1
|
Zarroug R, Moslah W, Srairi-Abid N, Artetxe B, Masip-Sánchez A, López X, Ayed B, Ribeiro N, Correia I, Corte-Real L, Pessoa JC. Synthesis, crystal structure, computational and solution studies of a new phosphotetradecavanadate salt. Assessment of its effect on U87 glioblastoma cells. J Inorg Biochem 2025; 269:112882. [PMID: 40080993 DOI: 10.1016/j.jinorgbio.2025.112882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 02/25/2025] [Accepted: 03/03/2025] [Indexed: 03/15/2025]
Abstract
The new benzylammonium (C7H10N) salt of the phosphotetradecavanadate (PV14) anion PV14O429-, (C7H10N)6[H3PV14O42]∙7H2O (1), is synthesized under mild conditions and characterized by a combination of physicochemical techniques such as Fourier transform infrared spectroscopy, powder X-ray diffraction, elemental analyses and cyclic voltammetry. As evaluated by 51V NMR spectroscopy, at milimolar concentrations and pH ∼2.5 the PV14 anions decompose slowly, thus demonstrating kinetic stability, but at pH ∼7 this process takes place much faster. However, in the presence of human serum albumin, the 51V NMR peaks of PV14 anions broaden significantly and their decomposition becomes much slower, this being due to a direct interaction between both components. The structure of 1 is elucidated by single-crystal X-ray diffraction and reveals the presence of three-fold protonated, bicapped Keggin type [H3PV14O42]6- anions. The supramolecular interactions governing the crystal packing are further studied using the Hirshfeld surface analysis. Computational studies using density functional theory were effective in determining the electronic and protonation states of PV14 clusters, as well as the multi-electron redox behavior of compound 1 in acidic aqueous solutions. Molecular dynamics calculations confirm the high hydrophilicity and absence of aggregation between protonated PV14 anions in aqueous medium. Notably, this compound shows high inhibitory effect on the viability of the U87 glioblastoma cell line with IC50 values of 3.2 ± 0.6 μM and 1.10 ± 0.04 μM after 24 h and 72 h treatments. The mode of action of compound 1 is mediated by the pro-apoptotic process. These data provide evidence on the potential therapeutic use of PV14 compounds against glioblastoma.
Collapse
Affiliation(s)
- Rim Zarroug
- University of Monastir, Laboratory of Physico-Chemistry of Materials LR01ES19, Faculty of Sciences of Monastir, Tunisia; Department of Chemistry, Faculty of Sciences, University of Gabes, Tunisia
| | - Wassim Moslah
- Université Tunis El Manar, Institut Pasteur de Tunis, LR20IPT01 Biomolécules, Venins et Applications théranostiques (LBVAT), 1002 Tunis, Tunisia
| | - Najet Srairi-Abid
- Université Tunis El Manar, Institut Pasteur de Tunis, LR20IPT01 Biomolécules, Venins et Applications théranostiques (LBVAT), 1002 Tunis, Tunisia
| | - Beñat Artetxe
- Departamento de Química Orgánica e Inorgánica, Facultad de Ciencia y Tecnología, Universidad del País Vasco UPV/EHU, 48080 Bilbao, Spain
| | - Albert Masip-Sánchez
- Universitat Rovira i Virgili, Departament de Química Física i Inorgànica, c/Marcel·lí Domingo 1, 43007 Tarragona, Spain
| | - Xavier López
- Universitat Rovira i Virgili, Departament de Química Física i Inorgànica, c/Marcel·lí Domingo 1, 43007 Tarragona, Spain
| | - Brahim Ayed
- University of Monastir, Laboratory of Physico-Chemistry of Materials LR01ES19, Faculty of Sciences of Monastir, Tunisia
| | - Nádia Ribeiro
- Centro de Química Estrutural and Departamento de Engenharia Química, Institute of Molecular Sciences, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Isabel Correia
- Centro de Química Estrutural and Departamento de Engenharia Química, Institute of Molecular Sciences, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Leonor Corte-Real
- Centro de Química Estrutural and Departamento de Engenharia Química, Institute of Molecular Sciences, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - João Costa Pessoa
- Centro de Química Estrutural and Departamento de Engenharia Química, Institute of Molecular Sciences, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisboa, Portugal.
| |
Collapse
|
2
|
Cordeiro BM, Leite Fontes CF, Meyer-Fernandes JR. Molecular Basis of Na, K-ATPase Regulation of Diseases: Hormone and FXYD2 Interactions. Int J Mol Sci 2024; 25:13398. [PMID: 39769162 PMCID: PMC11678576 DOI: 10.3390/ijms252413398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/05/2024] [Accepted: 12/10/2024] [Indexed: 01/11/2025] Open
Abstract
The Na, K-ATPase generates an asymmetric ion gradient that supports multiple cellular functions, including the control of cellular volume, neuronal excitability, secondary ionic transport, and the movement of molecules like amino acids and glucose. The intracellular and extracellular levels of Na+ and K+ ions are the classical local regulators of the enzyme's activity. Additionally, the regulation of Na, K-ATPase is a complex process that occurs at multiple levels, encompassing its total cellular content, subcellular distribution, and intrinsic activity. In this context, the enzyme serves as a regulatory target for hormones, either through direct actions or via signaling cascades triggered by hormone receptors. Notably, FXYDs small transmembrane proteins regulators of Na, K-ATPase serve as intermediaries linking hormonal signaling to enzymatic regulation at various levels. Specifically, members of the FXYD family, particularly FXYD1 and FXYD2, are that undergo phosphorylation by kinases activated through hormone receptor signaling, which subsequently influences their modulation of Na, K-ATPase activity. This review describes the effects of FXYD2, cardiotonic steroid signaling, and hormones such as angiotensin II, dopamine, insulin, and catecholamines on the regulation of Na, K-ATPase. Furthermore, this review highlights the implications of Na, K-ATPase in diseases such as hypertension, renal hypomagnesemia, and cancer.
Collapse
Affiliation(s)
- Bárbara Martins Cordeiro
- Instituto de Bioquímica Médica Leopoldo de Meis, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-590, RJ, Brazil;
- Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Bioimagem, Rio de Janeiro 21941-590, RJ, Brazil
| | - Carlos Frederico Leite Fontes
- Instituto de Bioquímica Médica Leopoldo de Meis, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-590, RJ, Brazil;
- Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Bioimagem, Rio de Janeiro 21941-590, RJ, Brazil
| | - José Roberto Meyer-Fernandes
- Instituto de Bioquímica Médica Leopoldo de Meis, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-590, RJ, Brazil;
- Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Bioimagem, Rio de Janeiro 21941-590, RJ, Brazil
| |
Collapse
|
3
|
Tambat VS, Patel AK, Singhania RR, Chen CW, Dong CD. Marine vanadium pollution: Sources, ecological impacts and cutting-edge mitigation strategies. MARINE POLLUTION BULLETIN 2024; 209:117199. [PMID: 39486201 DOI: 10.1016/j.marpolbul.2024.117199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/10/2024] [Accepted: 10/22/2024] [Indexed: 11/04/2024]
Abstract
Vanadium (V) is a hazardous element with widespread environmental presence, particularly in marine environments, due to both natural and industrial sources. This review examines vanadium's impact on marine organisms, highlighting its disruption of metabolic processes in fish, microalgae, and crustaceans, leading to oxidative stress, impaired growth and reproduction. Vanadium accumulation in marine food chains poses risks to higher organisms, including humans. Conventional vanadium removal methods, e.g., filtering and reverse osmosis, are costly and energy-intensive. Alternatively, bioremediation offers a sustainable solution, particularly using microalgae and thraustochytrids. Microalgae can detoxify and immobilize vanadium through adsorption and biodegradation, contributing to carbon capture and producing value-added products. Advances in bioprocess engineering, including regulating key parameters such as temperature and pH during biomass harvesting and using chelating agents, have enhanced this bioremediation approach, making it a viable option for industrial-scale applications and aligning with Sustainable Development Goals by integrating environmental protection with renewable energy production.
Collapse
Affiliation(s)
- Vaibhav Sunil Tambat
- Institute of Aquatic Science and Technology, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan
| | - Anil Kumar Patel
- Institute of Aquatic Science and Technology, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Centre for Energy and Environmental Sustainability, Lucknow 226 029, Uttar Pradesh, India
| | - Reeta Rani Singhania
- Institute of Aquatic Science and Technology, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Centre for Energy and Environmental Sustainability, Lucknow 226 029, Uttar Pradesh, India
| | - Chiu-Wen Chen
- Institute of Aquatic Science and Technology, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Cheng-Di Dong
- Institute of Aquatic Science and Technology, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan.
| |
Collapse
|
4
|
Paolillo M, Ferraro G, Pisanu F, Maréchal JD, Sciortino G, Garribba E, Merlino A. Protein-Protein Stabilization in V IVO/8-Hydroxyquinoline-Lysozyme Adducts. Chemistry 2024; 30:e202401712. [PMID: 38923243 DOI: 10.1002/chem.202401712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/07/2024] [Accepted: 06/24/2024] [Indexed: 06/28/2024]
Abstract
The binding of the potential drug [VIVO(8-HQ)2], where 8-HQ is 8-hydroxyquinolinato, with hen egg white lysozyme (HEWL) was evaluated through spectroscopic (electron paramagnetic resonance, EPR, and UV-visible), spectrometric (electrospray ionization-mass spectrometry, ESI-MS), crystallographic (X-ray diffraction, XRD), and computational (DFT and docking) studies. ESI-MS indicates the interaction of [VIVO(8-HQ)(H2O)]+ and [VIVO(8-HQ)2(H2O)] species with HEWL. Room temperature EPR spectra suggest both covalent and non-covalent binding of the two different V-containing fragments. XRD analyses confirm these findings, showing that [VIVO(8-HQ)(H2O)]+ interacts covalently with the solvent exposed Asp119, while cis-[VIVO(8-HQ)2(H2O)] non-covalently with Arg128 and Lys96 from a symmetry mate. The covalent binding of [VIVO(8-HQ)(H2O)]+ to Asp119 is favored by a π-π contact with Trp62 and a H-bond with Asn103 of a symmetry-related molecule. Additionally, the covalent binding of VVO2 + to Asp48 and non-covalent binding of other V-containing fragments to Arg5, Cys6, and Glu7 are revealed. Molecular docking indicates that, in the absence of the interactions occurring at the protein-protein interface close to Asp119, the covalent binding to Glu35 or Asp52 should be preferred. Such a protein-protein stabilization could be more common than what believed up today, at least in the solid state, and should be considered in the characterization of metal-protein adducts.
Collapse
Affiliation(s)
- Maddalena Paolillo
- Department of Chemical Sciences, University of Naples 'Federico II', Complesso Universitario di Monte Sant'Angelo, Via Cintia, I-80126, Napoli, Italy
| | - Giarita Ferraro
- Department of Chemical Sciences, University of Naples 'Federico II', Complesso Universitario di Monte Sant'Angelo, Via Cintia, I-80126, Napoli, Italy
| | - Federico Pisanu
- Dipartimento di Medicina, Chirurgia e Farmacia, Università di Sassari, Viale San Pietro, I-07100, Sassari, Italy
| | - Jean-Didier Maréchal
- Departament de Química, Universitat Autònoma de Barcelona, 08193, Cerdanyola del Vallés, Barcelona, Spain
| | - Giuseppe Sciortino
- Departament de Química, Universitat Autònoma de Barcelona, 08193, Cerdanyola del Vallés, Barcelona, Spain
| | - Eugenio Garribba
- Dipartimento di Medicina, Chirurgia e Farmacia, Università di Sassari, Viale San Pietro, I-07100, Sassari, Italy
| | - Antonello Merlino
- Department of Chemical Sciences, University of Naples 'Federico II', Complesso Universitario di Monte Sant'Angelo, Via Cintia, I-80126, Napoli, Italy
| |
Collapse
|
5
|
Poejo J, Gumerova NI, Rompel A, Mata AM, Aureliano M, Gutierrez-Merino C. Unveiling the agonistic properties of Preyssler-type Polyoxotungstates on purinergic P2 receptors. J Inorg Biochem 2024; 259:112640. [PMID: 38968927 DOI: 10.1016/j.jinorgbio.2024.112640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/30/2024] [Accepted: 06/12/2024] [Indexed: 07/07/2024]
Abstract
The Preyssler-type polyoxotungstate ({P5W30}) belongs to the family of polyanionic metal-oxides formed by group V and VI metal ions, such as V, Mo and W, commonly known as polyoxometalates (POMs). POMs have demonstrated inhibitory effect on a significant number of ATP-binding proteins in vitro. Purinergic P2 receptors, widely expressed in eukaryotic cells, contain extracellularly oriented ATP-binding sites and play many biological roles with health implications. In this work, we use the immortalized mouse hippocampal neuronal HT-22 cells in culture to study the effects of {P5W30} on the cytosolic Ca2+ concentration. Changes in cytosolic Ca2+ concentration were monitored using fluorescence microscopy of HT-22 cells loaded with the fluorescent Ca2+ indicator Fluo3. 31P-Nuclear magnetic resonance measurements of {P5W30} indicate its stability in the medium used for cytosolic Ca2+ measurements for over 30 min. The findings reveal that addition of {P5W30} to the extracellular medium induces a sustained increase of the cytosolic Ca2+ concentration within minutes. This Ca2+ increase is triggered by extracellular Ca2+ entry into the cells and is dose-dependent, with a half-of-effect concentration of 0.25 ± 0.05 μM {P5W30}. In addition, after the {P5W30}-induced cytosolic Ca2+ increase, the transient Ca2+ peak induced by extracellular ATP is reduced up to 100% with an apparent half-of-effect concentration of 0.15 ± 0.05 μM {P5W30}. Activation of metabotropic purinergic P2 receptors affords about 80% contribution to the increase of Fluo3 fluorescence elicited by {P5W30} in HT-22 cells, whereas ionotropic receptors contribute, at most, with 20%. These results suggest that {P5W30} could serve as a novel agonist of purinergic P2 receptors.
Collapse
Affiliation(s)
- Joana Poejo
- Instituto de Biomarcadores de Patologías Moleculares, Universidad de Extremadura, 06006 Badajoz, Spain
| | - Nadiia I Gumerova
- Universität Wien, Fakultät für Chemie, Institut für Biophysikalische Chemie, 1090 Vienna, Austria
| | - Annette Rompel
- Universität Wien, Fakultät für Chemie, Institut für Biophysikalische Chemie, 1090 Vienna, Austria.
| | - Ana M Mata
- Instituto de Biomarcadores de Patologías Moleculares, Universidad de Extremadura, 06006 Badajoz, Spain; Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Ciencias, Universidad de Extremadura, 06006 Badajoz, Spain
| | - Manuel Aureliano
- DCBB, Faculdade de Ciências e Tecnologia, Universidade do Algarve, 8000-139 Faro, Portugal; Centro de Ciências do Mar, Universidade do Algarve, 8000-139 Faro, Portugal.
| | - Carlos Gutierrez-Merino
- Instituto de Biomarcadores de Patologías Moleculares, Universidad de Extremadura, 06006 Badajoz, Spain.
| |
Collapse
|
6
|
Gonzalez-Cano SI, Flores G, Guevara J, Morales-Medina JC, Treviño S, Diaz A. Polyoxidovanadates a new therapeutic alternative for neurodegenerative and aging diseases. Neural Regen Res 2024; 19:571-577. [PMID: 37721286 PMCID: PMC10581577 DOI: 10.4103/1673-5374.380877] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/18/2023] [Accepted: 06/22/2023] [Indexed: 09/19/2023] Open
Abstract
Aging is a natural phenomenon characterized by a progressive decline in physiological integrity, leading to a deterioration of cognitive function and increasing the risk of suffering from chronic-degenerative diseases, including cardiovascular diseases, osteoporosis, cancer, diabetes, and neurodegeneration. Aging is considered the major risk factor for Parkinson's and Alzheimer's disease develops. Likewise, diabetes and insulin resistance constitute additional risk factors for developing neurodegenerative disorders. Currently, no treatment can effectively reverse these neurodegenerative pathologies. However, some antidiabetic drugs have opened the possibility of being used against neurodegenerative processes. In the previous framework, Vanadium species have demonstrated a notable antidiabetic effect. Our research group evaluated polyoxidovanadates such as decavanadate and metforminium-decavanadate with preventive and corrective activity on neurodegeneration in brain-specific areas from rats with metabolic syndrome. The results suggest that these polyoxidovanadates induce neuronal and cognitive restoration mechanisms. This review aims to describe the therapeutic potential of polyoxidovanadates as insulin-enhancer agents in the brain, constituting a therapeutic alternative for aging and neurodegenerative diseases.
Collapse
Affiliation(s)
| | - Gonzalo Flores
- Institute of Physiology, Benemerita Autonomous University of Puebla, Puebla, Mexico
| | - Jorge Guevara
- Department of Biochemistry, Faculty of Medicine, National Autonomous University of Mexico, Mexico City, Mexico
| | | | - Samuel Treviño
- Faculty of Chemical Sciences, Benemerita Autonomous University of Puebla, Puebla, Mexico
| | - Alfonso Diaz
- Faculty of Chemical Sciences, Benemerita Autonomous University of Puebla, Puebla, Mexico
| |
Collapse
|
7
|
De Sousa-Coelho AL, Fraqueza G, Aureliano M. Repurposing Therapeutic Drugs Complexed to Vanadium in Cancer. Pharmaceuticals (Basel) 2023; 17:12. [PMID: 38275998 PMCID: PMC10819319 DOI: 10.3390/ph17010012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/16/2023] [Accepted: 12/18/2023] [Indexed: 01/27/2024] Open
Abstract
Repurposing drugs by uncovering new indications for approved drugs accelerates the process of establishing new treatments and reduces the high costs of drug discovery and development. Metal complexes with clinically approved drugs allow further opportunities in cancer therapy-many vanadium compounds have previously shown antitumor effects, which makes vanadium a suitable metal to complex with therapeutic drugs, potentially improving their efficacy in cancer treatment. In this review, covering the last 25 years of research in the field, we identified non-oncology-approved drugs suitable as ligands to obtain different vanadium complexes. Metformin-decavanadate, vanadium-bisphosphonates, vanadyl(IV) complexes with non-steroidal anti-inflammatory drugs, and cetirizine and imidazole-based oxidovanadium(IV) complexes, each has a parent drug known to have different medicinal properties and therapeutic indications, and all showed potential as novel anticancer treatments. Nevertheless, the precise mechanisms of action for these vanadium compounds against cancer are still not fully understood.
Collapse
Affiliation(s)
- Ana Luísa De Sousa-Coelho
- Algarve Biomedical Center Research Institute (ABC-RI), Universidade do Algarve, 8005-139 Faro, Portugal
- Algarve Biomedical Center (ABC), Universidade do Algarve, 8005-139 Faro, Portugal
- Escola Superior de Saúde, Universidade do Algarve (ESSUAlg), 8005-139 Faro, Portugal
| | - Gil Fraqueza
- Instituto Superior de Engenharia (ISE), Universidade do Algarve, 8005-139 Faro, Portugal;
- Centro de Ciências do Mar (CCMar), Universidade do Algarve, 8005-139 Faro, Portugal
| | - Manuel Aureliano
- Centro de Ciências do Mar (CCMar), Universidade do Algarve, 8005-139 Faro, Portugal
- Faculdade de Ciências e Tecnologia (FCT), Universidade do Algarve, 8005-139 Faro, Portugal
| |
Collapse
|
8
|
Aureliano M, Gumerova NI, Rompel A. The Biological Applications of Metals and Metal Complexes. METALS 2023; 13:1041. [DOI: 10.3390/met13061041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Over the course of biological evolution, approximately 25 to 30 elements have been recognized as essential for the proper functioning of biological systems since the emergence of life [...]
Collapse
Affiliation(s)
- Manuel Aureliano
- Faculdade de Ciências e Tecnologia, Campus de Gambelas, Universidade do Algarve, 8005-139 Faro, Portugal
- Centro de Ciências do Mar (CCMar), Universidade do Algarve, 8005-139 Faro, Portugal
| | - Nadiia I. Gumerova
- Universität Wien, Fakultät für Chemie, Institut für Biophysikalische Chemie, 1090 Wien, Austria
| | - Annette Rompel
- Universität Wien, Fakultät für Chemie, Institut für Biophysikalische Chemie, 1090 Wien, Austria
| |
Collapse
|
9
|
Aureliano M, De Sousa-Coelho AL, Dolan CC, Roess DA, Crans DC. Biological Consequences of Vanadium Effects on Formation of Reactive Oxygen Species and Lipid Peroxidation. Int J Mol Sci 2023; 24:5382. [PMID: 36982458 PMCID: PMC10049017 DOI: 10.3390/ijms24065382] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/28/2023] [Accepted: 03/06/2023] [Indexed: 03/17/2023] Open
Abstract
Lipid peroxidation (LPO), a process that affects human health, can be induced by exposure to vanadium salts and compounds. LPO is often exacerbated by oxidation stress, with some forms of vanadium providing protective effects. The LPO reaction involves the oxidation of the alkene bonds, primarily in polyunsaturated fatty acids, in a chain reaction to form radical and reactive oxygen species (ROS). LPO reactions typically affect cellular membranes through direct effects on membrane structure and function as well as impacting other cellular functions due to increases in ROS. Although LPO effects on mitochondrial function have been studied in detail, other cellular components and organelles are affected. Because vanadium salts and complexes can induce ROS formation both directly and indirectly, the study of LPO arising from increased ROS should include investigations of both processes. This is made more challenging by the range of vanadium species that exist under physiological conditions and the diverse effects of these species. Thus, complex vanadium chemistry requires speciation studies of vanadium to evaluate the direct and indirect effects of the various species that are present during vanadium exposure. Undoubtedly, speciation is important in assessing how vanadium exerts effects in biological systems and is likely the underlying cause for some of the beneficial effects reported in cancerous, diabetic, neurodegenerative conditions and other diseased tissues impacted by LPO processes. Speciation of vanadium, together with investigations of ROS and LPO, should be considered in future biological studies evaluating vanadium effects on the formation of ROS and on LPO in cells, tissues, and organisms as discussed in this review.
Collapse
Affiliation(s)
- Manuel Aureliano
- Faculdade de Ciências e Tecnologia (FCT), Universidade do Algarve, 8005-139 Faro, Portugal
- CCMar, Universidade do Algarve, 8005-139 Faro, Portugal
| | - Ana Luísa De Sousa-Coelho
- Escola Superior de Saúde, Universidade do Algarve (ESSUAlg), 8005-139 Faro, Portugal
- Algarve Biomedical Center Research Institute (ABC-RI), 8005-139 Faro, Portugal
- Algarve Biomedical Center (ABC), 8005-139 Faro, Portugal
| | - Connor C. Dolan
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA
| | - Deborah A. Roess
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Debbie C. Crans
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA
- Cellular and Molecular Biology Program, Colorado State University, Fort Collins, CO 80523, USA
| |
Collapse
|
10
|
Carvalho F, Aureliano M. Polyoxometalates Impact as Anticancer Agents. Int J Mol Sci 2023; 24:5043. [PMID: 36902473 PMCID: PMC10003337 DOI: 10.3390/ijms24055043] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/24/2023] [Accepted: 02/28/2023] [Indexed: 03/08/2023] Open
Abstract
Polyoxometalates (POMs) are oxoanions of transition metal ions, such as V, Mo, W, Nb, and Pd, forming a variety of structures with a wide range of applications. Herein, we analyzed recent studies on the effects of polyoxometalates as anticancer agents, particularly their effects on the cell cycle. To this end, a literature search was carried out between March and June 2022, using the keywords "polyoxometalates" and "cell cycle". The effects of POMs on selected cell lines can be diverse, such as their effects in the cell cycle, protein expression, mitochondrial effects, reactive oxygen species (ROS) production, cell death and cell viability. The present study focused on cell viability and cell cycle arrest. Cell viability was analyzed by dividing the POMs into sections according to the constituent compound, namely polyoxovanadates (POVs), polyoxomolybdates (POMos), polyoxopaladates (POPds) and polyoxotungstates (POTs). When comparing and sorting the IC50 values in ascending order, we obtained first POVs, then POTs, POPds and, finally, POMos. When comparing clinically approved drugs and POMs, better results of POMs in relation to drugs were observed in many cases, since the dose required to have an inhibitory concentration of 50% is 2 to 200 times less, depending on the POMs, highlighting that these compounds could become in the future an alternative to existing drugs in cancer therapy.
Collapse
Affiliation(s)
- Fátima Carvalho
- Faculdade de Medicina e Ciências Biomédicas (FMCB), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Manuel Aureliano
- Faculdade de Ciências e Tecnologia (FCT), Universidade do Algarve, 8005-139 Faro, Portugal
- Centro de Ciências do Mar (CCMar), Universidade do Algarve, 8005-139 Faro, Portugal
| |
Collapse
|
11
|
Missina JM, Ronqui Bottini RC, Baptistella GB, Santana FS, Stinghen D, Lemos de Sá E, Gioppo Nunes G. Synthesis, characterization, DFT calculations and bromoperoxidase activity of binuclear oxidovanadium complexes containing vitamin B6. J COORD CHEM 2022. [DOI: 10.1080/00958972.2022.2135993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
| | | | | | | | - Danilo Stinghen
- Departamento de Química, Universidade Federal do Paraná, Curitiba-PR, Brazil
| | - Eduardo Lemos de Sá
- Departamento de Química, Universidade Federal do Paraná, Curitiba-PR, Brazil
| | | |
Collapse
|
12
|
Aureliano M, Fraqueza G, Berrocal M, Cordoba-Granados JJ, Gumerova NI, Rompel A, Gutierrez-Merino C, Mata AM. Inhibition of SERCA and PMCA Ca 2+-ATPase activities by polyoxotungstates. J Inorg Biochem 2022; 236:111952. [PMID: 36049257 DOI: 10.1016/j.jinorgbio.2022.111952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 07/20/2022] [Accepted: 07/27/2022] [Indexed: 12/15/2022]
Abstract
Plasma membrane calcium ATPases (PMCA) and sarco(endo) reticulum calcium ATPases (SERCA) are key proteins in the maintenance of calcium homeostasis. Herein, we compare for the first time the inhibition of SERCA and PMCA calcium pumps by several polyoxotungstates (POTs), namely by Wells-Dawson phosphotungstate anions [P2W18O62]6- (intact, {P2W18}), [P2W17O61]10- (monolacunary, {P2W17}), [P2W15O56]12- (trilacunary, {P2W15}), [H2P2W12O48]12- (hexalacunary, {P2W12}), [H3P2W15V3O62]6- (trivanadium-substituted, {P2W15V3}) and by Preyssler-type anion [NaP5W30O110]14- ({P5W30}). The speciation in the solutions of tested POTs was investigated by 31P and 51V NMR spectroscopy. The tested POTs inhibited SERCA Ca2+-ATPase activity, whereby the Preyssler POT showed the strongest effect, with an IC50 value of 0.37 μM. For {P2W17} and {P2W15V3} higher IC50 values were determined: 0.72 and 0.95 μM, respectively. The studied POTs showed to be more potent inhibitors of PMCA Ca2+-ATPase activity, with lower IC50 values for {P2W17}, {P5W30} and {P2W15V3}.
Collapse
Affiliation(s)
- Manuel Aureliano
- FCT, Universidade do Algarve, 8005-139 Faro, Portugal; CCMar, Universidade do Algarve, 8005-139 Faro, Portugal.
| | - Gil Fraqueza
- CCMar, Universidade do Algarve, 8005-139 Faro, Portugal; ISE, Universidade do Algarve, 8005-139 Faro, Portugal
| | - Maria Berrocal
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Ciencias, Universidad de Extremadura, 06006 Badajoz, Spain; Instituto de Biomarcadores de Patologías Moleculares, Universidad de Extremadura,06006 Badajoz, Spain
| | - Juan J Cordoba-Granados
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Ciencias, Universidad de Extremadura, 06006 Badajoz, Spain
| | - Nadiia I Gumerova
- Universität Wien, Fakultät für Chemie, Institut für Biophysikalische Chemie, 1090 Vienna, Austria
| | - Annette Rompel
- Universität Wien, Fakultät für Chemie, Institut für Biophysikalische Chemie, 1090 Vienna, Austria.
| | - Carlos Gutierrez-Merino
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Ciencias, Universidad de Extremadura, 06006 Badajoz, Spain; Instituto de Biomarcadores de Patologías Moleculares, Universidad de Extremadura,06006 Badajoz, Spain
| | - Ana M Mata
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Ciencias, Universidad de Extremadura, 06006 Badajoz, Spain; Instituto de Biomarcadores de Patologías Moleculares, Universidad de Extremadura,06006 Badajoz, Spain.
| |
Collapse
|
13
|
De Sousa-Coelho AL, Aureliano M, Fraqueza G, Serrão G, Gonçalves J, Sánchez-Lombardo I, Link W, Ferreira BI. Decavanadate and metformin-decavanadate effects in human melanoma cells. J Inorg Biochem 2022; 235:111915. [PMID: 35834898 DOI: 10.1016/j.jinorgbio.2022.111915] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 06/21/2022] [Accepted: 07/03/2022] [Indexed: 10/17/2022]
Abstract
Decavanadate is a polyoxometalate (POMs) that has shown extensive biological activities, including antidiabetic and anticancer activity. Importantly, vanadium-based compounds as well as antidiabetic biguanide drugs, such as metformin, have shown to exert therapeutic effects in melanoma. A combination of these agents, the metformin-decavanadate complex, was also recognized for its antidiabetic effects and recently described as a better treatment than the monotherapy with metformin enabling lower dosage in rodent models of diabetes. Herein, we compare the effects of decavanadate and metformin-decavanadate on Ca2+-ATPase activity in sarcoplasmic reticulum vesicles from rabbit skeletal muscles and on cell signaling events and viability in human melanoma cells. We show that unlike the decavanadate-mediated non-competitive mechanism, metformin-decavanadate inhibits Ca2+-ATPase by a mixed-type competitive-non-competitive inhibition with an IC50 value about 6 times higher (87 μM) than the previously described for decavanadate (15 μM). We also found that both decavanadate and metformin-decavanadate exert antiproliferative effects on melanoma cells at 10 times lower concentrations than monomeric vanadate. Western blot analysis revealed that both, decavanadate and metformin-decavanadate increased phosphorylation of extracellular signal-regulated kinase (ERK) and serine/threonine protein kinase AKT signaling proteins upon 24 h drug exposure, suggesting that the anti-proliferative activities of these compounds act independent of growth-factor signaling pathways.
Collapse
Affiliation(s)
- Ana Luísa De Sousa-Coelho
- Algarve Biomedical Center Research Institute (ABC-RI), Universidade do Algarve, Faro, Portugal; Algarve Biomedical Center (ABC), Faro, Portugal; Escola Superior de Saúde (ESS), Universidade do Algarve, Faro, Portugal.
| | - Manuel Aureliano
- Faculdade de Ciências e Tecnologia (FCT), Universidade do Algarve, Faro, Portugal; Centro de Ciências do Mar (CCMar), Universidade do Algarve, Faro, Portugal.
| | - Gil Fraqueza
- Centro de Ciências do Mar (CCMar), Universidade do Algarve, Faro, Portugal; Instituto Superior de Engenharia (ISE), Universidade do Algarve, Faro, Portugal
| | - Gisela Serrão
- Algarve Biomedical Center Research Institute (ABC-RI), Universidade do Algarve, Faro, Portugal
| | - João Gonçalves
- Faculdade de Medicina e Ciências Biomédicas, Universidade do Algarve, Faro, Portugal
| | - Irma Sánchez-Lombardo
- División Académica de Ciencias Básicas, Universidad Juárez Autónoma de Tabasco, Cunduacán, Mexico
| | - Wolfgang Link
- Instituto de Investigaciones Biomédicas "Alberto Sols" (CSIC-UAM). Madrid, Spain
| | - Bibiana I Ferreira
- Algarve Biomedical Center Research Institute (ABC-RI), Universidade do Algarve, Faro, Portugal; Algarve Biomedical Center (ABC), Faro, Portugal; Faculdade de Medicina e Ciências Biomédicas, Universidade do Algarve, Faro, Portugal
| |
Collapse
|
14
|
Aureliano M, Mitchell SG, Yin P. Editorial: Emerging polyoxometalates with biological, biomedical, and health applications. Front Chem 2022; 10:977317. [PMID: 36017169 PMCID: PMC9397140 DOI: 10.3389/fchem.2022.977317] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 06/28/2022] [Indexed: 11/24/2022] Open
Affiliation(s)
- Manuel Aureliano
- Faculdade de Ciências e Tecnologia, Campus de Gambelas, Universidade do Algarve, Faro, Portugal
- Centro de Ciências do Mar (CCMar), Universidade do Algarve, Faro, Portugal
| | - Scott G. Mitchell
- Instituto de Nanociencia y Materiales de Aragón (INMA), Consejo Superior de Investigaciones Científicas-Universidad de Zaragoza, Zaragoza, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Madrid, Spain
| | - Panchao Yin
- South China University of Technology, Guangzhou, China
| |
Collapse
|
15
|
Patra D, Pal A, Nath S, Kundu R, Drew MGB, Ghosh T. Insights into the transformation of VO 2+ motif to VO 3+, V 2O 34+ and VO 2+ motifs and their interconversion along with a detailed mechanistic study of their anti-cancer activity in SiHa cervical cancer cells. J Inorg Biochem 2022; 234:111900. [PMID: 35717882 DOI: 10.1016/j.jinorgbio.2022.111900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 05/30/2022] [Accepted: 06/05/2022] [Indexed: 11/29/2022]
Abstract
The basic criteria for the formation of complexes with VO3+, V2O34+ and VO2+ motifs from the VO2+ motif and their interconversion were explored utilizing two multidentate O,N-donor hydrazone ligands namely, E-2-Hydroxy-N'-(4-oxopentan-2-ylidine)benzohydrazide (H3L1) and E-2-Hydroxy-N'-(4-oxo-4-phenylbutan-2-ylidine)benzohydrazide (H3L2), derived from the condensation of 2-hydroxybenzoylhydrazide with acetylacetone and benzoylacetone respectively. Under aerobic condition, the possibility of forming complexes with different motifs in different solvents with varying pH was examined theoretically by computational methods with results that were verified experimentally. This study reveals that under aerobic condition, complexes with VO3+ (1,2) and V2O34+ (3, 4) motifs were formed in protic CH3OH and neutral CHCl3 solvent respectively while the formation of complexes (5-14) with VO2+ motif required protic CH3OH solvent and higher pH (≥ 7). Interconversion of VO3+, V2O34+ and VO2+ motifs are associated with specific acid-base equilibria, substantiated by 51V NMR titrations. Complexes containing these three motifs exhibited promising in vitro anticancer activity in SiHa cervical cancer cells without affecting healthy cells; among them complexes (5-14) with VO2+ motif are more potent. A detailed systematic mechanistic study was carried out, utilizing the two most potent complexes 5 and 6 (IC50 = 13, 6 μM respectively), which indicates that cytotoxicity and anti-proliferative activity of these complexes are manifested through oxidative stress induced apoptotic pathways (caspase mediated).
Collapse
Affiliation(s)
- Debashis Patra
- Post Graduate Department of Chemistry, Ramakrishna Mission Vivekananda Centenary College, Rahara, Kolkata 700118, India
| | - Asmita Pal
- Department of Botany, University of Calcutta, 35 Ballyguange Circular Road, Kolkata 700019, India
| | - Sonali Nath
- Department of Botany, University of Calcutta, 35 Ballyguange Circular Road, Kolkata 700019, India
| | - Rita Kundu
- Department of Botany, University of Calcutta, 35 Ballyguange Circular Road, Kolkata 700019, India
| | - Michael G B Drew
- Department of Chemistry, The University of Reading, PO Box 224, Whiteknights, Reading, RG6 6AD, UK
| | - Tapas Ghosh
- Post Graduate Department of Chemistry, Ramakrishna Mission Vivekananda Centenary College, Rahara, Kolkata 700118, India.
| |
Collapse
|
16
|
Zarroug R, Artetxe B, Ayed B, López X, Ribeiro N, Correia I, Pessoa JC. New phosphotetradecavanadate hybrids: crystal structure, DFT analysis, stability and binding interactions with bio-macromolecules. Dalton Trans 2022; 51:8303-8317. [PMID: 35583072 DOI: 10.1039/d2dt00690a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Two novel bicapped Keggin polyoxidovanadates with organic cations, (C6H8N)5[H4PV14O42]·5H2O (1) and (C6H14N4)2(NH4)[H4PV14O42]·11H2O (2), (PV14O426- = PV14, C6H7N = 3-picoline and C6H12N4 = methenamine) were synthesized. These compounds were isolated and characterized in the solid state and in solution by elemental analysis, powder X-ray diffraction, FTIR, UV-vis, 51V, 31P, 13C and 1H NMR, and fluorescence spectroscopy. Further confirmation of the PV14 structures was obtained by single-crystal X-ray diffraction studies of 1 and 2. The Hirshfeld surface analysis was performed to confirm that within the intermolecular interactions occurring in the two crystals, the O⋯H/H⋯O, O⋯O and H⋯H interactions dominate. The protonation and one-electron reduction of the PV14 moiety were also analysed by means of DFT calculations; besides confirming the protonation sites and correctly predicting the pKa values, the DFT results also indicate that molecular reduction is energetically more favourable in protonated PV14 anions. Upon the addition of PV14 anions to bovine serum albumin (BSA) up to a ratio of 1 : 1, the fluorescence decreased by 45% for both 1 and 2, indicating that the interaction of vanadium-containing species with this protein takes place; log(KSV) values of ca. 5.5 were obtained in both systems. Upon the addition of 1 or 2 to solutions of calf-thymus DNA (ctDNA), changes were observed in the UV-vis absorption and circular dichroism spectra. The significance of the changes observed is discussed considering the several V-containing species that form in the solution.
Collapse
Affiliation(s)
- Rim Zarroug
- University of Monastir, Laboratory of Physico-Chemistry of Materials LR01ES19, Faculty of Sciences of Monastir, Tunisia.,Department of Chemistry, Faculty of Sciences, University of Gabes, Tunisia
| | - Beñat Artetxe
- Departamento de Química Inorgánica, Facultad de Ciencia y Tecnología, Universidad del País Vasco UPV/EHU, 48080 Bilbao, Spain
| | - Brahim Ayed
- University of Monastir, Laboratory of Physico-Chemistry of Materials LR01ES19, Faculty of Sciences of Monastir, Tunisia
| | - Xavier López
- Universitat Rovira i Virgili, Departament de Química Física i Inorgànica, c/Marcel·lí Domingo 1, 43007 Tarragona, Spain
| | - Nádia Ribeiro
- Centro de Química Estrutural, Institute of Molecular Sciences and Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal.
| | - Isabel Correia
- Centro de Química Estrutural, Institute of Molecular Sciences and Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal.
| | - João Costa Pessoa
- Centro de Química Estrutural, Institute of Molecular Sciences and Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal.
| |
Collapse
|
17
|
Aureliano M, Gumerova NI, Sciortino G, Garribba E, McLauchlan CC, Rompel A, Crans DC. Polyoxidovanadates' interactions with proteins: An overview. Coord Chem Rev 2022; 454:214344. [DOI: 10.1016/j.ccr.2021.214344] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
18
|
Kita DH, de Andrade GA, Missina JM, Postal K, Boell VK, Santana FS, Zattoni IF, da Silva Zanzarini I, Moure VR, de Moraes Rego FG, Picheth G, de Souza EM, Mitchell DA, Ambudkar SV, Nunes GG, Valdameri G. Polyoxovanadates as new P-glycoprotein inhibitors: insights into the mechanism of inhibition. FEBS Lett 2022; 596:381-399. [PMID: 34939198 PMCID: PMC9340886 DOI: 10.1002/1873-3468.14265] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 12/02/2021] [Accepted: 12/13/2021] [Indexed: 02/03/2023]
Abstract
A promising strategy to overcome multidrug resistance is the use of inhibitors of ABC drug transporters. For this reason, we evaluated the polyoxovanadates (POVs) [V10 O28 ]6- (V10 ), [H6 V14 O38 (PO4 )]5- (V14 ), [V15 O36 Cl]6- (V15 ) and [V18 O42 I]7- (V18 ) as inhibitors of three major multidrug resistance-linked ABC transporters: P-glycoprotein (P-gp), ABCG2 and MRP1. All of the POVs selectively inhibited P-gp. V10 and V18 were the two most promising compounds, with IC50 values of transport inhibition of 25.4 and 22.7 µm, respectively. Both compounds inhibited P-gp ATPase activity, with the same IC50 value of 1.26 µm. V10 and V18 triggered different conformational changes in the P-gp protein with time-dependent inhibition, which was confirmed using the synthesized salt of V10 with rhodamine B, RhoB-V10 . The hydrophilic nature of POVs supports the hypothesis that these compounds target an unusual ligand-binding site, opening new possibilities in the development of potent modulators of ABC transporters.
Collapse
MESH Headings
- Humans
- ATP Binding Cassette Transporter, Subfamily G, Member 2/antagonists & inhibitors
- ATP Binding Cassette Transporter, Subfamily G, Member 2/metabolism
- ATP Binding Cassette Transporter, Subfamily G, Member 2/genetics
- ATP Binding Cassette Transporter, Subfamily G, Member 2/chemistry
- Multidrug Resistance-Associated Proteins/antagonists & inhibitors
- Multidrug Resistance-Associated Proteins/metabolism
- ATP Binding Cassette Transporter, Subfamily B, Member 1/antagonists & inhibitors
- ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism
- ATP Binding Cassette Transporter, Subfamily B, Member 1/chemistry
- Neoplasm Proteins/antagonists & inhibitors
- Neoplasm Proteins/metabolism
- Neoplasm Proteins/genetics
- Tungsten Compounds/pharmacology
- Tungsten Compounds/chemistry
- ATP Binding Cassette Transporter, Subfamily B/antagonists & inhibitors
- ATP Binding Cassette Transporter, Subfamily B/metabolism
- ATP Binding Cassette Transporter, Subfamily B/chemistry
- ATP Binding Cassette Transporter, Subfamily B/genetics
- Drug Resistance, Multiple/drug effects
- Animals
Collapse
Affiliation(s)
- Diogo Henrique Kita
- Pharmaceutical Sciences Graduate Program, Laboratory of Cancer Drug Resistance, Federal University of Paraná, Curitiba, PR, Brazil
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Gisele Alves de Andrade
- Pharmaceutical Sciences Graduate Program, Laboratory of Cancer Drug Resistance, Federal University of Paraná, Curitiba, PR, Brazil
| | | | - Kahoana Postal
- Department of Chemistry, Federal University of Paraná, Curitiba, PR, Brazil
| | | | | | - Ingrid Fatima Zattoni
- Pharmaceutical Sciences Graduate Program, Laboratory of Cancer Drug Resistance, Federal University of Paraná, Curitiba, PR, Brazil
| | - Isadora da Silva Zanzarini
- Pharmaceutical Sciences Graduate Program, Laboratory of Cancer Drug Resistance, Federal University of Paraná, Curitiba, PR, Brazil
| | - Vivian Rotuno Moure
- Pharmaceutical Sciences Graduate Program, Laboratory of Cancer Drug Resistance, Federal University of Paraná, Curitiba, PR, Brazil
- Department of Clinical Analysis, Federal University of Paraná, Curitiba, PR, Brazil
| | | | - Geraldo Picheth
- Department of Clinical Analysis, Federal University of Paraná, Curitiba, PR, Brazil
| | - Emanuel Maltempi de Souza
- Department of Biochemistry and Molecular Biology, Federal University of Paraná, Curitiba, PR, Brazil
| | - David A. Mitchell
- Department of Biochemistry and Molecular Biology, Federal University of Paraná, Curitiba, PR, Brazil
| | - Suresh V. Ambudkar
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | | | - Glaucio Valdameri
- Pharmaceutical Sciences Graduate Program, Laboratory of Cancer Drug Resistance, Federal University of Paraná, Curitiba, PR, Brazil
- Department of Clinical Analysis, Federal University of Paraná, Curitiba, PR, Brazil
| |
Collapse
|
19
|
Pessoa JC, Santos MF, Correia I, Sanna D, Sciortino G, Garribba E. Binding of vanadium ions and complexes to proteins and enzymes in aqueous solution. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214192] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
20
|
Berrocal M, Cordoba-Granados JJ, Carabineiro SAC, Gutierrez-Merino C, Aureliano M, Mata AM. Gold Compounds Inhibit the Ca2+-ATPase Activity of Brain PMCA and Human Neuroblastoma SH-SY5Y Cells and Decrease Cell Viability. METALS 2021; 11:1934. [DOI: 10.3390/met11121934] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Plasma membrane calcium ATPases (PMCA) are key proteins in the maintenance of calcium (Ca2+) homeostasis. Dysregulation of PMCA function is associated with several human pathologies, including neurodegenerative diseases, and, therefore, these proteins are potential drug targets to counteract those diseases. Gold compounds, namely of Au(I), are well-known for their therapeutic use in rheumatoid arthritis and other diseases for centuries. Herein, we report the ability of dichloro(2-pyridinecarboxylate)gold(III) (1), chlorotrimethylphosphinegold(I) (2), 1,3-bis(2,6-diisopropylphenyl)imidazol-2-ylidenegold(I) chloride (3), and chlorotriphenylphosphinegold(I) (4) compounds to interfere with the Ca2+-ATPase activity of pig brain purified PMCA and with membranes from SH-SY5Y neuroblastoma cell cultures. The Au(III) compound (1) inhibits PMCA activity with the IC50 value of 4.9 µM, while Au(I) compounds (2, 3, and 4) inhibit the protein activity with IC50 values of 2.8, 21, and 0.9 µM, respectively. Regarding the native substrate MgATP, gold compounds 1 and 4 showed a non-competitive type of inhibition, whereas compounds 2 and 3 showed a mixed type of inhibition. All gold complexes showed cytotoxic effects on human neuroblastoma SH-SY5Y cells, although compounds 1 and 3 were more cytotoxic than compounds 2 and 4. In summary, this work shows that both Au (I and III) compounds are high-affinity inhibitors of the Ca2+-ATPase activity in purified PMCA fractions and in membranes from SH-SY5Y human neuroblastoma cells. Additionally, they exert strong cytotoxic effects.
Collapse
Affiliation(s)
- Maria Berrocal
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Ciencias, Universidad de Extremadura, 06006 Badajoz, Spain
- Instituto de Biomarcadores de Patologías Moleculares, Universidad de Extremadura, 06006 Badajoz, Spain
| | - Juan J. Cordoba-Granados
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Ciencias, Universidad de Extremadura, 06006 Badajoz, Spain
- Instituto de Biomarcadores de Patologías Moleculares, Universidad de Extremadura, 06006 Badajoz, Spain
| | - Sónia A. C. Carabineiro
- LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - Carlos Gutierrez-Merino
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Ciencias, Universidad de Extremadura, 06006 Badajoz, Spain
- Instituto de Biomarcadores de Patologías Moleculares, Universidad de Extremadura, 06006 Badajoz, Spain
| | - Manuel Aureliano
- Faculdade de Ciências e Tecnologia (FCT), Universidade do Algarve, 8005-139 Faro, Portugal
- Centro de Ciências do Mar (CCMar), FCT, Universidade do Algarve, 8005-139 Faro, Portugal
| | - Ana M. Mata
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Ciencias, Universidad de Extremadura, 06006 Badajoz, Spain
- Instituto de Biomarcadores de Patologías Moleculares, Universidad de Extremadura, 06006 Badajoz, Spain
| |
Collapse
|
21
|
Aureliano M, Gumerova NI, Sciortino G, Garribba E, Rompel A, Crans DC. Polyoxovanadates with emerging biomedical activities. Coord Chem Rev 2021; 447:214143. [DOI: 10.1016/j.ccr.2021.214143] [Citation(s) in RCA: 120] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
22
|
Shirkhanloo H, Faghihi-Zarandi A, Mobarake MD. Thiol modified bimodal mesoporous silica nanoparticles for removal and determination toxic vanadium from air and human biological samples in petrochemical workers. NANOIMPACT 2021; 23:100339. [PMID: 35559840 DOI: 10.1016/j.impact.2021.100339] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 06/15/2021] [Accepted: 06/19/2021] [Indexed: 06/15/2023]
Abstract
Investigation of exposure to toxic vanadium (V) in petrochemical workers is very important for human health, and it must be removed and determined in workplace air and human biological samples. In this research, the enriched adsorbent based on the thiol modified bimodal mesoporous silica nanoparticle (HS-UVM7) was used for the extraction vanadium in human blood by the dispersive sonication ionic liquid micro solid phase extraction (DS-IL-μ-SPE) at pH of 4.5. In addition, the vanadium (V) was removed from the industrial workplace air based on HS-UVM7 adsorbent by the liquid-solid phase-gas removal (LSP-GR). In the static and dynamic system, the vanadium (V) was removed from artificial air with HS-UVM7 and compared with the polyvinyl chloride membrane (PCM, sorbent in 7300 NIOSH). The LSP-GR procedure based on HS-UVM7 had more recovery and adsorption capacity as compared to PCM. The adsorption capacity of HS-UVM7 and UVM7 adsorbents were obtained 144.1 mg g-1 and 23.3 mg g-1, respectively. In addition, the main parameters effected on extraction vanadium in blood samples and removal from air were studied and optimized by ET-AAS. The LOD, RSD%, linear range (LR) and enrichment factor (EF) was achieved 0.03 μg L-1, 3.1, 0.1-4.5 μg L-1 and 48.7, respectively for extraction of vanadium in 10 mL of blood samples by the DS-IL-MSPE procedure. The validation of the methodology was confirmed by standard addition to gas phase and using certified reference materials (CRM, NIST) or ICP-MS in human blood samples.
Collapse
Affiliation(s)
- Hamid Shirkhanloo
- Research Institute of Petroleum Industry, West Entrance Blvd., Olympic Village, P.O. Box: 14857-33111, Tehran, Iran.
| | - Ali Faghihi-Zarandi
- Modeling in Health Research Center, Institute for Futures Studies in Health, Occupational Health Engineering Department, Kerman University of Medical Sciences, Kerman, Iran
| | | |
Collapse
|
23
|
Sciortino G, Aureliano M, Garribba E. Rationalizing the Decavanadate(V) and Oxidovanadium(IV) Binding to G-Actin and the Competition with Decaniobate(V) and ATP. Inorg Chem 2021; 60:334-344. [PMID: 33253559 PMCID: PMC8016201 DOI: 10.1021/acs.inorgchem.0c02971] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Indexed: 02/07/2023]
Abstract
The experimental data collected over the past 15 years on the interaction of decavanadate(V) (V10O286-; V10), a polyoxometalate (POM) with promising anticancer and antibacterial action, with G-actin, were rationalized by using several computational approaches (docking, density functional theory (DFT), and molecular dynamics (MD)). Moreover, a comparison with the isostructural and more stable decaniobate(V) (Nb10O286-; Nb10) was carried out. Four binding sites were identified, named α, β, γ, and δ, the site α being the catalytic nucleotide site located in the cleft of the enzyme at the interface of the subdomains II and IV. It was observed that the site α is preferred by V10, whereas Nb10 is more stable at the site β; this indicates that, differently from other proteins, G-actin could contemporaneously bind the two POMs, whose action would be synergistic. Both decavanadate and decaniobate induce conformational rearrangements in G-actin, larger for V10 than Nb10. Moreover, the binding mode of oxidovanadium(IV) ion, VIVO2+, formed upon the reduction of decavanadate(V) by the -SH groups of accessible cysteine residues, is also found in the catalytic site α with (His161, Asp154) coordination; this adduct overlaps significantly with the region where ATP is bound, accounting for the competition between V10 and its reduction product VIVO2+ with ATP, as previously observed by EPR spectroscopy. Finally, the competition with ATP was rationalized: since decavanadate prefers the nucleotide site α, Ca2+-ATP displaces V10 from this site, while the competition is less important for Nb10 because this POM shows a higher affinity for β than for site α. A relevant consequence of this paper is that other metallodrug-protein systems, in the absence or presence of eventual inhibitors and/or competition with molecules of the organism, could be studied with the same approach, suggesting important elements for an explanation of the biological data and a rational drug design.
Collapse
Affiliation(s)
- Giuseppe Sciortino
- Dipartimento
di Chimica e Farmacia, Università
di Sassari, Via Vienna 2, I-07100 Sassari, Italy
- Institute
of Chemical Research of Catalonia (ICIQ), Avgda. Països Catalans, 16, 43007 Tarragona, Spain
| | - Manuel Aureliano
- CCMar,
FCT, Faculdade de Ciências e Tecnologia, Universidade do Algarve, 8000-139 Faro, Portugal
| | - Eugenio Garribba
- Dipartimento
di Chimica e Farmacia, Università
di Sassari, Via Vienna 2, I-07100 Sassari, Italy
| |
Collapse
|
24
|
Quiles JL, Sánchez-González C, Vera-Ramírez L, Giampieri F, Navarro-Hortal MD, Xiao J, Llopis J, Battino M, Varela-López A. Reductive Stress, Bioactive Compounds, Redox-Active Metals, and Dormant Tumor Cell Biology to Develop Redox-Based Tools for the Treatment of Cancer. Antioxid Redox Signal 2020; 33:860-881. [PMID: 32064905 DOI: 10.1089/ars.2020.8051] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Significance: Cancer is related to redox biology from many points of view, such as initiation and promotion, metabolism and growth, invasion and metastasis, vascularization, or through the interaction with the immune system. In addition, this extremely complex relationship depends on the redox homeostasis of each cellular compartment, which might be used to fight cancer. Recent Advances: New ways of modulating specific and little explored aspects of redox biology have been revealed, as well as new delivery methods or uses of previously known treatments against cancer. Here, we review the latest experimental evidence regarding redox biology in cancer treatment and analyze its potential impact in the development of improved and more effective antineoplastic therapies. Critical Issues: A critical issue that deserves particular attention is the understanding that both extremes of redox biology (i.e., oxidative stress [OS] and reductive stress) might be useful or harmful in relation to cancer prevention and treatment. Future Directions: Additional research is needed to understand how to selectively induce reductive or OS adequately to avoid cancer proliferation or to induce cancer cell death.
Collapse
Affiliation(s)
- José L Quiles
- Department of Physiology, Institute of Nutrition and Food Technology "José Mataix Verdú", Biomedical Research Center, University of Granada, Granada, Spain
- College of Food Science and Technology, Northwest University, Xi'an, China
| | - Cristina Sánchez-González
- Department of Physiology, Institute of Nutrition and Food Technology "José Mataix Verdú", Biomedical Research Center, University of Granada, Granada, Spain
| | - Laura Vera-Ramírez
- Department of Genomic Medicine, GENYO: Centre for Genomics and Oncology (Pfizer-University of Granada and Andalusian Regional Government), Granada, Spain
| | - Francesca Giampieri
- College of Food Science and Technology, Northwest University, Xi'an, China
- Department of Clinical Sciences, Università Politecnica delle Marche, Ancona, Italy
| | - M Dolores Navarro-Hortal
- Department of Physiology, Institute of Nutrition and Food Technology "José Mataix Verdú", Biomedical Research Center, University of Granada, Granada, Spain
| | - Jianbo Xiao
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang, China
| | - Juan Llopis
- Department of Physiology, Institute of Nutrition and Food Technology "José Mataix Verdú", Biomedical Research Center, University of Granada, Granada, Spain
| | - Maurizio Battino
- Department of Clinical Sciences, Università Politecnica delle Marche, Ancona, Italy
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang, China
- Nutrition and Food Science Group, Department of Analytical and Food Chemistry, CITACA, CACTI, University of Vigo, Vigo, Spain
| | - Alfonso Varela-López
- Department of Physiology, Institute of Nutrition and Food Technology "José Mataix Verdú", Biomedical Research Center, University of Granada, Granada, Spain
| |
Collapse
|
25
|
Fonseca C, Fraqueza G, Carabineiro SAC, Aureliano M. The Ca2+-ATPase Inhibition Potential of Gold(I, III) Compounds. INORGANICS 2020; 8:49. [DOI: 10.3390/inorganics8090049] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The therapeutic applications of gold are well-known for many centuries. The most used gold compounds contain Au(I). Herein, we report, for the first time, the ability of four Au(I) and Au(III) complexes, namely dichloro (2-pyridinecarboxylate) Au(III) (abbreviated as 1), chlorotrimethylphosphine Au(I) (2), 1,3-bis(2,6-diisopropylphenyl) imidazole-2-ylidene Au(I) chloride (3), and chlorotriphenylphosphine Au(I) (4), to affect the sarcoplasmic reticulum (SR) Ca2+-ATPase activity. The tested gold compounds strongly inhibit the Ca2+-ATPase activity with different effects, being Au(I) compounds 2 and 4 the strongest, with half maximal inhibitory concentration (IC50) values of 0.8 and 0.9 µM, respectively. For Au(III) compound 1 and Au(I) compound 3, higher IC50 values are found (4.5 µM and 16.3 µM, respectively). The type of enzymatic inhibition is also different, with gold compounds 1 and 2 showing a non-competitive inhibition regarding the native substrate MgATP, whereas for Au compounds 3 and 4, a mixed type of inhibition is observed. Our data reveal, for the first time, Au(I) compounds with powerful inhibitory capacity towards SR Ca2+ATPase function. These results also show, unprecedently, that Au (III) and Au(I) compounds can act as P-type ATPase inhibitors, unveiling a potential application of these complexes.
Collapse
Affiliation(s)
| | - Gil Fraqueza
- CCMar, ISE, Universidade do Algarve, 8005-139 Faro, Portugal
| | - Sónia A. C. Carabineiro
- LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | | |
Collapse
|
26
|
Samart N, Althumairy D, Zhang D, Roess DA, Crans DC. Initiation of a novel mode of membrane signaling: Vanadium facilitated signal transduction. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213286] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
27
|
Zhang G, Luan J, Wang XJ. The crystal structure of tetrakis(1-methylimidazole-κ 1
N)-oxido-(sulfato-κ 1
O)vanadium(IV), C 16H 24N 8O 5SV. Z KRIST-NEW CRYST ST 2020. [DOI: 10.1515/ncrs-2020-0276] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
C16H24N8O5SV, monoclinic, P21/c (no. 14), a = 9.6165(6) Å, b = 16.6705(10) Å, c = 15.2726(7) Å, β = 121.630(3)°, V = 2084.7(2) Å3, Z = 4, R
gt(F) = 0.0417, wR
ref(F
2) = 0.1443, T = 296(2) K.
Collapse
Affiliation(s)
- Gang Zhang
- College of Chemistry, Chemical Engineering and Environmental Engineering , Liaoning Shihua University , Fushun, Liaoning Province, 113001 , P.R. China
| | - Jian Luan
- Shenyang National Laboratory for Materials Science, Institute of Metal Research , Chinese Academy of Sciences , Shenyang, Liaoning Province, 110016 , P.R. China
| | - Xiao-Jie Wang
- College of Chemistry, Chemical Engineering and Environmental Engineering , Liaoning Shihua University , Fushun, Liaoning Province, 113001 , P.R. China
| |
Collapse
|
28
|
Chi G, Xie L, Zhao M, Wang L, Wang F, Li J, Zheng A. Biological evaluation of Keggin-type polyoxometalates on tyrosinase: Kinetics and molecular modeling. Chem Biol Drug Des 2020; 96:1255-1261. [PMID: 32473601 DOI: 10.1111/cbdd.13734] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 05/05/2020] [Accepted: 05/10/2020] [Indexed: 02/06/2023]
Abstract
Abnormal overexpression of tyrosinase activity can lead to the production of hyperpigmentation in human skin and enzymatic browning in fruits and vegetables. Herein, the inhibition and mechanism of the H3 PMo12 O40 and two transition metal-substituted Keggin-type polyoxometalates (Na7 PMo11 CoO40 and Na7 PMo11 ZnO40 ) on tyrosinase were studied by kinetics and molecular modeling. Kinetic studies indicated that all compounds had more potent inhibitory activities than standard arbutin, and H3 PMo12 O40 (IC50 = 0.443 ± 0.006 mm) is ~15-fold stronger inhibition than arbutin. Additionally, all compounds inhibited tyrosinase in a reversible competitive manner. Intriguingly, molecular modeling elucidated that three compounds competitively bind to tyrosinase mainly through more interactions with Cu2+ ions and the amino acid residue capable of forming cation-π and hydrogen bonding, forming a reversible non-covalent complex. Molecular simulation study correlated well with the biological activity of three compounds in vitro. This work provided new insights into design and synthesis of polyoxometalates as tyrosinase inhibitors in the field of medicine, cosmetic, and food.
Collapse
Affiliation(s)
- Guoxiang Chi
- College of Food and Biological Engineering, Jimei University, Xiamen, China
| | - Lefang Xie
- College of Food and Biological Engineering, Jimei University, Xiamen, China
| | - Meijuan Zhao
- College of Food and Biological Engineering, Jimei University, Xiamen, China
| | - Li Wang
- College of Food and Biological Engineering, Jimei University, Xiamen, China
| | - Fang Wang
- College of Chemistry and Life Science, Quanzhou Normal College, Quanzhou, China
| | - Jian Li
- College of Food and Biological Engineering, Jimei University, Xiamen, China
| | - Aping Zheng
- College of Food and Biological Engineering, Jimei University, Xiamen, China
| |
Collapse
|
29
|
Tanuhadi E, Al-Sayed E, Novitchi G, Roller A, Giester G, Rompel A. Cation-Directed Synthetic Strategy Using 4f Tungstoantimonates as Nonlacunary Precursors for the Generation of 3d-4f Clusters. Inorg Chem 2020; 59:8461-8467. [PMID: 32442371 PMCID: PMC7298720 DOI: 10.1021/acs.inorgchem.0c00890] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
![]()
The first synthetic
pathway using a series of four nonlacunary
4f-heterometal-substituted polyoxotungstate clusters Na21[(Ln(H2O)(OH)2(CH3COO))3(WO4)(SbW9O33)3]·nH2O (NaLnSbW9; Ln = TbIII, DyIII, HoIII, ErIII, YIII) as precursors for the directed
preparation of nine new 3d–4f heterometallic tungstoantimonates
K5Na12H3[TM(H2O)Ln3(H2O)5(W3O11)(SbW9O33)3]·nH2O (KTMLnSbW9; TM = CoII, NiII; Ln = TbIII, DyIII, HoIII, ErIII, YIII) has been developed.
Systematic studies revealed an increased K content in the aqueous
acidic reaction mixture to be the key step in the cation-directed
preparation of 3d–4f compounds; among those, the Co-containing
members represent the first examples of KCoLnSbW9 (Ln = TbIII, DyIII, HoIII, ErIII, YIII) heterometallic tungstoantimonates
exhibiting the SbW9 building
block. All 13 compounds have been characterized thoroughly in the
solid state by powder and single-crystal X-ray diffraction (XRD),
revealing a cyclic trimeric polyoxometalate architecture with three SbW9 units encapsulating a planar
triangle of LnIII ions in the case of NaLnSbW9 and a heterometallic core of one TMII and three LnIII for KTMLnSbW9 (TM = CoII, NiII; Ln =
TbIII, DyIII, HoIII, ErIII, YIII). The results obtained by XRD are supplemented
by complementary characterization methods in the solid state such
as IR spectroscopy, thermogravimetric analysis, and elemental analysis
as well as in solution by UV–vis spectroscopy. Detailed magnetic
studies on the representative compounds KTMDySbW9 (TM = CoII, NiII) and KCoYSbW9 of the series revealed field-induced
slow magnetic relaxation. The first step-by-step
synthetic protocol using preformed
4f tungstoantimonate clusters as nonlacunary precursors for the controlled
preparation and thorough characterization of a family of nine new
3d−4f heterometallic polyoxometalates [TM(H2O)Ln3(H2O)5(W3O11)(SbW9O33)3]20- (KTMLnSbW9) (TM = CoII, NiII; Ln = TbIII, DyIII, HoIII, ErIII, YIII) is reported. Magnetic studies on the
DyIII-containing representatives [TM(H2O)Dy3(H2O)5(W3O11)(SbW9O33)3]20− (TM = CoII, NiII) show single-molecule-magnet behavior.
Collapse
Affiliation(s)
- Elias Tanuhadi
- Fakultät für Chemie, Institut für Biophysikalische Chemie, Universität Wien, 1090 Wien, Austria
| | - Emir Al-Sayed
- Fakultät für Chemie, Institut für Biophysikalische Chemie, Universität Wien, 1090 Wien, Austria
| | - Ghenadie Novitchi
- Laboratoire National des Champs Magnetiques IntensesCNRS, 25 rue des Martyrs, 38042 Grenoble Cedex 9, France
| | - Alexander Roller
- Fakultät für Chemie, Zentrum für Röntgenstrukturanalyse, Universität Wien, 1090 Wien, Austria
| | - Gerald Giester
- , Fakultät für Geowissenschaften, Geographie und Astronomie, Institut für Mineralogie und KristallographieUniversität Wien, 1090 Wien, Austria
| | - Annette Rompel
- Fakultät für Chemie, Institut für Biophysikalische Chemie, Universität Wien, 1090 Wien, Austria
| |
Collapse
|
30
|
Martínez-Valencia B, Corona-Motolinia ND, Sánchez-Lara E, Noriega L, Sánchez-Gaytán BL, Castro ME, Meléndez-Bustamante F, González-Vergara E. Cyclo-tetravanadate bridged copper complexes as potential double bullet pro-metallodrugs for cancer treatment. J Inorg Biochem 2020; 208:111081. [PMID: 32531543 DOI: 10.1016/j.jinorgbio.2020.111081] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 03/21/2020] [Accepted: 03/21/2020] [Indexed: 02/07/2023]
Abstract
Over the last decade, copper and vanadium complexes have shown promising properties for the treatment of several types of cancer. In particular, Casiopeinas®, a group of copper-based complexes, has received specific attention, and their mechanism of action has been extensively studied since their structure is simple and their synthesis may be affordable. Similarly, vanadium-containing compounds in the form of complexes and simple polyoxovanadates have also been studied as antitumor agents. Here, potential prodrugs that would release the two metals, V and Cu, in usable form to act in conjunction against cancer cells are reported. The new series of Casiopeinas-like compounds are bridged by a cyclotetravanadate ion with the generic formula [Cu(N,N')(AA)]2•(V4O12), where (N,N') represent 1,10-phenanthroline and 2,2'-bipyridine, and (AA) are aminoacidate ions (Lysine and Ornithine). The compounds were characterized by elemental analysis, single-crystal X-ray diffraction and Visible, FTIR, and Raman spectroscopies, as well as 51V NMR, EPR, and Thermogravimetric Analysis. Additionally, theoretical calculations based on the Density Functional Theory (DFT) were carried out to model the compounds. Optimized structures, theoretical IR, and Raman spectra were also obtained, as well as docking analysis to test DNA interactions with the casiopeina-like complexes. The compounds may act as prodrugs by providing acting molecules that have showed potential pharmacological properties for the treatment of several types of cancer.
Collapse
Affiliation(s)
- Beatriz Martínez-Valencia
- Centro de Química, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, 72570 Puebla, Puebla, Mexico
| | - Nidia D Corona-Motolinia
- Centro de Química, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, 72570 Puebla, Puebla, Mexico
| | - Eduardo Sánchez-Lara
- Centro de Química, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, 72570 Puebla, Puebla, Mexico
| | - Lisset Noriega
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, 72570 Puebla, Puebla, Mexico
| | - Brenda L Sánchez-Gaytán
- Centro de Química, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, 72570 Puebla, Puebla, Mexico
| | - María Eugenia Castro
- Centro de Química, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, 72570 Puebla, Puebla, Mexico
| | | | - Enrique González-Vergara
- Centro de Química, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, 72570 Puebla, Puebla, Mexico.
| |
Collapse
|
31
|
Pimpão C, da Silva IV, Mósca AF, Pinho JO, Gaspar MM, Gumerova NI, Rompel A, Aureliano M, Soveral G. The Aquaporin-3-Inhibiting Potential of Polyoxotungstates. Int J Mol Sci 2020; 21:2467. [PMID: 32252345 PMCID: PMC7177757 DOI: 10.3390/ijms21072467] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 03/25/2020] [Accepted: 03/31/2020] [Indexed: 02/07/2023] Open
Abstract
Polyoxometalates (POMs) are of increasing interest due to their proven anticancer activities. Aquaporins (AQPs) were found to be overexpressed in tumors bringing particular attention to their inhibitors as anticancer drugs. Herein, we report for the first time the ability of polyoxotungstates (POTs), such as of Wells-Dawson P2W18, P2W12, and P2W15, and Preyssler P5W30 structures, to affect aquaporin-3 (AQP3) activity and impair melanoma cell migration. The tested POTs were revealed to inhibit AQP3 function with different effects, with P2W18, P2W12, and P5W30 being the most potent (50% inhibitory concentration (IC50) = 0.8, 2.8, and 3.2 µM), and P2W15 being the weakest (IC50 > 100 µM). The selectivity of P2W18 toward AQP3 was confirmed in yeast cells transformed with human aquaglyceroporins. The effect of P2W12 and P2W18 on melanoma cells that highly express AQP3 revealed an impairment of cell migration between 55% and 65% after 24 h, indicating that the anticancer properties of these compounds may in part be due to the blockage of AQP3-mediated permeability. Altogether, our data revealed that P2W18 strongly affects AQP3 activity and cancer cell growth, unveiling its potential as an anticancer drug against tumors where AQP3 is highly expressed.
Collapse
Affiliation(s)
- Catarina Pimpão
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal; (C.P.); (I.V.d.S.); (A.F.M.); (J.O.P.); (M.M.G.)
- Department of Biochemistry and Human Biology, Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal
| | - Inês V. da Silva
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal; (C.P.); (I.V.d.S.); (A.F.M.); (J.O.P.); (M.M.G.)
- Department of Biochemistry and Human Biology, Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal
| | - Andreia F. Mósca
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal; (C.P.); (I.V.d.S.); (A.F.M.); (J.O.P.); (M.M.G.)
- Department of Biochemistry and Human Biology, Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal
| | - Jacinta O. Pinho
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal; (C.P.); (I.V.d.S.); (A.F.M.); (J.O.P.); (M.M.G.)
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal
| | - Maria Manuela Gaspar
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal; (C.P.); (I.V.d.S.); (A.F.M.); (J.O.P.); (M.M.G.)
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal
| | - Nadiia I. Gumerova
- Universität Wien, Fakultät für Chemie, Institut für Biophysikalische Chemie, 1090 Vienna, Austria; (N.I.G.); (A.R.)
| | - Annette Rompel
- Universität Wien, Fakultät für Chemie, Institut für Biophysikalische Chemie, 1090 Vienna, Austria; (N.I.G.); (A.R.)
| | - Manuel Aureliano
- Faculdade de Ciências e Tecnologia (FCT), CCMar, Universidade do Algarve, 8005-139 Faro, Portugal
| | - Graça Soveral
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal; (C.P.); (I.V.d.S.); (A.F.M.); (J.O.P.); (M.M.G.)
- Department of Biochemistry and Human Biology, Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal
| |
Collapse
|
32
|
In vitro study of the protective effect of manganese against vanadium-mediated nuclear and mitochondrial DNA damage. Food Chem Toxicol 2019; 135:110900. [PMID: 31654710 DOI: 10.1016/j.fct.2019.110900] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 09/24/2019] [Accepted: 10/18/2019] [Indexed: 12/29/2022]
Abstract
We aimed to study the effect of vanadium(V) exposure on cell viability, nuclear DNA (nDNA) and mitochondrial DNA (mtDNA) and to elucidate if these effects can be reverted by co-exposure to V and manganese (Mn). HepG2 cells were incubated with various concentrations of bis(maltolato)oxovanadium(IV) or MnCl2 for 32 h for viability study. The higher concentrations (59 μM V, 54 nM Mn and 59 μM V+54 nM Mn) were used to study DNA damage and uptake of V and Mn. Comet assay was used for the study of nDNA damage; mtDNA damage was studied by determining deletions and number of copies of the ND1/ND4 mtDNA region. Cellular content of V and Mn was determined using ICPMS. Cellular exposure to 59 μM V decreased viability (14%) and damaged nDNA and mtDNA. This effect was partially prevented by the co-exposure to V + Mn. Exposure to V increased the cellular content of V and Mn (812.3% and 153.5%, respectively). Exposure to Mn decreased the content of V and Mn (62% and 56%, respectively). Exposure to V + Mn increased V (261%) and decreased Mn (56%) content. The positive effects on cell viability and DNA damage when incubated with V + Mn could be due to the Mn-mediated inhibition of V uptake.
Collapse
|
33
|
Avila PF, Ripplinger TJ, Kemper DJ, Domine JL, Jordan CD. Features of Vibrational and Electronic Structures of Decavanadate Revealed by Resonance Raman Spectroscopy and Density Functional Theory. J Phys Chem Lett 2019; 10:6032-6037. [PMID: 31539470 DOI: 10.1021/acs.jpclett.9b02362] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Polyoxometalates are known to be inhibitors of a diverse collection of enzymes, although the specific interactions that lead to this bioactivity are still unclear. Spectroscopic characterization may be an invaluable if indirect tool for remedying this problem, yet this requires clear, cogent assignment of polyoxometalate spectra before the complicating effect of their binding to large biomolecules can be considered. We report the use of FT-IR and resonance Raman spectroscopies alongside density functional theory to describe the vibrational and electronic structures of decavanadate, [V10O28]6-. Our computational model, which reproduced the majority of vibrational features to within 10 cm-1, was used to identify an axial oxo ligand as the most likely position of the acidic proton in the related cluster [HV10O28]5-. As resonance Raman spectroscopy can directly interrogate chromophores embedded in complex systems, this approach may be of general use in answering structural questions about polyoxometalate-enzyme systems.
Collapse
Affiliation(s)
- Paula F Avila
- Department of Chemistry , Saint Mary's University of Minnesota , 700 Terrace Heights , Winona , Minnesota 55987 , United States
| | - Thomas J Ripplinger
- Department of Chemistry , Saint Mary's University of Minnesota , 700 Terrace Heights , Winona , Minnesota 55987 , United States
| | - David J Kemper
- Department of Chemistry , Saint Mary's University of Minnesota , 700 Terrace Heights , Winona , Minnesota 55987 , United States
| | - Joseph L Domine
- Department of Chemistry , Saint Mary's University of Minnesota , 700 Terrace Heights , Winona , Minnesota 55987 , United States
| | - Christopher D Jordan
- Department of Chemistry , Saint Mary's University of Minnesota , 700 Terrace Heights , Winona , Minnesota 55987 , United States
| |
Collapse
|
34
|
Polyoxometalates: Study of inhibitory kinetics and mechanism against α-glucosidase. J Inorg Biochem 2019; 199:110784. [DOI: 10.1016/j.jinorgbio.2019.110784] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Revised: 07/13/2019] [Accepted: 07/15/2019] [Indexed: 12/23/2022]
|