1
|
Takiguchi S, Takeuchi N, Shenshin V, Gines G, Genot AJ, Nivala J, Rondelez Y, Kawano R. Harnessing DNA computing and nanopore decoding for practical applications: from informatics to microRNA-targeting diagnostics. Chem Soc Rev 2025; 54:8-32. [PMID: 39471098 PMCID: PMC11521203 DOI: 10.1039/d3cs00396e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Indexed: 11/01/2024]
Abstract
DNA computing represents a subfield of molecular computing with the potential to become a significant area of next-generation computation due to the high programmability inherent in the sequence-dependent molecular behaviour of DNA. Recent studies in DNA computing have extended from mathematical informatics to biomedical applications, with a particular focus on diagnostics that exploit the biocompatibility of DNA molecules. The output of DNA computing devices is encoded in nucleic acid molecules, which must then be decoded into human-recognizable signals for practical applications. Nanopore technology, which utilizes an electrical and label-free decoding approach, provides a unique platform to bridge DNA and electronic computing for practical use. In this tutorial review, we summarise the fundamental knowledge, technologies, and methodologies of DNA computing (logic gates, circuits, neural networks, and non-DNA input circuity). We then focus on nanopore-based decoding, and highlight recent advances in medical diagnostics targeting microRNAs as biomarkers. Finally, we conclude with the potential and challenges for the practical implementation of these techniques. We hope that this tutorial will provide a comprehensive insight and enable the general reader to grasp the fundamental principles and diverse applications of DNA computing and nanopore decoding, and will inspire a wide range of scientists to explore and push the boundaries of these technologies.
Collapse
Affiliation(s)
- Sotaro Takiguchi
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Koganei-shi, Tokyo 184-8588, Japan.
| | - Nanami Takeuchi
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Koganei-shi, Tokyo 184-8588, Japan.
| | - Vasily Shenshin
- Laboratoire Gulliver, CNRS, ESPCI Paris, PSL Research University, 10 rue Vauquelin, Paris, 75005, France.
| | - Guillaume Gines
- Laboratoire Gulliver, CNRS, ESPCI Paris, PSL Research University, 10 rue Vauquelin, Paris, 75005, France.
| | - Anthony J Genot
- LIMMS, CNRS-Institute of Industrial Science, University of Tokyo, Meguro-ku, Tokyo, 153-8505, Japan.
| | - Jeff Nivala
- Paul G. Allen School of Computer Science and Engineering, University of Washington, Seattle, WA, USA.
- Molecular Engineering and Sciences Institute, University of Washington, Seattle, WA, USA
| | - Yannick Rondelez
- Laboratoire Gulliver, CNRS, ESPCI Paris, PSL Research University, 10 rue Vauquelin, Paris, 75005, France.
| | - Ryuji Kawano
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Koganei-shi, Tokyo 184-8588, Japan.
| |
Collapse
|
2
|
Kushwaha S, Goel A, Singh AV. Serum microRNA Biomarker Expression in HIV and TB: A Concise Overview. Infect Disord Drug Targets 2025; 25:e18715265305638. [PMID: 39506419 DOI: 10.2174/0118715265305638240930054842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 08/22/2024] [Accepted: 08/23/2024] [Indexed: 11/08/2024]
Abstract
Non-coding RNAs (ncRNAs), specifically MicroRNAs or miRNAs, are now understood to be essential regulators in the complex field of gene expression. By selectively binding to certain mRNA targets, these tiny RNA molecules control the expression of genes, leading to mRNA degradation or translational repression. The discovery of miRNAs has significantly advanced biomedical research, particularly in elucidating the molecular mechanisms underlying various diseases and exploring innovative therapeutic approaches. Recent progress in miRNA research has provided insights into their biogenesis, functional roles, and potential clinical applications. Despite the absence of established methodologies for clinical implementation, miRNAs show great promise as diagnostic and therapeutic agents for a wide array of diseases. Their distinctive attributes, such as high specificity, sensitivity, and accessibility, position them as ideal candidates for biomarker development and targeted therapy. Achieving a comprehensive understanding of miRNA biology and functionality is crucial to fully harnessing their potential in medicine. Ongoing research efforts aim to unravel the intricate mechanisms of miRNA-mediated gene regulation and to develop novel approaches for utilizing miRNAs in disease diagnosis, prognosis, and treatment. This review provides a comprehensive analysis of current knowledge on miRNAs, focusing on their biogenesis, regulatory mechanisms, and potential clinical applications. By synthesizing existing evidence and highlighting key research findings, this review aims to inspire further exploration into the diverse roles of miRNAs in health and disease. Ultimately, this endeavour could result in the development of innovative miRNA-based diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Shweta Kushwaha
- Department of Microbiology and Molecular Biology, ICMR-National JALMA Institute for Leprosy and Other Mycobacterial Diseases, Tajganj, Agra, 282004, Uttar Pradesh, India
- Department of Biotechnology, GLA University, Mathura, 281406, Uttar Pradesh, India
| | - Anjana Goel
- Department of Biotechnology, GLA University, Mathura, 281406, Uttar Pradesh, India
| | - Ajay Vir Singh
- Department of Microbiology and Molecular Biology, ICMR-National JALMA Institute for Leprosy and Other Mycobacterial Diseases, Tajganj, Agra, 282004, Uttar Pradesh, India
| |
Collapse
|
3
|
Arya R, Kumar S, Vinetz JM, Kim JJ, Chaurasia R. Unlocking the potential of miRNAs in detecting pulmonary tuberculosis: prospects and pitfalls. Expert Rev Mol Med 2024; 26:e32. [PMID: 39639643 PMCID: PMC11629464 DOI: 10.1017/erm.2024.29] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 04/03/2024] [Accepted: 07/12/2024] [Indexed: 12/07/2024]
Abstract
Tuberculosis (TB) is one of the deadliest infectious diseases globally, ranking as 13th leading cause of mortality and morbidity. According to the Global Tuberculosis Report 2022, TB claimed the lives of 1.6 million people worldwide in 2021. Among the casualties, 1 870 000 individuals with HIV co-infections contributed to 6.7% of the total fatalities, accounting TB as the second most lethal infectious disease following COVID-19. In the quest to identify biomarkers for disease progression and anti-TB therapy, microRNAs (miRNAs) have gained attention due to their precise regulatory role in gene expression in disease stages and their ability to distinguish latent and active TB, enabling the development of early TB prognostic signatures. miRNAs are stable in biological fluids and therefore will be useful for non-invasive and broad sample collection. However, their inherent lack of specificity and experimental variations may lead to false-positive outcomes. These limitations can be overcome by integrating standard protocols with machine learning, presenting a novel tool for TB diagnostics and therapeutics. This review summarizes, discusses and highlights the potential of miRNAs as a biomarker, particularly their differential expression at disease stages. The review assesses the advantages and obstacles associated with miRNA-based diagnostic biomarkers in pulmonary TB and facilitates rapid, point-of-care testing.
Collapse
Affiliation(s)
- Rakesh Arya
- Department of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbuk, South Korea
| | - Surendra Kumar
- Department of Orthopaedic Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Joseph M. Vinetz
- Department of Internal Medicine, Section of Infectious Diseases, Yale University School of Medicine, New Haven, CT, USA
| | - Jong Joo Kim
- Department of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbuk, South Korea
| | - Reetika Chaurasia
- Department of Internal Medicine, Section of Infectious Diseases, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
4
|
Ashirbekov Y, Khamitova N, Satken K, Abaildayev A, Pinskiy I, Yeleussizov A, Yegenova L, Kairanbayeva A, Kadirshe D, Utegenova G, Jainakbayev N, Sharipov K. Circulating MicroRNAs as Biomarkers for the Early Diagnosis of Lung Cancer and Its Differentiation from Tuberculosis. Diagnostics (Basel) 2024; 14:2684. [PMID: 39682592 DOI: 10.3390/diagnostics14232684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 11/18/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024] Open
Abstract
BACKGROUND The differential diagnosis of tuberculosis (TB) and lung cancer (LC) is often challenging due to similar clinicopathological presentations when bacterial shedding is negative, which can lead to delays in treatment. In this study, we tested the potential of plasma-circulating microRNAs (miRNAs) for the early and differential diagnosis of TB and LC. METHODS We conducted a two-phase study: profiling 188 miRNAs in pooled plasma samples and validating 14 selected miRNAs in individual plasma samples from 68 LC patients, 38 pulmonary TB patients, and 41 healthy controls. RESULTS Twelve miRNAs were significantly elevated in LC patients compared to controls and TB patients, while two miRNAs were significantly elevated in TB patients compared to controls. ROC analysis demonstrated that miR-130b-3p, miR-1-3p, miR-423-5p, and miR-200a-3p had good discriminatory ability to distinguish LC patients (including those with stage I tumours) from healthy individuals and miR-130b-3p, miR-423-5p, miR-15b-5p, and miR-18b-5p effectively distinguished LC patients (including those with stage I tumours) from TB patients. Additionally, miR-18b-5p showed good discriminatory ability between SCLC and NSCLC patients. CONCLUSIONS Circulating miRNAs hold strong potential for the early detection of LC and for distinguishing LC from TB.
Collapse
Affiliation(s)
- Yeldar Ashirbekov
- Aitkhozhin Institute of Molecular Biology and Biochemistry, Almaty 050012, Kazakhstan
| | - Nazgul Khamitova
- Aitkhozhin Institute of Molecular Biology and Biochemistry, Almaty 050012, Kazakhstan
- Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan
- Kazakh National Medical University Named After S.D. Asfendiyarov, Almaty 050012, Kazakhstan
| | - Kantemir Satken
- Aitkhozhin Institute of Molecular Biology and Biochemistry, Almaty 050012, Kazakhstan
- Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan
| | - Arman Abaildayev
- Aitkhozhin Institute of Molecular Biology and Biochemistry, Almaty 050012, Kazakhstan
- Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan
| | - Ilya Pinskiy
- Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan
| | - Askar Yeleussizov
- Kazakh Institute of Oncology and Radiology, Almaty 050012, Kazakhstan
| | - Laura Yegenova
- National Scientific Center of Phthisiopulmonology, Almaty 050010, Kazakhstan
| | | | - Danara Kadirshe
- Aitkhozhin Institute of Molecular Biology and Biochemistry, Almaty 050012, Kazakhstan
| | - Gulzhakhan Utegenova
- Aitkhozhin Institute of Molecular Biology and Biochemistry, Almaty 050012, Kazakhstan
- South Kazakhstan Pedagogical University Named After Ozbekali Zhanibekov, Shymkent 160012, Kazakhstan
| | | | - Kamalidin Sharipov
- Aitkhozhin Institute of Molecular Biology and Biochemistry, Almaty 050012, Kazakhstan
- Kazakh National Medical University Named After S.D. Asfendiyarov, Almaty 050012, Kazakhstan
| |
Collapse
|
5
|
Wu Z, Tan Q, Jia X, Wu H, Liang J, Wen W, Wang X, Zhang C, Zhao Y, Chen Y, Luo T, Liu W, Chen X. Single molecule measurements of microRNAs in the serum of patients with pulmonary tuberculosis. Front Immunol 2024; 15:1418085. [PMID: 39286248 PMCID: PMC11402676 DOI: 10.3389/fimmu.2024.1418085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 08/16/2024] [Indexed: 09/19/2024] Open
Abstract
Background microRNAs (miRNAs) were recognized as a promising source of diagnostic biomarker. Herein, we aim to evaluate the performance of an ultrasensitive method for detecting serum miRNAs using single molecule arrays (Simoa). Methods In this study, candidate miRNAs were trained and tested by RT-qPCR in a cohort of PTB patients. Besides that, ultrasensitive serum miRNA detection were developed using the Single Molecule Array (Simoa) platform. In this ultra-sensitive sandwich assay, two target-specific LNA-modified oligonucleotide probes can be simply designed to be complementary to the half-sequence of the target miRNA respectively. We characterized its analytical performance and measured miRNAs in the serum of patients with pulmonary tuberculosis and healthy individuals. Results We identified a five signature including three upregulated (miR-101, miR-196b, miR-29a) and two downregulated (miR-320b, miR-99b) miRNAs for distinguishing PTB patients from HCs, and validated in our 104 PTB patients. On the basis of Simoa technology, we developed a novel, fully automated digital analyser, which can be used to directly detect miRNAs in serum samples without pre-amplification. We successfully detected miRNAs at femtomolar concentrations (with limits of detection [LODs] ranging from 0.449 to 1.889 fM). Simoa-determined serum miR-29a and miR-99b concentrations in patients with PTB ((median 6.06 fM [range 0.00-75.22]), (median 2.53 fM [range 0.00-24.95]), respectively) were significantly higher than those in HCs ((median 2.42 fM [range 0.00-28.64]) (P < 0.05), (median 0.54 fM [range 0.00-9.12] (P < 0.0001), respectively). Serum levels of miR-320b were significantly reduced in patients with PTB (median 2.11 fM [range 0.00-39.30]) compared with those in the HCs (median 4.76 fM [range 0.00-25.10]) (P < 0.001). A combination of three miRNAs (miR-29a, miR-99b, and miR-320b) exhibited a good capacity to distinguish PTB from HCs, with an area under the curve (AUC) of 0.818 (sensitivity: 83.9%; specificity: 79.7%). Conclusions This study benchmarks the role of Simoa as a promising tool for monitoring miRNAs in serum and offers considerable potential as a non-invasive platform for the early diagnosis of PTB.
Collapse
Affiliation(s)
- Zhuhua Wu
- College of Animal Science and Technology, Guangxi University, Nanning, Guangxi, China
- Key Laboratory of Translational Medicine of Guangdong, Center for Tuberculosis Control of Guangdong Province, Guangzhou, Guangdong, China
| | - Qiuchan Tan
- School of Basic Medical Sciences, Guangzhou Health Science College, Guangzhou, Guangdong, China
| | - Xiaojuan Jia
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Huizhong Wu
- Key Laboratory of Translational Medicine of Guangdong, Center for Tuberculosis Control of Guangdong Province, Guangzhou, Guangdong, China
| | - Jing Liang
- Dongguan Key Laboratory of Tuberculosis Control, The Sixth People's Hospital of Dongguan, Dongguan, Guangdong, China
| | - Wenpei Wen
- Key Laboratory of Translational Medicine of Guangdong, Center for Tuberculosis Control of Guangdong Province, Guangzhou, Guangdong, China
| | - Xuezhi Wang
- Department of Laboratory Medicine, Foshan Fourth People's Hospital, Foshan, Guangdong, China
| | - Chenchen Zhang
- Key Laboratory of Translational Medicine of Guangdong, Center for Tuberculosis Control of Guangdong Province, Guangzhou, Guangdong, China
| | - Yuchuan Zhao
- Key Laboratory of Translational Medicine of Guangdong, Center for Tuberculosis Control of Guangdong Province, Guangzhou, Guangdong, China
| | - Yuhui Chen
- Key Laboratory of Translational Medicine of Guangdong, Center for Tuberculosis Control of Guangdong Province, Guangzhou, Guangdong, China
| | - Tingrong Luo
- College of Animal Science and Technology, Guangxi University, Nanning, Guangxi, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresourses & Laboratory of Animal Infectious Diseases, College of Animal Sciences and Veterinary Medicine, Guangxi University, Nanning, Guangxi, China
| | - Wenjun Liu
- College of Animal Science and Technology, Guangxi University, Nanning, Guangxi, China
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Xunxun Chen
- Key Laboratory of Translational Medicine of Guangdong, Center for Tuberculosis Control of Guangdong Province, Guangzhou, Guangdong, China
| |
Collapse
|
6
|
Mukhtar F, Guarnieri A, Brancazio N, Falcone M, Di Naro M, Azeem M, Zubair M, Nicolosi D, Di Marco R, Petronio Petronio G. The role of Mycobacterium tuberculosis exosomal miRNAs in host pathogen cross-talk as diagnostic and therapeutic biomarkers. Front Microbiol 2024; 15:1441781. [PMID: 39176271 PMCID: PMC11340542 DOI: 10.3389/fmicb.2024.1441781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 07/25/2024] [Indexed: 08/24/2024] Open
Abstract
Tuberculosis (TB) is a global threat, affecting one-quarter of the world's population. The World Health Organization (WHO) reports that 6 million people die annually due to chronic illnesses, a statistic that includes TB-related deaths. This high mortality is attributed to factors such as the emergence of drug-resistant strains and the exceptional survival mechanisms of Mycobacterium tuberculosis (MTB). Recently, microRNAs (miRNAs) have garnered attention for their crucial role in TB pathogenesis, surpassing typical small RNAs (sRNA) in their ability to alter the host's immune response. For instance, miR-155, miR-125b, and miR-29a have been identified as key players in the immune response to MTB, particularly in modulating macrophages, T cells, and cytokine production. While sRNAs are restricted to within cells, exo-miRNAs are secreted from MTB-infected macrophages. These exo-miRNAs modify the function of surrounding cells to favor the bacterium, perpetuating the infection cycle. Another significant aspect is that the expression of these miRNAs affects specific genes and pathways involved in immune functions, suggesting their potential use in diagnosing TB and as therapeutic targets. This review compiles existing information on the immunomodulatory function of exosomal miRNAs from MTB, particularly focusing on disease progression and the scientific potential of this approach compared to existing diagnostic techniques. Thus, the aim of the study is to understand the role of exosomal miRNAs in TB and to explore their potential for developing novel diagnostic and therapeutic methods.
Collapse
Affiliation(s)
- Farwa Mukhtar
- Department of Medicina e Scienze della Salute “V. Tiberio”, Università degli Studi del Molise, Campobasso, Italy
| | - Antonio Guarnieri
- Department of Medicina e Scienze della Salute “V. Tiberio”, Università degli Studi del Molise, Campobasso, Italy
| | - Natasha Brancazio
- Department of Medicina e Scienze della Salute “V. Tiberio”, Università degli Studi del Molise, Campobasso, Italy
| | - Marilina Falcone
- Department of Medicina e Scienze della Salute “V. Tiberio”, Università degli Studi del Molise, Campobasso, Italy
| | - Maria Di Naro
- Department of Drug and Health Sciences, Università degli Studi di Catania, Catania, Italy
| | - Muhammad Azeem
- Department of Precision Medicine in the Medical, Surgical and Critical Care Area (Me.Pre.C.C.), University of Palermo, Palermo, Italy
| | - Muhammad Zubair
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
| | - Daria Nicolosi
- Department of Drug and Health Sciences, Università degli Studi di Catania, Catania, Italy
| | - Roberto Di Marco
- Department of Medicina e Scienze della Salute “V. Tiberio”, Università degli Studi del Molise, Campobasso, Italy
| | - Giulio Petronio Petronio
- Department of Medicina e Scienze della Salute “V. Tiberio”, Università degli Studi del Molise, Campobasso, Italy
| |
Collapse
|
7
|
Gunasekaran H, Sampath P, Thiruvengadam K, Malaisamy M, Ramasamy R, Ranganathan UD, Bethunaickan R. A systematic review and meta-analysis of circulating serum and plasma microRNAs in TB diagnosis. BMC Infect Dis 2024; 24:402. [PMID: 38622570 PMCID: PMC11017603 DOI: 10.1186/s12879-024-09232-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 03/18/2024] [Indexed: 04/17/2024] Open
Abstract
BACKGROUND Tuberculosis (TB) ranks as the second leading cause of death globally among all infectious diseases. This problem is likely due to the lack of biomarkers to differentiate the heterogeneous spectrum of infection. Therefore, the first step in solving this problem is to identify biomarkers to distinguish the different disease states of an individual and treat them accordingly. Circulating microRNA (miRNA) biomarkers are promising candidates for various diseases. In fact, we are yet to conceptualize how miRNA expression influences and predicts TB disease outcomes. Thus, this systematic review and meta-analysis aimed to assess the diagnostic efficacy of circulating miRNAs in Latent TB (LTB) and Active Pulmonary TB (PTB). METHODS Literature published between 2012 and 2021 was retrieved from PubMed, Web of Science, Cochrane, Scopus, Embase, and Google Scholar. Articles were screened based on inclusion and exclusion criteria, and their quality was assessed using the QUADAS-2 tool. Funnel plots and forest plots were generated to assess the likelihood of study bias and heterogeneity, respectively. RESULTS After the screening process, seven articles were selected for qualitative analysis. The study groups, which consisted of Healthy Control (HC) vs. TB and LTB vs. TB, exhibited an overall sensitivity of 81.9% (95% CI: 74.2, 87.7) and specificity of 68.3% (95% CI: 57.8, 77.2), respectively. However, our meta-analysis results highlighted two potentially valuable miRNA candidates, miR-197 and miR-144, for discriminating TB from HC. The miRNA signature model (miR197-3p, miR-let-7e-5p, and miR-223-3p) has also been shown to diagnose DR-TB with a sensitivity of 100%, but with a compromised specificity of only 75%. CONCLUSION miRNA biomarkers show a promising future for TB diagnostics. Further multicentre studies without biases are required to identify clinically valid biomarkers for different states of the TB disease spectrum. SYSTEMATIC REVIEW REGISTRATION PROSPERO (CRD42022302729).
Collapse
Affiliation(s)
- Harinisri Gunasekaran
- Department of Immunology, ICMR-National Institute for Research in Tuberculosis, No.1. Mayor Sathyamoorthy Road, 600 031, Chetpet, Chennai, India
- University of Madras, Chennai, India
| | - Pavithra Sampath
- Department of Immunology, ICMR-National Institute for Research in Tuberculosis, No.1. Mayor Sathyamoorthy Road, 600 031, Chetpet, Chennai, India
- University of Madras, Chennai, India
| | - Kannan Thiruvengadam
- Department of Epidemiology Statistics, ICMR-National Institute for Research in Tuberculosis, Chennai, India
| | - Muniyandi Malaisamy
- Department of Health Economics, ICMR-National Institute for Research in Tuberculosis, Chennai, India
| | - Rathinasabapati Ramasamy
- Library and Information Center, ICMR-National Institute for Research in Tuberculosis, Chennai, India
| | - Uma Devi Ranganathan
- Department of Immunology, ICMR-National Institute for Research in Tuberculosis, No.1. Mayor Sathyamoorthy Road, 600 031, Chetpet, Chennai, India
| | - Ramalingam Bethunaickan
- Department of Immunology, ICMR-National Institute for Research in Tuberculosis, No.1. Mayor Sathyamoorthy Road, 600 031, Chetpet, Chennai, India.
| |
Collapse
|
8
|
Wright K, Han DJ, Song R, de Silva K, Plain KM, Purdie AC, Shepherd A, Chin M, Hortle E, Wong JJL, Britton WJ, Oehlers SH. Zebrafish tsc1 and cxcl12a increase susceptibility to mycobacterial infection. Life Sci Alliance 2024; 7:e202302523. [PMID: 38307625 PMCID: PMC10837051 DOI: 10.26508/lsa.202302523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/22/2024] [Accepted: 01/23/2024] [Indexed: 02/04/2024] Open
Abstract
Regulation of host miRNA expression is a contested node that controls the host immune response to mycobacterial infection. The host must counter subversive efforts of pathogenic mycobacteria to launch a protective immune response. Here, we examine the role of miR-126 in the zebrafish-Mycobacterium marinum infection model and identify a protective role for infection-induced miR-126 through multiple effector pathways. We identified a putative link between miR-126 and the tsc1a and cxcl12a/ccl2/ccr2 signalling axes resulting in the suppression of non-tnfa expressing macrophage accumulation at early M. marinum granulomas. Mechanistically, we found a detrimental effect of tsc1a expression that renders zebrafish embryos susceptible to higher bacterial burden and increased cell death via mTOR inhibition. We found that macrophage recruitment driven by the cxcl12a/ccl2/ccr2 signalling axis was at the expense of the recruitment of classically activated tnfa-expressing macrophages and increased cell death around granulomas. Together, our results delineate putative pathways by which infection-induced miR-126 may shape an effective immune response to M. marinum infection in zebrafish embryos.
Collapse
Affiliation(s)
- Kathryn Wright
- Tuberculosis Research Program at the Centenary Institute, The University of Sydney, Camperdown, Australia
- Faculty of Science, Sydney School of Veterinary Science, The University of Sydney, Sydney, Australia
- Directed Evolution Research Program at the Centenary Institute, The University of Sydney, Camperdown, Australia
- Faculty of Medicine and Health, The University of Sydney, Camperdown, Australia
| | - Darryl Jy Han
- A*STAR Infectious Diseases Labs (A*STAR ID Labs), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Renhua Song
- Faculty of Medicine and Health, The University of Sydney, Camperdown, Australia
- Epigenetics and RNA Biology Laboratory, Charles Perkins Centre, The University of Sydney, Camperdown, Australia
| | - Kumudika de Silva
- Faculty of Science, Sydney School of Veterinary Science, The University of Sydney, Sydney, Australia
| | - Karren M Plain
- Faculty of Science, Sydney School of Veterinary Science, The University of Sydney, Sydney, Australia
| | - Auriol C Purdie
- Faculty of Science, Sydney School of Veterinary Science, The University of Sydney, Sydney, Australia
| | - Ava Shepherd
- Directed Evolution Research Program at the Centenary Institute, The University of Sydney, Camperdown, Australia
| | - Maegan Chin
- Directed Evolution Research Program at the Centenary Institute, The University of Sydney, Camperdown, Australia
| | - Elinor Hortle
- Tuberculosis Research Program at the Centenary Institute, The University of Sydney, Camperdown, Australia
- Faculty of Medicine and Health, The University of Sydney, Camperdown, Australia
- Faculty of Science, School of Life Sciences, Centre for Inflammation and University of Technology Sydney, Sydney, Australia
| | - Justin J-L Wong
- Faculty of Medicine and Health, The University of Sydney, Camperdown, Australia
- Epigenetics and RNA Biology Laboratory, Charles Perkins Centre, The University of Sydney, Camperdown, Australia
| | - Warwick J Britton
- Tuberculosis Research Program at the Centenary Institute, The University of Sydney, Camperdown, Australia
- Faculty of Medicine and Health, The University of Sydney, Camperdown, Australia
- Department of Clinical Immunology, Royal Prince Alfred Hospital, Camperdown, Australia
| | - Stefan H Oehlers
- Tuberculosis Research Program at the Centenary Institute, The University of Sydney, Camperdown, Australia
- Faculty of Medicine and Health, The University of Sydney, Camperdown, Australia
- A*STAR Infectious Diseases Labs (A*STAR ID Labs), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| |
Collapse
|
9
|
Yao S, Liu B, Hu X, Tan Y, Liu K, He M, Wu B, Ahmad N, Su X, Zhang Y, Yi M. Diagnostic value of microRNAs in active tuberculosis based on quantitative and enrichment analyses. Diagn Microbiol Infect Dis 2024; 108:116172. [PMID: 38340483 DOI: 10.1016/j.diagmicrobio.2024.116172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 12/31/2023] [Accepted: 01/02/2024] [Indexed: 02/12/2024]
Abstract
BACKGROUND Tuberculosis (TB) infection remains a crucial global health challenge, with active tuberculosis (ATB) representing main infection source. MicroRNA (miRNA) has emerged as a potential diagnostic tool in this context. This study aims to identify candidate miRNAs for ATB diagnosis and explore their possible mechanisms. METHODS Differentially expressed miRNAs in ATB were summarized in qualitative analysis. The diagnostic values of miRNAs for ATB subtypes were assessed by overall sensitivity, specificity, and area under the curve. Additionally, we conducted enrichment analysis on miRNAs and target genes. RESULTS Over 100 differentially expressed miRNAs were identified, with miR-29 family being the most extensively studied. The miR-29 family demonstrated sensitivity, specificity, and area under the curve of 80 %, 80 % and 0.86 respectively for active pulmonary TB (PTB). The differentially expressed miR-29-target genes in PTB were enriched in immune-related pathways. CONCLUSIONS The miR-29 family exhibits good diagnostic value for active PTB and shows association with immune process.
Collapse
Affiliation(s)
- Shuoyi Yao
- Department of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China; Xiangya School of Medicine, Central South University, Changsha, China
| | - Bin Liu
- Department of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Xinyue Hu
- Department of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yun Tan
- School of Medicine, Changsha Social Work College, Changsha, China
| | - Kun Liu
- School of Life Sciences, Central South University, Changsha, China
| | - Meng He
- Department of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Bohan Wu
- School of Life Sciences, Central South University, Changsha, China
| | - Namra Ahmad
- School of Life Sciences, Central South University, Changsha, China
| | - Xiaoli Su
- Department of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yuan Zhang
- Department of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Minhan Yi
- School of Life Sciences, Central South University, Changsha, China.
| |
Collapse
|
10
|
Li J, Chen Z, Li Q, Liu R, Zheng J, Gu Q, Xiang F, Li X, Zhang M, Kang X, Wu R. Study of miRNA and lymphocyte subsets as potential biomarkers for the diagnosis and prognosis of gastric cancer. PeerJ 2024; 12:e16660. [PMID: 38259671 PMCID: PMC10802158 DOI: 10.7717/peerj.16660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 11/21/2023] [Indexed: 01/24/2024] Open
Abstract
Objective The aim of this study was to identify the expression of miRNA and lymphocyte subsets in the blood of gastric cancer (GC) patients, elucidate their clinical significance in GC, and establish novel biomarkers for the early diagnosis and prognosis of GC. Methods The expression of miRNAs in the serum of GC patients was screened using second-generation sequencing and detected using qRT-PCR. The correlation between miRNA expression and clinicopathological characteristics of GC patients was analyzed, and molecular markers for predicting cancer were identified. Additionally, flow cytometry was used to detect the proportion of lymphocyte subsets in GC patients compared to healthy individuals. The correlations between differential lymphocyte subsets, clinicopathological features of GC patients, and their prognosis were analyzed statistically. Results The study revealed that hsa-miR-1306-5p, hsa-miR-3173-5p, and hsa-miR-296-5p were expressed at lower levels in the blood of GC patients, which is consistent with miRNA-seq findings. The AUC values of hsa-miR-1306-5p, hsa-miR-3173-5p, and hsa-miR-296-5p were found to be effective predictors of GC occurrence. Additionally, hsa-miR-296-5p was found to be negatively correlated with CA724. Furthermore, hsa-miR-1306-5p, hsa-miR-3173-5p, and hsa-miR-296-5p were found to be associated with the stage of the disease and were closely linked to the clinical pathology of GC. The lower the levels of these miRNAs, the greater the clinical stage of the tumor and the worse the prognosis of gastric cancer patients. Finally, the study found that patients with GC had lower absolute numbers of CD3+ T cells, CD4+ T cells, CD8+ T cells, CD19+ B cells, and lymphocytes compared to healthy individuals. The quantity of CD4+ T lymphocytes and the level of the tumor marker CEA were shown to be negatively correlated. The ROC curve and multivariate logistic regression analysis demonstrated that lymphocyte subsets can effectively predict gastric carcinogenesis and prognosis. Conclusion These miRNAs such as hsa-miR-1306-5p, hsa-miR-3173-5p, hsa-miR-296-5p and lymphocyte subsets such as the absolute numbers of CD3+ T cells, CD4+ T cells, CD8+ T cells, CD19+ B cells, lymphocytes are down-regulated in GC and are closely related to the clinicopathological characteristics and prognosis of GC patients. They may serve as new molecular markers for predicting the early diagnosis and prognosis of GC patients.
Collapse
Affiliation(s)
- Jinpeng Li
- Department of Laboratory Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zixi Chen
- Department of Laboratory Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qian Li
- Department of Laboratory Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Rongrong Liu
- Department of Laboratory Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jin Zheng
- Department of Laboratory Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qing Gu
- Department of Laboratory Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Fenfen Xiang
- Department of Laboratory Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaoxiao Li
- Department of Laboratory Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Mengzhe Zhang
- Department of Laboratory Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiangdong Kang
- Department of Laboratory Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Rong Wu
- Department of Laboratory Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
11
|
Agrawal P, Upadhyay A, Kumar A. microRNA as biomarkers in tuberculosis: a new emerging molecular diagnostic solution. Diagn Microbiol Infect Dis 2024; 108:116082. [PMID: 37839161 DOI: 10.1016/j.diagmicrobio.2023.116082] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 08/29/2023] [Accepted: 09/04/2023] [Indexed: 10/17/2023]
Abstract
Tuberculosis (TB) caused by Mycobacterium tuberculosis is a lethal infectious disease that is prevalent worldwide. During TB infection, host microRNAs change their expression in the form of up/down-regulation. The identification of unique host microRNAs during TB could serve as potential biomarkers in the early detection of TB. microRNAs fulfill the required criteria for being an ideal biomarker, such as sensitivity, high specificity, and accessibility. Therefore, the recognition of potential host microRNAs can be valuable for the diagnosis of TB. The field of miRNA biomarkers in TB requires more extensive research to identify potential biomarkers. This review provides an overview of the biogenesis and biological functions of microRNAs and presents the findings of various studies on the identification of potential biomarkers for TB. Research momentum is gaining in this field and we anticipate that miRNAs will become a routine approach in the development of reliable diagnostic and specific therapeutic interventions in future.
Collapse
Affiliation(s)
- Piyush Agrawal
- Department of Biotechnology, National Institute of Technology, Raipur (CG), India
| | - Aditya Upadhyay
- Department of Biotechnology, National Institute of Technology, Raipur (CG), India
| | - Awanish Kumar
- Department of Biotechnology, National Institute of Technology, Raipur (CG), India.
| |
Collapse
|
12
|
Wang N, Yao Y, Qian Y, Qiu D, Cao H, Xiang H, Wang J. Cargoes of exosomes function as potential biomarkers for Mycobacterium tuberculosis infection. Front Immunol 2023; 14:1254347. [PMID: 37928531 PMCID: PMC10622749 DOI: 10.3389/fimmu.2023.1254347] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 10/02/2023] [Indexed: 11/07/2023] Open
Abstract
Exosomes as double-membrane vesicles contain various contents of lipids, proteins, mRNAs and non-coding RNAs, and involve in multiple physiological processes, for instance intercellular communication and immunomodulation. Currently, numerous studies found that the components of exosomal proteins, nucleic acids or lipids released from host cells are altered following infection with Mycobacterium tuberculosis. Exosomal contents provide excellent biomarkers for the auxiliary diagnosis, efficacy evaluation, and prognosis of tuberculosis. This study aimed to review the current literatures detailing the functions of exosomes in the procedure of M. tuberculosis infection, and determine the potential values of exosomes as biomarkers to assist in the diagnosis and monitoring of tuberculosis.
Collapse
Affiliation(s)
- Nan Wang
- Department of Clinical Laboratory, Kunshan Hospital Affiliated to Jiangsu University, Suzhou, Jiangsu, China
| | - Yongliang Yao
- Department of Clinical Laboratory, Kunshan Hospital Affiliated to Jiangsu University, Suzhou, Jiangsu, China
| | - Yingfen Qian
- Department of Clinical Laboratory, Kunshan Fourth People’s Hospital, Suzhou, Jiangsu, China
| | - Dewen Qiu
- Department of Clinical Laboratory, Jiangxi Maternal and Child Health Hospital Maternal and Child Heath Hospital of Nanchang College, Nanchang, China
| | - Hui Cao
- Department of Food and Nutrition Safety, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, Jiangsu, China
| | - Huayuan Xiang
- Department of Clinical Laboratory, Kunshan Hospital Affiliated to Jiangsu University, Suzhou, Jiangsu, China
| | - Jianjun Wang
- Department of Clinical Laboratory, Kunshan Hospital Affiliated to Jiangsu University, Suzhou, Jiangsu, China
| |
Collapse
|
13
|
Li X, Xu Y, Liao P. Diagnostic performance of microRNA-29a in active pulmonary tuberculosis: a systematic review and meta-analysis. Clinics (Sao Paulo) 2023; 78:100290. [PMID: 37837919 PMCID: PMC10589768 DOI: 10.1016/j.clinsp.2023.100290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 08/30/2023] [Accepted: 09/26/2023] [Indexed: 10/16/2023] Open
Abstract
BACKGROUND In recent years, more and more studies have shown that microRNA-29a (miRNA-29a) can be used as a potential biomarker for active tuberculosis, but the results of these studies are not consistent. OBJECTIVE To comprehensively evaluate the value of miRNA-29a in the diagnosis of active tuberculosis by meta-analysis. METHODS The databases of CNKI, WanFang, PubMed, The Cochrane Library, Web of Science and EMBASE were searched for relevant studies. Studies were screened strictly according to inclusion and exclusion criteria. QUADAS-2 scale was used to evaluate the quality of the included studies. Data were extracted and analyzed by Meta-DiSc 1.4 and Stata 16.0 software. RESULTS 13 articles were included, including a total of 1598 subjects, including 872 active tuberculosis patients and 726 controls. The combined sensitivity and specificity of miRNA-29a in the diagnosis of active tuberculosis were 78 % and 76 %, respectively, and the area under the overall summary receiver operating characteristic curve was 0.8564. CONCLUSION miRNA-29a can be used as a biomarker for the diagnosis of active tuberculosis.
Collapse
Affiliation(s)
- Xiaoying Li
- Department of Clinical Laboratory, The Affiliated Hospital of Southwest Medical University, Luzhou, China; Department of Clinical Laboratory, Chongqing General Hospital, Chongqing, China
| | - Yuehong Xu
- Department of Clinical Laboratory, Chongqing General Hospital, Chongqing, China
| | - Pu Liao
- Department of Clinical Laboratory, The Affiliated Hospital of Southwest Medical University, Luzhou, China; Department of Clinical Laboratory, Chongqing General Hospital, Chongqing, China.
| |
Collapse
|
14
|
Davuluri KS, Chauhan DS. microRNAs associated with the pathogenesis and their role in regulating various signaling pathways during Mycobacterium tuberculosis infection. Front Cell Infect Microbiol 2022; 12:1009901. [PMID: 36389170 PMCID: PMC9647626 DOI: 10.3389/fcimb.2022.1009901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 10/03/2022] [Indexed: 11/22/2022] Open
Abstract
Despite more than a decade of active study, tuberculosis (TB) remains a serious health concern across the world, and it is still the biggest cause of mortality in the human population. Pathogenic bacteria recognize host-induced responses and adapt to those hostile circumstances. This high level of adaptability necessitates a strong regulation of bacterial metabolic characteristics. Furthermore, the immune reponse of the host virulence factors such as host invasion, colonization, and survival must be properly coordinated by the pathogen. This can only be accomplished by close synchronization of gene expression. Understanding the molecular characteristics of mycobacterial pathogenesis in order to discover therapies that prevent or resolve illness relies on the bacterial capacity to adjust its metabolism and replication in response to various environmental cues as necessary. An extensive literature details the transcriptional alterations of host in response to in vitro environmental stressors, macrophage infection, and human illness. Various studies have recently revealed the finding of several microRNAs (miRNAs) that are believed to play an important role in the regulatory networks responsible for adaptability and virulence in Mycobacterium tuberculosis. We highlighted the growing data on the existence and quantity of several forms of miRNAs in the pathogenesis of M. tuberculosis, considered their possible relevance to disease etiology, and discussed how the miRNA-based signaling pathways regulate bacterial virulence factors.
Collapse
|
15
|
Wang L, Xiong Y, Fu B, Guo D, Zaky MY, Lin X, Wu H. MicroRNAs as immune regulators and biomarkers in tuberculosis. Front Immunol 2022; 13:1027472. [PMID: 36389769 PMCID: PMC9647078 DOI: 10.3389/fimmu.2022.1027472] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 10/12/2022] [Indexed: 07/26/2023] Open
Abstract
Tuberculosis (TB), which is caused by Mycobacterium tuberculosis (Mtb), is one of the most lethal infectious disease worldwide, and it greatly affects human health. Some diagnostic and therapeutic methods are available to effectively prevent and treat TB; however, only a few systematic studies have described the roles of microRNAs (miRNAs) in TB. Combining multiple clinical datasets and previous studies on Mtb and miRNAs, we state that pathogens can exploit interactions between miRNAs and other biomolecules to avoid host mechanisms of immune-mediated clearance and survive in host cells for a long time. During the interaction between Mtb and host cells, miRNA expression levels are altered, resulting in the changes in the miRNA-mediated regulation of host cell metabolism, inflammatory responses, apoptosis, and autophagy. In addition, differential miRNA expression can be used to distinguish healthy individuals, patients with TB, and patients with latent TB. This review summarizes the roles of miRNAs in immune regulation and their application as biomarkers in TB. These findings could provide new opportunities for the diagnosis and treatment of TB.
Collapse
Affiliation(s)
- Lulu Wang
- Department of Biology, School of Life Sciences, Chongqing University, Chongqing, China
| | - Yan Xiong
- Department of Biology, School of Life Sciences, Chongqing University, Chongqing, China
| | - Beibei Fu
- Department of Biology, School of Life Sciences, Chongqing University, Chongqing, China
| | - Dong Guo
- Department of Biology, School of Life Sciences, Chongqing University, Chongqing, China
| | - Mohamed Y. Zaky
- Department of Zoology, Molecular Physiology Division, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - Xiaoyuan Lin
- Department of Biology, School of Life Sciences, Chongqing University, Chongqing, China
| | - Haibo Wu
- Department of Biology, School of Life Sciences, Chongqing University, Chongqing, China
| |
Collapse
|
16
|
Liang S, Ma J, Gong H, Shao J, Li J, Zhan Y, Wang Z, Wang C, Li W. Immune regulation and emerging roles of noncoding RNAs in Mycobacterium tuberculosis infection. Front Immunol 2022; 13:987018. [PMID: 36311754 PMCID: PMC9608867 DOI: 10.3389/fimmu.2022.987018] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 08/29/2022] [Indexed: 05/10/2024] Open
Abstract
Tuberculosis, caused by Mycobacterium tuberculosis, engenders an onerous burden on public hygiene. Congenital and adaptive immunity in the human body act as robust defenses against the pathogens. However, in coevolution with humans, this microbe has gained multiple lines of mechanisms to circumvent the immune response to sustain its intracellular persistence and long-term survival inside a host. Moreover, emerging evidence has revealed that this stealthy bacterium can alter the expression of demic noncoding RNAs (ncRNAs), leading to dysregulated biological processes subsequently, which may be the rationale behind the pathogenesis of tuberculosis. Meanwhile, the differential accumulation in clinical samples endows them with the capacity to be indicators in the time of tuberculosis suffering. In this article, we reviewed the nearest insights into the impact of ncRNAs during Mycobacterium tuberculosis infection as realized via immune response modulation and their potential as biomarkers for the diagnosis, drug resistance identification, treatment evaluation, and adverse drug reaction prediction of tuberculosis, aiming to inspire novel and precise therapy development to combat this pathogen in the future.
Collapse
Affiliation(s)
- Shufan Liang
- Department of Respiratory and Critical Care Medicine, Med-X Center for Manufacturing, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, China
| | - Jiechao Ma
- Artificial Intelligence (AI) Lab, Deepwise Healthcare, Beijing, China
| | - Hanlin Gong
- Department of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Jun Shao
- Department of Respiratory and Critical Care Medicine, Med-X Center for Manufacturing, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, China
| | - Jingwei Li
- Department of Respiratory and Critical Care Medicine, Med-X Center for Manufacturing, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, China
| | - Yuejuan Zhan
- Department of Respiratory and Critical Care Medicine, Med-X Center for Manufacturing, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, China
| | - Zhoufeng Wang
- Department of Respiratory and Critical Care Medicine, Med-X Center for Manufacturing, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, China
| | - Chengdi Wang
- Department of Respiratory and Critical Care Medicine, Med-X Center for Manufacturing, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, China
| | - Weimin Li
- Department of Respiratory and Critical Care Medicine, Med-X Center for Manufacturing, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, China
| |
Collapse
|
17
|
Xiao M, Yang S, Zhou A, Li T, Liu J, Chen Y, Luo Y, Qian C, Yang F, Tang B, Li C, Su N, Li J, Jiang M, Yang S, Lin H. MiR-27a-3p and miR-30b-5p inhibited-vitamin D receptor involved in the progression of tuberculosis. Front Microbiol 2022; 13:1020542. [PMID: 36304947 PMCID: PMC9593098 DOI: 10.3389/fmicb.2022.1020542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 09/20/2022] [Indexed: 11/28/2022] Open
Abstract
Background MicroRNAs (miRNAs) play a vital role in tuberculosis (TB). Vitamin D receptor (VDR), an miRNA target gene, and its ligand, vitamin D3 (VitD3), have been reported to exert protective effects against TB. However, whether miRNAs can affect the progression of TB by targeting VDR has not been reported. Materials and methods Research subjects were selected according to defined inclusion criteria. A clinical database of 360 samples was established, including the subjects’ demographic information, miRNA expression profiles and cellular experimental results. Two candidate miRNAs, miR-27a-3p, and miR-30b-5p, were identified by a high-throughput sequencing screen and validated by qRT–PCR assays. Univariate and multivariate statistical analyses were performed. VDR and NF-kB p65 protein levels were detected by Western blot assays. Proinflammatory cytokine expression levels were detected by enzyme-linked immunosorbent assay (ELISA). Luciferase assays and fluorescence-activated cell sorting (FACS) were further applied to elucidate the detailed mechanisms. Results Differential miRNA expression profiles were obtained, and miR-27a-3p and miR-30b-5p were highly expressed in patients with TB. These results showed that the two miRNAs were able to induce M1 macrophage differentiation and inhibit M2 macrophage differentiation. Further experiments showed that the two miRNAs decreased the VDR protein level and increased proinflammatory cytokine secretion by macrophages. Mechanistically, the miRNAs targeted the 3′ untranslated region (3′UTR) of the VDR mRNA and thereby downregulated VDR protein levels by post-transcriptional regulation. Then, due to the reduction in VDR protein levels, the NF-kB inflammatory cytokine signaling pathway was activated, thus promoting the progression of TB. Conclusion Our study not only identified differentially expressed miRNAs between the TB and control groups but also revealed that miR-27a-3p and miR-30b-5p regulate proinflammatory cytokine secretion and macrophage differentiation through VDR in macrophages. Thus, these two miRNAs influence the progression of TB.
Collapse
Affiliation(s)
- Min Xiao
- Department of Gastroenterology, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Song Yang
- Chongqing Public Health Medical Center, Southwest University, Chongqing, China
| | - An Zhou
- Department of Gastroenterology, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Tongxin Li
- Chongqing Public Health Medical Center, Southwest University, Chongqing, China
| | - Jingjing Liu
- Department of Gastroenterology, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Yang Chen
- Department of Gastroenterology, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Ya Luo
- Department of Gastroenterology, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Chunfang Qian
- Chongqing Public Health Medical Center, Southwest University, Chongqing, China
| | - Fuping Yang
- Chongqing Public Health Medical Center, Southwest University, Chongqing, China
| | - Bo Tang
- Department of Gastroenterology, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Chunhua Li
- Department of Gastroenterology, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Na Su
- Chongqing Public Health Medical Center, Southwest University, Chongqing, China
| | - Jing Li
- Department of Gastroenterology, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Mingying Jiang
- Chongqing Public Health Medical Center, Southwest University, Chongqing, China
- *Correspondence: Mingying Jiang,
| | - Shiming Yang
- Department of Gastroenterology, Xinqiao Hospital, Army Medical University, Chongqing, China
- Shiming Yang,
| | - Hui Lin
- Department of Gastroenterology, Xinqiao Hospital, Army Medical University, Chongqing, China
- Hui Lin,
| |
Collapse
|
18
|
Kameni C, Mezajou CF, Ngongang NN, Ngum JA, Simo USF, Tatang FJ, Nguengo SN, Nouthio APC, Pajiep MAW, Toumeni MH, Madjoumo EST, Tchinda MF, Ngangue RJEM, Koro Koro F, Wade A, Akami M, Ngono ARN, Tamgue O. p50-associated Cyclooxygenase-2 Extragenic RNA (PACER) and Long Non-coding RNA 13 (LNC13) as potential biomarkers for monitoring tuberculosis treatment. FRONTIERS IN TROPICAL DISEASES 2022. [DOI: 10.3389/fitd.2022.969347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Gaps in early and accurate diagnosis, effective drug control, and treatment monitoring are hindering the global eradication effort of tuberculosis. This infectious disease has become the deadliest worldwide before the outbreak of Covid-19. The search for new molecular biomarkers of tuberculosis will help to reverse this trend. Long non-coding RNAs (lncRNAs) have emerged as important regulators of the host immune response to infection, hence their link with the etiology and diagnosis of tuberculosis has attracted some attention from the research community. However, very little is known about their potential for the monitoring of tuberculosis treatment. This study aimed at assessing the potential of two lncRNAs: p50-associated Cyclooxygenase-2 Extragenic RNA (PACER) and Long Non-coding RNA 13 (LNC13) in the monitoring of tuberculosis treatment. This was a cross-sectional study carried out in Douala, Cameroon from December 2020 to August 2021. A quantitative real-time polymerase chain reaction followed by Cq analysis using the Livak method were performed to measure the relative expression levels of PACER and LNC13 in whole blood of healthy controls, patients with active pulmonary tuberculosis at the initiation of treatment, after two, five, and six months into treatment. Receiver Operating Characteristic curves analysis was used to assess the ability of targeted lncRNAs to discriminate among those groups. The study showed that the lncRNAs PACER and LNC13 were significantly upregulated in patients with active pulmonary tuberculosis at the initiation of treatment than in healthy controls. The expression levels of the two lncRNAs were significantly downregulated in patients during the treatment as compared to the active pulmonary tuberculosis patients. However, the expression levels of the lncRNAs PACER and LNC13 in whole blood of patients after six months of treatment were similar to those in healthy controls. Similarly, lncRNAs PACER and LNC13 showed very good performance in distinguishing between active tuberculosis patients and healthy controls as well as in differentiating between newly diagnosed active tuberculosis patients and those under treatment. Interestingly, those lncRNAs could not discriminate healthy controls from patients after six months of treatment. The lncRNAs PACER and LNC13 are therefore potential biomarkers for the monitoring of tuberculosis treatment.
Collapse
|
19
|
Kelly E, Whelan SO, Harriss E, Murphy S, Pollard AJ, O' Connor D. Systematic review of host genomic biomarkers of invasive bacterial disease: Distinguishing bacterial from non-bacterial causes of acute febrile illness. EBioMedicine 2022; 81:104110. [PMID: 35792524 PMCID: PMC9256842 DOI: 10.1016/j.ebiom.2022.104110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 05/27/2022] [Accepted: 05/28/2022] [Indexed: 12/03/2022] Open
Abstract
Background Infectious diseases play a significant role in the global burden of disease. The gold standard for the diagnosis of bacterial infection, bacterial culture, can lead to diagnostic delays and inappropriate antibiotic use. The advent of high- throughput technologies has led to the discovery of host-based genomic biomarkers of infection, capable of differentiating bacterial from other causes of infection, but few have achieved validation for use in a clinical setting. Methods A systematic review was performed. PubMed/Ovid Medline, Ovid Embase and Scopus databases were searched for relevant studies from inception up to 30/03/2022 with forward and backward citation searching of key references. Studies assessing the diagnostic performance of human host genomic biomarkers of bacterial infection were included. Study selection and assessment of quality were conducted by two independent reviewers. A meta-analysis was undertaken using a diagnostic random-effects model. The review was registered with PROSPERO (ID: CRD42021208462). Findings Seventy-two studies evaluating the performance of 116 biomarkers in 16,216 patients were included. Forty-six studies examined TB-specific biomarker performance and twenty-four studies assessed biomarker performance in a paediatric population. The results of pooled sensitivity, specificity, negative and positive likelihood ratio, and diagnostic odds ratio of genomic biomarkers of bacterial infection were 0.80 (95% CI 0.78 to 0.82), 0.86 (95% CI 0.84 to 0.88), 0.18 (95% CI 0.16 to 0.21), 5.5 (95% CI 4.9 to 6.3), 30.1 (95% CI 24 to 37), respectively. Significant between-study heterogeneity (I2 77%) was present. Interpretation Host derived genomic biomarkers show significant potential for clinical use as diagnostic tests of bacterial infection however, further validation and attention to test platform is warranted before clinical implementation can be achieved. Funding No funding received.
Collapse
Affiliation(s)
- Eimear Kelly
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford. UK; NIHR Oxford Biomedical Research Centre, Oxford, UK.
| | - Seán Olann Whelan
- Department of Clinical Microbiology, Galway University Hospital, Galway, Ireland
| | - Eli Harriss
- Bodleian Health Care Libraries, University of Oxford
| | - Sarah Murphy
- Department of Paediatrics, Cork University Maternity Hospital, Wilton, Cork, Ireland
| | - Andrew J Pollard
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford. UK; NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Daniel O' Connor
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford. UK; NIHR Oxford Biomedical Research Centre, Oxford, UK
| |
Collapse
|
20
|
Almatroudi A. Non-Coding RNAs in Tuberculosis Epidemiology: Platforms and Approaches for Investigating the Genome's Dark Matter. Int J Mol Sci 2022; 23:4430. [PMID: 35457250 PMCID: PMC9024992 DOI: 10.3390/ijms23084430] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/05/2022] [Accepted: 04/14/2022] [Indexed: 02/07/2023] Open
Abstract
A growing amount of information about the different types, functions, and roles played by non-coding RNAs (ncRNAs) is becoming available, as more and more research is done. ncRNAs have been identified as potential therapeutic targets in the treatment of tuberculosis (TB), because they may be essential regulators of the gene network. ncRNA profiling and sequencing has recently revealed significant dysregulation in tuberculosis, primarily due to aberrant processes of ncRNA synthesis, including amplification, deletion, improper epigenetic regulation, or abnormal transcription. Despite the fact that ncRNAs may have a role in TB characteristics, the detailed mechanisms behind these occurrences are still unknown. The dark matter of the genome can only be explored through the development of cutting-edge bioinformatics and molecular technologies. In this review, ncRNAs' synthesis and functions are discussed in detail, with an emphasis on the potential role of ncRNAs in tuberculosis. We also focus on current platforms, experimental strategies, and computational analyses to explore ncRNAs in TB. Finally, a viewpoint is presented on the key challenges and novel techniques for the future and for a wide-ranging therapeutic application of ncRNAs.
Collapse
Affiliation(s)
- Ahmad Almatroudi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| |
Collapse
|
21
|
Pattnaik B, Patnaik N, Mittal S, Mohan A, Agrawal A, Guleria R, Madan K. Micro RNAs as potential biomarkers in tuberculosis: A systematic review. Noncoding RNA Res 2022; 7:16-26. [PMID: 35128217 PMCID: PMC8792429 DOI: 10.1016/j.ncrna.2021.12.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 12/24/2021] [Accepted: 12/29/2021] [Indexed: 12/15/2022] Open
Abstract
Tuberculosis (TB) remains a major infectious disease across the globe. With increasing TB infections and a rise in multi-drug resistance, rapid diagnostic modalities are required to achieve TB control. Radiological investigations and microbiological tests (microscopic examination, cartridge-based nucleic acid amplification tests, and cultures) are most commonly used to diagnose TB. Histopathological/cytopathological examinations are also required for an accurate diagnosis in many patients. The causative agent, Mycobacterium tuberculosis (Mtb), is known to circumvent the host's immune system. Circulating microRNAs (miRNAs) play a crucial role in biological pathways and can be used as a potential biomarker to detect tuberculosis. miRNAs are small non-coding RNAs and negatively regulate gene expression during post-transcriptional regulation. The differential expression of miRNAs in multiple clinical samples in tuberculosis patients may be helpful as potential disease biomarkers. This review summarizes the literature on miRNAs in various clinical samples as biomarkers for TB diagnosis.
Collapse
Affiliation(s)
- Bijay Pattnaik
- Department of Pulmonary, Critical Care and Sleep Medicine, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Niharika Patnaik
- Centre of Excellence in Asthma & Lung Disease, Molecular Immunogenetics Lab, CSIR-Institute of Genomics & Integrative Biology, New Delhi, India
| | - Saurabh Mittal
- Department of Pulmonary, Critical Care and Sleep Medicine, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Anant Mohan
- Department of Pulmonary, Critical Care and Sleep Medicine, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Anurag Agrawal
- Centre of Excellence in Asthma & Lung Disease, Molecular Immunogenetics Lab, CSIR-Institute of Genomics & Integrative Biology, New Delhi, India
| | - Randeep Guleria
- Department of Pulmonary, Critical Care and Sleep Medicine, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Karan Madan
- Department of Pulmonary, Critical Care and Sleep Medicine, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| |
Collapse
|
22
|
Magdalena D, Magdalena G. Biological functions and diagnostic implications of microRNAs in Mycobacterium tuberculosis infection. Asian Pac J Trop Biomed 2022. [DOI: 10.4103/2221-1691.333208] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
23
|
Biomarkers that correlate with active pulmonary tuberculosis treatment response: a systematic review and meta-analysis. J Clin Microbiol 2021; 60:e0185921. [PMID: 34911364 PMCID: PMC8849205 DOI: 10.1128/jcm.01859-21] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Current WHO recommendations for monitoring treatment response in adult pulmonary tuberculosis (TB) are sputum smear microscopy and/or culture conversion at the end of the intensive phase of treatment. These methods either have suboptimal accuracy or a long turnaround time. There is a need to identify alternative biomarkers to monitor TB treatment response. We conducted a systematic review of active pulmonary TB treatment monitoring biomarkers. We screened 9,739 articles published between 1 January 2008 and 31 December 2020, of which 77 met the inclusion criteria. When studies quantitatively reported biomarker levels, we meta-analyzed the average fold change in biomarkers from pretreatment to week 8 of treatment. We also performed a meta-analysis pooling the fold change since the previous time point collected. A total of 81 biomarkers were identified from 77 studies. Overall, these studies exhibited extensive heterogeneity with regard to TB treatment monitoring study design and data reporting. Among the biomarkers identified, C-reactive protein (CRP), interleukin-6 (IL-6), interferon gamma-induced protein 10 (IP-10), and tumor necrosis factor alpha (TNF-α) had sufficient data to analyze fold changes. All four biomarker levels decreased during the first 8 weeks of treatment relative to baseline and relative to previous time points collected. Based on limited data available, CRP, IL-6, IP-10, and TNF-α have been identified as biomarkers that should be further explored in the context of TB treatment monitoring. The extensive heterogeneity in TB treatment monitoring study design and reporting is a major barrier to evaluating the performance of novel biomarkers and tools for this use case. Guidance for designing and reporting treatment monitoring studies is urgently needed.
Collapse
|
24
|
Pedersen JL, Barry SE, Bokil NJ, Ellis M, Yang Y, Guan G, Wang X, Faiz A, Britton WJ, Saunders BM. High sensitivity and specificity of a 5-analyte protein and microRNA biosignature for identification of active tuberculosis. Clin Transl Immunology 2021; 10:e1298. [PMID: 34188917 PMCID: PMC8219900 DOI: 10.1002/cti2.1298] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/19/2021] [Accepted: 05/24/2021] [Indexed: 02/02/2023] Open
Abstract
Objectives Non‐sputum‐based tests to accurately identify active tuberculosis (TB) disease and monitor response to therapy are urgently needed. This study examined the biomarker capacity of a panel of plasma proteins alone, and in conjunction with a previously identified miRNA signature, to identify active TB disease. Methods The expression of nine proteins (IP‐10, MCP‐1, sTNFR1, RANTES, VEGF, IL‐6, IL‐10, TNF and Eotaxin) was measured in the plasma of 100 control subjects and 100 TB patients, at diagnosis (treatment naïve) and over the course of treatment (1‐, 2‐ and 6‐month intervals). The diagnostic performance of the nine proteins alone, and with the miRNA, was assessed. Results Six proteins were significantly up‐regulated in the plasma of TB patients at diagnosis compared to controls. Receiver operator characteristic curve analysis demonstrated that IP‐10 with an AUC = 0.874, sensitivity of 75% and specificity of 87% was the best single biomarker candidate to distinguish TB patients from controls. IP‐10 and IL‐6 levels fell significantly within one month of commencing treatment and may have potential as indicators of a positive response to therapy. The combined protein and miRNA panel gave an AUC of 1.00. A smaller panel of only five analytes (IP‐10, miR‐29a, miR‐146a, miR‐99b and miR‐221) showed an AUC = 0.995, sensitivity of 96% and specificity of 97%. Conclusions A novel combination of miRNA and proteins significantly improves the sensitivity and specificity as a biosignature over single biomarker candidates and may be useful for the development of a non‐sputum test to aid the diagnosis of active TB disease.
Collapse
Affiliation(s)
- Jessica L Pedersen
- School of Life Sciences, Faculty of Science University of Technology Sydney Sydney NSW Australia
| | - Simone E Barry
- Centenary Institute The University of Sydney Sydney NSW Australia.,South Australian Tuberculosis Services Royal Adelaide Hospital. Adelaide Australia
| | - Nilesh J Bokil
- School of Life Sciences, Faculty of Science University of Technology Sydney Sydney NSW Australia
| | - Magda Ellis
- Centenary Institute The University of Sydney Sydney NSW Australia
| | - YuRong Yang
- Pathogen Biology and Medical Immunological Department Ningxia Medical University Yinchuan China
| | - Guangyu Guan
- Infectious Disease Hospital of Ningxia Yinchuan China
| | - Xiaolin Wang
- Pathogen Biology and Medical Immunological Department Ningxia Medical University Yinchuan China
| | - Alen Faiz
- School of Life Sciences, Faculty of Science University of Technology Sydney Sydney NSW Australia
| | | | - Bernadette M Saunders
- School of Life Sciences, Faculty of Science University of Technology Sydney Sydney NSW Australia.,Centenary Institute The University of Sydney Sydney NSW Australia
| |
Collapse
|
25
|
Singh AK, Ghosh M, Kumar V, Aggarwal S, Patil SA. Interplay between miRNAs and Mycobacterium tuberculosis: diagnostic and therapeutic implications. Drug Discov Today 2021; 26:1245-1255. [PMID: 33497829 DOI: 10.1016/j.drudis.2021.01.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 10/14/2020] [Accepted: 01/19/2021] [Indexed: 12/21/2022]
Abstract
Increasing evidence suggests that mycobacteria change the host miRNA profile to their advantage. The active participation of miRNAs in controlling immune responses in TB has raised the possibility of utilizing miRNA-based therapy itself or canonically with a standard drug regimen for shortening the duration of treatment. The development of delivery systems for optimal delivery of oligonucleotides, including small interfering (si)RNA/miRNAs-based therapeutics has shown potential as a new therapeutic intervention. However, studies related to the exploitation of miRNAs as both biomarkers and as therapeutics in TB are scarce; thus, more in vitro and in vivo studies are required to fully determine the role of miRNAs as potential diagnostic biomarkers and to improve the pharmacological profile of this class of therapeutics.
Collapse
Affiliation(s)
- Amit Kumar Singh
- Experimental Animal Facility, ICMR-National JALMA Institute For Leprosy & Other Mycobacterial Diseases, M. Miyazaki Marg, Tajganj, Agra, Uttar Pradesh, India.
| | - Mrinmoy Ghosh
- KIIT-Technology Business Incubator (KIIT-TBI), Kalinga Institute of Industrial Technology (KIIT), Bhubaneswar-751024
| | - Vimal Kumar
- Experimental Animal Facility, ICMR-National JALMA Institute For Leprosy & Other Mycobacterial Diseases, M. Miyazaki Marg, Tajganj, Agra, Uttar Pradesh, India
| | - Sumit Aggarwal
- Division of Epidemiology & Communicable Diseases, Indian Council of Medical Research, Ansari Nagar, New Delhi, India
| | - Shripad A Patil
- Immunology Division, ICMR-National JALMA Institute For Leprosy & Other Mycobacterial Diseases, M. Miyazaki Marg, Tajganj, Agra, India
| |
Collapse
|
26
|
Lyu M, Cheng Y, Zhou J, Chong W, Wang Y, Xu W, Ying B. Systematic evaluation, verification and comparison of tuberculosis-related non-coding RNA diagnostic panels. J Cell Mol Med 2020; 25:184-202. [PMID: 33314695 PMCID: PMC7810967 DOI: 10.1111/jcmm.15903] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 08/23/2020] [Accepted: 09/01/2020] [Indexed: 02/06/2023] Open
Abstract
We systematically summarized tuberculosis (TB)‐related non‐coding RNA (ncRNA) diagnostic panels, validated and compared panel performance. We searched TB‐related ncRNA panels in PubMed, OVID and Web of Science up to 28 February 2020, and available datasets in GEO, SRA and EBI ArrayExpress up to 1 March 2020. We rebuilt models and synthesized the results of each model in validation sets by bivariate mixed models. Specificity at 90% sensitivity, area under curve (AUC) and inconsistence index (I2) were calculated. NcRNA biofunctions were analysed. Nineteen models based on 18 ncRNA panels (miRNA, lncRNA, circRNA and snoRNA panels) and 18 datasets were included. Limited available datasets only allowed to evaluate miRNA panels further. Cui 2017 and Latorre 2015 exhibited specificity >70% at 90% sensitivity and AUC >80% in all validation sets. Cui 2017 showed higher specificity at 90% sensitivity (92%) and AUC (95%) and lower heterogeneity (I2 = 0%) in ethological‐confirmation validation sets. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analysis indicated that most ncRNAs in panels involved in immune cell activation, oxidative stress, and Wnt and MAPK signalling pathway. Cui 2017 outperformed other models in both all available and aetiological‐confirmed validation sets, meeting the criteria of target product profile of WHO. This work provided a basis for clinical choice of TB‐related ncRNA diagnostic panels to a certain extent.
Collapse
Affiliation(s)
- Mengyuan Lyu
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China.,West China School of Medicine, Sichuan University, Chengdu, China
| | - Yuhui Cheng
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China.,West China School of Medicine, Sichuan University, Chengdu, China
| | - Jian Zhou
- West China School of Medicine, Sichuan University, Chengdu, China.,Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Weelic Chong
- Sidney Kimmel School of Medicine, Thomas Jefferson University, Philadelphia, PA, USA
| | - Yili Wang
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China.,West China School of Medicine, Sichuan University, Chengdu, China
| | - Wei Xu
- Department of Biostatistics, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada.,Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
| | - Binwu Ying
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China.,West China School of Medicine, Sichuan University, Chengdu, China
| |
Collapse
|
27
|
Yi S, Liu YP, Li XY, Yuan XY, Wang Y, Cai Y, Lei YD, Huang L, Zhang ZH. The expression profile and bioinformatics analysis of microRNAs in human bronchial epithelial cells treated by beryllium sulfate. J Appl Toxicol 2020; 41:1275-1285. [PMID: 33197057 DOI: 10.1002/jat.4116] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 10/17/2020] [Accepted: 11/02/2020] [Indexed: 11/08/2022]
Abstract
Beryllium and its compounds are systemic toxicants that mainly accumulate in the lungs. As a regulator of gene expression, microRNAs (miRNAs) were involved in some lung diseases. This study aimed to analyze the levels of some inflammatory cytokine and the differential expressions of miRNAs in human bronchial epithelial cells (16HBE) induced by beryllium sulfate (BeSO4 ) and to further explore the biological functions of differentially expressed miRNAs. The profile of miRNAs in 16HBE cells was detected using the high-throughput sequencing between the control groups (n = 3) and the 150 μmol/L of BeSO4 -treated groups (n = 3). Bioinformatics analysis of differentially expressed miRNAs was performed, including the prediction of target genes, Gene Ontology (GO) analysis, and the Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis. Quantitative real-time polymerase chain reaction (qRT-PCR) was applied to verify some damage-related miRNAs. We found that BeSO4 can increase the levels of some inflammatory cytokine such as interleukin-10 (IL-10), tumor necrosis factor-alpha (TNF-α), interferon-γ (IFN-γ), inducible nitric oxide synthase (iNOS), and cyclooxygenase-2 (COX-2). And BeSO4 altered miRNAs expression of 16HBE cells and a total of 179 differentially expressed miRNAs were identified, including 88 upregulated miRNAs and 91 downregulated miRNAs. The target genes predicted by 28 dysregulated miRNAs were mainly involved in the transcription regulation, signal transduction, MAPK, and VEGF signaling pathway. The qRT-PCR verification results were consistent with the sequencing results. miRNA expression profiling in 16HBE cells exposed to BeSO4 provides new insights into the toxicity mechanism of beryllium exposure.
Collapse
Affiliation(s)
- Shan Yi
- School of Public Health, University of South China, Hengyang, China
| | - Yan-Ping Liu
- School of Public Health, University of South China, Hengyang, China
| | - Xun-Ya Li
- School of Public Health, University of South China, Hengyang, China
| | - Xiao-Yan Yuan
- School of Public Health, University of South China, Hengyang, China
| | - Ye Wang
- School of Public Health, University of South China, Hengyang, China
| | - Ying Cai
- School of Public Health, University of South China, Hengyang, China
| | - Yuan-di Lei
- School of Public Health, University of South China, Hengyang, China
| | - Lian Huang
- School of Public Health, University of South China, Hengyang, China
| | - Zhao-Hui Zhang
- School of Public Health, University of South China, Hengyang, China
| |
Collapse
|
28
|
Tuberculosis-Associated MicroRNAs: From Pathogenesis to Disease Biomarkers. Cells 2020; 9:cells9102160. [PMID: 32987746 PMCID: PMC7598604 DOI: 10.3390/cells9102160] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 09/20/2020] [Accepted: 09/23/2020] [Indexed: 12/25/2022] Open
Abstract
Tuberculosis (TB) caused by Mycobacterium tuberculosis is one of the most lethal infectious diseases with estimates of approximately 1.4 million human deaths in 2018. M. tuberculosis has a well-established ability to circumvent the host immune system to ensure its intracellular survival and persistence in the host. Mechanisms include subversion of expression of key microRNAs (miRNAs) involved in the regulation of host innate and adaptive immune response against M. tuberculosis. Several studies have reported differential expression of miRNAs during active TB and latent tuberculosis infection (LTBI), suggesting their potential use as biomarkers of disease progression and response to anti-TB therapy. This review focused on the miRNAs involved in TB pathogenesis and on the mechanism through which miRNAs induced during TB modulate cell antimicrobial responses. An attentive study of the recent literature identifies a group of miRNAs, which are differentially expressed in active TB vs. LTBI or vs. treated TB and can be proposed as candidate biomarkers.
Collapse
|
29
|
miR-1975 serves as an indicator of clinical severity upon influenza infection. Eur J Clin Microbiol Infect Dis 2020; 40:141-149. [PMID: 32814996 PMCID: PMC7437959 DOI: 10.1007/s10096-020-04008-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 08/11/2020] [Indexed: 10/29/2022]
Abstract
Emerging evidence highlights the role of non-coding small RNAs in host-influenza interaction. We have identified a Y RNA-derived small RNA, miR-1975, which is upregulated upon influenza A virus infection in A549 cells. The aim of this study is to investigate whether miR-1975 serves as an indicator of clinical severity upon influenza infection. We investigate the abundance of miR-1975 in sera from clinical patients and its correlation with hypoxemia status. We quantified its amounts in sera from influenza virus-infected patients and healthy volunteers by means of stem-loop RT-PCR. Median values of miR-1975 were significantly higher in influenza virus-infected patients, especially in hypoxemic patients. miR-1975 levels at the acute stage of the disease were highly correlated with the fraction of inspired oxygen used by the patients and total ventilator days. Receiver operator characteristic curve analysis revealed that miR-1975 levels in combination with days of fever before presenting to hospital had significant predictive value for hypoxemia and respiratory failure for patients infected with influenza virus. Our results reveal that circulating miR-1975 has great potential to serve as a biomarker for predicting prognosis in patients infected with influenza virus.
Collapse
|
30
|
Tribolet L, Kerr E, Cowled C, Bean AGD, Stewart CR, Dearnley M, Farr RJ. MicroRNA Biomarkers for Infectious Diseases: From Basic Research to Biosensing. Front Microbiol 2020; 11:1197. [PMID: 32582115 PMCID: PMC7286131 DOI: 10.3389/fmicb.2020.01197] [Citation(s) in RCA: 131] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 05/12/2020] [Indexed: 12/19/2022] Open
Abstract
In the pursuit of improved diagnostic tests for infectious diseases, several classes of molecules have been scrutinized as prospective biomarkers. Small (18–22 nucleotide), non-coding RNA transcripts called microRNAs (miRNAs) have emerged as promising candidates with extensive diagnostic potential, due to their role in numerous diseases, previously established methods for quantitation and their stability within biofluids. Despite efforts to identify, characterize and apply miRNA signatures as diagnostic markers in a range of non-infectious diseases, their application in infectious disease has advanced relatively slowly. Here, we outline the benefits that miRNA biomarkers offer to the diagnosis, management, and treatment of infectious diseases. Investigation of these novel biomarkers could advance the use of personalized medicine in infectious disease treatment, which raises important considerations for validating their use as diagnostic or prognostic markers. Finally, we discuss new and emerging miRNA detection platforms, with a focus on rapid, point-of-care testing, to evaluate the benefits and obstacles of miRNA biomarkers for infectious disease.
Collapse
Affiliation(s)
- Leon Tribolet
- Health and Biosecurity, Australian Animal Health Laboratory, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Geelong, VIC, Australia
| | - Emily Kerr
- Institute for Frontier Materials, Deakin University, Geelong, VIC, Australia
| | - Christopher Cowled
- Health and Biosecurity, Australian Animal Health Laboratory, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Geelong, VIC, Australia
| | - Andrew G D Bean
- Health and Biosecurity, Australian Animal Health Laboratory, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Geelong, VIC, Australia
| | - Cameron R Stewart
- Health and Biosecurity, Australian Animal Health Laboratory, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Geelong, VIC, Australia
| | - Megan Dearnley
- Diagnostics, Surveillance and Response (DSR), Australian Animal Health Laboratory, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Geelong, VIC, Australia
| | - Ryan J Farr
- Diagnostics, Surveillance and Response (DSR), Australian Animal Health Laboratory, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Geelong, VIC, Australia
| |
Collapse
|
31
|
Ruiz-Tagle C, Naves R, Balcells ME. Unraveling the Role of MicroRNAs in Mycobacterium tuberculosis Infection and Disease: Advances and Pitfalls. Infect Immun 2020; 88:e00649-19. [PMID: 31871103 PMCID: PMC7035921 DOI: 10.1128/iai.00649-19] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Tuberculosis (TB) is an infectious disease of extremely high epidemiological burden worldwide that is easily acquired through the inhalation of infected respiratory droplets. The complex pathogenesis of this infection spans from subjects never developing this disease despite intense exposure, to others in which immune containment fails catastrophically and severe or disseminated forms of disease ensue. In recent decades, microRNAs (miRNAs) have gained increasing attention due to their role as gene silencers and because of their altered expression in diverse human diseases, including some infections. Recent research regarding miRNAs and TB has revealed that the expression profile for particular miRNAs clearly changes upon Mycobacterium tuberculosis infection and also varies in the different stages of this disease. However, despite the growing number of studies-some of which have even proposed some miRNAs as potential biomarkers-methodological variations and key differences in relevant factors, such as sex and age, cell type analyzed, M. tuberculosis strain, and antimicrobial therapy status, strongly hinder the comparison of data. In this review, we summarize and discuss the literature and highlight the role of selected miRNAs that have specifically and more consistently been associated with M. tuberculosis infection, together with a discussion of the possible gene and immune regulation pathways involved.
Collapse
Affiliation(s)
- Cinthya Ruiz-Tagle
- Departamento de Enfermedades Infecciosas del Adulto, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Rodrigo Naves
- Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - María Elvira Balcells
- Departamento de Enfermedades Infecciosas del Adulto, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
32
|
Abstract
Paratuberculosis and bovine tuberculosis are two mycobacterial diseases of ruminants which have a considerable impact on livestock health, welfare, and production. These are chronic "iceberg" diseases which take years to manifest and in which many subclinical cases remain undetected. Suggested biomarkers to detect infected or diseased animals are numerous and include cytokines, peptides, and expression of specific genes; however, these do not provide a strong correlation to disease. Despite these advances, disease detection still relies heavily on dated methods such as detection of pathogen shedding, skin tests, or serology. Here we review the evidence for suitable biomarkers and their mechanisms of action, with a focus on identifying animals that are resilient to disease. A better understanding of these factors will help establish new strategies to control the spread of these diseases.
Collapse
|
33
|
Pedersen JL, Bokil NJ, Saunders BM. Developing new TB biomarkers, are miRNA the answer? Tuberculosis (Edinb) 2019; 118:101860. [PMID: 31472444 DOI: 10.1016/j.tube.2019.101860] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 08/19/2019] [Accepted: 08/20/2019] [Indexed: 12/14/2022]
Abstract
Efforts to reduce the global TB burden are hindered by the lack of simple, reliable non-sputum based diagnostics. To date studies investigating the biomarker potential of circulating host proteins and mRNA have not shown sufficient diagnostic utility. Recently, there has been increasing interest in circulating miRNA as a biomarker of TB disease. This review examined all published miRNA-TB biomarker studies to determine if a reproducible miRNA signature of TB disease could be elucidated. From 15 miRNA profiling studies, 894 miRNA differentially expressed between TB patients and healthy controls were identified in at least one study. Of these, 143 miRNA were validated by qPCR with 53 differentially expressed between TB patients and controls. Interestingly, only 8 of these miRNA were identified in 2 or more studies, and no consensus on a reproducible miRNA signature for identification of TB disease could be identified. TB disease is clearly associated with a wide breadth of differentially expressed miRNA. This review highlights our recent progress and the multiple factors, including environment, source of tissue, ethnicity and extent of TB disease that may influence miRNA expression. Coordinated efforts are required to validate identified targets in multiple populations to progress miRNA biomarker development.
Collapse
Affiliation(s)
- Jessica L Pedersen
- School of Life Sciences, Faculty of Science, University of Technology Sydney, 15 Broadway, Ultimo, Sydney, 2007, Australia.
| | - Nilesh J Bokil
- School of Life Sciences, Faculty of Science, University of Technology Sydney, 15 Broadway, Ultimo, Sydney, 2007, Australia.
| | - Bernadette M Saunders
- School of Life Sciences, Faculty of Science, University of Technology Sydney, 15 Broadway, Ultimo, Sydney, 2007, Australia.
| |
Collapse
|
34
|
Lyu L, Zhang X, Li C, Yang T, Wang J, Pan L, Jia H, Li Z, Sun Q, Yue L, Chen F, Zhang Z. Small RNA Profiles of Serum Exosomes Derived From Individuals With Latent and Active Tuberculosis. Front Microbiol 2019; 10:1174. [PMID: 31191492 PMCID: PMC6546874 DOI: 10.3389/fmicb.2019.01174] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 05/08/2019] [Indexed: 12/17/2022] Open
Abstract
Tuberculosis (TB) has been the leading lethal infectious disease worldwide since 2014, and about one third of the world’s population has a latent TB infection (LTBI). This is largely attributed to the difficulties in diagnosis and treatment of TB and LTBI patients. Exosomes offer a new perspective on investigation of the process of TB infection. In this study, we performed small RNA sequencing to explore small RNA profiles of serum exosomes derived from LTBI and TB patients and healthy controls (HC). Our results revealed distinct miRNA profile of the exosomes in the three groups. We screened 250 differentially expressed miRNAs including 130 specifically expressed miRNAs. Some miRNAs were further validated to be specifically expressed in LTBI (hsa-let-7e-5p, hsa-let-7d-5p, hsa-miR-450a-5p, and hsa-miR-140-5p) and TB samples (hsa-miR-1246, hsa-miR-2110, hsa-miR-370-3P, hsa-miR-28-3p, and hsa-miR-193b-5p). Additionally, we demonstrated four expression panels in LTBI and TB groups, and six expression patterns among the three groups. These specifically expressed miRNAs and differentially expressed miRNAs in different panels and patterns provide potential biomarkers for detection/diagnosis of latent and active TB using exosomal miRNAs. Additionally, we also discovered plenty of small RNAs derived from genomic repetitive sequences, which might play roles in host immune responses along with Mtb infection progresses. Overall, our findings provide important reference and an improved understanding about miRNAs and repetitive region-derived small RNAs in exosomes during the Mtb infectious process, and facilitate the development of potential molecular targets for detection/diagnosis of latent and active tuberculosis.
Collapse
Affiliation(s)
- Lingna Lyu
- Beijing Key Laboratory for Drug Resistant Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Xiuli Zhang
- CAS Key Laboratory of Genome Science and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Cuidan Li
- CAS Key Laboratory of Genome Science and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Tingting Yang
- CAS Key Laboratory of Genome Science and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Jinghui Wang
- Beijing Key Laboratory for Drug Resistant Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Liping Pan
- Beijing Key Laboratory for Drug Resistant Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Hongyan Jia
- Beijing Key Laboratory for Drug Resistant Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Zihui Li
- Beijing Key Laboratory for Drug Resistant Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Qi Sun
- Beijing Key Laboratory for Drug Resistant Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Liya Yue
- CAS Key Laboratory of Genome Science and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Fei Chen
- CAS Key Laboratory of Genome Science and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Zongde Zhang
- Beijing Key Laboratory for Drug Resistant Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
35
|
Hu X, Liao S, Bai H, Wu L, Wang M, Wu Q, Zhou J, Jiao L, Chen X, Zhou Y, Lu X, Ying B, Zhang Z, Li W. Integrating exosomal microRNAs and electronic health data improved tuberculosis diagnosis. EBioMedicine 2019; 40:564-573. [PMID: 30745169 PMCID: PMC6413343 DOI: 10.1016/j.ebiom.2019.01.023] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 12/13/2018] [Accepted: 01/08/2019] [Indexed: 02/05/2023] Open
Abstract
Background Tuberculosis (TB) is difficult to diagnose under complex clinical conditions as electronic health records (EHRs) are often inadequate in making an affirmative diagnosis. As exosomal miRNAs emerged as promising biomarkers, we investigated the potential of using exosomal miRNAs and EHRs in TB diagnosis. Methods A total of 370 individuals, including pulmonary tuberculosis (PTB), tuberculous meningitis (TBM), non-TB disease controls and healthy state controls, were enrolled. Exosomal miRNAs were profiled in the exploratory cohort using microarray and miRNA candidates were selected in the selection cohort using qRT-PCR. EHRs and follow-up information of the patients were collected accordingly. miRNAs and EHRs were used to develop diagnostic models for PTB and TBM in the selection cohort with the Support Vector Machine (SVM) algorithm. These models were further evaluated in an independent testing cohort. Findings Six exosomal miRNAs (miR-20a, miR-20b, miR-26a, miR-106a, miR-191, miR-486) were differentially expressed in the TB patients. Three SVM models, "EHR+miRNA", "miRNA only" and "EHR only" were compared, and "EHR + miRNA" model achieved the highest diagnostic efficacy, with an AUC up to 0.97 (95% CI 0.80–0.99) in TBM and 0.97 (0.87–0.99) in PTB, respectively. However, "EHR only" model only showed an AUC of 0.67 (0.46–0.83) in TBM. After 2-month anti-tuberculosis therapy, overexpressed miRNAs presented a decreased expression trend (p= 4.80 × 10−5). Interpretation Our results showed that the combination of exosomal miRNAs and EHRs could potentially improve clinical diagnosis of TBM and PTB. Fund Funds for the Central Universities, the National Natural Science Foundation of China.
Collapse
Affiliation(s)
- Xuejiao Hu
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu 610041, China; The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Shun Liao
- The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada; Department of Computer Science, University of Toronto, Toronto, ON, Canada
| | - Hao Bai
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Lijuan Wu
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Minjin Wang
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Qian Wu
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Juan Zhou
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Lin Jiao
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xuerong Chen
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yanhong Zhou
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xiaojun Lu
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Binwu Ying
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Zhaolei Zhang
- The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada; Department of Computer Science, University of Toronto, Toronto, ON, Canada.
| | - Weimin Li
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|