1
|
Balestra T, Manara MC, Laginestra MA, Pasello M, De Feo A, Bassi C, Guerzoni C, Landuzzi L, Lollini PL, Donati DM, Negrini M, Magnani M, Scotlandi K. Targeting CD99 Compromises the Oncogenic Effects of the Chimera EWS-FLI1 by Inducing Reexpression of Zyxin and Inhibition of GLI1 Activity. Mol Cancer Ther 2022; 21:58-69. [PMID: 34667115 DOI: 10.1158/1535-7163.mct-21-0189] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 07/30/2021] [Accepted: 10/12/2021] [Indexed: 11/16/2022]
Abstract
Ewing sarcoma, a highly aggressive pediatric tumor, is driven by EWS-FLI1, an oncogenic transcription factor that remodels the tumor genetic landscape. Epigenetic mechanisms play a pivotal role in Ewing sarcoma pathogenesis, and the therapeutic value of compounds targeting epigenetic pathways is being identified in preclinical models. Here, we showed that modulation of CD99, a cell surface molecule highly expressed in Ewing sarcoma cells, may alter transcriptional dysregulation in Ewing sarcoma through control of the zyxin-GLI1 axis. Zyxin is transcriptionally repressed, but GLI1 expression is maintained by EWS-FLI1. We demonstrated that targeting CD99 with antibodies, including the human diabody C7, or genetically inhibiting CD99 is sufficient to increase zyxin expression and induce its dynamic nuclear accumulation. Nuclear zyxin functionally affects GLI1, inhibiting targets such as NKX2-2, cyclin D1, and PTCH1 and upregulating GAS1, a tumor suppressor protein negatively regulated by SHH/GLI1 signaling. We used a battery of functional assays to demonstrate (i) the relationship between CD99/zyxin and tumor cell growth/migration and (ii) how CD99 deprivation from the Ewing sarcoma cell surface is sufficient to specifically affect the expression of some crucial EWS-FLI1 targets, both in vitro and in vivo, even in the presence of EWS-FLI1. This article reveals that the CD99/zyxin/GLI1 axis is promising therapeutic target for reducing Ewing sarcoma malignancy.
Collapse
Affiliation(s)
- Tommaso Balestra
- Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Maria Cristina Manara
- Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | | | - Michela Pasello
- Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Alessandra De Feo
- Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Cristian Bassi
- Department of Translational Medicine and for Romagna, and "Laboratorio per le Tecnologie delle Terapie Avanzate" (LTTA), University of Ferrara, Ferrara, Italy
| | - Clara Guerzoni
- Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Lorena Landuzzi
- Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Pier-Luigi Lollini
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Davide Maria Donati
- Clinica Ortopedica III, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
- Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Massimo Negrini
- Department of Translational Medicine and for Romagna, and "Laboratorio per le Tecnologie delle Terapie Avanzate" (LTTA), University of Ferrara, Ferrara, Italy
| | - Mauro Magnani
- Department of Biomolecular Sciences, University of Urbino, Fano, Italy
| | - Katia Scotlandi
- Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy.
| |
Collapse
|
2
|
Asaadi Y, Jouneghani FF, Janani S, Rahbarizadeh F. A comprehensive comparison between camelid nanobodies and single chain variable fragments. Biomark Res 2021; 9:87. [PMID: 34863296 PMCID: PMC8642758 DOI: 10.1186/s40364-021-00332-6] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 09/22/2021] [Indexed: 12/24/2022] Open
Abstract
By the emergence of recombinant DNA technology, many antibody fragments have been developed devoid of undesired properties of natural immunoglobulins. Among them, camelid heavy-chain variable domains (VHHs) and single-chain variable fragments (scFvs) are the most favored ones. While scFv is used widely in various applications, camelid antibodies (VHHs) can serve as an alternative because of their superior chemical and physical properties such as higher solubility, stability, smaller size, and lower production cost. Here, these two counterparts are compared in structure and properties to identify which one is more suitable for each of their various therapeutic, diagnosis, and research applications.
Collapse
Affiliation(s)
- Yasaman Asaadi
- Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran
| | - Fatemeh Fazlollahi Jouneghani
- Department of Cell & Molecular Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Sara Janani
- Department of Cell & Molecular Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Fatemeh Rahbarizadeh
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
- Research and Development Center of Biotechnology, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
3
|
Vermeulen JG, Burt F, van Heerden E, du Preez LL, Meiring M. Characterization of the inhibition mechanism of a tissuefactor inhibiting single-chain variable fragment: a combined computational approach. J Mol Model 2020; 26:87. [PMID: 32219568 DOI: 10.1007/s00894-020-4350-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 03/11/2020] [Indexed: 10/24/2022]
Abstract
The interaction of a single-chain variable fragment (scFv) directed against human tissue factor (TF) was predicted using an in silico approach with the aim to establish a most likely mechanism of inhibition. The structure of the TF inhibiting scFv (TFI-scFv) was predicted using homology modeling, and complementarity-determining regions (CDRs) were identified. The CDR was utilized to direct molecular docking between the homology model of TFI-scFv and the crystal structure of the extracellular domains of human tissue factor. The rigid-body docking model was refined by means of molecular dynamic (MD) simulations, and the most prevalent cluster was identified. MD simulations predicted improved interaction between TFI-scFv and TF and propose the formation of stable complex for duration of the 600-ns simulation. Analysis of the refined docking model suggests that the interactions between TFI-scFv would interfere with the allosterical activation of coagulation factor VII (FVII) by TF. This interaction would prevent the formation of the active TF:VIIa complex and in so doing inhibit the initiation phase of blood coagulation as observers during in vitro testing.
Collapse
Affiliation(s)
- Jan-G Vermeulen
- Department of Microbial, Biochemical and Food Biotechnology, Faculty of Agricultural Sciences, University of the Free State, Bloemfontein, South Africa. .,Department of Haematology and Cell Biology, Faculty of Health Sciences, University of the Free State, Bloemfontein, South Africa.
| | - Felicity Burt
- Division of Virology, Faculty of Health Sciences, University of the Free State, Bloemfontein, South Africa.,National Health Laboratory Service, Universitas, Bloemfontein, South Africa
| | - Esta van Heerden
- Department of Microbial, Biochemical and Food Biotechnology, Faculty of Agricultural Sciences, University of the Free State, Bloemfontein, South Africa
| | - Louis Lategan du Preez
- Department of Microbial, Biochemical and Food Biotechnology, Faculty of Agricultural Sciences, University of the Free State, Bloemfontein, South Africa
| | - Muriel Meiring
- Department of Haematology and Cell Biology, Faculty of Health Sciences, University of the Free State, Bloemfontein, South Africa.,National Health Laboratory Service, Universitas, Bloemfontein, South Africa
| |
Collapse
|
4
|
Construction of an immunized rabbit phage display antibody library for screening microcystin-LR high sensitive single-chain antibody. Int J Biol Macromol 2019; 123:369-378. [DOI: 10.1016/j.ijbiomac.2018.11.122] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 11/13/2018] [Accepted: 11/13/2018] [Indexed: 01/19/2023]
|
5
|
Lu K, Su B, Meng X. Recent Advances in the Development of Vaccines for Diabetes, Hypertension, and Atherosclerosis. J Diabetes Res 2018; 2018:1638462. [PMID: 30345314 PMCID: PMC6174738 DOI: 10.1155/2018/1638462] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 09/13/2018] [Indexed: 01/13/2023] Open
Abstract
Vaccines are commonly used in the prevention of infectious diseases. The basic principle of vaccination is to use specific antigens, endogenous or exogenous to stimulate immunity against the specific antigens or cells producing them. Autoantigen or oligo vaccination has been used for disease animal models. More recently humanized monoclonal antibodies have been successfully used for the treatment of neoplastic disorders or familial hypercholesterolemia. Humanized monoclonal antibody therapy needs repeated injection, and the therapy is expensive. Therapeutic vaccination can lead to persistent immunized or immune tolerant against the therapeutic molecule(s) or site. However, immunization against those endogenous substances may also elicit persistent autoimmune reaction or destruction that do harm to health. Therefore, rigorous studies are needed before any clinical application. In this review, we briefly reviewed vaccines used in protection against common metabolic diseases including atherosclerosis, hypertension, and diabetes mellitus.
Collapse
Affiliation(s)
- Kongye Lu
- College of Laboratory Medicine, Dalian Medical University, Dalian, Liaoning 116044, China
| | - Benli Su
- Department of Clinical Endocrinology, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116027, China
| | - Xiuxiang Meng
- College of Laboratory Medicine, Dalian Medical University, Dalian, Liaoning 116044, China
| |
Collapse
|
6
|
CD99-Derived Agonist Ligands Inhibit Fibronectin-Induced Activation of β1 Integrin through the Protein Kinase A/SHP2/Extracellular Signal-Regulated Kinase/PTPN12/Focal Adhesion Kinase Signaling Pathway. Mol Cell Biol 2017; 37:MCB.00675-16. [PMID: 28483911 DOI: 10.1128/mcb.00675-16] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 04/26/2017] [Indexed: 01/13/2023] Open
Abstract
The human CD99 protein is a 32-kDa glycosylated transmembrane protein that regulates various cellular responses, including cell adhesion and leukocyte extravasation. We previously reported that CD99 activation suppresses β1 integrin activity through dephosphorylation of focal adhesion kinase (FAK) at Y397. We explored a molecular mechanism underlying the suppression of β1 integrin activity by CD99 agonists and its relevance to tumor growth in vivo CD99-Fc fusion proteins or a series of CD99-derived peptides suppressed β1 integrin activity by specifically interacting with three conserved motifs of the CD99 extracellular domain. CD99CRIII3, a representative CD99-derived 3-mer peptide, facilitated protein kinase A-SHP2 interaction and subsequent activation of the HRAS/RAF1/MEK/ERK signaling pathway. Subsequently, CD99CRIII3 induced FAK phosphorylation at S910, which led to the recruitment of PTPN12 and PIN1 to FAK, followed by FAK dephosphorylation at Y397. Taken together, these results indicate that CD99-derived agonist ligands inhibit fibronectin-mediated β1 integrin activation through the SHP2/ERK/PTPN12/FAK signaling pathway.
Collapse
|
7
|
Du XJ, Zhou XN, Li P, Sheng W, Ducancel F, Wang S. Development of an Immunoassay for Chloramphenicol Based on the Preparation of a Specific Single-Chain Variable Fragment Antibody. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:2971-2979. [PMID: 27003441 DOI: 10.1021/acs.jafc.6b00639] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Specific antibodies are essential for the immune detection of small molecule contaminants. In the present study, the heavy and light variable regions (V(H )and V(L)) of the immunoglobulin genes from a hybridoma secreting a chloramphenicol (CAP)-specific monoclonal antibody (mAb) were cloned and sequenced. In addition, the light and heavy chains obtained from the monoclonal antibody were separated using SDS-PAGE and analyzed using Orbitrap mass spectrometry. The results of DNA sequencing and mass spectrometry analysis were compared, and the V(H) and V(L) chains specific for CAP were determined and used to construct a single-chain variable fragment (scFv). This fragment was recombinantly expressed as a soluble scFv-alkaline phosphatase fusion protein and used to develop a direct competitive ELISA. Compared with the parent mAb, scFv exhibits lower sensitivity but better food matrix resistance. This work highlights the application of engineered antibodies for CAP detection.
Collapse
Affiliation(s)
- Xin-jun Du
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology , Tianjin 300457, China
| | - Xiao-nan Zhou
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology , Tianjin 300457, China
| | - Ping Li
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology , Tianjin 300457, China
| | - Wei Sheng
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology , Tianjin 300457, China
| | - Frédéric Ducancel
- Pharmacology and Immune Analysis Department, CEA/Saclay , F-91191 Gif-sur-Yvette, France
| | - Shuo Wang
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology , Tianjin 300457, China
| |
Collapse
|
8
|
Moricoli D, Carbonella DC, Dominici S, Fiori V, Balducci MC, Guerzoni C, Manara MC, Pasello M, Laguardia ME, Cianfriglia M, Scotlandi K, Magnani M. Process development of a human recombinant diabody expressed in E. coli: engagement of CD99-induced apoptosis for target therapy in Ewing's sarcoma. Appl Microbiol Biotechnol 2015; 100:3949-63. [PMID: 26685854 DOI: 10.1007/s00253-015-7226-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 11/26/2015] [Accepted: 12/01/2015] [Indexed: 12/18/2022]
Abstract
Ewing's sarcoma (EWS) is the second most common primary bone tumor in pediatric patients characterized by over expression of CD99. Current management consists in extensive chemotherapy in addition to surgical resection and/or radiation. Recent improvements in treatment are still overshadowed by severe side effects such as toxicity and risk of secondary malignancies; therefore, more effective strategies are urgently needed. The goal of this work was to develop a rapid, inexpensive, and "up-scalable" process of a novel human bivalent single-chain fragment variable diabody (C7 dAbd) directed against CD99, as a new therapeutic approach for EWS. We first investigated different Escherichia coli constructs of C7 dAbd in small-scale studies. Starting from 60 % soluble fraction, we obtained a yield of 25 mg C7 dAbd per liter of bacterial culture with the construct containing pelB signal sequence. In contrast, a low recovery of C7 dAbd was achieved starting from periplasmic inclusion bodies. In order to maximize the yield of C7 dAbd, large-scale fermentation was optimized. We obtained from 75 % soluble fraction 35 mg C7 dAbd per L of cell culture grown in a synthetic media containing 3 g/L of vegetable peptone and 1 g/L of yeast extract. Furthermore, we demonstrated the better efficacy of the cell lysis by homogenization versus periplasmic extraction, in reducing endotoxin level of the C7 dAbd. For gram-scale purification, a direct aligned two-step chromatography cascade based on binding selectivity was developed. Finally, we recovered C7 dAbd with low residual process-related impurities, excellent reactivity, and apoptotic ability against EWS cells.
Collapse
Affiliation(s)
| | | | | | | | | | - Clara Guerzoni
- CRS Development of Biomolecular Therapies, Experimental Oncology Laboratory, Istituto Ortopedico Rizzoli, Bologna, 40136, Italy.,PROMETEO Laboratory, STB, RIT Department, Istituto Ortopedico Rizzoli, Bologna, 40136, Italy
| | - Maria Cristina Manara
- CRS Development of Biomolecular Therapies, Experimental Oncology Laboratory, Istituto Ortopedico Rizzoli, Bologna, 40136, Italy.,PROMETEO Laboratory, STB, RIT Department, Istituto Ortopedico Rizzoli, Bologna, 40136, Italy
| | - Michela Pasello
- CRS Development of Biomolecular Therapies, Experimental Oncology Laboratory, Istituto Ortopedico Rizzoli, Bologna, 40136, Italy.,PROMETEO Laboratory, STB, RIT Department, Istituto Ortopedico Rizzoli, Bologna, 40136, Italy
| | | | - Maurizio Cianfriglia
- Department of Therapeutic Research and Medicines Evaluation, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | - Katia Scotlandi
- CRS Development of Biomolecular Therapies, Experimental Oncology Laboratory, Istituto Ortopedico Rizzoli, Bologna, 40136, Italy. .,PROMETEO Laboratory, STB, RIT Department, Istituto Ortopedico Rizzoli, Bologna, 40136, Italy.
| | - Mauro Magnani
- Department of Biomolecular Science, Section of Biochemistry and Molecular Biology University of Urbino "Carlo Bo", Via Saffi 2, 61029, Urbino, Italy
| |
Collapse
|
9
|
Rodríguez-Martínez LM, Marquez-Ipiña AR, López-Pacheco F, Pérez-Chavarría R, González-Vázquez JC, González-González E, Trujillo-de Santiago G, Ponce-Ponce de León CA, Zhang YS, Dokmeci MR, Khademhosseini A, Alvarez MM. Antibody Derived Peptides for Detection of Ebola Virus Glycoprotein. PLoS One 2015; 10:e0135859. [PMID: 26489048 PMCID: PMC4619498 DOI: 10.1371/journal.pone.0135859] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 07/27/2015] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Current Ebola virus (EBOV) detection methods are costly and impractical for epidemic scenarios. Different immune-based assays have been reported for the detection and quantification of Ebola virus (EBOV) proteins. In particular, several monoclonal antibodies (mAbs) have been described that bind the capsid glycoprotein (GP) of EBOV GP. However, the currently available platforms for the design and production of full-length mAbs are cumbersome and costly. The use of antibody fragments, rather than full-length antibodies, might represent a cost-effective alternative for the development of diagnostic and possibly even therapeutic alternatives for EBOV. METHODS/PRINCIPAL FINDINGS We report the design and expression of three recombinant anti-GP mAb fragments in Escherichia coli cultures. These fragments contained the heavy and light variable portions of the three well-studied anti-GP full-length mAbs 13C6, 13F6, and KZ52, and are consequently named scFv-13C6, scFv-13F6, and Fab-KZ52, respectively. All three fragments exhibited specific anti-GP binding activity in ELISA experiments comparable to that of full-length anti-GP antibodies (i.e., the same order of magnitude) and they are easily and economically produced in bacterial cultures. CONCLUSION/SIGNIFICANCE Antibody fragments might represent a useful, effective, and low cost alternative to full-length antibodies in Ebola related capture and diagnostics applications.
Collapse
Affiliation(s)
| | | | - Felipe López-Pacheco
- Centro de Biotecnología-FEMSA, Tecnológico de Monterrey at Monterrey, Monterrey, Nuevo León, México
| | - Roberto Pérez-Chavarría
- Centro de Biotecnología-FEMSA, Tecnológico de Monterrey at Monterrey, Monterrey, Nuevo León, México
| | | | | | - Grissel Trujillo-de Santiago
- Centro de Biotecnología-FEMSA, Tecnológico de Monterrey at Monterrey, Monterrey, Nuevo León, México
- Biomaterials Innovation Research Center, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- Harvard-Massachusetts Institute of Technology Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | | | - Yu Shrike Zhang
- Biomaterials Innovation Research Center, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- Harvard-Massachusetts Institute of Technology Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Mehmet Remzi Dokmeci
- Biomaterials Innovation Research Center, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- Harvard-Massachusetts Institute of Technology Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Ali Khademhosseini
- Biomaterials Innovation Research Center, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- Harvard-Massachusetts Institute of Technology Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts, United States of America
- Department of Physics, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mario Moisés Alvarez
- Centro de Biotecnología-FEMSA, Tecnológico de Monterrey at Monterrey, Monterrey, Nuevo León, México
- Biomaterials Innovation Research Center, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- Harvard-Massachusetts Institute of Technology Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| |
Collapse
|