
- Sha Yang
- Center for Molecular Imaging Probe, Hunan Province Key Laboratory of Tumor Cellular and Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
- Tumor Pathology Research Group & Department of Pathology, Institute of Basic Disease Sciences & School of Basic Medical Sciences, Xiangnan University, Chenzhou, Hunan, 423000, China
| | - Bin Sun
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Fen Liu
- Center for Molecular Imaging Probe, Hunan Province Key Laboratory of Tumor Cellular and Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Na Li
- Center for Molecular Imaging Probe, Hunan Province Key Laboratory of Tumor Cellular and Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Minghui Wang
- Center for Molecular Imaging Probe, Hunan Province Key Laboratory of Tumor Cellular and Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Peixian Wu
- Center for Molecular Imaging Probe, Hunan Province Key Laboratory of Tumor Cellular and Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Gui-Long Wu
- Center for Molecular Imaging Probe, Hunan Province Key Laboratory of Tumor Cellular and Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Huilong Fang
- Tumor Pathology Research Group & Department of Pathology, Institute of Basic Disease Sciences & School of Basic Medical Sciences, Xiangnan University, Chenzhou, Hunan, 423000, China
| | - Yuxuan He
- Center for Molecular Imaging Probe, Hunan Province Key Laboratory of Tumor Cellular and Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Wei Zhou
- Center for Molecular Imaging Probe, Hunan Province Key Laboratory of Tumor Cellular and Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Hao Xiao
- Center for Molecular Imaging Probe, Hunan Province Key Laboratory of Tumor Cellular and Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Xiaofeng Tan
- Center for Molecular Imaging Probe, Hunan Province Key Laboratory of Tumor Cellular and Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Li Tang
- Center for Molecular Imaging Probe, Hunan Province Key Laboratory of Tumor Cellular and Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
- Key Laboratory of Tropical Medicinal Plant Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, Hainan, 571158, China
| | - Shoujun Zhu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Qinglai Yang
- Center for Molecular Imaging Probe, Hunan Province Key Laboratory of Tumor Cellular and Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| |
Collapse
|
18
|
Min Kim T, Ryplida B, Lee G, Young Park S. Cancer cells targeting H2O2-responsive MXene-integrated hyaluronic acid polymer dots coated sensor. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.12.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
19
|
Han MJ, An JA, Kim JM, Heo DN, Kwon IK, Park KM. Calcium peroxide-mediated bioactive hydrogels for enhanced angiogenic paracrine effect and osteoblast proliferation. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.12.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
20
|
T-cell membrane coating for improving polymeric nanoparticle-based cancer therapy. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.11.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
21
|
Effect of thrombin conjugation on hemostatic efficacy of PLGA mesh through reagent free surface modification. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.10.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
22
|
Bioactive inorganic compound MXene and its application in tissue engineering and regenerative medicine. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.10.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
23
|
Shi Z, Liu J, Tian L, Li J, Gao Y, Xing Y, Yan W, Hua C, Xie X, Liu C, Liang C. Insights into stimuli-responsive diselenide bonds utilized in drug delivery systems for cancer therapy. Biomed Pharmacother 2022; 155:113707. [PMID: 36122520 DOI: 10.1016/j.biopha.2022.113707] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/08/2022] [Accepted: 09/13/2022] [Indexed: 11/16/2022] Open
Abstract
Due to the complexity and particularity of cancer cell microenvironments, redox responsive drug delivery systems (DDSs) for cancer therapy have been extensively explored. Compared with widely reported cancer treatment systems based on disulfide bonds, diselenide bonds have better redox properties and greater anticancer efficiency. In this review, the significance and application of diselenide bonds in DDSs are summarized, and the stimulation sensitivity of diselenide bonds is comprehensively reported. The potential and prospects for the application of diselenide bonds in next-generation anticancer drug treatment systems are extensively discussed.
Collapse
Affiliation(s)
- Zhenfeng Shi
- Department of Urology Surgery Center, The People's Hospital of Xinjiang Uyghur Autonomous Region, Urumqi 830002, PR China.
| | - Jifang Liu
- Faculty of Pharmacy, Shaanxi University of Science & Technology, Xi'an 710021, PR China; College of Life Science, Northwest University, Xi'an 710069, PR China.
| | - Lei Tian
- Faculty of Pharmacy, Shaanxi University of Science & Technology, Xi'an 710021, PR China; College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an 710021, PR China.
| | - Jingyi Li
- Faculty of Pharmacy, Shaanxi University of Science & Technology, Xi'an 710021, PR China.
| | - Yue Gao
- Faculty of Pharmacy, Shaanxi University of Science & Technology, Xi'an 710021, PR China.
| | - Yue Xing
- Faculty of Pharmacy, Shaanxi University of Science & Technology, Xi'an 710021, PR China.
| | - Wenjing Yan
- Faculty of Pharmacy, Shaanxi University of Science & Technology, Xi'an 710021, PR China.
| | - Chenyu Hua
- Faculty of Pharmacy, Shaanxi University of Science & Technology, Xi'an 710021, PR China.
| | - Xiaolin Xie
- Shaanxi Panlong Pharmaceutical Group Co., Ltd. Xi'an 710025, PR China.
| | - Chang Liu
- Zhuhai Jinan Selenium Source Nanotechnology Co., Ltd., Zhuhai 519030, PR China.
| | - Chengyuan Liang
- Faculty of Pharmacy, Shaanxi University of Science & Technology, Xi'an 710021, PR China.
| |
Collapse
|
24
|
Pakhira M, Ghosh S, Ghosh S, Chatterjee DP, Nandi AK. Development of poly(vinylidene fluoride) graft random copolymer membrane for antifouling and antimicrobial applications. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
25
|
Noh K, Uthaman S, Lee CS, Kim Y, Pillarisetti S, Hwang HS, Park IK, Huh KM. Tumor intracellular microenvironment-responsive nanoparticles for magnetically targeted chemotherapy. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.03.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
26
|
Xu J, Yan X, Zhang Y, Tu K, Shen W, Tian Z, Li G, Zhao W, Zhang M. Tunable paclitaxel release carrier using diselenide-disulfide balance as regulator. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.02.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
27
|
Agafonov M, Garibyan A, Terekhova I. Improving pharmacologically relevant properties of sulfasalazine loaded in γ-cyclodextrin-based metal organic framework. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2021.10.028] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
28
|
Veselov VV, Nosyrev AE, Jicsinszky L, Alyautdin RN, Cravotto G. Targeted Delivery Methods for Anticancer Drugs. Cancers (Basel) 2022; 14:622. [PMID: 35158888 PMCID: PMC8833699 DOI: 10.3390/cancers14030622] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/21/2022] [Accepted: 01/25/2022] [Indexed: 02/07/2023] Open
Abstract
Several drug-delivery systems have been reported on and often successfully applied in cancer therapy. Cell-targeted delivery can reduce the overall toxicity of cytotoxic drugs and increase their effectiveness and selectivity. Besides traditional liposomal and micellar formulations, various nanocarrier systems have recently become the focus of developmental interest. This review discusses the preparation and targeting techniques as well as the properties of several liposome-, micelle-, solid-lipid nanoparticle-, dendrimer-, gold-, and magnetic-nanoparticle-based delivery systems. Approaches for targeted drug delivery and systems for drug release under a range of stimuli are also discussed.
Collapse
Affiliation(s)
- Valery V. Veselov
- Center of Bioanalytical Investigation and Molecular Design, Sechenov First Moscow State Medical University, 8 Trubetskaya ul, 119991 Moscow, Russia; (V.V.V.); (A.E.N.)
| | - Alexander E. Nosyrev
- Center of Bioanalytical Investigation and Molecular Design, Sechenov First Moscow State Medical University, 8 Trubetskaya ul, 119991 Moscow, Russia; (V.V.V.); (A.E.N.)
| | - László Jicsinszky
- Department of Drug Science and Technology, University of Turin, Via P. Giuria 9, 10125 Turin, Italy;
| | - Renad N. Alyautdin
- Department of Pharmacology, Sechenov First Moscow State Medical University, 119991 Moscow, Russia;
| | - Giancarlo Cravotto
- Department of Drug Science and Technology, University of Turin, Via P. Giuria 9, 10125 Turin, Italy;
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov First Moscow State Medical University, 8 Trubetskaya ul, 119991 Moscow, Russia
| |
Collapse
|
29
|
Singla P, Garg S, McClements J, Jamieson O, Peeters M, Mahajan RK. Advances in the therapeutic delivery and applications of functionalized Pluronics: A critical review. Adv Colloid Interface Sci 2022; 299:102563. [PMID: 34826745 DOI: 10.1016/j.cis.2021.102563] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/15/2021] [Accepted: 11/13/2021] [Indexed: 12/22/2022]
Abstract
Pluronic (PEO-PPO-PEO) block copolymers can form nano-sized micelles with a structure composed of a hydrophobic PPO core and hydrophilic PEO shell layer. Pluronics are U.S. Food and Drug Administration approved polymers, which are widely used for solubilization of drugs and their delivery, gene/therapeutic delivery, diagnostics, and tissue engineering applications due to their non-ionic properties, non-toxicity, micelle forming ability, excellent biocompatibility and biodegradability. Although Pluronics have been employed as drug carrier systems for several decades, numerous issues such as rapid dissolution, shorter residence time in biological media, fast clearance and weak mechanical strength have hindered their efficacy. Pluronics have been functionalized with pH-sensitive, biological-responsive moieties, antibodies, aptamers, folic acid, drugs, different nanoparticles, and photo/thermo-responsive hydrogels. These functionalization strategies enable Pluronics to act as stimuli responsive and targeted drug delivery vehicles. Moreover, Pluronics have emerged in nano-emulsion formulations and have been utilized to improve the properties of cubosomes, dendrimers and nano-sheets, including their biocompatibility and aqueous solubility. Functionalization of Pluronics results in the significant improvement of target specificity, loading capacity, biocompatibility of nanoparticles and stimuli responsive hydrogels for the promising delivery of a range of drugs. Therefore, this review presents an overview of all advancements (from the last 15 years) in functionalized Pluronics, providing a valuable tool for industry and academia in order to optimize their use in drug or therapeutic delivery, in addition to several other biomedical applications.
Collapse
Affiliation(s)
- Pankaj Singla
- School of Engineering, Merz Court, Claremont Road, Newcastle University, Newcastle Upon Tyne NE1 7RU, United Kingdom
| | - Saweta Garg
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar 143005, India
| | - Jake McClements
- School of Engineering, Merz Court, Claremont Road, Newcastle University, Newcastle Upon Tyne NE1 7RU, United Kingdom
| | - Oliver Jamieson
- School of Engineering, Merz Court, Claremont Road, Newcastle University, Newcastle Upon Tyne NE1 7RU, United Kingdom
| | - Marloes Peeters
- School of Engineering, Merz Court, Claremont Road, Newcastle University, Newcastle Upon Tyne NE1 7RU, United Kingdom.
| | - Rakesh Kumar Mahajan
- Department of Chemistry, UGC-Centre for Advanced Studies-I, Guru Nanak Dev University, Amritsar 143005, India.
| |
Collapse
|
30
|
Shariatinia Z. Big family of nano- and microscale drug delivery systems ranging from inorganic materials to polymeric and stimuli-responsive carriers as well as drug-conjugates. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102790] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
31
|
Du K, Xia Q, Sun J, Feng F. Visible Light and Glutathione Dually Responsive Delivery of a Polymer-Conjugated Temozolomide Intermediate for Glioblastoma Chemotherapy. ACS APPLIED MATERIALS & INTERFACES 2021; 13:55851-55861. [PMID: 34788006 DOI: 10.1021/acsami.1c16962] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Temozolomide (TMZ) is a prodrug of 5-(3-methyltriazene-1-yl)imidazole-4-carboxamide (MTIC, short-lived) and used as a first-line therapy drug for glioblastoma multiforme (GBM). However, little progress has been made in regulating the kinetics of TMZ to MTIC degradation to improve the therapeutic effect, particularly in the case of TMZ-resistant GBM. In this work, we introduced a strategy to cage MTIC by N-acylation of the triazene moiety to boost the MTIC stability, designed a diblock copolymer-based MTIC prodrug installed with a disulfide linkage, and achieved self-assembled polymer micelles without the concern of MTIC leakage under physiological conditions. Polymer micelles could be induced to disassemble by stimuli factors such as glutathione (GSH) and visible light irradiation through thiol/sulfide exchange and homolytic sulfide scission mechanisms, which contributed to MTIC release in GSH-dependent and GSH-independent pathways. The in vitro results demonstrated that microenvironment-responsive polymeric micelles benefited the suppression of both TMZ-sensitive and TMZ-resistant GBM cells. The chemistry of polymer-MTIC prodrug provided a new option for TMZ-based glioma treatment.
Collapse
Affiliation(s)
- Ke Du
- Key Laboratory of High Performance Polymer Material and Technology of Ministry of Education, Department of Polymer Science & Engineering, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Qiuyu Xia
- Key Laboratory of High Performance Polymer Material and Technology of Ministry of Education, Department of Polymer Science & Engineering, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Jian Sun
- Key Laboratory of High Performance Polymer Material and Technology of Ministry of Education, Department of Polymer Science & Engineering, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Fude Feng
- Key Laboratory of High Performance Polymer Material and Technology of Ministry of Education, Department of Polymer Science & Engineering, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
32
|
Delivery of extracellular matrix-enriched stem cells encapsulated with enzyme-free pH-sensitive polymer for enhancing therapeutic angiogenesis. J IND ENG CHEM 2021. [DOI: 10.1016/j.jiec.2021.08.032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
33
|
Xie L, Liu R, Chen X, He M, Zhang Y, Chen S. Micelles Based on Lysine, Histidine, or Arginine: Designing Structures for Enhanced Drug Delivery. Front Bioeng Biotechnol 2021; 9:744657. [PMID: 34646819 PMCID: PMC8503256 DOI: 10.3389/fbioe.2021.744657] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 08/30/2021] [Indexed: 01/10/2023] Open
Abstract
Natural amino acids and their derivatives are excellent building blocks of polymers for various biomedical applications owing to the non-toxicity, biocompatibility, and ease of multifunctionalization. In the present review, we summarized the common approaches to designing and constructing functional polymeric micelles based on basic amino acids including lysine, histidine, and arginine and highlighted their applications as drug carriers for cancer therapy. Different polypeptide architectures including linear polypeptides and dendrimers were developed for efficient drug loading and delivery. Besides, polylysine- and polyhistidine-based micelles could enable pH-responsive drug release, and polyarginine can realize enhanced membrane penetration and gas therapy by generating metabolites of nitric oxide (NO). It is worth mentioning that according to the structural or functional characteristics of basic amino acids and their derivatives, key points for designing functional micelles with excellent drug delivery efficiency are importantly elaborated in order to pave the way for exploring micelles based on basic amino acids.
Collapse
Affiliation(s)
- Li Xie
- School of Medicine and Nursing, Chengdu University, Chengdu, China
| | - Rong Liu
- School of Medicine and Nursing, Chengdu University, Chengdu, China
| | - Xin Chen
- School of Medicine and Nursing, Chengdu University, Chengdu, China
| | - Mei He
- School of Medicine and Nursing, Chengdu University, Chengdu, China
| | - Yi Zhang
- School of Medicine and Nursing, Chengdu University, Chengdu, China
| | - Shuyi Chen
- School of Medicine and Nursing, Chengdu University, Chengdu, China
| |
Collapse
|
34
|
Ngan Giang N, Kim SG, In I, Park SY. Real-Time Wireless Monitoring of Cell Proliferation and Detachment Based on pH-Responsive Conductive Polymer Dots. Anal Chem 2021; 93:8638-8646. [PMID: 34110775 DOI: 10.1021/acs.analchem.1c01778] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In situ wireless monitoring for cell proliferation and detachment kinetics was conducted using pH-responsive zwitterionic polymer dots (Z-PDs), based on changes in electrochemical signals derived from Z-PD-coated substrates via the interaction of charges transferred between Z-PDs and cells. Z-PD-coated substrates were found to be a potent means to monitor and manipulate cell adhesion and detachment because of their high sensitivity over a wide range of pH conditions, and modification of the coated substrates was confirmed using a wireless system. At neutral pH, Z-PD-coated wireless sensors exhibited π-π stacking involving aromatic rings with hydrophobic interactions, thereby promoting cell proliferation; consequently, an increase in the measured resistance was observed. In contrast, Z-PD-coated substrates triggered by acidic and basic conditions promoted cell detachment, which induced an increase in the resistance compared with Z-PD substrates at pH 6.8, as a result of charges transferred to support Z-PD internalization through cell membranes after detachment. Therefore, as a wireless biosensor with excellent pH responsiveness that facilitates cell proliferation and detachment and whose electrochemical signals could be additionally acquired via a smartphone, Z-PD biosensors demonstrated a more favorable approach for monitoring cell-surface interactions than conventional optically based methods.
Collapse
Affiliation(s)
- Nguyen Ngan Giang
- Department of IT and Energy Convergence (BK21 FOUR), Korea National University of Transportation, Chungju 380-702, Republic of Korea
| | - Seul Gi Kim
- Department of Chemical and Biological Engineering, Korea National University of Transportation, Chungju 380-702, Republic of Korea
| | - Insik In
- Department of IT and Energy Convergence (BK21 FOUR), Korea National University of Transportation, Chungju 380-702, Republic of Korea.,Department of Polymer Science and Engineering, Korea National University of Transportation, Chungju 380-702, Republic of Korea
| | - Sung Young Park
- Department of IT and Energy Convergence (BK21 FOUR), Korea National University of Transportation, Chungju 380-702, Republic of Korea.,Department of Chemical and Biological Engineering, Korea National University of Transportation, Chungju 380-702, Republic of Korea
| |
Collapse
|