1
|
Gerges E, Cauvet A, Schwarz M, Avouac J, Allanore Y. Association of serum interferon alpha-2a levels with disease severity and prognosis in systemic sclerosis. Rheumatology (Oxford) 2025; 64:2792-2801. [PMID: 39388243 DOI: 10.1093/rheumatology/keae546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 09/11/2024] [Accepted: 09/21/2024] [Indexed: 10/15/2024] Open
Abstract
OBJECTIVE To determine serum type I IFN (IFN-α2a) concentrations in SSc patients, explore its association with cytokine/chemokine expressions and evaluate correlation with the phenotype including the predictive value for interstitial lung disease (ILD) progression. METHODS Serum samples were obtained from 200 SSc patients and 29 healthy controls. IFN-α2a levels were measured by ultrasensitive electrochemiluminescence assay. Pro-inflammatory and chemokine panels were determined by Luminex® Discovery Assay multiplex kit. Baseline SSc disease characteristics were recorded together with longitudinal data for determining ILD progression after 2 years. RESULTS IFN-α2a concentrations were higher in SSc patients compared with controls, although not reaching significance [means ± SD of 49.20 ± 156.8 fg/ml vs 9.606 ± 4.399 fg/ml, respectively (P = 0.158)]. Using the cut-off of 15.9 fg/ml, we identified 62 patients as having a type 1 (T1) IFN signature in their circulation. Patients with an IFN signature had significantly higher levels of chemokines (CCL8, CCL19, CXCL10, CXCL11) and the cytokine IL-1α compared with those without an IFN signature. IFN-α2a concentrations strongly correlated with a T1 IFN-related chemokine score supporting activation of this pathway. Phenotyping association queries revealed association between IFN values and both skin and ILD involvements at baseline. Longitudinal data did not identify IFN as a predictive marker for ILD progression. CONCLUSION Using serum determinations, the activation of the T1 IFN pathway showed strong correlations with inflammatory mediators and associations with clinical manifestations, especially skin fibrosis and ILD in SSc patients. However, activated IFN pathway was not predictive of ILD progression.
Collapse
Affiliation(s)
- Elias Gerges
- Institut Cochin, INSERM U1016 CNRS UMR8104, Université Paris Cité, Paris, France
| | - Anne Cauvet
- Institut Cochin, INSERM U1016 CNRS UMR8104, Université Paris Cité, Paris, France
| | - Maximilian Schwarz
- Rheumatology Department, Université Paris Cité, Cochin Hospital, APHP, Paris, France
| | - Jérôme Avouac
- Institut Cochin, INSERM U1016 CNRS UMR8104, Université Paris Cité, Paris, France
- Rheumatology Department, Université Paris Cité, Cochin Hospital, APHP, Paris, France
| | - Yannick Allanore
- Institut Cochin, INSERM U1016 CNRS UMR8104, Université Paris Cité, Paris, France
- Rheumatology Department, Université Paris Cité, Cochin Hospital, APHP, Paris, France
| |
Collapse
|
2
|
Scott IC, Zuydam NV, Cann JA, Negri VA, Tsafou K, Killick H, Liu Z, McCrae C, Rees DG, England E, Guscott MA, Houslay K, McCormick D, Freeman A, Schofield D, Freeman A, Cohen ES, Thwaites R, Brohawn Z, Platt A, Openshaw PJM, Semple MG, Baillie JK, Wilkinson T. IL-33 is associated with alveolar dysfunction in patients with viral lower respiratory tract disease. Mucosal Immunol 2025; 18:312-325. [PMID: 39662674 PMCID: PMC11982439 DOI: 10.1016/j.mucimm.2024.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 11/29/2024] [Accepted: 12/05/2024] [Indexed: 12/13/2024]
Abstract
Interleukin (IL)-33 is released following tissue damage, causing airway inflammation and remodelling via reduced IL-33 (IL-33red)/serum stimulation-2 (ST2) and oxidised IL-33 (IL-33ox)/receptor for advanced glycation end products (RAGE)/epidermal growth factor receptor (EGFR) pathways. This study aimed to identify associations of IL-33 with clinical outcomes and pathological mechanisms during viral lower respiratory tract disease (LRTD). Ultra-sensitive immunoassays were developed to measure IL-33red, IL-33ox and IL-33/sST2 complexes in samples from patients hospitalised with COVID-19. Immunohistochemistry and multiomics were used to characterise lung samples. Elevated IL-33 in the airway and IL-33/sST2 complex in the circulation correlated with poor clinical outcomes (death, need for intensive care or mechanical ventilation). IL-33 was localised to airway epithelial and endothelial barriers, whereas IL1RL1 was expressed on aerocytes, alveolar endothelial cells specialised for gaseous exchange. IL-33 increased expression of mediators of neutrophilic inflammation, immune cell infiltration, interferon signalling and coagulation in endothelial cell cultures. Endothelial IL-33 signatures were strongly related with signatures associated with viral LRTD. Increased IL-33 release following respiratory viral infections is associated with poor clinical outcomes and might contribute to alveolar dysfunction. Although this does not show a causal relationship with disease, these results provide a rationale to evaluate pathological roles for IL-33 in viral LRTD.
Collapse
Affiliation(s)
- Ian C Scott
- Translational Science and Experimental Medicine, Research and Early Development, Respiratory and Immunology, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK.
| | - Natalie van Zuydam
- Discovery Sciences, Research and Early Development, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Jennifer A Cann
- Clinical Pharmacology and Safety Sciences, Research and Early Development, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, USA
| | - Victor Augusti Negri
- Translational Science and Experimental Medicine, Research and Early Development, Respiratory and Immunology, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Kalliopi Tsafou
- Discovery Sciences, Research and Early Development, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Helen Killick
- Translational Science and Experimental Medicine, Research and Early Development, Respiratory and Immunology, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Zhi Liu
- Translational Sciences and Experimental Medicine, Research and Early Development, Respiratory and Immunology, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, USA
| | - Christopher McCrae
- Translational Sciences and Experimental Medicine, Research and Early Development, Respiratory and Immunology, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, USA
| | - D Gareth Rees
- Biologics Engineering, Research and Early Development, Oncology R&D, AstraZeneca, Cambridge, UK
| | - Elizabeth England
- Biologics Engineering, Research and Early Development, Oncology R&D, AstraZeneca, Cambridge, UK
| | - Molly A Guscott
- Bioscience Asthma and Skin Immunity, Research and Early Development, Respiratory and Immunology, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Kirsty Houslay
- Bioscience Asthma and Skin Immunity, Research and Early Development, Respiratory and Immunology, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Dominique McCormick
- Department of Clinical Infection, Microbiology, and Immunology, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Anna Freeman
- School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton General Hospital and University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Darren Schofield
- Biologics Engineering, Research and Early Development, Oncology R&D, AstraZeneca, Cambridge, UK
| | - Adrian Freeman
- Discovery Sciences, Research and Early Development, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - E Suzanne Cohen
- Bioscience Asthma and Skin Immunity, Research and Early Development, Respiratory and Immunology, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Ryan Thwaites
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Zach Brohawn
- Translational Sciences and Experimental Medicine, Research and Early Development, Respiratory and Immunology, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, USA
| | - Adam Platt
- Translational Science and Experimental Medicine, Research and Early Development, Respiratory and Immunology, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | | | - Malcolm G Semple
- Department of Clinical Infection, Microbiology, and Immunology, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - J Kenneth Baillie
- Baillie Gifford Pandemic Science Hub, University of Edinburgh, Edinburgh, UK
| | - Tom Wilkinson
- School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton General Hospital and University Hospital Southampton NHS Foundation Trust, Southampton, UK
| |
Collapse
|
3
|
Li W, Tian Z, Yu X, Xu H, Huang F, Yu J, Diao X. Quantification of serum daratumumab in multiple myeloma patients by LC-MS/MS, comparison with ELISA. J Pharm Biomed Anal 2025; 255:116627. [PMID: 39671910 DOI: 10.1016/j.jpba.2024.116627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 11/28/2024] [Accepted: 12/07/2024] [Indexed: 12/15/2024]
Abstract
Daratumumab is a fully human immunoglobulin G1 monoclonal antibody employed for treating relapsed/refractory multiple myeloma and light-chain amyloidosis. Quantifying monoclonal antibodies in serum presents challenges due to interference from biological matrices. This research aimed to develop and verify an liquid chromatography tandem-mass spectrometry (LC-MS/MS) approach for quantifying serum daratumumab, employing immunoglobulin G purification without alkylation, and to assess its applicability in patients with multiple myeloma receiving intravenous daratumumab. The chromatographic peaks of the daratumumab-derived peptides and internal standard were well-delineated from the serum digests, with an overall run time of 14 min. The calibration curves for serum daratumumab were linear across over 1-1000 μg/mL. The inter- and intra-day accuracy varied between 92.4 % and 108.4 %, with a coefficient-of-variation below 10 %. In patients receiving intravenous daratumumab, serum concentrations ranged from 181.8 to 975.3 µg/mL. Bland-Altman analysis revealed no significant bias, and Passing-Bablok regression demonstrated a good agreement between the LC-MS/MS method and enzyme-linked immunosorbent assay.
Collapse
Affiliation(s)
- Weiqiang Li
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201210, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhuoran Tian
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201210, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xiong Yu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201210, China; School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Hongyu Xu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201210, China; School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Fang Huang
- Department of Hematology, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200092, China.
| | - Jinghua Yu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201210, China.
| | - Xingxing Diao
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201210, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
4
|
McKinski K, Tang H, Wang K, Birchler M, Wright M. Comparison of highly sensitive, multiplex immunoassay platforms for streamlined clinical cytokine quantification. Bioanalysis 2025; 17:17-29. [PMID: 39703153 PMCID: PMC11749433 DOI: 10.1080/17576180.2024.2442190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 12/11/2024] [Indexed: 12/21/2024] Open
Abstract
INTRODUCTION Selecting the optimal platforms to quantitate cytokines is challenging due to varying performance and the plethora of options available. AIMS To compare performance of three highly sensitive, multiplex assays on three different platforms - MSD S-plex, Olink Target 48, and Quanterix SP-X - to MSD V-plex which is widely used for quantitative cytokine assay. METHODS Serum and stimulated plasma samples were analyzed across each platform. The proportion of quantifiable samples was compared for each analyte and correlation analyses were performed to relate the data. For MSD S-plex, parallelism and antibody pair knockdown experiments gauged specificity of the kit. RESULTS MSD S-plex was the most sensitive multiplex platform followed by Olink Target 48, Quanterix SP-X, and MSD V-plex. Concentrations across platforms differed greatly for some cytokines, but all platforms showed strong correlation. Results for MSD S-plex were confirmed by parallelism and knockdown. CONCLUSION MSD S-plex should be a priority platform for ultra-sensitive assay. Olink Target 48 offers an enticing combination of sensitivity and multiplex capability that warrants consideration when many cytokines require quantitation. MSD V-plex, MSD S-plex and Olink quantitative assays offer high utility across drug development programs, but fit-for-purpose performance should be assessed on a per-analyte basis.
Collapse
Affiliation(s)
- Kevin McKinski
- Precision Medicine – Biomarker & Bioanalytical Platforms (BBP), GSK, Collegeville, PA, USA
| | - Huaping Tang
- Precision Medicine – Biomarker & Bioanalytical Platforms (BBP), GSK, Collegeville, PA, USA
| | - Kai Wang
- Precision Medicine – Biomarker & Bioanalytical Platforms (BBP), GSK, Collegeville, PA, USA
| | - Mary Birchler
- Precision Medicine – Biomarker & Bioanalytical Platforms (BBP), GSK, Collegeville, PA, USA
| | - Mike Wright
- Precision Medicine – Biomarker & Bioanalytical Platforms (BBP), GSK, Stevenage, UK
| |
Collapse
|
5
|
Chupp DP, Rivera CE, Zhou Y, Xu Y, Ramsey PS, Xu Z, Zan H, Casali P. A humanized mouse that mounts mature class-switched, hypermutated and neutralizing antibody responses. Nat Immunol 2024; 25:1489-1506. [PMID: 38918608 PMCID: PMC11291283 DOI: 10.1038/s41590-024-01880-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 05/18/2024] [Indexed: 06/27/2024]
Abstract
Humanized mice are limited in terms of modeling human immunity, particularly with regards to antibody responses. Here we constructed a humanized (THX) mouse by grafting non-γ-irradiated, genetically myeloablated KitW-41J mutant immunodeficient pups with human cord blood CD34+ cells, followed by 17β-estradiol conditioning to promote immune cell differentiation. THX mice reconstitute a human lymphoid and myeloid immune system, including marginal zone B cells, germinal center B cells, follicular helper T cells and neutrophils, and develop well-formed lymph nodes and intestinal lymphoid tissue, including Peyer's patches, and human thymic epithelial cells. These mice have diverse human B cell and T cell antigen receptor repertoires and can mount mature T cell-dependent and T cell-independent antibody responses, entailing somatic hypermutation, class-switch recombination, and plasma cell and memory B cell differentiation. Upon flagellin or a Pfizer-BioNTech coronavirus disease 2019 (COVID-19) mRNA vaccination, THX mice mount neutralizing antibody responses to Salmonella or severe acute respiratory syndrome coronavirus 2 Spike S1 receptor-binding domain, with blood incretion of human cytokines, including APRIL, BAFF, TGF-β, IL-4 and IFN-γ, all at physiological levels. These mice can also develop lupus autoimmunity after pristane injection. By leveraging estrogen activity to support human immune cell differentiation and maturation of antibody responses, THX mice provide a platform to study the human immune system and to develop human vaccines and therapeutics.
Collapse
Affiliation(s)
- Daniel P Chupp
- The Antibody Laboratory, Department of Microbiology, Immunology & Molecular Genetics, The University of Texas Long School of Medicine, San Antonio, TX, USA
- Invivyd, Waltham, MA, USA
| | - Carlos E Rivera
- The Antibody Laboratory, Department of Microbiology, Immunology & Molecular Genetics, The University of Texas Long School of Medicine, San Antonio, TX, USA
| | - Yulai Zhou
- The Antibody Laboratory, Department of Microbiology, Immunology & Molecular Genetics, The University of Texas Long School of Medicine, San Antonio, TX, USA
| | - Yijiang Xu
- The Antibody Laboratory, Department of Microbiology, Immunology & Molecular Genetics, The University of Texas Long School of Medicine, San Antonio, TX, USA
| | - Patrick S Ramsey
- Department of Obstetrics & Gynecology, The University of Texas Long School of Medicine, San Antonio, TX, USA
| | - Zhenming Xu
- The Antibody Laboratory, Department of Microbiology, Immunology & Molecular Genetics, The University of Texas Long School of Medicine, San Antonio, TX, USA
| | - Hong Zan
- The Antibody Laboratory, Department of Microbiology, Immunology & Molecular Genetics, The University of Texas Long School of Medicine, San Antonio, TX, USA
- Prellis Biologics, Berkeley, CA, USA
| | - Paolo Casali
- The Antibody Laboratory, Department of Microbiology, Immunology & Molecular Genetics, The University of Texas Long School of Medicine, San Antonio, TX, USA.
- Department of Medicine, The University of Texas Long School of Medicine, San Antonio, TX, USA.
| |
Collapse
|
6
|
Li W, Huang W, Yu X, Chen C, Yuan Y, Liu D, Wang F, Yu J, Diao X. A validated LC-MS/MS method for the quantitation of daratumumab in rat serum using rapid tryptic digestion without IgG purification and reduction. J Pharm Biomed Anal 2024; 243:116083. [PMID: 38447348 DOI: 10.1016/j.jpba.2024.116083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/15/2024] [Accepted: 03/01/2024] [Indexed: 03/08/2024]
Abstract
Daratumumab, a humanized monoclonal antibody utilized in treating immunoglobulin light-chain amyloidosis and relapsed/refractory multiple myeloma, was quantified in rat serum through a simple, economical and effective liquid chromatography tandem-mass spectrometry (LC-MS/MS) method. A surrogate peptide, LLIYDASNR, derived from trypsin hydrolysis, was quantitatively analyzed with LLIYDASN [13C6, 15N4] RAT as an internal standard. This corrected variations from sample pretreatment and mass spectrometry response, involving denaturation and trypsin hydrolysis in a two-step process lasting approximately 1 hour. Methodological validation demonstrated a linear range of 1 µg/mL to 1000 µg/mL in rat serum. Precision, accuracy, matrix effect, sensitivity, stability, selectivity, carryover, and interference met acceptance criteria. The validated LC-MS/MS approach was successfully applied to a pharmacokinetic study of daratumumab in rats at an intravenous dose of 15 mg/kg.
Collapse
Affiliation(s)
- Weiqiang Li
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201210, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wensi Huang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201210, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiong Yu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201210, China; School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Chong Chen
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201210, China; School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yali Yuan
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201210, China; School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Donghui Liu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201210, China; School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Feiyu Wang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201210, China; School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jinghua Yu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201210, China.
| | - Xingxing Diao
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201210, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
7
|
Agoston DV, Helmy A. Fluid-Based Protein Biomarkers in Traumatic Brain Injury: The View from the Bedside. Int J Mol Sci 2023; 24:16267. [PMID: 38003454 PMCID: PMC10671762 DOI: 10.3390/ijms242216267] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/07/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023] Open
Abstract
There has been an explosion of research into biofluid (blood, cerebrospinal fluid, CSF)-based protein biomarkers in traumatic brain injury (TBI) over the past decade. The availability of very large datasets, such as CENTRE-TBI and TRACK-TBI, allows for correlation of blood- and CSF-based molecular (protein), radiological (structural) and clinical (physiological) marker data to adverse clinical outcomes. The quality of a given biomarker has often been framed in relation to the predictive power on the outcome quantified from the area under the Receiver Operating Characteristic (ROC) curve. However, this does not in itself provide clinical utility but reflects a statistical association in any given population between one or more variables and clinical outcome. It is not currently established how to incorporate and integrate biofluid-based biomarker data into patient management because there is no standardized role for such data in clinical decision making. We review the current status of biomarker research and discuss how we can integrate existing markers into current clinical practice and what additional biomarkers do we need to improve diagnoses and to guide therapy and to assess treatment efficacy. Furthermore, we argue for employing machine learning (ML) capabilities to integrate the protein biomarker data with other established, routinely used clinical diagnostic tools, to provide the clinician with actionable information to guide medical intervention.
Collapse
Affiliation(s)
- Denes V. Agoston
- Department of Anatomy, Physiology and Genetic, School of Medicine, Uniformed Services University, Bethesda, MD 20814, USA
| | - Adel Helmy
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Addenbrooke’s Hospital, Cambridge CB2 0QQ, UK;
| |
Collapse
|
8
|
Barya P, Xiong Y, Shepherd S, Gupta R, Akin LD, Tibbs J, Lee HK, Singamaneni S, Cunningham BT. Photonic-Plasmonic Coupling Enhanced Fluorescence Enabling Digital-Resolution Ultrasensitive Protein Detection. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207239. [PMID: 37104850 PMCID: PMC10603207 DOI: 10.1002/smll.202207239] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 04/12/2023] [Indexed: 06/05/2023]
Abstract
Assays utilizing fluorophores are common throughout life science research and diagnostics, although detection limits are generally limited by weak emission intensity, thus requiring many labeled target molecules to combine their output to achieve higher signal-to-noise. We describe how the synergistic coupling of plasmonic and photonic modes can significantly boost the emission from fluorophores. By optimally matching the resonant modes of a plasmonic fluor (PF) nanoparticle and a photonic crystal (PC) with the absorption and emission spectrum of the fluorescent dye, a 52-fold improvement in signal intensity is observed, enabling individual PFs to be observed and digitally counted, where one PF tag represents one detected target molecule. The amplification can be attributed to the strong near-field enhancement due to the cavity-induced activation of the PF, PC band structure-mediated improvement in collection efficiency, and increased rate of spontaneous emission. The applicability of the method by dose-response characterization of a sandwich immunoassay for human interleukin-6, a biomarker used to assist diagnosis of cancer, inflammation, sepsis, and autoimmune disease is demonstrated. A limit of detection of 10 fg mL-1 and 100 fg mL-1 in buffer and human plasma respectively, is achieved, representing a capability nearly three orders of magnitude lower than standard immunoassays.
Collapse
Affiliation(s)
- Priyash Barya
- Department of Electrical and Computer Engineering, University of Illinois at Urbana–Champaign, Urbana, Illinois, 61801, USA
- Holonyak Micro and Nanotechnology Laboratory, University of Illinois at Urbana–Champaign, Urbana, Ilinois, 61801, USA
| | - Yanyu Xiong
- Department of Electrical and Computer Engineering, University of Illinois at Urbana–Champaign, Urbana, Illinois, 61801, USA
- Holonyak Micro and Nanotechnology Laboratory, University of Illinois at Urbana–Champaign, Urbana, Ilinois, 61801, USA
| | - Skye Shepherd
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana–Champaign, Urbana, Ilinois, 61801, USA
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, USA
| | - Rohit Gupta
- Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, USA
| | - Lucas D. Akin
- Holonyak Micro and Nanotechnology Laboratory, University of Illinois at Urbana–Champaign, Urbana, Ilinois, 61801, USA
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, USA
| | - Joseph Tibbs
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana–Champaign, Urbana, Ilinois, 61801, USA
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, USA
| | - Han Keun Lee
- Department of Electrical and Computer Engineering, University of Illinois at Urbana–Champaign, Urbana, Illinois, 61801, USA
- Holonyak Micro and Nanotechnology Laboratory, University of Illinois at Urbana–Champaign, Urbana, Ilinois, 61801, USA
| | - Srikanth Singamaneni
- Department of Mechanical Engineering and Materials Science, Institute of Materials Science and Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Brian T. Cunningham
- Department of Electrical and Computer Engineering, University of Illinois at Urbana–Champaign, Urbana, Illinois, 61801, USA
- Holonyak Micro and Nanotechnology Laboratory, University of Illinois at Urbana–Champaign, Urbana, Ilinois, 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana–Champaign, Urbana, Ilinois, 61801, USA
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, USA
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, USA
- Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, USA
| |
Collapse
|
9
|
Schroderus AM, Poorbaugh J, McElyea S, Beasley S, Zhang L, Näntö-Salonen K, Rintamäki R, Pihlajamäki J, Knip M, Veijola R, Toppari J, Ilonen J, Benschop RJ, Kinnunen T. Evaluation of plasma IL-21 as a potential biomarker for type 1 diabetes progression. Front Immunol 2023; 14:1157265. [PMID: 37415982 PMCID: PMC10321755 DOI: 10.3389/fimmu.2023.1157265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 06/05/2023] [Indexed: 07/08/2023] Open
Abstract
IL-21 is a multifunctional cytokine linked with the pathophysiology of several autoimmune diseases, including type 1 diabetes. In this study, our aim was to examine plasma IL-21 levels in individuals at different stages of type 1 diabetes progression. We measured plasma IL-21 levels, as well as levels of other key pro-inflammatory cytokines (IL-17A, TNF-α and IL-6), from 37 adults with established type 1 diabetes and 46 healthy age-matched adult controls, as well as from 53 children with newly diagnosed type 1 diabetes, 48 at-risk children positive for type 1 diabetes-associated autoantibodies and 123 healthy age-matched pediatric controls using the ultrasensitive Quanterix SiMoA technology. Adults with established type 1 diabetes had higher plasma IL-21 levels compared to healthy controls. However, the plasma IL-21 levels showed no statistically significant correlation with clinical variables, such as BMI, C-peptide, HbA1c, or hsCRP levels, evaluated in parallel. In children, plasma IL-21 levels were almost ten times higher than in adults. However, no significant differences in plasma IL-21 levels were detected between healthy children, autoantibody-positive at-risk children, and children with newly diagnosed type 1 diabetes. In conclusion, plasma IL-21 levels in adults with established type 1 diabetes were increased, which may be associated with autoimmunity. The physiologically high plasma IL-21 levels in children may, however, reduce the potential of IL-21 as a biomarker for autoimmunity in pediatric subjects.
Collapse
Affiliation(s)
- Anna-Mari Schroderus
- Department of Clinical Microbiology, Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
| | | | | | | | - Lin Zhang
- Eli Lilly and Company, Indianapolis, IN, United States
| | | | - Reeta Rintamäki
- Department of Medicine, Endocrinology and Clinical Nutrition, Kuopio University Hospital, Kuopio, Finland
| | - Jussi Pihlajamäki
- Department of Medicine, Endocrinology and Clinical Nutrition, Kuopio University Hospital, Kuopio, Finland
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
| | - Mikael Knip
- Tampere Center for Child Health Research, Tampere University Hospital, Tampere, Finland
- Pediatric Research Center, New Children’s Hospital, Helsinki University Hospital, Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Riitta Veijola
- PEDEGO Research Unit, Department of Pediatrics, Medical Research Center, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - Jorma Toppari
- Department of Pediatrics, Turku University Hospital, Turku, Finland
- Institute of Biomedicine, Research Centre for Integrative Physiology and Pharmacology, Centre for Population Health Research, University of Turku, Turku, Finland
| | - Jorma Ilonen
- Immunogenetics Laboratory, Institute of Biomedicine, University of Turku, Turku, Finland
| | | | - Tuure Kinnunen
- Department of Clinical Microbiology, Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
- ISLAB Laboratory Centre, Kuopio, Finland
| |
Collapse
|
10
|
Kivisäkk P, Carlyle BC, Sweeney T, Trombetta BA, LaCasse K, El-Mufti L, Tuncali I, Chibnik LB, Das S, Scherzer CR, Johnson KA, Dickerson BC, Gomez-Isla T, Blacker D, Oakley DH, Frosch MP, Hyman BT, Aghvanyan A, Bathala P, Campbell C, Sigal G, Stengelin M, Arnold SE. Plasma biomarkers for diagnosis of Alzheimer's disease and prediction of cognitive decline in individuals with mild cognitive impairment. Front Neurol 2023; 14:1069411. [PMID: 36937522 PMCID: PMC10018178 DOI: 10.3389/fneur.2023.1069411] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 02/10/2023] [Indexed: 03/06/2023] Open
Abstract
Background The last few years have seen major advances in blood biomarkers for Alzheimer's Disease (AD) with the development of ultrasensitive immunoassays, promising to transform how we diagnose, prognose, and track progression of neurodegenerative dementias. Methods We evaluated a panel of four novel ultrasensitive electrochemiluminescence (ECL) immunoassays against presumed CNS derived proteins of interest in AD in plasma [phosphorylated-Tau181 (pTau181), total Tau (tTau), neurofilament light (NfL), and glial fibrillary acidic protein (GFAP)]. Two sets of banked plasma samples from the Massachusetts Alzheimer's Disease Research Center's longitudinal cohort study were examined: A longitudinal prognostic sample (n = 85) consisting of individuals with mild cognitive impairment (MCI) and 4 years of follow-up and a cross-sectional sample (n = 238) consisting of individuals with AD, other neurodegenerative diseases (OND), and normal cognition (CN). Results Participants with MCI who progressed to dementia due to probable AD during follow-up had higher baseline plasma concentrations of pTau181, NfL, and GFAP compared to non-progressors. The best prognostic discrimination was observed with pTau181 (AUC = 0.83, 1.7-fold increase) and GFAP (AUC = 0.83, 1.6-fold increase). Participants with autopsy- and/or biomarker verified AD had higher plasma levels of pTau181, tTau and GFAP compared to CN and OND, while NfL was elevated in AD and further increased in OND. The best diagnostic discrimination was observed with pTau181 (AD vs CN: AUC = 0.90, 2-fold increase; AD vs. OND: AUC = 0.84, 1.5-fold increase) but tTau, NfL, and GFAP also showed good discrimination between AD and CN (AUC = 0.81-0.85; 1.5-2.2 fold increase). Conclusions These new ultrasensitive ECL plasma assays for pTau181, tTau, NfL, and GFAP demonstrated diagnostic utility for detection of AD. Moreover, the absolute baseline plasma levels of pTau181 and GFAP reflect cognitive decline over the next 4 years, providing prognostic information that may have utility in both clinical practice and clinical trial populations.
Collapse
Affiliation(s)
- Pia Kivisäkk
- Alzheimer's Clinical and Translational Research Unit, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Becky C. Carlyle
- Alzheimer's Clinical and Translational Research Unit, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Thadryan Sweeney
- Alzheimer's Clinical and Translational Research Unit, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Bianca A. Trombetta
- Alzheimer's Clinical and Translational Research Unit, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Kathryn LaCasse
- Alzheimer's Clinical and Translational Research Unit, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Leena El-Mufti
- Alzheimer's Clinical and Translational Research Unit, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Idil Tuncali
- Precision Neurology Program and Center for Advanced Parkinson Research, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, United States
| | - Lori B. Chibnik
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
- Department of Epidemiology, Harvard TH Chan School of Public Health, Boston, MA, United States
| | - Sudeshna Das
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Clemens R. Scherzer
- Precision Neurology Program and Center for Advanced Parkinson Research, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, United States
| | - Keith A. Johnson
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Bradford C. Dickerson
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Teresa Gomez-Isla
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Deborah Blacker
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Derek H. Oakley
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Matthew P. Frosch
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Bradley T. Hyman
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | | | | | | | - George Sigal
- Meso Scale Diagnostics, LLC., Rockville, MD, United States
| | | | - Steven E. Arnold
- Alzheimer's Clinical and Translational Research Unit, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
11
|
Miyachi K, Iwamoto T, Kojima S, Ida T, Suzuki J, Yamamoto T, Mimura N, Sugiyama T, Tanaka S, Furuta S, Ikeda K, Suzuki K, Niewold TB, Nakajima H. Relationship of systemic type I interferon activity with clinical phenotypes, disease activity, and damage accrual in systemic lupus erythematosus in treatment-naive patients: a retrospective longitudinal analysis. Arthritis Res Ther 2023; 25:26. [PMID: 36803843 PMCID: PMC9936752 DOI: 10.1186/s13075-023-03010-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 02/08/2023] [Indexed: 02/19/2023] Open
Abstract
BACKGROUND Systemic lupus erythematosus (SLE) is heterogeneous in organ involvement and disease severity, presenting a broad clinical phenotype. Systemic type I interferon (IFN) activity has been shown to be associated with lupus nephritis, autoantibodies, and disease activity in treated SLE patients; however, these relationships are unknown in treatment-naive patients. We aimed to determine the relationship of systemic IFN activity with clinical phenotypes, disease activity, and damage accrual in treatment-naive SLE patients before and after induction and maintenance therapy. METHODS Forty treatment-naive SLE patients were enrolled for this retrospective longitudinal observational study to examine the relationship between serum IFN activity and clinical manifestations of EULAR/ACR-2019 criteria domains, disease activity measures, and damage accrual. As controls, 59 other treatment-naive rheumatic disease patients and 33 healthy individuals were recruited. Serum IFN activity was measured by WISH bioassay and presented as an IFN activity score. RESULTS Treatment-naive SLE patients had significantly higher serum IFN activity than other rheumatic disease patients (score: 97.6 and 0.0, respectively, p < 0.001). High serum IFN activity was significantly associated with fever, hematologic disorders (leukopenia), and mucocutaneous manifestations (acute cutaneous lupus and oral ulcer) of EULAR/ACR-2019 criteria domains in treatment-naive SLE patients. Serum IFN activity at baseline significantly correlated with SLEDAI-2K scores and decreased along with a decrease in SLEDAI-2K scores after induction and maintenance therapy (R2 = 0.112, p = 0.034). SLE patients who developed organ damage (SDI ≥ 1) had higher serum IFN activity at baseline than those who did not (SDI = 0) (150.0 versus 57.3, p= 0.018), but the multivariate analysis did not detect its independent significance (p = 0.132). CONCLUSIONS Serum IFN activity is characteristically high and is linked to fever, hematologic disorders, and mucocutaneous manifestations in treatment-naive SLE patients. Serum IFN activity at baseline correlates with disease activity and decreases in parallel with a decrease in disease activity after induction and maintenance therapy. Our results suggest that IFN plays an important role in the pathophysiology of SLE and that serum IFN activity at baseline may be a potential biomarker for the disease activity in treatment-naive SLE patients.
Collapse
Affiliation(s)
- Kazusa Miyachi
- Department of Allergy and Clinical Immunology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan
| | - Taro Iwamoto
- Department of Allergy and Clinical Immunology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan.
| | - Shotaro Kojima
- Department of Allergy and Clinical Immunology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan
| | - Tomoaki Ida
- Department of Allergy and Clinical Immunology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan
| | - Junya Suzuki
- Department of Allergy and Clinical Immunology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan
| | - Takuya Yamamoto
- Department of Allergy and Clinical Immunology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan
| | - Norihiro Mimura
- Department of Allergy and Clinical Immunology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan
| | - Takahiro Sugiyama
- Department of Allergy and Clinical Immunology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan
| | - Shigeru Tanaka
- Department of Allergy and Clinical Immunology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan
| | - Shunsuke Furuta
- Department of Allergy and Clinical Immunology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan
| | - Kei Ikeda
- Department of Allergy and Clinical Immunology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan
| | - Kotaro Suzuki
- Department of Allergy and Clinical Immunology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan
| | | | - Hiroshi Nakajima
- Department of Allergy and Clinical Immunology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan
| |
Collapse
|
12
|
Khosla NK, Lesinski JM, Colombo M, Bezinge L, deMello AJ, Richards DA. Simplifying the complex: accessible microfluidic solutions for contemporary processes within in vitro diagnostics. LAB ON A CHIP 2022; 22:3340-3360. [PMID: 35984715 PMCID: PMC9469643 DOI: 10.1039/d2lc00609j] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 08/15/2022] [Indexed: 05/02/2023]
Abstract
In vitro diagnostics (IVDs) form the cornerstone of modern medicine. They are routinely employed throughout the entire treatment pathway, from initial diagnosis through to prognosis, treatment planning, and post-treatment surveillance. Given the proven links between high quality diagnostic testing and overall health, ensuring broad access to IVDs has long been a focus of both researchers and medical professionals. Unfortunately, the current diagnostic paradigm relies heavily on centralized laboratories, complex and expensive equipment, and highly trained personnel. It is commonly assumed that this level of complexity is required to achieve the performance necessary for sensitive and specific disease diagnosis, and that making something affordable and accessible entails significant compromises in test performance. However, recent work in the field of microfluidics is challenging this notion. By exploiting the unique features of microfluidic systems, researchers have been able to create progressively simple devices that can perform increasingly complex diagnostic assays. This review details how microfluidic technologies are disrupting the status quo, and facilitating the development of simple, affordable, and accessible integrated IVDs. Importantly, we discuss the advantages and limitations of various approaches, and highlight the remaining challenges within the field.
Collapse
Affiliation(s)
- Nathan K Khosla
- Institute for Chemical and Bioengineering, ETH Zürich, Vladimir Prelog Weg 1, Zürich, 8093, Switzerland.
| | - Jake M Lesinski
- Institute for Chemical and Bioengineering, ETH Zürich, Vladimir Prelog Weg 1, Zürich, 8093, Switzerland.
| | - Monika Colombo
- Institute for Chemical and Bioengineering, ETH Zürich, Vladimir Prelog Weg 1, Zürich, 8093, Switzerland.
| | - Léonard Bezinge
- Institute for Chemical and Bioengineering, ETH Zürich, Vladimir Prelog Weg 1, Zürich, 8093, Switzerland.
| | - Andrew J deMello
- Institute for Chemical and Bioengineering, ETH Zürich, Vladimir Prelog Weg 1, Zürich, 8093, Switzerland.
| | - Daniel A Richards
- Institute for Chemical and Bioengineering, ETH Zürich, Vladimir Prelog Weg 1, Zürich, 8093, Switzerland.
| |
Collapse
|
13
|
Collett JA, Ortiz-Soriano V, Li X, Flannery AH, Toto RD, Moe OW, Basile DP, Neyra JA. Serum IL-17 levels are higher in critically ill patients with AKI and associated with worse outcomes. Crit Care 2022; 26:107. [PMID: 35422004 PMCID: PMC9008961 DOI: 10.1186/s13054-022-03976-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 04/03/2022] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Interleukin-17 (IL-17) antagonism in rats reduces the severity and progression of AKI. IL-17-producing circulating T helper-17 (TH17) cells is increased in critically ill patients with AKI indicating that this pathway is also activated in humans. We aim to compare serum IL-17A levels in critically ill patients with versus without AKI and to examine their relationship with mortality and major adverse kidney events (MAKE). METHODS Multicenter, prospective study of ICU patients with AKI stage 2 or 3 and without AKI. Samples were collected at 24-48 h after AKI diagnosis or ICU admission (in those without AKI) [timepoint 1, T1] and 5-7 days later [timepoint 2, T2]. MAKE was defined as the composite of death, dependence on kidney replacement therapy or a reduction in eGFR of ≥ 30% from baseline up to 90 days following hospital discharge. RESULTS A total of 299 patients were evaluated. Patients in the highest IL-17A tertile (versus lower tertiles) at T1 had higher acuity of illness and comorbidity scores. Patients with AKI had higher levels of IL-17A than those without AKI: T1 1918.6 fg/ml (692.0-5860.9) versus 623.1 fg/ml (331.7-1503.4), p < 0.001; T2 2167.7 fg/ml (839.9-4618.9) versus 1193.5 fg/ml (523.8-2198.7), p = 0.006. Every onefold higher serum IL-17A at T1 was independently associated with increased risk of hospital mortality (aOR 1.35, 95% CI: 1.06-1.73) and MAKE (aOR 1.26, 95% CI: 1.02-1.55). The highest tertile of IL-17A (vs. the lowest tertile) was also independently associated with higher risk of MAKE (aOR 3.03, 95% CI: 1.34-6.87). There was no effect modification of these associations by AKI status. IL-17A levels remained significantly elevated at T2 in patients that died or developed MAKE. CONCLUSIONS Serum IL-17A levels measured by the time of AKI diagnosis or ICU admission were differentially elevated in critically ill patients with AKI when compared to those without AKI and were independently associated with hospital mortality and MAKE.
Collapse
Affiliation(s)
- Jason A Collett
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Victor Ortiz-Soriano
- Division of Nephrology, Department of Internal Medicine, Bone and Mineral Metabolism, University of Kentucky Medical Center, University of Kentucky, 800 Rose St., MN668, Lexington, KY, 40536, USA
| | - Xilong Li
- Charles and Jane Pak Center for Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Alexander H Flannery
- Department of Pharmacy Practice and Science, University of Kentucky College of Pharmacy, Lexington, KY, USA
| | - Robert D Toto
- Charles and Jane Pak Center for Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Division of Nephrology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Orson W Moe
- Charles and Jane Pak Center for Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Division of Nephrology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - David P Basile
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Javier A Neyra
- Division of Nephrology, Department of Internal Medicine, Bone and Mineral Metabolism, University of Kentucky Medical Center, University of Kentucky, 800 Rose St., MN668, Lexington, KY, 40536, USA.
- Charles and Jane Pak Center for Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
14
|
Kratzer U, Sommersdorf C, Maier S, Wagner TR, Templin M, Joos TO, Rothbauer U, Zeck A, Poetz O. Tris(hydroxymethyl)aminomethane Compatibility with N-Hydroxysuccinimide Ester Chemistry: Biotinylation of Peptides and Proteins in TRIS Buffer. Bioconjug Chem 2021; 32:1960-1965. [PMID: 34406760 DOI: 10.1021/acs.bioconjchem.1c00283] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
N-Hydroxysuccinimide esters of small molecules are widely used to modify biomolecules such as antibodies or proteins. Primary amine groups preferably react with the ester to form covalent amide bonds. Currently, protocols strongly recommend replacing the buffer reagent tris(hydroxymethyl)aminomethane, and it has even been proposed as a stop reagent. Here, we show that TRIS indeed does not interfere with biotinylation of biomolecules with NHS chemistry.
Collapse
Affiliation(s)
- Ulrich Kratzer
- NMI Natural and Medical Sciences Institute at the University of Tübingen, 72770 Reutlingen, Germany
| | | | - Sandra Maier
- NMI Natural and Medical Sciences Institute at the University of Tübingen, 72770 Reutlingen, Germany
| | - Teresa R Wagner
- NMI Natural and Medical Sciences Institute at the University of Tübingen, 72770 Reutlingen, Germany
- Pharmaceutical Biotechnology, Eberhard Karls University Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
| | - Markus Templin
- NMI Natural and Medical Sciences Institute at the University of Tübingen, 72770 Reutlingen, Germany
| | - Thomas O Joos
- NMI Natural and Medical Sciences Institute at the University of Tübingen, 72770 Reutlingen, Germany
| | - Ulrich Rothbauer
- NMI Natural and Medical Sciences Institute at the University of Tübingen, 72770 Reutlingen, Germany
- Pharmaceutical Biotechnology, Eberhard Karls University Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
| | - Anne Zeck
- NMI Natural and Medical Sciences Institute at the University of Tübingen, 72770 Reutlingen, Germany
| | - Oliver Poetz
- NMI Natural and Medical Sciences Institute at the University of Tübingen, 72770 Reutlingen, Germany
- SIGNATOPE GmbH, 72770 Reutlingen, Germany
| |
Collapse
|
15
|
Pollock NR, Savage TJ, Wardell H, Lee RA, Mathew A, Stengelin M, Sigal GB. Correlation of SARS-CoV-2 Nucleocapsid Antigen and RNA Concentrations in Nasopharyngeal Samples from Children and Adults Using an Ultrasensitive and Quantitative Antigen Assay. J Clin Microbiol 2021; 59:e03077-20. [PMID: 33441395 PMCID: PMC8092747 DOI: 10.1128/jcm.03077-20] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 01/11/2021] [Indexed: 01/14/2023] Open
Abstract
Diagnosis of COVID-19 by PCR offers high sensitivity, but the utility of detecting samples with high cycle threshold (CT ) values remains controversial. Currently available rapid diagnostic tests (RDTs) for SARS-CoV-2 nucleocapsid antigens (Ag) have sensitivity well below PCR. The correlation of Ag and RNA quantities in clinical nasopharyngeal (NP) samples is unknown. An ultrasensitive, quantitative electrochemiluminescence immunoassay for SARS-CoV-2 nucleocapsid (the MSD S-PLEX SARS-CoV-2 N assay) was used to measure Ag in clinical NP samples from adults and children previously tested by PCR. The S-PLEX Ag assay had a limit of detection (LOD) of 0.16 pg/ml and a cutoff of 0.32 pg/ml. Ag concentrations measured in clinical NP samples (collected in 3.0 ml of media) ranged from less than 160 fg/ml to 2.7 μg/ml. Log-transformed Ag concentrations correlated tightly with CT values. In 35 adult and 101 pediatric PCR-positive samples, the sensitivities were 91% (95% confidence interval, 77 to 98%) and 79% (70 to 87%), respectively. In samples with a CT of ≤35, the sensitivities were 100% (88 to 100%) and 96% (88 to 99%), respectively. In 50 adult and 40 pediatric PCR-negative specimens, the specificities were 100% (93 to 100%) and 98% (87 to 100%), respectively. Nucleocapsid concentrations in clinical NP samples span 8 orders of magnitude and correlate closely with RNA concentrations (CT values). The S-PLEX Ag assay showed 96 to 100% sensitivity in samples from children and adults with CT values of ≤35, and a specificity of 98 to 100%. These results clarify Ag concentration distributions in clinical samples, providing insight into the performance of Ag RDTs and offering a new approach to diagnosis of COVID-19.
Collapse
Affiliation(s)
- Nira R Pollock
- Department of Laboratory Medicine, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Timothy J Savage
- Division of Infectious Diseases, Department of Pediatrics, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Hanna Wardell
- Division of Infectious Diseases, Department of Pediatrics, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Rose A Lee
- Division of Infectious Diseases, Department of Pediatrics, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Anu Mathew
- Meso Scale Diagnostics, LLC., Rockville, Maryland, USA
| | | | | |
Collapse
|
16
|
Dörner T, Tanaka Y, Petri MA, Smolen JS, Wallace DJ, Dow ER, Higgs RE, Rocha G, Crowe B, Benschop RJ, Byers NL, Silk ME, de Bono S, Fantini D, Hoffman RW. Baricitinib-associated changes in global gene expression during a 24-week phase II clinical systemic lupus erythematosus trial implicates a mechanism of action through multiple immune-related pathways. Lupus Sci Med 2020; 7:e000424. [PMID: 33037080 PMCID: PMC7549481 DOI: 10.1136/lupus-2020-000424] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 08/17/2020] [Accepted: 09/12/2020] [Indexed: 02/07/2023]
Abstract
OBJECTIVE To characterise the molecular pathways impacted by the pharmacologic effects of the Janus kinase (JAK) 1 and JAK2 inhibitor baricitinib in SLE. METHODS In a phase II, 24-week, randomised, placebo-controlled, double-blind study (JAHH), RNA was isolated from whole blood in 274 patients and analysed using Affymetrix HTA2.0 array. Serum cytokines were measured using ultrasensitive quantitative assays. RESULTS Gene expression profiling demonstrated an elevation of STAT1, STAT2 and multiple interferon (IFN) responsive genes at baseline in patients with SLE. Statistical and gene network analyses demonstrated that baricitinib treatment reduced the mRNA expression of functionally interconnected genes involved in SLE including STAT1-target, STAT2-target and STAT4-target genes and multiple IFN responsive genes. At baseline, serum cytokines IFN-α, IFN-γ, interleukin (IL)-12p40 and IL-6 were measurable and elevated above healthy controls. Treatment with baricitinib significantly decreased serum IL-12p40 and IL-6 cytokine levels at week 12, which persisted through week 24. CONCLUSION Baricitinib treatment induced significant reduction in the RNA expression of a network of genes associated with the JAK/STAT pathway, cytokine signalling and SLE pathogenesis. Baricitinib consistently reduced serum levels of two key cytokines implicated in SLE pathogenesis, IL-12p40 and IL-6.
Collapse
Affiliation(s)
- Thomas Dörner
- DRFZ Berlin and Department of Rheumatology and Clinical Immunology, Charite University Hospital Berlin, Berlin, Germany
| | - Yoshiya Tanaka
- The First Department of Internal Medicine, School of Medicine, University of Occupational & Environmental Health, Kitakyushu, Japan
| | - Michelle A Petri
- Division of Rheumatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Josef S Smolen
- Division of Rheumatology, Medical University of Vienna, Wien, Austria
| | - Daniel J Wallace
- Department of Rheumatology, Cedars-Sinai Medical Center, West Hollywood, California, USA
| | - Ernst R Dow
- Eli Lilly and Company, Indianapolis, Indiana, USA
| | | | | | - Brenda Crowe
- Eli Lilly and Company, Indianapolis, Indiana, USA
| | | | | | - Maria E Silk
- Eli Lilly and Company, Indianapolis, Indiana, USA
| | | | | | | |
Collapse
|
17
|
Kim SE, Tieu MV, Hwang SY, Lee MH. Magnetic Particles: Their Applications from Sample Preparations to Biosensing Platforms. MICROMACHINES 2020; 11:mi11030302. [PMID: 32183074 PMCID: PMC7142445 DOI: 10.3390/mi11030302] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 02/28/2020] [Accepted: 03/10/2020] [Indexed: 02/07/2023]
Abstract
The growing interest in magnetic materials as a universal tool has been shown by an increasing number of scientific publications regarding magnetic materials and its various applications. Substantial progress has been recently made on the synthesis of magnetic iron oxide particles in terms of size, chemical composition, and surface chemistry. In addition, surface layers of polymers, silica, biomolecules, etc., on magnetic particles, can be modified to obtain affinity to target molecules. The developed magnetic iron oxide particles have been significantly utilized for diagnostic applications, such as sample preparations and biosensing platforms, leading to the selectivity and sensitivity against target molecules and the ease of use in the sensing systems. For the process of sample preparations, the magnetic particles do assist in target isolation from biological environments, having non-specific molecules and undesired molecules. Moreover, the magnetic particles can be easily applied for various methods of biosensing devices, such as optical, electrochemical, and magnetic phenomena-based methods, and also any methods combined with microfluidic systems. Here we review the utilization of magnetic materials in the isolation/preconcentration of various molecules and cells, and their use in various techniques for diagnostic biosensors that may greatly contribute to future innovation in point-of-care and high-throughput automation systems.
Collapse
Affiliation(s)
- Seong-Eun Kim
- Human IT Convergence Research Center, Korea Electronics Technology Institute, Gyeonggi-do 13509, Korea;
| | - My Van Tieu
- School of Integrative Engineering, Chung-Ang University, 84 Heukseok-ro, Seoul 06974, Korea; (M.V.T.); (S.Y.H.)
| | - Sei Young Hwang
- School of Integrative Engineering, Chung-Ang University, 84 Heukseok-ro, Seoul 06974, Korea; (M.V.T.); (S.Y.H.)
| | - Min-Ho Lee
- School of Integrative Engineering, Chung-Ang University, 84 Heukseok-ro, Seoul 06974, Korea; (M.V.T.); (S.Y.H.)
- Correspondence: ; Tel.: +82-2-820-5503; Fax: +82-2-814-2651
| |
Collapse
|
18
|
Liu G, Hong J, Ma K, Wan Y, Zhang X, Huang Y, Kang K, Yang M, Chen J, Deng S. Porphyrin Trio−Pendant fullerene guest as an In situ universal probe of high ECL efficiency for sensitive miRNA detection. Biosens Bioelectron 2020; 150:111963. [DOI: 10.1016/j.bios.2019.111963] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 10/25/2019] [Accepted: 12/12/2019] [Indexed: 01/08/2023]
|
19
|
Broger T, Tsionksy M, Mathew A, Lowary TL, Pinter A, Plisova T, Bartlett D, Barbero S, Denkinger CM, Moreau E, Katsuragi K, Kawasaki M, Nahid P, Sigal GB. Sensitive electrochemiluminescence (ECL) immunoassays for detecting lipoarabinomannan (LAM) and ESAT-6 in urine and serum from tuberculosis patients. PLoS One 2019; 14:e0215443. [PMID: 30998715 PMCID: PMC6472883 DOI: 10.1371/journal.pone.0215443] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 04/02/2019] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Tuberculosis (TB) infection was responsible for an estimated 1.3 million deaths in 2017. Better diagnostic tools are urgently needed. We sought to determine whether accurate TB antigen detection in blood or urine has the potential to meet the WHO target product profiles for detection of active TB. MATERIALS AND METHODS We developed Electrochemiluminescence (ECL) immunoassays for Lipoarabinomannan (LAM) and ESAT-6 detection with detection limits in the pg/ml range and used them to compare the concentrations of the two antigens in the urine and serum of 81 HIV-negative and -positive individuals with presumptive TB enrolled across diverse geographic sites. RESULTS LAM and ESAT-6 overall sensitivities in urine were 93% and 65% respectively. LAM and ESAT-6 overall sensitivities in serum were 55% and 46% respectively. Overall specificity was ≥97% in all assays. Sensitivities were higher in HIV-positive compared to HIV-negative patients for both antigens and both sample types, with signals roughly 10-fold higher on average in urine than in serum. The two antigens showed similar concentration ranges within the same sample type and correlated. CONCLUSIONS LAM and ESAT-6 can be detected in the urine and serum of TB patients, regardless of the HIV status and further gains in clinical sensitivity may be achievable through assay and reagent optimization. Accuracy in urine was higher with current methods and has the potential to meet the WHO accuracy target if the findings can be transferred to a point-of-care TB test.
Collapse
Affiliation(s)
| | - Michael Tsionksy
- Meso Scale Diagnostics, LLC., Rockville, Maryland, United States of America
| | - Anu Mathew
- Meso Scale Diagnostics, LLC., Rockville, Maryland, United States of America
| | - Todd L. Lowary
- Department of Chemistry and Alberta Glycomics Centre, University of Alberta, Edmonton, Alberta, Canada
| | - Abraham Pinter
- Public Health Research Institute Center, New Jersey Medical School, Rutgers University, Newark, New Jersey, United States of America
| | - Tatiana Plisova
- Meso Scale Diagnostics, LLC., Rockville, Maryland, United States of America
| | - Daniel Bartlett
- Meso Scale Diagnostics, LLC., Rockville, Maryland, United States of America
| | - Simone Barbero
- Meso Scale Diagnostics, LLC., Rockville, Maryland, United States of America
| | | | | | | | | | - Payam Nahid
- University of California, San Francisco, California, United States of America
| | - George B. Sigal
- Meso Scale Diagnostics, LLC., Rockville, Maryland, United States of America
| |
Collapse
|