1
|
Chen Y, Zhu J, Wang S, Li M, Sun X, Liu S, Wang Y, Li R, Zhang G. Modular Nano-Antigen Display Platform for Pigs Induces Potent Immune Responses. ACS NANO 2024; 18:29152-29177. [PMID: 39387806 DOI: 10.1021/acsnano.4c10725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Multivalent presentation of antigens using nanoparticles (NPs) as a platform is an effective strategy to enhance the immunogenicity of subunit vaccines and thus induce a high level of organismal immune response. Our previous results showed that pre-existing porcine circovirus type 2 (PCV2) antibodies could increase the antibody levels of nanoparticle vaccines carried in PCV2 VLPs. Here, we have established a generalized nanoantigen display platform, Cap-Cat virus-like particles (VLPs). By combining PCV2 VLPs with the modular linker element SpyTag003/SpyCatcher003 system, four porcine-derived viral protective antigens with different sizes and multimeric structures: the PRRSV B-cell epitope, the PEDV COE monomer, the CSFV E2 dimer, and the SIV HA trimer were efficiently demonstrated to elicit a strong immune response in mice. Crucially, the modification of antigens by the Cap-Cat VLPs platform enhanced the Th2 response and improved the Th1 response. The use of the platform demonstrates that HA antigen protects against lethal attacks by influenza viruses and reduces viral load in the lungs. We have demonstrated that the Cap-Cat VLPs platform demonstrates that antigens enhance the immune response by improving the processes of DC uptake, transport, lymph node (LN) localization, and immune cell activation. This "plug-and-display" assembly strategy facilitates the use of the Cap-Cat VLPs nanoantigen display platform for more applications and thus facilitates the development of more efficient, general-purpose porcine subunit vaccines.
Collapse
Affiliation(s)
- Yilan Chen
- School of Advanced Agriculture Sciences, Peking University, Beijing 100871, China
- Department of Hepatobiliary Surgery, Xi-Jing Hospital, Fourth Military Medical University, Xi'an 710032, China
- Longhu Laboratory, Zhengzhou 450046, China
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Jiahong Zhu
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Siqiao Wang
- Longhu Laboratory, Zhengzhou 450046, China
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Minghui Li
- Longhu Laboratory, Zhengzhou 450046, China
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Xueke Sun
- Longhu Laboratory, Zhengzhou 450046, China
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Siyuan Liu
- Longhu Laboratory, Zhengzhou 450046, China
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Yanan Wang
- Longhu Laboratory, Zhengzhou 450046, China
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Ruiqi Li
- Longhu Laboratory, Zhengzhou 450046, China
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Gaiping Zhang
- School of Advanced Agriculture Sciences, Peking University, Beijing 100871, China
- Longhu Laboratory, Zhengzhou 450046, China
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| |
Collapse
|
2
|
Rendon-Marin S, Rincón-Tabares DS, Tabares-Guevara JH, Arbeláez N, Forero-Duarte JE, Díaz FJ, Robledo SM, Hernandez JC, Ruiz-Saenz J. Evaluation of the Safety and Immunogenicity of a Multiple Epitope Polypeptide from Canine Distemper Virus (CDV) in Mice. Vaccines (Basel) 2024; 12:1140. [PMID: 39460307 PMCID: PMC11511104 DOI: 10.3390/vaccines12101140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 10/01/2024] [Accepted: 10/03/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND Morbillivirus canis is the etiological agent of a highly contagious disease that affects diverse domestic and wild animals. Vaccination is considered the most suitable strategy for controlling CDV dissemination, transmission, and distemper disease. However, the emergence of new CDV strains has led to the need to update the current vaccine strategies employed to prevent CDV infection in domestic and wild animals. Currently, there is a lack of effective alternatives for wild animals. Diverse computational tools, especially peptide-based therapies, enable the development of new universal vaccines. OBJECTIVE The aim of this study was to evaluate the safety and humoral and cellular immune response of a new generation of vaccines based on CDV peptides as single-peptide mixtures or multiepitope CDV polypeptides in mice. METHODS Twenty-four BALB/c mice were subjected to a three-dose regimen for 28 days. Seroconversion was evaluated via ELISA, and cellular immune responses were evaluated via flow cytometry through activation-induced markers (AIMs). RESULTS Compared with the placebo, the peptide mixture and multiepitope CDV polypeptide were safe, and seroconversion was statistically significant in the multiepitope CDV polypeptide and commercial vaccine (CV) groups. The numbers of antigen-specific CD4+CD134+ and IFN-γ+ T cells, CD8+ T cells and TNF-α- and IL-6-producing cells were greater in the mice immunized with the multiepitope CDV polypeptide than in the control mice. CONCLUSION This combined approach represents a potential step forward in developing new immunization candidates or enhancing current commercial vaccines to control CDV disease in domestic dogs and wild animals.
Collapse
Affiliation(s)
- Santiago Rendon-Marin
- Grupo de Investigación en Ciencias Animales—GRICA, Facultad de Medicina Veterinaria y Zootecnia, Universidad Cooperativa de Colombia, Bucaramanga 680001, Colombia;
- Grupo Infettare, Facultad de Medicina, Universidad Cooperativa de Colombia, Medellín 050001, Colombia;
| | - Daniel-Santiago Rincón-Tabares
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia, Medellín 050001, Colombia; (D.-S.R.-T.); (J.H.T.-G.); (F.J.D.)
| | - Jorge H. Tabares-Guevara
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia, Medellín 050001, Colombia; (D.-S.R.-T.); (J.H.T.-G.); (F.J.D.)
| | - Natalia Arbeláez
- Grupo PECET, Facultad de Medicina, Universidad de Antioquia, Medellín 050001, Colombia; (N.A.); (S.M.R.)
| | - Jorge E. Forero-Duarte
- Grupo de Investigación en Microbiología Ambiental, Escuela de Microbiología, Universidad de Antioquia, Medellín 050001, Colombia;
| | - Francisco J. Díaz
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia, Medellín 050001, Colombia; (D.-S.R.-T.); (J.H.T.-G.); (F.J.D.)
| | - Sara M. Robledo
- Grupo PECET, Facultad de Medicina, Universidad de Antioquia, Medellín 050001, Colombia; (N.A.); (S.M.R.)
| | - Juan C. Hernandez
- Grupo Infettare, Facultad de Medicina, Universidad Cooperativa de Colombia, Medellín 050001, Colombia;
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia, Medellín 050001, Colombia; (D.-S.R.-T.); (J.H.T.-G.); (F.J.D.)
| | - Julian Ruiz-Saenz
- Grupo de Investigación en Ciencias Animales—GRICA, Facultad de Medicina Veterinaria y Zootecnia, Universidad Cooperativa de Colombia, Bucaramanga 680001, Colombia;
| |
Collapse
|
3
|
Poloni C, Schonhofer C, Ivison S, Levings MK, Steiner TS, Cook L. T-cell activation-induced marker assays in health and disease. Immunol Cell Biol 2023; 101:491-503. [PMID: 36825901 PMCID: PMC10952637 DOI: 10.1111/imcb.12636] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 02/18/2023] [Accepted: 02/22/2023] [Indexed: 02/25/2023]
Abstract
Activation-induced marker (AIM) assays have proven to be an accessible and rapid means of antigen-specific T-cell detection. The method typically involves short-term incubation of whole blood or peripheral blood mononuclear cells with antigens of interest, where autologous antigen-presenting cells process and present peptides in complex with major histocompatibility complex (MHC) molecules. Recognition of peptide-MHC complexes by T-cell receptors then induces upregulation of activation markers on the T cells that can be detected by flow cytometry. In this review, we highlight the most widely used activation markers for assays in the literature while identifying nuances and potential downfalls associated with the technique. We provide a summary of how AIM assays have been used in both discovery science and clinical studies, including studies of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) immunity. This review primarily focuses on AIM assays using human blood or peripheral blood mononuclear cell samples, with some considerations noted for tissue-derived T cells and nonhuman samples. AIM assays are a powerful tool that enables detailed analysis of antigen-specific T-cell frequency, phenotype and function without needing to know the precise antigenic peptides and their MHC restriction elements, enabling a wider analysis of immunity generated following infection and/or vaccination.
Collapse
Affiliation(s)
- Chad Poloni
- Division of Infectious Diseases, Department of MedicineUniversity of British ColumbiaVancouverBCCanada
- BC Children's Hospital Research InstituteVancouverBCCanada
| | - Cole Schonhofer
- Division of Infectious Diseases, Department of MedicineUniversity of British ColumbiaVancouverBCCanada
- BC Children's Hospital Research InstituteVancouverBCCanada
| | - Sabine Ivison
- BC Children's Hospital Research InstituteVancouverBCCanada
- Department of SurgeryUniversity of British ColumbiaVancouverBCCanada
| | - Megan K Levings
- BC Children's Hospital Research InstituteVancouverBCCanada
- Department of SurgeryUniversity of British ColumbiaVancouverBCCanada
| | - Theodore S Steiner
- Division of Infectious Diseases, Department of MedicineUniversity of British ColumbiaVancouverBCCanada
- BC Children's Hospital Research InstituteVancouverBCCanada
| | - Laura Cook
- Division of Infectious Diseases, Department of MedicineUniversity of British ColumbiaVancouverBCCanada
- Department of Microbiology and ImmunologyUniversity of Melbourne, at the Peter Doherty Institute for Infection and ImmunityMelbourneAustralia
- Department of Critical Care, Melbourne Medical SchoolUniversity of MelbourneMelbourneAustralia
| |
Collapse
|
4
|
Nguyen NX, Richens AW, Sircy LM, Allard DE, Kolawole EM, Evavold BD, Bettini M, Hale JS. Immunogen-Specific Strengths and Limitations of the Activation-Induced Marker Assay for Assessing Murine Antigen-Specific CD4+ T Cell Responses. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 210:916-925. [PMID: 36883856 PMCID: PMC10038905 DOI: 10.4049/jimmunol.2200638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 01/31/2023] [Indexed: 03/09/2023]
Abstract
The activation-induced marker (AIM) assay is a cytokine-independent technique to identify Ag-specific T cells based on the upregulated expression of activation markers after Ag restimulation. The method offers an alternative to intracellular cytokine staining in immunological studies, in which limited cytokine production makes the cell subsets of interest difficult to detect. Studies of lymphocytes in human and nonhuman primates have used the AIM assay to detect Ag-specific CD4+ and CD8+ T cells. However, there is a lack of validation of the strengths and limitations of the assay in murine (Mus musculus) models of infection and vaccination. In this study, we analyzed immune responses of TCR-transgenic CD4+ T cells, including lymphocytic choriomeningitis virus-specific SMARTA, OVA-specific OT-II, and diabetogenic BDC2.5-transgenic T cells, and measured the ability of the AIM assay to effectively identify these cells to upregulate AIM markers OX40 and CD25 following culture with cognate Ag. Our findings indicate that the AIM assay is effective for identifying the relative frequency of protein immunization-induced effector and memory CD4+ T cells, whereas the AIM assay had reduced ability to identify specific cells induced by viral infection, particularly during chronic lymphocytic choriomeningitis virus infection. Evaluation of polyclonal CD4+ T cell responses to acute viral infection demonstrated that the AIM assay can detect a proportion of both high- and low-affinity cells. Together, our findings indicate that the AIM assay can be an effective tool for relative quantification of murine Ag-specific CD4+ T cells to protein vaccination, while demonstrating its limitations during conditions of acute and chronic infection.
Collapse
Affiliation(s)
- Nguyen X Nguyen
- Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT
| | - Andrew W Richens
- Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT
| | - Linda M Sircy
- Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT
| | - Denise E Allard
- Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT
| | - Elizabeth M Kolawole
- Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT
| | - Brian D Evavold
- Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT
| | - Maria Bettini
- Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT
| | - J Scott Hale
- Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT
| |
Collapse
|
5
|
Biscari L, Kaufman CD, Farré C, Huhn V, Pacini MF, Balbi CB, Gómez KA, Pérez AR, Alloatti A. Immunization With Lipopolysaccharide-Activated Dendritic Cells Generates a Specific CD8+ T Cell Response That Confers Partial Protection Against Infection With Trypanosoma cruzi. Front Cell Infect Microbiol 2022; 12:897133. [PMID: 35903201 PMCID: PMC9318436 DOI: 10.3389/fcimb.2022.897133] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 06/17/2022] [Indexed: 11/13/2022] Open
Abstract
Lipopolysaccharide (LPS) induces the activation of dendritic cells (DCs) throughout the engagement of toll-like receptor 4. LPS-activated DCs show increased capacity to process and present pathogen-derived antigens to activate naïve T cells. DCs-based vaccines have been successfully used to treat some cancer types, and lately transferred to the field of infectious diseases, in particular against HIV. However, there is no vaccine or DC therapy for any parasitic disease that is currently available. The immune response against Trypanosoma cruzi substantially relies on T cells, and both CD4+ and CD8+ T lymphocytes are required to control parasite growth. Here, we develop a vaccination strategy based on DCs derived from bone marrow, activated with LPS and loaded with TsKb20, an immunodominant epitope of the trans-sialidase family of proteins. We extensively characterized the CD8+ T cell response generated after immunization and compared three different readouts: a tetramer staining, ELISpot and Activation-Induced Marker (AIM) assays. To our knowledge, this work shows for the first time a proper set of T cell markers to evaluate specific CD8+ T cell responses in mice. We also show that our immunization scheme confers protection against T. cruzi, augmenting survival and reducing parasite burden in female but not male mice. We conclude that the immunization with LPS-activated DCs has the potential to prime significant CD8+ T cell responses in C57BL/6 mice independently of the sex, but this response will only be effective in female, possibly due to mice sexual dimorphisms in the response generated against T. cruzi.
Collapse
Affiliation(s)
- Lucía Biscari
- Instituto de Inmunología Clínica y Experimental de Rosario (IDICER), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Rosario, Rosario, Argentina
| | - Cintia Daniela Kaufman
- Instituto de Inmunología Clínica y Experimental de Rosario (IDICER), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Rosario, Rosario, Argentina
| | - Cecilia Farré
- Instituto de Inmunología Clínica y Experimental de Rosario (IDICER), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Rosario, Rosario, Argentina
- Centro de Investigación y Producción de Reactivos Biológicos, Facultad de Ciencias Médicas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Victoria Huhn
- Instituto de Inmunología Clínica y Experimental de Rosario (IDICER), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Rosario, Rosario, Argentina
| | - María Florencia Pacini
- Instituto de Inmunología Clínica y Experimental de Rosario (IDICER), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Rosario, Rosario, Argentina
| | - Camila Bulfoni Balbi
- Instituto de Inmunología Clínica y Experimental de Rosario (IDICER), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Rosario, Rosario, Argentina
| | - Karina Andrea Gómez
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular Dr. Héctor N. Torres (INGEBI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Ana Rosa Pérez
- Instituto de Inmunología Clínica y Experimental de Rosario (IDICER), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Rosario, Rosario, Argentina
- Centro de Investigación y Producción de Reactivos Biológicos, Facultad de Ciencias Médicas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Andrés Alloatti
- Instituto de Inmunología Clínica y Experimental de Rosario (IDICER), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Rosario, Rosario, Argentina
- *Correspondence: Andrés Alloatti,
| |
Collapse
|
6
|
Chyu KY, Zhao X, Zhou J, Dimayuga PC, Lio NW, Cercek B, Trac NT, Chung EJ, Shah PK. Immunization using ApoB-100 peptide-linked nanoparticles reduces atherosclerosis. JCI Insight 2022; 7:149741. [PMID: 35536648 PMCID: PMC9220835 DOI: 10.1172/jci.insight.149741] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 04/26/2022] [Indexed: 11/30/2022] Open
Abstract
Active immunization with the apolipoprotein B-100 (ApoB-100) peptide P210 reduces experimental atherosclerosis. To advance this immunization strategy to future clinical testing, we explored the possibility of delivering P210 as an antigen using nanoparticles, given this approach has been used clinically. We first characterized the responses of T cells to P210 using PBMCs from patients with atherosclerotic cardiovascular disease (ASCVD). We then investigated the use of P210 in self-assembling peptide amphiphile micelles (P210-PAMs) as a vaccine formulation to reduce atherosclerosis in B6.129P2-Apoetm1Unc/J (ApoE–/–) mice and P210’s potential mechanisms of action. We also generated and characterized a humanized mouse model with chimeric HLA-A*02:01/Kb in ApoE–/– background to test the efficacy of P210-PAM immunization as a bridge to future clinical testing. P210 provoked T cell activation and memory response in PBMCs of patients with ASCVD. Dendritic cell uptake of P210-PAM and its costaining with MHC-I molecules supported its use as a vaccine formulation. In ApoE–/– mice, immunization with P210-PAMs dampened P210-specific CD4+ T cell proliferative response and CD8+ T cell cytolytic response, modulated macrophage phenotype, and significantly reduced aortic atherosclerosis. Potential clinical relevance of P210-PAM immunization was demonstrated by reduced atherosclerosis in the humanized ApoE–/– mouse model. Our data support experimental and translational use of P210-PAM as a potential vaccine candidate against human ASCVD.
Collapse
Affiliation(s)
- Kuang-Yuh Chyu
- Department of Cardiology, Smidt Heart Institute, Cedars-Sinai Heart Institute, Los Angeles, United States of America
| | - Xiaoning Zhao
- Department of Cardiology, Smidt Heart Institute, Cedars-Sinai Heart Institute, Los Angeles, United States of America
| | - Jianchang Zhou
- Department of Cardiology, Smidt Heart Institute, Cedars-Sinai Heart Institute, Los Angeles, United States of America
| | - Paul C Dimayuga
- Department of Cardiology, Smidt Heart Institute, Cedars-Sinai Heart Institute, Los Angeles, United States of America
| | - Nicole Wm Lio
- Department of Cardiology, Smidt Heart Institute, Cedars-Sinai Heart Institute, Los Angeles, United States of America
| | - Bojan Cercek
- Department of Cardiology, Smidt Heart Institute, Cedars-Sinai Heart Institute, Los Angeles, United States of America
| | - Noah T Trac
- Department of Biomedical Engineering, University of Southern California, Los Angeles, United States of America
| | - Eun Ji Chung
- Department of Biomedical Engineering, University of Southern California, Los Angeles, United States of America
| | - Prediman K Shah
- Department of Cardiology, Smidt Heart Institute, Cedars-Sinai Heart Institute, Los Angeles, United States of America
| |
Collapse
|
7
|
Zhao J, Wang L, Schank M, Dang X, Lu Z, Cao D, Khanal S, Nguyen LN, Nguyen LNT, Zhang J, Zhang Y, Adkins JL, Baird EM, Wu XY, Ning S, Gazzar ME, Moorman JP, Yao ZQ. SARS-CoV-2 specific memory T cell epitopes identified in COVID-19-recovered subjects. Virus Res 2021; 304:198508. [PMID: 34329696 PMCID: PMC8314866 DOI: 10.1016/j.virusres.2021.198508] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 07/08/2021] [Accepted: 07/13/2021] [Indexed: 01/13/2023]
Abstract
The COVID-19 pandemic caused by SARS-CoV-2 infection poses a serious threat to public health. An explicit investigation of COVID-19 immune responses, particularly the host immunity in recovered subjects, will lay a foundation for the rational design of therapeutics and/or vaccines against future coronaviral outbreaks. Here, we examined virus-specific T cell responses and identified T cell epitopes using peptides spanning SARS-CoV-2 structural proteins. These peptides were used to stimulate peripheral blood mononuclear cells (PBMCs) derived from COVID-19-recovered subjects, followed by an analysis of IFN-γ-secreting T cells by enzyme-linked immunosorbent spot (ELISpot). We also evaluated virus-specific CD4 or CD8 T cell activation by flow cytometry assay. By screening 52 matrix pools (comprised of 315 peptides) of the spike (S) glycoprotein and 21 matrix pools (comprised of 102 peptides) spanning the nucleocapsid (N) protein, we identified 28 peptides from S protein and 5 peptides from N protein as immunodominant epitopes. The immunogenicity of these epitopes was confirmed by a second ELISpot using single peptide stimulation in memory T cells, and they were mapped by HLA restrictions. Notably, SARS-CoV-2 specific T cell responses positively correlated with B cell IgG and neutralizing antibody responses to the receptor-binding domain (RBD) of the S protein. Our results demonstrate that defined levels of SARS-CoV-2 specific T cell responses are generated in some, but not all, COVID-19-recovered subjects, fostering hope for the protection of a proportion of COVID-19-exposed individuals against reinfection. These results also suggest that these virus-specific T cell responses may induce protective immunity in unexposed individuals upon vaccination, using vaccines generated based on the immune epitopes identified in this study. However, SARS-CoV-2 S and N peptides are not potently immunogenic, and none of the single peptides could universally induce robust T cell responses, suggesting the necessity of using a multi-epitope strategy for COVID-19 vaccine design.
Collapse
Affiliation(s)
- Juan Zhao
- Center of Excellence for Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee 37614, United States; Division of Infectious Diseases, Department of Internal Medicine, Quillen College of Medicine, ETSU, Johnson City, Tennessee 37614, United States
| | - Ling Wang
- Center of Excellence for Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee 37614, United States; Division of Infectious Diseases, Department of Internal Medicine, Quillen College of Medicine, ETSU, Johnson City, Tennessee 37614, United States
| | - Madison Schank
- Center of Excellence for Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee 37614, United States; Division of Infectious Diseases, Department of Internal Medicine, Quillen College of Medicine, ETSU, Johnson City, Tennessee 37614, United States
| | - Xindi Dang
- Center of Excellence for Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee 37614, United States; Division of Infectious Diseases, Department of Internal Medicine, Quillen College of Medicine, ETSU, Johnson City, Tennessee 37614, United States
| | - Zeyuan Lu
- Center of Excellence for Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee 37614, United States
| | - Dechao Cao
- Center of Excellence for Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee 37614, United States; Division of Infectious Diseases, Department of Internal Medicine, Quillen College of Medicine, ETSU, Johnson City, Tennessee 37614, United States
| | - Sushant Khanal
- Center of Excellence for Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee 37614, United States; Division of Infectious Diseases, Department of Internal Medicine, Quillen College of Medicine, ETSU, Johnson City, Tennessee 37614, United States
| | - Lam N Nguyen
- Center of Excellence for Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee 37614, United States; Division of Infectious Diseases, Department of Internal Medicine, Quillen College of Medicine, ETSU, Johnson City, Tennessee 37614, United States
| | - Lam N T Nguyen
- Center of Excellence for Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee 37614, United States; Division of Infectious Diseases, Department of Internal Medicine, Quillen College of Medicine, ETSU, Johnson City, Tennessee 37614, United States
| | - Jinyu Zhang
- Center of Excellence for Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee 37614, United States; Division of Infectious Diseases, Department of Internal Medicine, Quillen College of Medicine, ETSU, Johnson City, Tennessee 37614, United States
| | - Yi Zhang
- Center of Excellence for Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee 37614, United States; Division of Infectious Diseases, Department of Internal Medicine, Quillen College of Medicine, ETSU, Johnson City, Tennessee 37614, United States
| | - James L Adkins
- Center of Excellence for Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee 37614, United States
| | - Evan M Baird
- Center of Excellence for Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee 37614, United States
| | - Xiao Y Wu
- Center of Excellence for Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee 37614, United States; Division of Infectious Diseases, Department of Internal Medicine, Quillen College of Medicine, ETSU, Johnson City, Tennessee 37614, United States
| | - Shunbin Ning
- Center of Excellence for Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee 37614, United States; Division of Infectious Diseases, Department of Internal Medicine, Quillen College of Medicine, ETSU, Johnson City, Tennessee 37614, United States
| | - Mohamed El Gazzar
- Center of Excellence for Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee 37614, United States; Division of Infectious Diseases, Department of Internal Medicine, Quillen College of Medicine, ETSU, Johnson City, Tennessee 37614, United States
| | - Jonathan P Moorman
- Center of Excellence for Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee 37614, United States; Division of Infectious Diseases, Department of Internal Medicine, Quillen College of Medicine, ETSU, Johnson City, Tennessee 37614, United States; Hepatitis (HCV/HBV/HIV) Program, James H. Quillen VA Medical Center, Department of Veterans Affairs, Johnson City, Tennessee 37614, United States
| | - Zhi Q Yao
- Center of Excellence for Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee 37614, United States; Division of Infectious Diseases, Department of Internal Medicine, Quillen College of Medicine, ETSU, Johnson City, Tennessee 37614, United States; Hepatitis (HCV/HBV/HIV) Program, James H. Quillen VA Medical Center, Department of Veterans Affairs, Johnson City, Tennessee 37614, United States.
| |
Collapse
|
8
|
Marschall P, Wei R, Segaud J, Yao W, Hener P, German BF, Meyer P, Hugel C, Ada Da Silva G, Braun R, Kaplan DH, Li M. Dual function of Langerhans cells in skin TSLP-promoted T FH differentiation in mouse atopic dermatitis. J Allergy Clin Immunol 2021; 147:1778-1794. [PMID: 33068561 DOI: 10.1016/j.jaci.2020.10.006] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 09/29/2020] [Accepted: 10/05/2020] [Indexed: 12/23/2022]
Abstract
BACKGROUND Atopic dermatitis (AD) is among the most common chronic inflammatory skin diseases, usually occurring early in life, and often preceding other atopic diseases such as asthma. TH2 has been believed to play a crucial role in cellular and humoral response in AD, but accumulating evidence has shown that follicular helper T cell (TFH), a critical player in humoral immunity, is associated with disease severity and plays an important role in AD pathogenesis. OBJECTIVES This study aimed at investigating how TFHs are generated during the pathogenesis of AD, particularly what is the role of keratinocyte-derived cytokine TSLP and Langerhans cells (LCs). METHODS Two experimental AD mouse models were employed: (1) triggered by the overproduction of TSLP through topical application of MC903, and (2) induced by epicutaneous allergen ovalbumin (OVA) sensitization. RESULTS This study demonstrated that the development of TFHs and germinal center (GC) response were crucially dependent on TSLP in both the MC903 model and the OVA sensitization model. Moreover, we found that LCs promoted TFH differentiation and GC response in the MC903 model, and the depletion of Langerin+ dendritic cells (DCs) or selective depletion of LCs diminished the TFH/GC response. By contrast, in the model with OVA sensitization, LCs inhibited TFH/GC response and suppressed TH2 skin inflammation and the subsequent asthma. Transcriptomic analysis of Langerin+ and Langerin- migratory DCs revealed that Langerin+ DCs became activated in the MC903 model, whereas these cells remained inactivated in OVA sensitization model. CONCLUSIONS Together, these studies revealed a dual functionality of LCs in TSLP-promoted TFH and TH2 differentiation in AD pathogenesis.
Collapse
Affiliation(s)
- Pierre Marschall
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique Unite Mixte de Recherche 7104, Institut National de la Santé et de la Recherch Médicale U1258, Université de Strasbourg, Illkirch, France
| | - Ruicheng Wei
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique Unite Mixte de Recherche 7104, Institut National de la Santé et de la Recherch Médicale U1258, Université de Strasbourg, Illkirch, France
| | - Justine Segaud
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique Unite Mixte de Recherche 7104, Institut National de la Santé et de la Recherch Médicale U1258, Université de Strasbourg, Illkirch, France
| | - Wenjin Yao
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique Unite Mixte de Recherche 7104, Institut National de la Santé et de la Recherch Médicale U1258, Université de Strasbourg, Illkirch, France
| | - Pierre Hener
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique Unite Mixte de Recherche 7104, Institut National de la Santé et de la Recherch Médicale U1258, Université de Strasbourg, Illkirch, France
| | - Beatriz Falcon German
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique Unite Mixte de Recherche 7104, Institut National de la Santé et de la Recherch Médicale U1258, Université de Strasbourg, Illkirch, France
| | - Pierre Meyer
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique Unite Mixte de Recherche 7104, Institut National de la Santé et de la Recherch Médicale U1258, Université de Strasbourg, Illkirch, France
| | - Cecile Hugel
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique Unite Mixte de Recherche 7104, Institut National de la Santé et de la Recherch Médicale U1258, Université de Strasbourg, Illkirch, France
| | - Grace Ada Da Silva
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique Unite Mixte de Recherche 7104, Institut National de la Santé et de la Recherch Médicale U1258, Université de Strasbourg, Illkirch, France
| | | | - Daniel H Kaplan
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, Pa; Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pa
| | - Mei Li
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique Unite Mixte de Recherche 7104, Institut National de la Santé et de la Recherch Médicale U1258, Université de Strasbourg, Illkirch, France.
| |
Collapse
|
9
|
Vu MN, Kelly HG, Tan H, Juno JA, Esterbauer R, Davis TP, Truong NP, Wheatley AK, Kent SJ. Hemagglutinin Functionalized Liposomal Vaccines Enhance Germinal Center and Follicular Helper T Cell Immunity. Adv Healthc Mater 2021; 10:e2002142. [PMID: 33690985 PMCID: PMC8206650 DOI: 10.1002/adhm.202002142] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/15/2021] [Indexed: 12/12/2022]
Abstract
Despite remarkable successes of immunization in protecting public health, safe and effective vaccines against a number of life-threatening pathogens such as HIV, ebola, influenza, and SARS-CoV-2 remain urgently needed. Subunit vaccines can avoid potential toxicity associated with traditional whole virion-inactivated and live-attenuated vaccines; however, the immunogenicity of subunit vaccines is often poor. A facile method is here reported to produce lipid nanoparticle subunit vaccines that exhibit high immunogenicity and elicit protection against influenza virus. Influenza hemagglutinin (HA) immunogens are functionalized on the surface of liposomes via stable metal chelation chemistry, using a scalable advanced microfluidic mixing technology (NanoAssemblr). Immunization of mice with HA-liposomes elicits increased serum antibody titers and superior protection against highly pathogenic virus challenge compared with free HA protein. HA-liposomal vaccines display enhanced antigen deposition into germinal centers within the draining lymph nodes, driving increased HA-specific B cell, and follicular helper T cell responses. This work provides mechanistic insights into highly protective HA-liposome vaccines and informs the rational design and rapid production of next generation nanoparticle subunit vaccines.
Collapse
Affiliation(s)
- Mai N. Vu
- Australian Research Council Centre of Excellence in Convergent Bio‐Nano Science and TechnologyMonash UniversityParkvilleVIC3052Australia
- Monash Institute of Pharmaceutical SciencesMonash UniversityParkvilleVIC3052Australia
- Peter Doherty Institute for Infection and ImmunityUniversity of MelbourneMelbourneVIC3000Australia
- Department of PharmaceuticsHanoi University of PharmacyHanoi10000Vietnam
| | - Hannah G. Kelly
- Australian Research Council Centre of Excellence in Convergent Bio‐Nano Science and TechnologyMonash UniversityParkvilleVIC3052Australia
- Peter Doherty Institute for Infection and ImmunityUniversity of MelbourneMelbourneVIC3000Australia
| | - Hyon‐Xhi Tan
- Australian Research Council Centre of Excellence in Convergent Bio‐Nano Science and TechnologyMonash UniversityParkvilleVIC3052Australia
- Peter Doherty Institute for Infection and ImmunityUniversity of MelbourneMelbourneVIC3000Australia
| | - Jennifer A. Juno
- Peter Doherty Institute for Infection and ImmunityUniversity of MelbourneMelbourneVIC3000Australia
| | - Robyn Esterbauer
- Australian Research Council Centre of Excellence in Convergent Bio‐Nano Science and TechnologyMonash UniversityParkvilleVIC3052Australia
- Peter Doherty Institute for Infection and ImmunityUniversity of MelbourneMelbourneVIC3000Australia
| | - Thomas P. Davis
- Australian Research Council Centre of Excellence in Convergent Bio‐Nano Science and TechnologyMonash UniversityParkvilleVIC3052Australia
- Monash Institute of Pharmaceutical SciencesMonash UniversityParkvilleVIC3052Australia
- Australia Institute of Bioengineering & NanotechnologyUniversity of QueenslandBrisbaneQLD4072Australia
| | - Nghia P. Truong
- Australian Research Council Centre of Excellence in Convergent Bio‐Nano Science and TechnologyMonash UniversityParkvilleVIC3052Australia
- Monash Institute of Pharmaceutical SciencesMonash UniversityParkvilleVIC3052Australia
| | - Adam K. Wheatley
- Australian Research Council Centre of Excellence in Convergent Bio‐Nano Science and TechnologyMonash UniversityParkvilleVIC3052Australia
- Peter Doherty Institute for Infection and ImmunityUniversity of MelbourneMelbourneVIC3000Australia
| | - Stephen J. Kent
- Australian Research Council Centre of Excellence in Convergent Bio‐Nano Science and TechnologyMonash UniversityParkvilleVIC3052Australia
- Peter Doherty Institute for Infection and ImmunityUniversity of MelbourneMelbourneVIC3000Australia
- Melbourne Sexual Health Centre and Department of Infectious Diseases, Alfred Hospital and Central Clinical SchoolMonash UniversityMelbourneVIC3004Australia
| |
Collapse
|
10
|
Beckman MF, Mougeot FB, Mougeot JLC. Comorbidities and Susceptibility to COVID-19: A Generalized Gene Set Data Mining Approach. J Clin Med 2021; 10:1666. [PMID: 33924631 PMCID: PMC8070572 DOI: 10.3390/jcm10081666] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/29/2021] [Accepted: 04/07/2021] [Indexed: 12/20/2022] Open
Abstract
The COVID-19 pandemic has led to over 2.26 million deaths for almost 104 million confirmed cases worldwide, as of 4 February 2021 (WHO). Risk factors include pre-existing conditions such as cancer, cardiovascular disease, diabetes, and obesity. Although several vaccines have been deployed, there are few alternative anti-viral treatments available in the case of reduced or non-existent vaccine protection. Adopting a long-term holistic approach to cope with the COVID-19 pandemic appears critical with the emergence of novel and more infectious SARS-CoV-2 variants. Our objective was to identify comorbidity-associated single nucleotide polymorphisms (SNPs), potentially conferring increased susceptibility to SARS-CoV-2 infection using a computational meta-analysis approach. SNP datasets were downloaded from a publicly available genome-wide association studies (GWAS) catalog for 141 of 258 candidate COVID-19 comorbidities. Gene-level SNP analysis was performed to identify significant pathways by using the program MAGMA. An SNP annotation program was used to analyze MAGMA-identified genes. Differential gene expression was determined for significant genes across 30 general tissue types using the Functional and Annotation Mapping of GWAS online tool GENE2FUNC. COVID-19 comorbidities (n = 22) from six disease categories were found to have significant associated pathways, validated by Q-Q plots (p < 0.05). Protein-protein interactions of significant (p < 0.05) differentially expressed genes were visualized with the STRING program. Gene interaction networks were found to be relevant to SARS and influenza pathogenesis. In conclusion, we were able to identify the pathways potentially affected by or affecting SARS-CoV-2 infection in underlying medical conditions likely to confer susceptibility and/or the severity of COVID-19. Our findings have implications in future COVID-19 experimental research and treatment development.
Collapse
Affiliation(s)
| | - Farah Bahrani Mougeot
- Department of Oral Medicine, Carolinas Medical Center, Atrium Health, Charlotte, NC 28203, USA;
| | - Jean-Luc C. Mougeot
- Department of Oral Medicine, Carolinas Medical Center, Atrium Health, Charlotte, NC 28203, USA;
| |
Collapse
|
11
|
Tan HX, Juno JA, Lee WS, Barber-Axthelm I, Kelly HG, Wragg KM, Esterbauer R, Amarasena T, Mordant FL, Subbarao K, Kent SJ, Wheatley AK. Immunogenicity of prime-boost protein subunit vaccine strategies against SARS-CoV-2 in mice and macaques. Nat Commun 2021; 12:1403. [PMID: 33658497 PMCID: PMC7930087 DOI: 10.1038/s41467-021-21665-8] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 02/04/2021] [Indexed: 12/23/2022] Open
Abstract
SARS-CoV-2 vaccines are advancing into human clinical trials, with emphasis on eliciting high titres of neutralising antibodies against the viral spike (S). However, the merits of broadly targeting S versus focusing antibody onto the smaller receptor binding domain (RBD) are unclear. Here we assess prototypic S and RBD subunit vaccines in homologous or heterologous prime-boost regimens in mice and non-human primates. We find S is highly immunogenic in mice, while the comparatively poor immunogenicity of RBD is associated with limiting germinal centre and T follicular helper cell activity. Boosting S-primed mice with either S or RBD significantly augments neutralising titres, with RBD-focussing driving moderate improvement in serum neutralisation. In contrast, both S and RBD vaccines are comparably immunogenic in macaques, eliciting serological neutralising activity that generally exceed levels in convalescent humans. These studies confirm recombinant S proteins as promising vaccine candidates and highlight multiple pathways to achieving potent serological neutralisation.
Collapse
Affiliation(s)
- Hyon-Xhi Tan
- Department of Microbiology and Immunology, University of Melbourne, at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Jennifer A Juno
- Department of Microbiology and Immunology, University of Melbourne, at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Wen Shi Lee
- Department of Microbiology and Immunology, University of Melbourne, at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Isaac Barber-Axthelm
- Department of Microbiology and Immunology, University of Melbourne, at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Hannah G Kelly
- Department of Microbiology and Immunology, University of Melbourne, at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
- Australian Research Council Centre for Excellence in Convergent Bio-Nano Science and Technology, University of Melbourne, Melbourne, VIC, Australia
| | - Kathleen M Wragg
- Department of Microbiology and Immunology, University of Melbourne, at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Robyn Esterbauer
- Department of Microbiology and Immunology, University of Melbourne, at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
- WHO Collaborating Centre for Reference and Research on Influenza, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Thakshila Amarasena
- Department of Microbiology and Immunology, University of Melbourne, at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Francesca L Mordant
- Department of Microbiology and Immunology, University of Melbourne, at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Kanta Subbarao
- Department of Microbiology and Immunology, University of Melbourne, at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
- WHO Collaborating Centre for Reference and Research on Influenza, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Stephen J Kent
- Department of Microbiology and Immunology, University of Melbourne, at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia.
- Australian Research Council Centre for Excellence in Convergent Bio-Nano Science and Technology, University of Melbourne, Melbourne, VIC, Australia.
- Melbourne Sexual Health Centre and Department of Infectious Diseases, Alfred Hospital and Central Clinical School, Monash University, Melbourne, VIC, Australia.
| | - Adam K Wheatley
- Department of Microbiology and Immunology, University of Melbourne, at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia.
- Australian Research Council Centre for Excellence in Convergent Bio-Nano Science and Technology, University of Melbourne, Melbourne, VIC, Australia.
| |
Collapse
|
12
|
Aggregation by peptide conjugation rescues poor immunogenicity of the HA stem. PLoS One 2020; 15:e0241649. [PMID: 33137148 PMCID: PMC7605677 DOI: 10.1371/journal.pone.0241649] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 10/16/2020] [Indexed: 11/19/2022] Open
Abstract
Influenza virus infection is a global public health threat. Current seasonal influenza vaccines are efficacious only when vaccine strains are matched with circulating strains. There is a critical need for developing "universal" vaccines that protect against all influenza viruses. HA stem is a promising target for developing broad-spectrum influenza vaccines due to its relatively conserved feature. However, HA stem is weakly immunogenic when administered alone in a soluble form. Several approaches have been employed to improve the immunogenicity of HA stem, including conjugation of HA stem with a highly immunogenic carrier protein or displaying HA stem on a nanoparticle scaffold. Converting a weakly immunologic protein into a multimer through aggregation can significantly enhance its immunogenicity, with some multimeric protein aggregates previously shown to be more immunogenic than their soluble counterparts in animal models. Here, we show that a chemically coupling a peptide derived from the head domain of PR8 HA (P35) with the poorly immunogenic HA stem protein results in aggregation of the HA stem which significantly increases stem-specific B cell responses following vaccination. Importantly, vaccination with this conjugate in the absence of adjuvant still induced robust B cell responses against stem in vivo. Improving HA stem immunogenicity by aggregation provides an alternative avenue to conjugation with exotic carrier proteins or nanoparticle formulation.
Collapse
|
13
|
Optimized flow cytometric protocol for the detection of functional subsets of low frequency antigen-specific CD4 + and CD8 + T cells. MethodsX 2020; 7:101005. [PMID: 32775228 PMCID: PMC7396823 DOI: 10.1016/j.mex.2020.101005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 07/17/2020] [Indexed: 11/24/2022] Open
Abstract
Detection of low-frequency cells using flow cytometry is challenging, as the sensitivity of the analysis is dependent on the signal-to-noise ratio, and a cell frequency of 1 in 10,000 cells is accepted as the lower limit of detection for standard flow cytometry. A solution to this problem is to pre-enrich rare cell populations using magnetic-bead conjugated antibodies targeting lineage or activation markers. For measuring vaccine or pathogen induced immune responses, this method drastically increases the signal-to-noise ratio by enriching only activated (i.e., antigen-specific) cells and excluding all other peripheral blood leukocytes from the subsequent analysis. To date, magnetic enrichment of antigen-specific cells has only been described for CD4+ T cells processed for surface staining. The current study significantly expands the methodology to allow detection of antigen-specific CD8+ T cells and analysis of cells that had been processed for intracellular staining.The protocol described here allows magnetic enrichment of PBMCs after fixation and intracellular staining steps without increasing the non-specific background. The protocol is adapted to automated enrichment-mode on flow cytometers. The procedure boosts the sensitivity of the flow cytometry analysis by significantly increasing the sample size of functional antigen-specific cells without skewing the composition of the functional cells pool.
Collapse
|
14
|
Kelly HG, Tan HX, Juno JA, Esterbauer R, Ju Y, Jiang W, Wimmer VC, Duckworth BC, Groom JR, Caruso F, Kanekiyo M, Kent SJ, Wheatley AK. Self-assembling influenza nanoparticle vaccines drive extended germinal center activity and memory B cell maturation. JCI Insight 2020; 5:136653. [PMID: 32434990 DOI: 10.1172/jci.insight.136653] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 04/15/2020] [Indexed: 01/10/2023] Open
Abstract
Protein-based, self-assembling nanoparticles elicit superior immunity compared with soluble protein vaccines, but the immune mechanisms underpinning this effect remain poorly defined. Here, we investigated the immunogenicity of a prototypic ferritin-based nanoparticle displaying influenza hemagglutinin (HA) in mice and macaques. Vaccination of mice with HA-ferritin nanoparticles elicited higher serum antibody titers and greater protection against experimental influenza challenge compared with soluble HA protein. Germinal centers in the draining lymph nodes were expanded and persistent following HA-ferritin vaccination, with greater deposition of antigen that colocalized with follicular dendritic cells. Our findings suggest that a highly ordered and repetitive antigen array may directly drive germinal centers through a B cell-intrinsic mechanism that does not rely on ferritin-specific T follicular helper cells. In contrast to mice, enhanced immunogenicity of HA-ferritin was not observed in pigtail macaques, where antibody titers and lymph node immunity were comparable to soluble vaccination. An improved understanding of factors that drive nanoparticle vaccine immunogenicity in small and large animal models will facilitate the clinical development of nanoparticle vaccines for broad and durable protection against diverse pathogens.
Collapse
Affiliation(s)
- Hannah G Kelly
- Department of Microbiology and Immunology, University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia.,ARC Centre of Excellence in Convergent Bio-Nano Science and Technology and
| | - Hyon-Xhi Tan
- Department of Microbiology and Immunology, University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Jennifer A Juno
- Department of Microbiology and Immunology, University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Robyn Esterbauer
- Department of Microbiology and Immunology, University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia.,ARC Centre of Excellence in Convergent Bio-Nano Science and Technology and
| | - Yi Ju
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology and.,Department of Chemical Engineering, University of Melbourne, Parkville, Victoria, Australia
| | - Wenbo Jiang
- Department of Microbiology and Immunology, University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | | | - Brigette C Duckworth
- Division of Immunology, Walter and Eliza Hall Institute of Medical Research, Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Joanna R Groom
- Division of Immunology, Walter and Eliza Hall Institute of Medical Research, Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Frank Caruso
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology and.,Department of Chemical Engineering, University of Melbourne, Parkville, Victoria, Australia
| | - Masaru Kanekiyo
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, Maryland, USA
| | - Stephen J Kent
- Department of Microbiology and Immunology, University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia.,ARC Centre of Excellence in Convergent Bio-Nano Science and Technology and.,Melbourne Sexual Health Centre and Department of Infectious Diseases, Alfred Hospital and Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Adam K Wheatley
- Department of Microbiology and Immunology, University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia.,ARC Centre of Excellence in Convergent Bio-Nano Science and Technology and
| |
Collapse
|
15
|
Schmidt A, Huber JE, Sercan Alp Ö, Gürkov R, Reichel CA, Herrmann M, Keppler OT, Leeuw T, Baumjohann D. Complex human adenoid tissue-based ex vivo culture systems reveal anti-inflammatory drug effects on germinal center T and B cells. EBioMedicine 2020; 53:102684. [PMID: 32114393 PMCID: PMC7049648 DOI: 10.1016/j.ebiom.2020.102684] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 02/03/2020] [Accepted: 02/05/2020] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Human immunology research is often limited to peripheral blood. However, there are important differences between blood immune cells and their counterparts residing in secondary lymphoid organs, such as in the case of germinal center (GC) T follicular helper (Tfh) cells and GC B cells. METHODS We developed a versatile ex vivo lymphoid organ culture platform that is based on human pharyngeal tonsils (adenoids) and allows for drug testing. We systematically phenotyped Tfh and GC B cell subsets in explant- and suspension cultures using multicolor flow cytometry and cytokine multiplex analysis. FINDINGS Phenotypic changes of certain ex vivo cultured immune cell subsets could be modulated by cytokine addition. Furthermore, we optimized an activation-induced marker assay to evaluate the response to T cell stimulation. We provide proof-of-concept that Tfh and GC B cells could be modulated in these cultures by different anti-inflammatory drugs in unstimulated states and upon activation with vaccine-derived antigens. For example, GC B cells were lost upon CD40L blockade, and clinically approved JAK inhibitors impacted Tfh and GC B cells, including down-regulation of their key transcription factor BCL6. BCL6 regulation was affected by IL-6 signaling in T cells and IL-4 in B cells, respectively. Furthermore, we demonstrated that JAK signaling and TNF signaling contributed to the stimulation-induced activation of tonsil-derived T cells. INTERPRETATION Our optimized methods, assays, and mechanistic findings can contribute to a better understanding of human GC responses. These insights may be relevant for improving autoimmune disease therapy and vaccination efficacy. FUNDING This work was supported by a project grant under the joint research cooperation agreement of LMU Munich, LMU University Hospital, and Sanofi-Aventis Deutschland GmbH, as well as by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) - Emmy Noether Programme BA 5132/1-1 and BA 5132/1-2 (252623821), SFB 1054 Project B12 (210592381), and SFB 914 Project B03 (165054336).
Collapse
Affiliation(s)
- Angelika Schmidt
- Institute for Immunology, Biomedical Center (BMC), Faculty of Medicine, LMU Munich, 82152 Planegg-Martinsried, Germany.
| | - Johanna E Huber
- Institute for Immunology, Biomedical Center (BMC), Faculty of Medicine, LMU Munich, 82152 Planegg-Martinsried, Germany
| | - Özen Sercan Alp
- R&D, TA Immunology & Inflammation Research, Sanofi-Aventis Deutschland GmbH, Industriepark Hoechst, 65926 Frankfurt am Main, Germany
| | - Robert Gürkov
- Department of Otorhinolaryngology, University Hospital, LMU Munich, 81377 Munich, Germany
| | - Christoph A Reichel
- Department of Otorhinolaryngology, University Hospital, LMU Munich, 81377 Munich, Germany; Walter Brendel Centre of Experimental Medicine, University Hospital, LMU Munich, 81377 Munich, Germany
| | - Matthias Herrmann
- R&D, TA Immunology & Inflammation Research, Sanofi-Aventis Deutschland GmbH, Industriepark Hoechst, 65926 Frankfurt am Main, Germany
| | - Oliver T Keppler
- Max von Pettenkofer Institute & Gene Center, Virology, National Reference Center for Retroviruses, Faculty of Medicine, LMU Munich, 80336 Munich, Germany
| | - Thomas Leeuw
- R&D, TA Immunology & Inflammation Research, Sanofi-Aventis Deutschland GmbH, Industriepark Hoechst, 65926 Frankfurt am Main, Germany
| | - Dirk Baumjohann
- Institute for Immunology, Biomedical Center (BMC), Faculty of Medicine, LMU Munich, 82152 Planegg-Martinsried, Germany; Medical Clinic III for Oncology, Hematology, Immuno-Oncology and Rheumatology, University Hospital Bonn, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany.
| |
Collapse
|