1
|
Torre E, Pinton G, Lombardi G, Fallarini S. Melanoma Cells Inhibit iNKT Cell Functions via PGE2 and IDO1. Cancers (Basel) 2023; 15:3498. [PMID: 37444608 DOI: 10.3390/cancers15133498] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/28/2023] [Accepted: 06/30/2023] [Indexed: 07/15/2023] Open
Abstract
Invariant natural killer T (iNKT) cells are a distinct group of immune cells known for their immunoregulatory and cytotoxic activities, which are crucial in immune surveillance against tumors. They have been extensively investigated as a potential target for adoptive cell immunotherapy. Despite the initial promise of iNKT cell-based immunotherapy as a treatment for melanoma patients, its effective utilization has unfortunately yielded inconsistent outcomes. The primary cause of this failure is the immunosuppressive tumor microenvironment (TME). In this study, we specifically directed our attention towards melanoma cells, as their roles within the TME remain partially understood and require further elucidation. Methods: We conducted co-culture experiments involving melanoma cell lines and iNKT cells. Results: We demonstrated that melanoma cell lines had a significant impact on the proliferation and functions of iNKT cells. Our findings revealed that co-culture with melanoma cell lines led to a significant impairment in the expression of the NKG2D receptor and cytolytic granules in iNKT cells. Moreover, we observed a strong impairment of their cytotoxic capability induced by the presence of melanoma cells. Furthermore, through the use of selective inhibitors targeting IDO1 and COX-2, we successfully demonstrated that the melanoma cell line's ability to impair iNKT cell activation and functions was attributed to the up-regulation of IDO1 expression and PGE2 production.
Collapse
Affiliation(s)
- Enza Torre
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, 28100 Novara, Italy
| | - Giulia Pinton
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, 28100 Novara, Italy
| | - Grazia Lombardi
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, 28100 Novara, Italy
| | - Silvia Fallarini
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, 28100 Novara, Italy
| |
Collapse
|
2
|
Altered Populations of Unconventional T Cell Lineages in Patients with Langerhans Cell Histiocytosis. Sci Rep 2018; 8:16506. [PMID: 30405183 PMCID: PMC6220204 DOI: 10.1038/s41598-018-34873-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 10/27/2018] [Indexed: 02/07/2023] Open
Abstract
Langerhans cell histiocytosis (LCH) lesions are defined by the presence of CD1a+/CD207+ myeloid cells, but many other immune cells are present including unconventional T cells, which have powerful immunoregulatory functions. Unconventional T cell lineages include mucosal-associated invariant T (MAIT) cells, type I natural killer T (NKT) cells and gamma-delta (γδ) T cells, which are associated with many inflammatory conditions, although their importance has not been studied in LCH. We characterized their phenotype and function in blood and lesions from patients with LCH, and identified a deficiency in MAIT cell frequency and abnormalities in the subset distributions of γδ T cells and NKT cells. Such abnormalities are associated with immune dysregulation in other disease settings and are therefore potentially important in LCH. Our study is the first to recognize alterations to MAIT cell proportions in patients with LCH. This finding along with other abnormalities identified amongst unconventional T cells could potentially influence the onset and progression of LCH, thereby highlighting potential targets for new immune based therapies.
Collapse
|
3
|
Mitchell JM, Berzins SP, Kannourakis G. A potentially important role for T cells and regulatory T cells in Langerhans cell histiocytosis. Clin Immunol 2018; 194:19-25. [DOI: 10.1016/j.clim.2018.06.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 05/27/2018] [Accepted: 06/15/2018] [Indexed: 12/11/2022]
|
4
|
Calì B, Molon B, Viola A. Tuning cancer fate: the unremitting role of host immunity. Open Biol 2017; 7:rsob.170006. [PMID: 28404796 PMCID: PMC5413907 DOI: 10.1098/rsob.170006] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 03/14/2017] [Indexed: 12/12/2022] Open
Abstract
Host immunity plays a central and complex role in dictating tumour progression. Solid tumours are commonly infiltrated by a large number of immune cells that dynamically interact with the surrounding microenvironment. At first, innate and adaptive immune cells successfully cooperate to eradicate microcolonies of transformed cells. Concomitantly, surviving tumour clones start to proliferate and harness immune responses by specifically hijacking anti-tumour effector mechanisms and fostering the accumulation of immunosuppressive immune cell subsets at the tumour site. This pliable interplay between immune and malignant cells is a relentless process that has been concisely organized in three different phases: elimination, equilibrium and escape. In this review, we aim to depict the distinct immune cell subsets and immune-mediated responses characterizing the tumour landscape throughout the three interconnected phases. Importantly, the identification of key immune players and molecules involved in the dynamic crosstalk between tumour and immune system has been crucial for the introduction of reliable prognostic factors and effective therapeutic protocols against cancers.
Collapse
Affiliation(s)
- B Calì
- Department of Biomedical Sciences, University of Padua, Padua, Italy .,Venetian Institute of Molecular Medicine, Padua, Italy
| | - B Molon
- Department of Biomedical Sciences, University of Padua, Padua, Italy.,Venetian Institute of Molecular Medicine, Padua, Italy
| | - A Viola
- Department of Biomedical Sciences, University of Padua, Padua, Italy.,Venetian Institute of Molecular Medicine, Padua, Italy
| |
Collapse
|
5
|
Govindarajan S, Elewaut D, Drennan M. An Optimized Method for Isolating and Expanding Invariant Natural Killer T Cells from Mouse Spleen. J Vis Exp 2015:e53256. [PMID: 26555769 DOI: 10.3791/53256] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
The ability to rapidly secrete cytokines upon stimulation is a functional characteristic of the invariant natural killer T (iNKT) cell lineage. iNKT cells are therefore characterized as an innate T cell population capable of activating and steering adaptive immune responses. The development of improved techniques for the culture and expansion of murine iNKT cells facilitates the study of iNKT cell biology in in vitro and in vivo model systems. Here we describe an optimized procedure for the isolation and expansion of murine splenic iNKT cells. Spleens from C57Bl/6 mice are removed, dissected and strained and the resulting cellular suspension is layered over density gradient media. Following centrifugation, splenic mononuclear cells (MNCs) are collected and CD5-positive (CD5(+)) lymphocytes are enriched for using magnetic beads. iNKT cells within the CD5(+) fraction are subsequently stained with αGalCer-loaded CD1d tetramer and purified by fluorescence activated cell sorting (FACS). FACS sorted iNKT cells are then initially cultured in vitro using a combination of recombinant murine cytokines and plate-bound T cell receptor (TCR) stimuli before being expanded in the presence of murine recombinant IL-7. Using this technique, approximately 10(8) iNKT cells can be generated within 18-20 days of culture, after which they can be used for functional assays in vitro, or for in vivo transfer experiments in mice.
Collapse
Affiliation(s)
- Srinath Govindarajan
- Department of Rheumatology, Laboratory for Molecular Immunology and Inflammation, Ghent University Hospital; VIB Inflammation Research Center, Ghent University
| | - Dirk Elewaut
- Department of Rheumatology, Laboratory for Molecular Immunology and Inflammation, Ghent University Hospital; VIB Inflammation Research Center, Ghent University
| | - Michael Drennan
- Department of Rheumatology, Laboratory for Molecular Immunology and Inflammation, Ghent University Hospital; VIB Inflammation Research Center, Ghent University;
| |
Collapse
|
6
|
Lysophosphatidic acid generation by pulmonary NKT cell ENPP-2/autotaxin exacerbates hyperoxic lung injury. Purinergic Signal 2015; 11:455-61. [PMID: 26306905 DOI: 10.1007/s11302-015-9463-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Accepted: 07/28/2015] [Indexed: 02/07/2023] Open
Abstract
Hyperoxia is still broadly used in clinical practice in order to assure organ oxygenation in critically ill patients, albeit known toxic effects. In this present study, we hypothesize that lysophosphatidic acid (LPA) mediates NKT cell activation in a mouse model of hyperoxic lung injury. In vitro, pulmonary NKT cells were exposed to hyperoxia for 72 h, and the induction of the ectonucleotide pyrophosphatase/phosphodiesterase 2 (ENPP-2) was examined and production of lysophosphatidic acid (LPA) was measured. In vivo, animals were exposed to 100 % oxygen for 72 h and lungs and serum were harvested. Pulmonary NKT cells were then incubated with the LPA antagonist Brp-LPA. Animals received BrP-LPA prior to oxygen exposure. Autotaxin (ATX, ENPP-2) was significantly up-regulated on pulmonary NKT cells after hyperoxia (p < 0.01) in vitro. LPA levels were increased in supernatants of hyperoxia-exposed pulmonary NKT cells. LPA levels were significantly reduced by incubating NKT cells with LPA-BrP during oxygen exposure (p < 0,05) in vitro. Hyperoxia-exposed animals showed significantly increased serum levels of LPA (p ≤ 0,05) as well as increased pulmonary NKT cell numbers in vivo. BrP-LPA injection significantly improved survival as well as significantly decreased lung injury and lowered pulmonary NKT cell numbers. We conclude that NKT cell-induced hyperoxic lung injury is mediated by pro-inflammatory LPA generation, at least in part, secondary to ENPP-2 up-regulation on pulmonary NKT cells. Being a potent LPA antagonist, BrP-LPA prevents hyperoxia-induced lung injury in vitro and in vivo.
Collapse
|
7
|
Reconstitution models to evaluate natural killer T cell function in tumor control. Immunol Cell Biol 2015; 94:90-100. [DOI: 10.1038/icb.2015.67] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Revised: 06/16/2015] [Accepted: 06/16/2015] [Indexed: 12/15/2022]
|
8
|
Interleukins 15 and 12 in combination expand the selective loss of natural killer T cells in HIV infection in vitro. Clin Exp Med 2014; 15:205-13. [PMID: 24748538 DOI: 10.1007/s10238-014-0278-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Accepted: 03/10/2014] [Indexed: 12/20/2022]
Abstract
The present study evaluated the frequency and receptor expression pattern of invariant natural killer T (iNKT) cells in human immunodeficiency virus (HIV)-infected individuals. Further, the effect of IL-15 + IL-12 stimulation on iNKT cells was also assessed. The study included 15 individuals each from normal healthy subjects, pulmonary tuberculosis patients, HIV-infected individuals, and patients with HIV and tuberculosis coinfection (HIV-TB). The frequency of iNKT cells and the expression of phenotype, cytotoxic and chemokine receptors were studied by flow cytometry. The number of iNKT cells was significantly depleted in HIV and HIV-TB patients, which upon IL-15 + IL-12 stimulation expanded in HIV. The constitutively expressed natural cytotoxicity receptor, NKp46 was increased in HIV and HIV-TB, which might be the host's response to HIV replication. The distinct expression patterns of chemokine and adhesion receptors suggest that iNKT subsets might traffic to different microenvironment and tissues. High expression of chemokine receptor CCR5 by most iNKT cells suggests that these cells might be more favorable targets of HIV infection. Our results show that IL-15 and IL-12 combination has the ability to expand the selective depletion of iNKT cells in vitro in HIV-infected individuals, but of limited value when coinfected with TB.
Collapse
|
9
|
Nowak-Machen M, Schmelzle M, Hanidziar D, Junger W, Exley M, Otterbein L, Wu Y, Csizmadia E, Doherty G, Sitkovsky M, Robson SC. Pulmonary natural killer T cells play an essential role in mediating hyperoxic acute lung injury. Am J Respir Cell Mol Biol 2013; 48:601-9. [PMID: 23349052 DOI: 10.1165/rcmb.2012-0180oc] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Critically ill patients are routinely exposed to high concentrations of supplemental oxygen for prolonged periods of time, which can be life-saving in the short term, but such exposure also causes severe lung injury and increases mortality. To address this therapeutic dilemma, we studied the mechanisms of the tissue-damaging effects of oxygen in mice. We show that pulmonary invariant natural killer T (iNKT) cells are unexpectedly crucial in the development of acute oxygen-induced lung injury. iNKT cells express high concentrations of the ectonucleotidase CD39, which regulates their state of activation. Both iNKT cell-deficient (Jα18(-/-)) and CD39-null mice tolerate hyperoxia, compared with wild-type control mice that exhibit severe lung injury. An adoptive transfer of wild-type iNKT cells into Jα18(-/-) mice results in hyperoxic lung injury, whereas the transfer of CD39-null iNKT cells does not. Pulmonary iNKT cell activation and proliferation are modulated by ATP-dependent purinergic signaling responses. Hyperoxic lung injury can be induced by selective P2X7-receptor blockade in CD39-null mice. Our data indicate that iNKT cells are involved in the pathogenesis of hyperoxic lung injury, and that tissue protection can be mediated through ATP-induced P2X7 receptor signaling, resulting in iNKT cell death. In conclusion, our data suggest that iNKT cells and purinergic signaling should be evaluated as potential novel therapeutic targets to prevent hyperoxic lung injury.
Collapse
Affiliation(s)
- Martina Nowak-Machen
- Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Webb TJ, Li X, Giuntoli RL, Lopez PHH, Heuser C, Schnaar RL, Tsuji M, Kurts C, Oelke M, Schneck JP. Molecular identification of GD3 as a suppressor of the innate immune response in ovarian cancer. Cancer Res 2012; 72:3744-52. [PMID: 22649190 DOI: 10.1158/0008-5472.can-11-2695] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Tumors often display mechanisms to avoid or suppress immune recognition. One such mechanism is the shedding of gangliosides into the local tumor microenvironment, and a high concentration of circulating gangliosides is associated with poor prognosis. In this study, we identify ganglioside GD3, which was isolated from the polar lipid fraction of ovarian cancer-associated ascites, as an inhibitory factor that prevents innate immune activation of natural killer T (NKT) cells. Purified GD3 displayed a high affinity for both human and mouse CD1d, a molecule involved in the presentation of lipid antigens to T cells. Purified GD3, as well as substances within the ascites, bound to the CD1d antigenic-binding site and did not require additional processing for its inhibitory effect on NKT cells. Importantly, in vivo administration of GD3 inhibited α-galactosylceramide (α-GalCer)-induced NKT cell activation in a dose-dependent manner. These data therefore indicate that ovarian cancer tumors may use GD3 to inhibit the antitumor NKT cell response as an early mechanism of tumor immune evasion.
Collapse
Affiliation(s)
- Tonya J Webb
- Department of Pathology and The Kelly Gynecologic Oncology Service, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD 21201, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Chiba A, Cohen N, Brigl M, Brennan PJ, Besra GS, Brenner MB. Rapid and reliable generation of invariant natural killer T-cell lines in vitro. Immunology 2010; 128:324-33. [PMID: 20067532 DOI: 10.1111/j.1365-2567.2009.03130.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Several tools have proved useful in the study of invariant natural killer T (iNKT) cells, including CD1d-deficient mice, J alpha281-deficient mice, synthetic lipid antigens and antigen-loaded CD1d tetramers. However, the generation and examination of long-term primary murine iNKT cell lines in vitro has been challenging. Here, we show the rapid generation of iNKT cell lines from splenic iNKT cells of V alpha14 T-cell receptor (TCR) transgenic (Tg) mice. These purified iNKT cells were stimulated by bone marrow-derived dendritic cells (BMDCs) loaded with alpha-galactosylceramide (alphaGalCer) and cultured with interleukin (IL)-2 and IL-7. iNKT cells proliferated dramatically, and the cell number exhibited a 100-fold increase within 2 weeks and a 10(5)-fold increase in 8 weeks after repeated stimulation with alphaGalCer. The iNKT cell lines consisted of iNKT cells expressing V beta chains including V beta8.1/8.2, V beta14, V beta10, V beta6 and V beta7, and responded to stimulation with alphaGalCer presented both by BMDCs and by plate-bound CD1d. In addition, the iNKT cell lines produced interferon (IFN)-gamma when activated by lipopolysaccharide (LPS) or CpG oligodeoxynucleotide (ODN)-stimulated BMDCs. Further, we show that iNKT cell lines produced cytokines in response to microbial antigens. In summary, high-yield iNKT cell lines were generated very rapidly and robustly expanded, and these iNKT cells responded to both TCR and cytokine stimulation in vitro. Given the desire to study primary iNKT cells for many purposes, these iNKT cell lines should provide an important tool for the study of iNKT cell subsets, antigen and TCR specificity, activation, inactivation and effector functions.
Collapse
Affiliation(s)
- Asako Chiba
- Division of Rheumatology, Immunology and Allergy, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | |
Collapse
|
12
|
Lombardi V, Stock P, Singh AK, Kerzerho J, Yang W, Sullivan BA, Li X, Shiratsuchi T, Hnatiuk NE, Howell AR, Yu KOA, Porcelli SA, Tsuji M, Kronenberg M, Wilson SB, Akbari O. A CD1d-dependent antagonist inhibits the activation of invariant NKT cells and prevents development of allergen-induced airway hyperreactivity. THE JOURNAL OF IMMUNOLOGY 2010; 184:2107-15. [PMID: 20083656 DOI: 10.4049/jimmunol.0901208] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The prevalence of asthma continues to increase in westernized countries, and optimal treatment remains a significant therapeutic challenge. Recently, CD1d-restricted invariant NKT (iNKT) cells were found to play a critical role in the induction of airway hyperreactivity (AHR) in animal models and are associated with asthma in humans. To test whether iNKT cell-targeted therapy could be used to treat allergen-induced airway disease, mice were sensitized with OVA and treated with di-palmitoyl-phosphatidyl-ethanolamine polyethylene glycol (DPPE-PEG), a CD1d-binding lipid antagonist. A single dose of DPPE-PEG prevented the development of AHR and pulmonary infiltration of lymphocytes upon OVA challenge, but had no effect on the development of OVA-specific Th2 responses. In addition, DPPE-PEG completely prevented the development of AHR after administration of alpha-galactosylceramide (alpha-GalCer) intranasally. Furthermore, we demonstrate that DPPE-PEG acts as antagonist to alpha-GalCer and competes with alpha-GalCer for binding to CD1d. Finally, we show that DPPE-PEG completely inhibits the alpha-GalCer-induced phosphorylation of ERK tyrosine kinase in iNKT cells, suggesting that DPPE-PEG specifically blocks TCR signaling and thus activation of iNKT cells. Because iNKT cells play a critical role in the development of AHR, the inhibition of iNKT activation by DPPE-PEG suggests a novel approach to treat iNKT cell-mediated diseases such as asthma.
Collapse
Affiliation(s)
- Vincent Lombardi
- Division of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Li X, Shiratsuchi T, Chen G, Dellabona P, Casorati G, Franck RW, Tsuji M. Invariant TCR rather than CD1d shapes the preferential activities of C-glycoside analogues against human versus murine invariant NKT cells. THE JOURNAL OF IMMUNOLOGY 2009; 183:4415-21. [PMID: 19734232 DOI: 10.4049/jimmunol.0901021] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
C-glycoside analogues of alpha-galactosylceramide were shown to activate both human and mouse invariant NKT (iNKT) cells. Among these analogues, GCK152, which has an aromatic ring in the acyl chain, exhibited a stronger stimulatory activity against human iNKT cells and a much weaker activity against murine iNKT cells than GCK127 that has an almost identical fatty acyl chain as alpha-galactosylceramide. In this study, we have found that invariant TCR (invTCR) expressed by iNKT cells, but not CD1d expressed by APCs, command the species-specific preferential activity of C-glycosides, and that their preferential activity against human vs murine iNKT cells correlate with the binding affinity of glycolipid-CD1d complex to invTCR of respective iNKT cells rather than that of glycolipid to human or murine CD1d molecules. Overall, the structural difference of invTCR appears to supersede those of CD1d molecule in shaping the strength of the biological activity of C-glycoside analogues.
Collapse
Affiliation(s)
- Xiangming Li
- HIV and Malaria Vaccine Program, Aaron Diamond AIDS Research Center, The Rockefeller University, New York, NY 10016, USA
| | | | | | | | | | | | | |
Collapse
|
14
|
Invariant natural killer T cells and immunotherapy of cancer. Clin Immunol 2008; 129:182-94. [PMID: 18783990 DOI: 10.1016/j.clim.2008.07.025] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2007] [Revised: 07/29/2008] [Accepted: 07/29/2008] [Indexed: 11/20/2022]
Abstract
Invariant CD1d restricted natural killer T (iNKT) cells are regulatory cells that express a canonical TCR-Valpha-chain (Valpha24.Jalpha18 in humans and Valpha14.Jalpha18 in mice) which recognizes glycolipid antigens presented by the monomorphic CD1d molecule. They can secrete a wide variety of both pro-inflammatory and anti-inflammatory cytokines very swiftly upon their activation. Evidence for the significance of iNKT cells in human cancer has been ambiguous. Still, the (pre-)clinical findings reviewed here, provide evidence for a distinct contribution of iNKT cells to natural anti-tumor immune responses in humans. Furthermore, clinical phase I studies that are discussed here have revealed that the infusion of cancer patients with ligand-loaded dendritic cells or cultured iNKT cells is well tolerated. We thus underscore the potential of iNKT cell based immunotherapy in conjunction with established modalities such as surgery and radiotherapy, as adjuvant therapy against carcinomas.
Collapse
|
15
|
Molling JW, Moreno M, de Groot J, van der Vliet HJJ, von Blomberg BME, van den Eertwegh AJM, Scheper RJ, Bontkes HJ. Chronically stimulated mouse invariant NKT cell lines have a preserved capacity to enhance protection against experimental tumor metastases. Immunol Lett 2008; 118:36-43. [PMID: 18405982 DOI: 10.1016/j.imlet.2008.02.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2007] [Revised: 02/18/2008] [Accepted: 02/25/2008] [Indexed: 11/19/2022]
Abstract
In pre-clinical models, CD1d restricted invariant Natural Killer T (iNKT) cells play a pivotal role in natural anti-tumor immune responses, mainly by trans-activating cells of both the innate and adaptive arms via swift and potent cytokine secretion. We have previously reported that patients with a severely reduced circulating iNKT cell pool have a poor clinical response to radio therapy of head and neck squamous cell carcinoma. Therefore, these patients might benefit from an immunotherapeutic approach aimed at the increase of circulating levels of iNKT cells. Furthermore, we have generated both human and mouse iNKT cell lines, and demonstrated that they had retained the capacity to release both Th1 and Th2 type cytokines even after long-term in vitro expansion using alpha-galactosylceramide (alphaGalCer) pulsed dendritic cells (DC). Here, we establish, in a pre-clinical tumor model that the large scale long lived polyclonal iNKT cell lines we generated have a preserved capacity to evoke an in vivo cytokine storm upon adoptive transfer, independently of supplemental alphaGalCer administration. This results in an augmented NK cell mediated protection against B16.F10 experimental lung metastases in vivo. These findings underscore the potential of autologous adoptive transfer of ex vivo expanded iNKT cells as a strategy to enhance immunotherapeutic modalities for the treatment of cancer patients.
Collapse
Affiliation(s)
- Johan W Molling
- Cancer Center Amsterdam, VUMC Institute for Cancer and Immunology (V-ICI), Division of Immune Therapy, Department of Pathology, Vrije Universiteit Medical Center, Amsterdam, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|