1
|
Vornholt T, Mutný M, Schmidt GW, Schellhaas C, Tachibana R, Panke S, Ward TR, Krause A, Jeschek M. Enhanced Sequence-Activity Mapping and Evolution of Artificial Metalloenzymes by Active Learning. ACS CENTRAL SCIENCE 2024; 10:1357-1370. [PMID: 39071060 PMCID: PMC11273458 DOI: 10.1021/acscentsci.4c00258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/22/2024] [Accepted: 05/02/2024] [Indexed: 07/30/2024]
Abstract
Tailored enzymes are crucial for the transition to a sustainable bioeconomy. However, enzyme engineering is laborious and failure-prone due to its reliance on serendipity. The efficiency and success rates of engineering campaigns may be improved by applying machine learning to map the sequence-activity landscape based on small experimental data sets. Yet, it often proves challenging to reliably model large sequence spaces while keeping the experimental effort tractable. To address this challenge, we present an integrated pipeline combining large-scale screening with active machine learning, which we applied to engineer an artificial metalloenzyme (ArM) catalyzing a new-to-nature hydroamination reaction. Combining lab automation and next-generation sequencing, we acquired sequence-activity data for several thousand ArM variants. We then used Gaussian process regression to model the activity landscape and guide further screening rounds. Critical characteristics of our pipeline include the cost-effective generation of information-rich data sets, the integration of an explorative round to improve the model's performance, and the inclusion of experimental noise. Our approach led to an order-of-magnitude boost in the hit rate while making efficient use of experimental resources. Search strategies like this should find broad utility in enzyme engineering and accelerate the development of novel biocatalysts.
Collapse
Affiliation(s)
- Tobias Vornholt
- Department
of Biosystems Science and Engineering, ETH
Zurich, Mattenstrasse 26, 4058 Basel, Switzerland
- National
Centre of Competence in Research (NCCR) Molecular Systems Engineering, 4056 Basel,Switzerland
| | - Mojmír Mutný
- Department
of Computer Science, ETH Zurich, Andreasstrasse 5, 8092 Zurich, Switzerland
| | - Gregor W. Schmidt
- Department
of Biosystems Science and Engineering, ETH
Zurich, Mattenstrasse 26, 4058 Basel, Switzerland
| | - Christian Schellhaas
- Department
of Biosystems Science and Engineering, ETH
Zurich, Mattenstrasse 26, 4058 Basel, Switzerland
| | - Ryo Tachibana
- Department
of Chemistry, University of Basel, Mattenstrasse 24a, 4058 Basel, Switzerland
| | - Sven Panke
- Department
of Biosystems Science and Engineering, ETH
Zurich, Mattenstrasse 26, 4058 Basel, Switzerland
- National
Centre of Competence in Research (NCCR) Molecular Systems Engineering, 4056 Basel,Switzerland
| | - Thomas R. Ward
- National
Centre of Competence in Research (NCCR) Molecular Systems Engineering, 4056 Basel,Switzerland
- Department
of Chemistry, University of Basel, Mattenstrasse 24a, 4058 Basel, Switzerland
| | - Andreas Krause
- Department
of Computer Science, ETH Zurich, Andreasstrasse 5, 8092 Zurich, Switzerland
| | - Markus Jeschek
- Department
of Biosystems Science and Engineering, ETH
Zurich, Mattenstrasse 26, 4058 Basel, Switzerland
- Institute
of Microbiology, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
| |
Collapse
|
2
|
Oksanen S, Saarinen R, Korkiakoski A, Lamminmäki U, Huovinen T. Genotyped functional screening of soluble Fab clones enables in-depth analysis of mutation effects. Sci Rep 2023; 13:13107. [PMID: 37567990 PMCID: PMC10421887 DOI: 10.1038/s41598-023-40241-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 08/07/2023] [Indexed: 08/13/2023] Open
Abstract
Monoclonal antibodies (mAbs) and their fragments are widely used in therapeutics, diagnostics and basic research. Although display methods such as phage display offer high-throughput, affinities of individual antibodies need to be accurately measured in soluble format. We have developed a screening platform capable of providing genotyped functional data from a total of 9216 soluble, individual antigen binding fragment (Fab) clones by employing next-generation sequencing (NGS) with hierarchical indexing. Full-length, paired variable domain sequences (VL-VH) are linked to functional screening data, enabling in-depth analysis of mutation effects. The platform was applied to four phage display-selected scFv/Fab screening projects and one site-saturation VH affinity maturation project. Genotyped functional screening simultaneously enabled the identification of affinity improving mutations in the VH domain of Fab 49A3 recognizing Dengue virus non-structural protein 1 (NS1) serotype 2 and informed on VH residue positions which cannot be changed from wild-type without decreasing the affinity. Genotype-based identification revealed to us the extent of intraclonal signal variance inherent to single point screening data, a phenomenon often overlooked in the field. Moreover, genotyped screening eliminated the redundant selection of identical genotypes for further study and provided a new analysis tool to evaluate the success of phage display selections and remaining clonal diversity in the screened repertoires.
Collapse
Affiliation(s)
- Sami Oksanen
- Department of Life Sciences, University of Turku, 20520, Turku, Finland.
| | - Roope Saarinen
- Department of Life Sciences, University of Turku, 20520, Turku, Finland
| | | | - Urpo Lamminmäki
- Department of Life Sciences, University of Turku, 20520, Turku, Finland
| | - Tuomas Huovinen
- Department of Life Sciences, University of Turku, 20520, Turku, Finland.
| |
Collapse
|
3
|
Han X, Lu X, Li PH, Wang S, Schalek R, Meirovitch Y, Lin Z, Adhinarta J, Berger D, Wu Y, Fang T, Meral ES, Asraf S, Ploegh H, Pfister H, Wei D, Jain V, Trimmer JS, Lichtman JW. Multiplexed volumetric CLEM enabled by antibody derivatives provides new insights into the cytology of the mouse cerebellar cortex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.20.540091. [PMID: 37292964 PMCID: PMC10245788 DOI: 10.1101/2023.05.20.540091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Mapping neuronal networks that underlie behavior has become a central focus in neuroscience. While serial section electron microscopy (ssEM) can reveal the fine structure of neuronal networks (connectomics), it does not provide the molecular information that helps identify cell types or their functional properties. Volumetric correlated light and electron microscopy (vCLEM) combines ssEM and volumetric fluorescence microscopy to incorporate molecular labeling into ssEM datasets. We developed an approach that uses small fluorescent single-chain variable fragment (scFv) immuno-probes to perform multiplexed detergent-free immuno-labeling and ssEM on the same samples. We generated eight such fluorescent scFvs that targeted useful markers for brain studies (green fluorescent protein, glial fibrillary acidic protein, calbindin, parvalbumin, voltage-gated potassium channel subfamily A member 2, vesicular glutamate transporter 1, postsynaptic density protein 95, and neuropeptide Y). To test the vCLEM approach, six different fluorescent probes were imaged in a sample of the cortex of a cerebellar lobule (Crus 1), using confocal microscopy with spectral unmixing, followed by ssEM imaging of the same sample. The results show excellent ultrastructure with superimposition of the multiple fluorescence channels. Using this approach we could document a poorly described cell type in the cerebellum, two types of mossy fiber terminals, and the subcellular localization of one type of ion channel. Because scFvs can be derived from existing monoclonal antibodies, hundreds of such probes can be generated to enable molecular overlays for connectomic studies.
Collapse
|
4
|
Vollmer L, Krah S, Zielonka S, Yanakieva D. A Two-Step Golden Gate Cloning Procedure for the Generation of Natively Paired YSD Fab Libraries. Methods Mol Biol 2023; 2681:161-173. [PMID: 37405648 DOI: 10.1007/978-1-0716-3279-6_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/06/2023]
Abstract
In vitro antibody display libraries have emerged as powerful tools for a streamlined discovery of novel antibody binders. While in vivo antibody repertoires are matured and selected as a specific pair of variable heavy and light chains (VH and VL) with optimal specificity and affinity, during the recombinant generation of in vitro libraries, the native sequence pairing is not maintained. Here we describe a cloning method that combines the flexibility and versatility of in vitro antibody display with the advantages of natively paired VH-VL antibodies. In this regard, VH-VL amplicons are cloned via a two-step Golden Gate cloning procedure, allowing the display of Fab fragments on yeast cells.
Collapse
Affiliation(s)
- Lena Vollmer
- Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Darmstadt, Germany
| | - Simon Krah
- Protein Engineering and Antibody Technologies (PEAT), Merck Healthcare KGaA, Darmstadt, Germany
| | - Stefan Zielonka
- Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Darmstadt, Germany
- Protein Engineering and Antibody Technologies (PEAT), Merck Healthcare KGaA, Darmstadt, Germany
| | - Desislava Yanakieva
- Protein Engineering and Antibody Technologies (PEAT), Merck Healthcare KGaA, Darmstadt, Germany.
| |
Collapse
|
5
|
Subas Satish HP, Zeglinski K, Uren RT, Nutt SL, Ritchie ME, Gouil Q, Kluck RM. NAb-seq: an accurate, rapid, and cost-effective method for antibody long-read sequencing in hybridoma cell lines and single B cells. MAbs 2022; 14:2106621. [PMID: 35965451 PMCID: PMC9377246 DOI: 10.1080/19420862.2022.2106621] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Affiliation(s)
- Hema Preethi Subas Satish
- Blood Cells and Blood Cancer Division, The Walter and Eliza Hall Institute of Medical Research , Melbourne, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Australia
| | - Kathleen Zeglinski
- Department of Medical Biology, University of Melbourne, Melbourne, Australia
- Epigenetics and Development Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
| | - Rachel T. Uren
- Blood Cells and Blood Cancer Division, The Walter and Eliza Hall Institute of Medical Research , Melbourne, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Australia
| | - Stephen L. Nutt
- Department of Medical Biology, University of Melbourne, Melbourne, Australia
- Immunology Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
| | - Matthew E. Ritchie
- Department of Medical Biology, University of Melbourne, Melbourne, Australia
- Epigenetics and Development Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
| | - Quentin Gouil
- Department of Medical Biology, University of Melbourne, Melbourne, Australia
- Epigenetics and Development Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
| | - Ruth M. Kluck
- Blood Cells and Blood Cancer Division, The Walter and Eliza Hall Institute of Medical Research , Melbourne, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Australia
| |
Collapse
|
6
|
Liu P, Guo Y, Jiao S, Chang Y, Liu Y, Zou R, Liu Y, Chen M, Guo Y, Zhu G. Characterization of Variable Region Genes and Discovery of Key Recognition Sites in the Complementarity Determining Regions of the Anti-Thiacloprid Monoclonal Antibody. Int J Mol Sci 2020; 21:E6857. [PMID: 32962080 PMCID: PMC7555632 DOI: 10.3390/ijms21186857] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 09/10/2020] [Accepted: 09/14/2020] [Indexed: 12/27/2022] Open
Abstract
Sequence-defined recombinant antibodies (rAbs) have emerged as alternatives to hybridoma-secreted monoclonal antibodies (mAbs) for performing immunoassays. However, the polyploidy nature of hybridomas often leads to the coexistence of aberrant or non-specific functional variable region (VR) gene transcripts, which complicates the identification of correct VR sequences. Herein, we introduced the use of LC-MS/MS combined with next-generation sequencing to characterize VR sequences in an anti-thiacloprid mAb, which was produced by a hybridoma with genetic antibody diversity. The certainty of VR sequences was verified by the functional analysis based on the recombinant antibody (rAb) expressed by HEK293 mammalian cells. The performance of the rAb was similar to that of the parental mAb, with IC50 values of 0.73 and 0.46 μg/L as measured by ELISAs. Moreover, molecular docking analysis revealed that Ser52 (H-CDR2), Trp98, and Trp93 (L-CDR3) residues in the complementarity determining regions (CDRs) of the identified VR sequences predominantly contributed to thiacloprid-specific recognition through hydrogen bonds and the CH-π interaction. Through single-site-directed alanine mutagenesis, we found that Trp98 and Trp93 (L-CDR3) showed high affinity to thiacloprid, while Ser52 (H-CDR2) had an auxiliary effect on the specific binding. This study presents an efficient and reliable way to determine the key recognition sites of hapten-specific mAbs, facilitating the improvement of antibody properties.
Collapse
Affiliation(s)
- Pengyan Liu
- Institute of Pesticide and Environmental Toxicology, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou 310058, China; (P.L.); (Y.G.); (S.J.); (Y.C.); (Y.L.); (R.Z.); (M.C.); (G.Z.)
| | - Yuanhao Guo
- Institute of Pesticide and Environmental Toxicology, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou 310058, China; (P.L.); (Y.G.); (S.J.); (Y.C.); (Y.L.); (R.Z.); (M.C.); (G.Z.)
| | - Shasha Jiao
- Institute of Pesticide and Environmental Toxicology, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou 310058, China; (P.L.); (Y.G.); (S.J.); (Y.C.); (Y.L.); (R.Z.); (M.C.); (G.Z.)
| | - Yunyun Chang
- Institute of Pesticide and Environmental Toxicology, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou 310058, China; (P.L.); (Y.G.); (S.J.); (Y.C.); (Y.L.); (R.Z.); (M.C.); (G.Z.)
| | - Ying Liu
- Institute of Pesticide and Environmental Toxicology, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou 310058, China; (P.L.); (Y.G.); (S.J.); (Y.C.); (Y.L.); (R.Z.); (M.C.); (G.Z.)
- Department of Food Science and Nutrition, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou 310058, China
| | - Rubing Zou
- Institute of Pesticide and Environmental Toxicology, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou 310058, China; (P.L.); (Y.G.); (S.J.); (Y.C.); (Y.L.); (R.Z.); (M.C.); (G.Z.)
| | - Yihua Liu
- Institute of Pesticide and Environmental Toxicology, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou 310058, China; (P.L.); (Y.G.); (S.J.); (Y.C.); (Y.L.); (R.Z.); (M.C.); (G.Z.)
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
| | - Mengli Chen
- Institute of Pesticide and Environmental Toxicology, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou 310058, China; (P.L.); (Y.G.); (S.J.); (Y.C.); (Y.L.); (R.Z.); (M.C.); (G.Z.)
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of life sciences, China Jiliang University, Hangzhou 310018, China
| | - Yirong Guo
- Institute of Pesticide and Environmental Toxicology, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou 310058, China; (P.L.); (Y.G.); (S.J.); (Y.C.); (Y.L.); (R.Z.); (M.C.); (G.Z.)
| | - Guonian Zhu
- Institute of Pesticide and Environmental Toxicology, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou 310058, China; (P.L.); (Y.G.); (S.J.); (Y.C.); (Y.L.); (R.Z.); (M.C.); (G.Z.)
| |
Collapse
|
7
|
Dynamics of heavy chain junctional length biases in antibody repertoires. Commun Biol 2020; 3:207. [PMID: 32358517 PMCID: PMC7195405 DOI: 10.1038/s42003-020-0931-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 04/01/2020] [Indexed: 11/21/2022] Open
Abstract
Antibody variable domain sequence diversity is generated by recombination of germline segments. The third complementarity-determining region of the heavy chain (CDR H3) is the region of highest sequence diversity and is formed by the joining of heavy chain VH, DH and JH germline segments combined with random nucleotide trimming and additions between these segments. We show that CDR H3 and junctional segment length distributions are biased in human antibody repertoires as a function of VH, VL and JH germline segment utilization. Most length biases are apparent in the naive and antigen experienced B cell compartments but not in nonproductive recombination products, indicating B cell selection as a major driver of these biases. Our findings reveal biases in the antibody CDR H3 diversity landscape shaped by VH, VL, and JH germline segment use during naive and antigen-experienced repertoire selection. Sankar et al. investigate the junctional length biases (determining antibody binding potential) as a function of germline gene usage in antibody repertoires. They show that CDR H3 and junction length are biased by VH, VL, and JH germline segment usage and these biases are apparent in both naive and antigen-experienced repertoires but not in non-productive repertoires.
Collapse
|
8
|
Jorgolli M, Nevill T, Winters A, Chen I, Chong S, Lin F, Mock M, Chen C, Le K, Tan C, Jess P, Xu H, Hamburger A, Stevens J, Munro T, Wu M, Tagari P, Miranda LP. Nanoscale integration of single cell biologics discovery processes using optofluidic manipulation and monitoring. Biotechnol Bioeng 2019; 116:2393-2411. [PMID: 31112285 PMCID: PMC6771990 DOI: 10.1002/bit.27024] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 05/16/2019] [Accepted: 05/16/2019] [Indexed: 12/12/2022]
Abstract
The new and rapid advancement in the complexity of biologics drug discovery has been driven by a deeper understanding of biological systems combined with innovative new therapeutic modalities, paving the way to breakthrough therapies for previously intractable diseases. These exciting times in biomedical innovation require the development of novel technologies to facilitate the sophisticated, multifaceted, high-paced workflows necessary to support modern large molecule drug discovery. A high-level aspiration is a true integration of "lab-on-a-chip" methods that vastly miniaturize cellulmical experiments could transform the speed, cost, and success of multiple workstreams in biologics development. Several microscale bioprocess technologies have been established that incrementally address these needs, yet each is inflexibly designed for a very specific process thus limiting an integrated holistic application. A more fully integrated nanoscale approach that incorporates manipulation, culture, analytics, and traceable digital record keeping of thousands of single cells in a relevant nanoenvironment would be a transformative technology capable of keeping pace with today's rapid and complex drug discovery demands. The recent advent of optical manipulation of cells using light-induced electrokinetics with micro- and nanoscale cell culture is poised to revolutionize both fundamental and applied biological research. In this review, we summarize the current state of the art for optical manipulation techniques and discuss emerging biological applications of this technology. In particular, we focus on promising prospects for drug discovery workflows, including antibody discovery, bioassay development, antibody engineering, and cell line development, which are enabled by the automation and industrialization of an integrated optoelectronic single-cell manipulation and culture platform. Continued development of such platforms will be well positioned to overcome many of the challenges currently associated with fragmented, low-throughput bioprocess workflows in biopharma and life science research.
Collapse
Affiliation(s)
| | - Tanner Nevill
- Product ApplicationsBerkeley Lights, IncEmeryvilleCalifornia
| | - Aaron Winters
- Amgen ResearchOne Amgen Center DriveThousand OaksCalifornia
| | - Irwin Chen
- Amgen ResearchOne Amgen Center DriveThousand OaksCalifornia
| | - Su Chong
- Amgen ResearchOne Amgen Center DriveThousand OaksCalifornia
| | - Fen‐Fen Lin
- Amgen ResearchOne Amgen Center DriveThousand OaksCalifornia
| | - Marissa Mock
- Amgen ResearchOne Amgen Center DriveThousand OaksCalifornia
| | - Ching Chen
- Amgen ResearchOne Amgen Center DriveThousand OaksCalifornia
| | - Kim Le
- Drug Substance Technologies, One Amgen Center DriveThousand OaksCalifornia
| | - Christopher Tan
- Drug Substance Technologies, One Amgen Center DriveThousand OaksCalifornia
| | - Philip Jess
- Product ApplicationsBerkeley Lights, IncEmeryvilleCalifornia
| | - Han Xu
- Drug DiscoveryA2 BiotherapeuticsWestlake VillageCalifornia
| | - Agi Hamburger
- Drug DiscoveryA2 BiotherapeuticsWestlake VillageCalifornia
| | - Jennitte Stevens
- Drug Substance Technologies, One Amgen Center DriveThousand OaksCalifornia
| | - Trent Munro
- Drug Substance Technologies, One Amgen Center DriveThousand OaksCalifornia
| | - Ming Wu
- Department of Electrical Engineering and Computer SciencesUniversity of California at BerkeleyBerkeleyCalifornia
| | - Philip Tagari
- Amgen ResearchOne Amgen Center DriveThousand OaksCalifornia
| | - Les P. Miranda
- Amgen ResearchOne Amgen Center DriveThousand OaksCalifornia
| |
Collapse
|
9
|
Goldstein LD, Chen YJJ, Wu J, Chaudhuri S, Hsiao YC, Schneider K, Hoi KH, Lin Z, Guerrero S, Jaiswal BS, Stinson J, Antony A, Pahuja KB, Seshasayee D, Modrusan Z, Hötzel I, Seshagiri S. Massively parallel single-cell B-cell receptor sequencing enables rapid discovery of diverse antigen-reactive antibodies. Commun Biol 2019; 2:304. [PMID: 31428692 PMCID: PMC6689056 DOI: 10.1038/s42003-019-0551-y] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 07/15/2019] [Indexed: 01/24/2023] Open
Abstract
Obtaining full-length antibody heavy- and light-chain variable regions from individual B cells at scale remains a challenging problem. Here we use high-throughput single-cell B-cell receptor sequencing (scBCR-seq) to obtain accurately paired full-length variable regions in a massively parallel fashion. We sequenced more than 250,000 B cells from rat, mouse and human repertoires to characterize their lineages and expansion. In addition, we immunized rats with chicken ovalbumin and profiled antigen-reactive B cells from lymph nodes of immunized animals. The scBCR-seq data recovered 81% (n = 56/69) of B-cell lineages identified from hybridomas generated from the same set of B cells subjected to scBCR-seq. Importantly, scBCR-seq identified an additional 710 candidate lineages not recovered as hybridomas. We synthesized, expressed and tested 93 clones from the identified lineages and found that 99% (n = 92/93) of the clones were antigen-reactive. Our results establish scBCR-seq as a powerful tool for antibody discovery.
Collapse
Affiliation(s)
- Leonard D. Goldstein
- Molecular Biology, Genentech, South San Francisco, CA 94080 USA
- Bioinformatics & Computational Biology, Genentech, South San Francisco, CA 94080 USA
| | | | - Jia Wu
- Antibody Engineering, Genentech, South San Francisco, CA 94080 USA
| | | | - Yi-Chun Hsiao
- Antibody Engineering, Genentech, South San Francisco, CA 94080 USA
| | - Kellen Schneider
- Antibody Engineering, Genentech, South San Francisco, CA 94080 USA
| | - Kam Hon Hoi
- Bioinformatics & Computational Biology, Genentech, South San Francisco, CA 94080 USA
- Antibody Engineering, Genentech, South San Francisco, CA 94080 USA
| | - Zhonghua Lin
- Antibody Engineering, Genentech, South San Francisco, CA 94080 USA
| | - Steve Guerrero
- Bioinformatics & Computational Biology, Genentech, South San Francisco, CA 94080 USA
| | | | - Jeremy Stinson
- Molecular Biology, Genentech, South San Francisco, CA 94080 USA
| | - Aju Antony
- Department of Molecular Biology, SciGenom Labs, Cochin, Kerala 682037 India
| | | | - Dhaya Seshasayee
- Antibody Engineering, Genentech, South San Francisco, CA 94080 USA
| | - Zora Modrusan
- Molecular Biology, Genentech, South San Francisco, CA 94080 USA
| | - Isidro Hötzel
- Antibody Engineering, Genentech, South San Francisco, CA 94080 USA
| | - Somasekar Seshagiri
- Molecular Biology, Genentech, South San Francisco, CA 94080 USA
- Present Address: SciGenom Research Foundation, Bangalore, 560099 India
| |
Collapse
|
10
|
Hsiao YC, Shang Y, DiCara DM, Yee A, Lai J, Kim SH, Ellerman D, Corpuz R, Chen Y, Rajan S, Cai H, Wu Y, Seshasayee D, Hötzel I. Immune repertoire mining for rapid affinity optimization of mouse monoclonal antibodies. MAbs 2019; 11:735-746. [PMID: 30900945 DOI: 10.1080/19420862.2019.1584517] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
Traditional hybridoma and B cell cloning antibody discovery platforms have inherent limits in immune repertoire sampling depth. One consequence is that monoclonal antibody (mAb) leads often lack the necessary affinity for therapeutic applications, thus requiring labor-intensive and time-consuming affinity in vitro engineering optimization steps. Here, we show that high-affinity variants of mouse-derived mAbs can be rapidly obtained by testing of somatic sequence variants obtained by deep sequencing of antibody variable regions in immune repertories from immunized mice, even with a relatively sparse sampling of sequence variants from large sequence datasets. Affinity improvements can be achieved for mAbs with a wide range of affinities. The optimized antibody variants derived from immune repertoire mining have no detectable in vitro off-target binding and have in vivo clearance comparable to the parental mAbs, essential properties in therapeutic antibody leads. As generation of antibody variants in vitro is replaced by mining of variants generated in vivo, the procedure can be applied to rapidly identify affinity-optimized mAb variants.
Collapse
Affiliation(s)
- Yi-Chun Hsiao
- a Department of Antibody Engineering , Genentech , South San Francisco , CA , USA
| | - Yonglei Shang
- a Department of Antibody Engineering , Genentech , South San Francisco , CA , USA
| | - Danielle M DiCara
- a Department of Antibody Engineering , Genentech , South San Francisco , CA , USA
| | - Angie Yee
- a Department of Antibody Engineering , Genentech , South San Francisco , CA , USA
| | - Joyce Lai
- a Department of Antibody Engineering , Genentech , South San Francisco , CA , USA
| | - Si Hyun Kim
- a Department of Antibody Engineering , Genentech , South San Francisco , CA , USA
| | - Diego Ellerman
- b Department of Structural Biology and Protein Chemistry , Genentech , South San Francisco , CA , USA
| | - Racquel Corpuz
- b Department of Structural Biology and Protein Chemistry , Genentech , South San Francisco , CA , USA
| | - Yongmei Chen
- a Department of Antibody Engineering , Genentech , South San Francisco , CA , USA
| | - Sharmila Rajan
- c Department of Preclinical and Translational Pharmacokinetics , Genentech , South San Francisco , CA , USA
| | - Hao Cai
- c Department of Preclinical and Translational Pharmacokinetics , Genentech , South San Francisco , CA , USA
| | - Yan Wu
- a Department of Antibody Engineering , Genentech , South San Francisco , CA , USA
| | - Dhaya Seshasayee
- a Department of Antibody Engineering , Genentech , South San Francisco , CA , USA
| | - Isidro Hötzel
- a Department of Antibody Engineering , Genentech , South San Francisco , CA , USA
| |
Collapse
|
11
|
Noh J, Kim O, Jung Y, Han H, Kim JE, Kim S, Lee S, Park J, Jung RH, Kim SI, Park J, Han J, Lee H, Yoo DK, Lee AC, Kwon E, Ryu T, Chung J, Kwon S. High-throughput retrieval of physical DNA for NGS-identifiable clones in phage display library. MAbs 2019; 11:532-545. [PMID: 30735467 DOI: 10.1080/19420862.2019.1571878] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
In antibody discovery, in-depth analysis of an antibody library and high-throughput retrieval of clones in the library are crucial to identifying and exploiting rare clones with different properties. However, existing methods have technical limitations, such as low process throughput from the laborious cloning process and waste of the phenotypic screening capacity from unnecessary repetitive tests on the dominant clones. To overcome the limitations, we developed a new high-throughput platform for the identification and retrieval of clones in the library, TrueRepertoire™. This new platform provides highly accurate sequences of the clones with linkage information between heavy and light chains of the antibody fragment. Additionally, the physical DNA of clones can be retrieved in high throughput based on the sequence information. We validated the high accuracy of the sequences and demonstrated that there is no platform-specific bias. Moreover, the applicability of TrueRepertoire™ was demonstrated by a phage-displayed single-chain variable fragment library targeting human hepatocyte growth factor protein.
Collapse
Affiliation(s)
- Jinsung Noh
- a Department of Electrical Engineering and Computer Science , Seoul National University , Seoul , Republic of Korea
| | - Okju Kim
- a Department of Electrical Engineering and Computer Science , Seoul National University , Seoul , Republic of Korea.,b Bioengineering Research Institute, Celemics, Inc , Seoul , Republic of Korea
| | - Yushin Jung
- b Bioengineering Research Institute, Celemics, Inc , Seoul , Republic of Korea
| | - Haejun Han
- b Bioengineering Research Institute, Celemics, Inc , Seoul , Republic of Korea
| | - Jung-Eun Kim
- b Bioengineering Research Institute, Celemics, Inc , Seoul , Republic of Korea
| | - Soohyun Kim
- c Department of Biochemistry and Molecular Biology , Seoul National University College of Medicine , Seoul , Republic of Korea.,d Cancer Research Institute , Seoul National University College of Medicine , Seoul , Republic of Korea
| | - Sanghyub Lee
- b Bioengineering Research Institute, Celemics, Inc , Seoul , Republic of Korea
| | - Jaeseong Park
- b Bioengineering Research Institute, Celemics, Inc , Seoul , Republic of Korea
| | - Rae Hyuck Jung
- e Inter-University Semiconductor Research Center , Seoul National University , Seoul , Republic of Korea
| | - Sang Il Kim
- c Department of Biochemistry and Molecular Biology , Seoul National University College of Medicine , Seoul , Republic of Korea.,d Cancer Research Institute , Seoul National University College of Medicine , Seoul , Republic of Korea
| | - Jaejun Park
- b Bioengineering Research Institute, Celemics, Inc , Seoul , Republic of Korea
| | - Jerome Han
- c Department of Biochemistry and Molecular Biology , Seoul National University College of Medicine , Seoul , Republic of Korea.,f Department of Biomedical Science , Seoul National University College of Medicine , Seoul , Republic of Korea
| | - Hyunho Lee
- a Department of Electrical Engineering and Computer Science , Seoul National University , Seoul , Republic of Korea
| | - Duck Kyun Yoo
- c Department of Biochemistry and Molecular Biology , Seoul National University College of Medicine , Seoul , Republic of Korea.,f Department of Biomedical Science , Seoul National University College of Medicine , Seoul , Republic of Korea.,g Neuro-Immune Information Storage Network Research Center , Seoul National University College of Medicine , Seoul , Republic of Korea
| | - Amos C Lee
- h Interdisciplinary Program in Bioengineering , Seoul National University , Seoul , Republic of Korea
| | - Euijin Kwon
- b Bioengineering Research Institute, Celemics, Inc , Seoul , Republic of Korea
| | - Taehoon Ryu
- b Bioengineering Research Institute, Celemics, Inc , Seoul , Republic of Korea
| | - Junho Chung
- c Department of Biochemistry and Molecular Biology , Seoul National University College of Medicine , Seoul , Republic of Korea.,d Cancer Research Institute , Seoul National University College of Medicine , Seoul , Republic of Korea.,f Department of Biomedical Science , Seoul National University College of Medicine , Seoul , Republic of Korea
| | - Sunghoon Kwon
- a Department of Electrical Engineering and Computer Science , Seoul National University , Seoul , Republic of Korea.,e Inter-University Semiconductor Research Center , Seoul National University , Seoul , Republic of Korea.,h Interdisciplinary Program in Bioengineering , Seoul National University , Seoul , Republic of Korea.,i Institutes of Entrepreneurial BioConvergence , Seoul National University , Seoul , Republic of Korea.,j Seoul National University Hospital Biomedical Research Institute , Seoul National University Hospital , Seoul , Republic of Korea
| |
Collapse
|
12
|
Andrews NP, Boeckman JX, Manning CF, Nguyen JT, Bechtold H, Dumitras C, Gong B, Nguyen K, van der List D, Murray KD, Engebrecht J, Trimmer JS. A toolbox of IgG subclass-switched recombinant monoclonal antibodies for enhanced multiplex immunolabeling of brain. eLife 2019; 8:43322. [PMID: 30667360 PMCID: PMC6377228 DOI: 10.7554/elife.43322] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 01/21/2019] [Indexed: 11/17/2022] Open
Abstract
Generating recombinant monoclonal antibodies (R-mAbs) from mAb-producing hybridomas offers numerous advantages that increase the effectiveness, reproducibility, and transparent reporting of research. We report here the generation of a novel resource in the form of a library of recombinant R-mAbs validated for neuroscience research. We cloned immunoglobulin G (IgG) variable domains from cryopreserved hybridoma cells and input them into an integrated pipeline for expression and validation of functional R-mAbs. To improve efficiency over standard protocols, we eliminated aberrant Sp2/0-Ag14 hybridoma-derived variable light transcripts using restriction enzyme treatment. Further, we engineered a plasmid backbone that allows for switching of the IgG subclasses without altering target binding specificity to generate R-mAbs useful in simultaneous multiplex labeling experiments not previously possible. The method was also employed to rescue IgG variable sequences and generate functional R-mAbs from a non-viable cryopreserved hybridoma. All R-mAb sequences and plasmids will be archived and disseminated from open source suppliers. The immune system fights off disease-causing microbes using antibodies: Y-shaped proteins that each bind to a specific foreign molecule. Indeed, these proteins bind so tightly and so specifically that they can pick out a single target in a complex mixture of different molecules. This property also makes them useful in research. For example, neurobiologists can use antibodies to mark target proteins in thin sections of brain tissue. This reveals their position inside brain cells, helping to link the structure of the brain to the roles the different parts of this structure perform. To use antibodies in this way, scientists need to be able to produce them in large quantities without losing their target specificity. The most common way to do this is with cells called hybridomas. A hybridoma is a hybrid of an antibody-producing immune cell and a cancer cell, and it has properties of both. From the immune cell, it inherits the genes to make a specific type of antibody. From the cancer cell, it inherits the ability to go on dividing forever. In theory, hybridomas should be immortal antibody factories, but they have some limitations. They are expensive to keep alive, hard to transport between labs, and their genes can be unstable. Problems can creep into their genetic code, halting their growth or changing the targets their antibodies recognize. When this happens, scientists can lose vital research tools. Instead of keeping the immune cells alive, an alternative approach is to make recombinant antibodies. Rather than store the whole cell, this approach just stores the parts of the genes that encode antibody target-specificity. Andrews et al. set out to convert a valuable toolbox of neuroscience antibodies into recombinant form. This involved copying the antibody genes from a large library of preserved hybridoma cells. However, many hybridomas also carry genes that produce non-functional antibodies. A step in the process removed these DNA sequences, ensuring that only working antibodies made it into the final library. Using frozen cells made it possible to recover antibody genes from hybridoma cells that could no longer grow. The recombinant DNA sequences provide a permanent record of useful antibodies. Not only does this prevent the loss of research tools, it is also much more shareable than living cells. Modifications to the DNA sequences in the library allow for the use of many antibodies at once. This could help when studying the interactions between different molecules in the brain. Toolkits like these could also make it easier to collaborate, and to reproduce data gathered by different researchers around the world.
Collapse
Affiliation(s)
- Nicolas P Andrews
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, United States
| | - Justin X Boeckman
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, United States
| | - Colleen F Manning
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, United States
| | - Joe T Nguyen
- Department of Molecular and Cellular Biology, University of California, Davis, United States
| | - Hannah Bechtold
- Department of Molecular and Cellular Biology, University of California, Davis, United States
| | - Camelia Dumitras
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, United States
| | - Belvin Gong
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, United States
| | - Kimberly Nguyen
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, United States
| | - Deborah van der List
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, United States
| | - Karl D Murray
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, United States
| | - JoAnne Engebrecht
- Department of Molecular and Cellular Biology, University of California, Davis, United States
| | - James S Trimmer
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, United States.,Department of Physiology and Membrane Biology, University of California, Davis, United States
| |
Collapse
|