1
|
Hernandez JR, Xiong C, Pietrantonio PV. A fluorescently-tagged tick kinin neuropeptide triggers peristalsis and labels tick midgut muscles. Sci Rep 2024; 14:10863. [PMID: 38740831 DOI: 10.1038/s41598-024-61570-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 05/07/2024] [Indexed: 05/16/2024] Open
Abstract
Ticks are blood-feeding arthropods that require heme for their successful reproduction. During feeding they also acquire pathogens that are subsequently transmitted to humans, wildlife and/or livestock. Understanding the regulation of tick midgut is important for blood meal digestion, heme and nutrient absorption processes and for aspects of pathogen biology in the host. We previously demonstrated the activity of tick kinins on the cognate G protein-coupled receptor. Herein we uncovered the physiological role of the kinin receptor in the tick midgut. A fluorescently-labeled kinin peptide with the endogenous kinin 8 sequence (TMR-RK8), identical in the ticks Rhipicephalus microplus and R. sanguineus, activated and labeled the recombinant R. microplus receptor expressed in CHO-K1 cells. When applied to the live midgut the TMR-RK8 labeled the kinin receptor in muscles while the labeled peptide with the scrambled-sequence of kinin 8 (TMR-Scrambled) did not. The unlabeled kinin 8 peptide competed TMR-RK8, decreasing confocal microscopy signal intensity, indicating TMR-RK8 specificity to muscles. TMR-RK8 was active, inducing significant midgut peristalsis that was video-recorded and evaluated with video tracking software. The TMR-Scrambled peptide used as a negative control did not elicit peristalsis. The myotropic function of kinins in eliciting tick midgut peristalsis was established.
Collapse
Affiliation(s)
- Jonathan R Hernandez
- Department of Entomology, Texas A&M University, College Station, TX, 77843-2475, USA
| | - Caixing Xiong
- Department of Entomology, Texas A&M University, College Station, TX, 77843-2475, USA
| | | |
Collapse
|
2
|
Wang L, Li Z, Yi T, Li G, Smagghe G, Jin D. Ecdysteroid Biosynthesis Halloween Gene Spook Plays an Important Role in the Oviposition Process of Spider Mite, Tetranychus urticae. Int J Mol Sci 2023; 24:14797. [PMID: 37834248 PMCID: PMC10573261 DOI: 10.3390/ijms241914797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/26/2023] [Accepted: 09/27/2023] [Indexed: 10/15/2023] Open
Abstract
In insects, the ecdysteroid hormone regulates development and reproduction. However, its function in the reproduction process of spider mites is still unclear. In this study, we investigated the effect of the Halloween gene Spook on the oviposition of the reproduction process in a spider mite, Tetranychus urticae. The expression patterns of the ecdysteroid biosynthesis and signaling pathway genes, as analyzed by RT-qPCR, showed that the expression pattern of the Halloween genes was similar to the oviposition pattern of the female mite and the expression patterns of the vitellogenesis-related genes TuVg and TuVgR, suggesting that the Halloween genes are involved in the oviposition of spider mites. To investigate the function of the ecdysteroid hormone on the oviposition of the reproduction process, we carried out an RNAi assay against the Halloween gene Spook by injection in female mites. Effective silencing of TuSpo led to a significant reduction of oviposition. In summary, these results provide an initial study on the effect of Halloween genes on the reproduction in T. urticae and may be a foundation for a new strategy to control spider mites.
Collapse
Affiliation(s)
- Liang Wang
- Institute of Entomology, Guizhou University, Guiyang 550025, China; (L.W.); (Z.L.); (T.Y.); (G.S.)
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Guiyang 550025, China
| | - Zhuo Li
- Institute of Entomology, Guizhou University, Guiyang 550025, China; (L.W.); (Z.L.); (T.Y.); (G.S.)
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Guiyang 550025, China
| | - Tianci Yi
- Institute of Entomology, Guizhou University, Guiyang 550025, China; (L.W.); (Z.L.); (T.Y.); (G.S.)
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Guiyang 550025, China
| | - Gang Li
- Institute of Entomology, Guizhou University, Guiyang 550025, China; (L.W.); (Z.L.); (T.Y.); (G.S.)
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Guiyang 550025, China
| | - Guy Smagghe
- Institute of Entomology, Guizhou University, Guiyang 550025, China; (L.W.); (Z.L.); (T.Y.); (G.S.)
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Guiyang 550025, China
| | - Daochao Jin
- Institute of Entomology, Guizhou University, Guiyang 550025, China; (L.W.); (Z.L.); (T.Y.); (G.S.)
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Guiyang 550025, China
| |
Collapse
|
3
|
Behri M, Teshima H, Kutsuwada K, Nakatake S, Ogihara MH, Taylor D. Production of the yolk protein precursor vitellogenin is mediated by target of rapamycin (TOR) in the soft tick Ornithodoros moubata (Acari: Argasidae). INSECT SCIENCE 2022; 29:1299-1308. [PMID: 35254737 DOI: 10.1111/1744-7917.13025] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 01/13/2022] [Accepted: 01/18/2022] [Indexed: 06/14/2023]
Abstract
Initiation of vitellogenesis by blood feeding is essential for egg maturation in ticks. Nutrients derived from the blood meal are utilized by female ticks to synthesize the yolk protein precursor vitellogenin (Vg). Engorged Ornithodoros moubata ticks can synthesize Vg whether mated or virgin, thus O. moubata is an excellent model for studying the relative roles of blood feeding and mating in tick vitellogenesis. Injection of rapamycin into engorged O. moubata resulted in a reduction of ovarian growth and yolk accumulation in the oocytes of mated females. OmVg expression in the midgut and fat body and protein concentrations in the hemolymph significantly decreased in mated ticks after injection with rapamycin, indicating that inhibition of the nutrient-sensing target of rapamycin (TOR) pathway disrupts egg maturation at the levels of Vg expression and synthesis. These results suggest that the TOR-signaling pathway induces vitellogenesis in response to nutritional stimulation after a blood meal in O. moubata and is functionally independent of the mating-induced pathway.
Collapse
Affiliation(s)
- Meryem Behri
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Haruki Teshima
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Keisuke Kutsuwada
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Shoko Nakatake
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Mari H Ogihara
- Animal Breeding and Reproduction Research Division, Institute of Livestock and Grassland Science, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, Japan
| | - DeMar Taylor
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| |
Collapse
|
4
|
Yang ZM, Lu TY, Wu Y, Yu N, Xu GM, Han QQ, Liu ZW. The importance of vitellogenin receptors in the oviposition of the pond wolf spider, Pardosa pseudoannulata. INSECT SCIENCE 2022; 29:443-452. [PMID: 34237799 DOI: 10.1111/1744-7917.12933] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/03/2021] [Accepted: 04/18/2021] [Indexed: 06/13/2023]
Abstract
Vitellogenin receptor (VgR) is crucial for vitellogenin (Vg) uptake by oocytes. VgR is less known in Arachnida, especially in spiders. Different from only one VgR in an arthropod species, two VgRs, VgR-1 and VgR-2, were found in the pond wolf spider, Pardosa pseudoannulata. Both VgRs had the typical domains of the low-density lipoprotein receptor family except for the absence of the ligand-binding domain 1 in VgR-2. Spatiotemporal expression profiles showed that two VgR genes were consistently highly expressed in females and their ovaries, but VgR-1 was 48-fold that of VgR-2 in ovaries. The transcriptional level of VgR-1 was significantly downregulated by RNAi, but it did not work for VgR-2 although several trials were performed. Vg-1 and Vg-2 might be the ligands of VgR-1 because their expressions were also decreased in the dsVgR-1-treated females. Silencing VgR-1 prolonged the pre-oviposition period by 56 h. The expression of VgRs and Vgs were upregulated by juvenile hormones (JHs), which suggested that JHs were the essential factors to vitellogenesis in the spider. The present study revealed the importance of VgR-1 in the spider oviposition, which will improve the understanding on VgR physiological functions in spiders.
Collapse
Affiliation(s)
- Zhi-Ming Yang
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Tian-Yu Lu
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yong Wu
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Na Yu
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Guang-Ming Xu
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Qian-Qian Han
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ze-Wen Liu
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
5
|
Microbiomes of Blood-Feeding Arthropods: Genes Coding for Essential Nutrients and Relation to Vector Fitness and Pathogenic Infections. A Review. Microorganisms 2021; 9:microorganisms9122433. [PMID: 34946034 PMCID: PMC8704530 DOI: 10.3390/microorganisms9122433] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 11/08/2021] [Accepted: 11/20/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Blood-feeding arthropods support a diverse array of symbiotic microbes, some of which facilitate host growth and development whereas others are detrimental to vector-borne pathogens. We found a common core constituency among the microbiota of 16 different arthropod blood-sucking disease vectors, including Bacillaceae, Rickettsiaceae, Anaplasmataceae, Sphingomonadaceae, Enterobacteriaceae, Pseudomonadaceae, Moraxellaceae and Staphylococcaceae. By comparing 21 genomes of common bacterial symbionts in blood-feeding vectors versus non-blooding insects, we found that certain enteric bacteria benefit their hosts by upregulating numerous genes coding for essential nutrients. Bacteria of blood-sucking vectors expressed significantly more genes (p < 0.001) coding for these essential nutrients than those of non-blooding insects. Moreover, compared to endosymbionts, the genomes of enteric bacteria also contained significantly more genes (p < 0.001) that code for the synthesis of essential amino acids and proteins that detoxify reactive oxygen species. In contrast, microbes in non-blood-feeding insects expressed few gene families coding for these nutrient categories. We also discuss specific midgut bacteria essential for the normal development of pathogens (e.g., Leishmania) versus others that were detrimental (e.g., bacterial toxins in mosquitoes lethal to Plasmodium spp.).
Collapse
|
6
|
Ponnusamy L, Sutton H, Mitchell RD, Sonenshine DE, Apperson CS, Roe RM. Tick Ecdysteroid Hormone, Global Microbiota/ Rickettsia Signaling in the Ovary versus Carcass during Vitellogenesis in Part-Fed (Virgin) American Dog Ticks, Dermacentor variabilis. Microorganisms 2021; 9:1242. [PMID: 34201013 PMCID: PMC8228290 DOI: 10.3390/microorganisms9061242] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/02/2021] [Accepted: 06/05/2021] [Indexed: 02/01/2023] Open
Abstract
The transovarial transmission of tick-borne bacterial pathogens is an important mechanism for their maintenance in natural populations and transmission, causing disease in humans and animals. The mechanism for this transmission and the possible role of tick hormones facilitating this process have never been studied. Injections of physiological levels of the tick hormone, 20-hydroxyecdysone (20E), into part-fed (virgin) adult females of the American dog tick, Dermacentor variabilis, attached to the host caused a reduction in density of Rickettsia montanensis in the carcass and an increase in the ovaries compared to buffer-injected controls. This injection initiates yolk protein synthesis and uptake by the eggs but has no effect on blood feeding. Francisella sp. and R. montanensis were the predominant bacteria based on the proportionality in the carcass and ovary. The total bacteria load increased in the carcass and ovaries, and bacteria in the genus Pseudomonas increased in the carcass after the 20E injection. The mechanism of how the Rickettsia species respond to changes in tick hormonal regulation needs further investigation. Multiple possible mechanisms for the proliferation of R. montanensis in the ovaries are proposed.
Collapse
Affiliation(s)
- Loganathan Ponnusamy
- Department of Entomology and Plath Pathology, North Carolina State University, Raleigh, NC 27695, USA; (L.P.); (H.S.); (R.D.M.III); (C.S.A.)
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC 27695, USA
| | - Haley Sutton
- Department of Entomology and Plath Pathology, North Carolina State University, Raleigh, NC 27695, USA; (L.P.); (H.S.); (R.D.M.III); (C.S.A.)
- North Carolina Department of Agriculture and Consumer Services, Raleigh, NC 27601, USA
| | - Robert D. Mitchell
- Department of Entomology and Plath Pathology, North Carolina State University, Raleigh, NC 27695, USA; (L.P.); (H.S.); (R.D.M.III); (C.S.A.)
- Office of Pesticide Programs, Invertebrate and Vertebrate Branch 1, Registration Division, U.S. Environmental Protection Agency, 1200 Pennsylvania Ave., Washington, DC 20460, USA
| | - Daniel E. Sonenshine
- Department of Biological Sciences, Old Dominion University, Norfolk, VA 23529, USA;
| | - Charles S. Apperson
- Department of Entomology and Plath Pathology, North Carolina State University, Raleigh, NC 27695, USA; (L.P.); (H.S.); (R.D.M.III); (C.S.A.)
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC 27695, USA
| | - Richard Michael Roe
- Department of Entomology and Plath Pathology, North Carolina State University, Raleigh, NC 27695, USA; (L.P.); (H.S.); (R.D.M.III); (C.S.A.)
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC 27695, USA
| |
Collapse
|
7
|
Wang F, Wang Y, Wang G, Zhang H, Kuang C, Zhou Y, Cao J, Zhou J. Ovary Proteome Analysis Reveals RH36 Regulates Reproduction via Vitellin Uptake Mediated by HSP70 Protein in Hard Ticks. Front Cell Infect Microbiol 2020; 10:93. [PMID: 32211346 PMCID: PMC7076983 DOI: 10.3389/fcimb.2020.00093] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Accepted: 02/21/2020] [Indexed: 11/13/2022] Open
Abstract
Ticks are blood-sucking vector arthropods, which play an important role in transmitting pathogens between humans and animals. RH36 is an immunomodulatory protein expressed in the salivary glands, but not other organs, of partially fed Rhipicephalus haemaphysaloides ticks, and it reaches its peak on the day of tick engorgement. RH36 gene silencing inhibited tick blood feeding and induced a significant decrease in tick oviposition, indicating that another function of immunosuppressor RH36 was regulating tick reproduction. Why did RH36 protein expressed uniquely in the salivary gland regulate tick reproduction? RH36 regulated positively the expression of vitellogenin in ovary, which indicated RH36 protein played an important role in the integration of nutrition and reproduction. According to proteomic analysis, heat shock protein 70 (HSP70) was significantly down-regulated in the immature ovary of post-engorged ticks. In addition, gene silencing of HSP70 not only inhibited tick blood-sucking and the expression of vitellogenin, but also increased tick death rate. These results suggested RH36 affected tick vitellogenin uptake and then regulated ovary cell maturation by modulating the expression of HSP70 protein, and finally controlled tick oviposition.
Collapse
Affiliation(s)
- Fangfang Wang
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China.,College of Life Science and Food Engineering, Hebei University of Engineering, Handan, China
| | - Yanan Wang
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Guanghua Wang
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Houshuang Zhang
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Ceyan Kuang
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Yongzhi Zhou
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Jie Cao
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Jinlin Zhou
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| |
Collapse
|
8
|
Umemiya-Shirafuji R, Mihara R, Fujisaki K, Suzuki H. Intracellular localization of vitellogenin receptor mRNA and protein during oogenesis of a parthenogenetic tick, Haemaphysalis longicornis. Parasit Vectors 2019; 12:205. [PMID: 31060579 PMCID: PMC6501394 DOI: 10.1186/s13071-019-3469-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 04/29/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Vitellogenin (Vg), a key molecule for oocyte development synthesized in the fat body during blood-feeding, is released into the hemolymph and then taken into the oocytes via Vg receptor (VgR) in ticks. Previously, we showed that VgR mRNA is expressed in the ovary at the adult stage of parthenogenetic Haemaphysalis longicornis ticks and its expression increases after blood-feeding. However, intracellular localization of VgR mRNA and protein at each developmental stage of oocytes during oogenesis remains largely unclear. METHODS mRNA and protein expression profiles of H. longicornis VgR (HlVgR) in the oocytes from the unfed to oviposition periods were analyzed by real-time PCR, in situ hybridization, and immunostaining. To elucidate the timing of the onset of Vg uptake, RNA interference (RNAi)-mediated gene silencing of HlVgR was performed. RESULTS In situ hybridization revealed that HlVgR mRNA was detected in the cytoplasm of stage I-III oocytes, and weaker positive signals for HlVgR mRNA were found in the cell periphery of stage IV and V oocytes. Likewise, HlVgR protein was detected by immunostaining in the cytoplasm of stage I-III oocytes and in the cell periphery of stage IV and V oocytes. Each developmental stage of the oocytes showed distinct patterns of mRNA and protein expression of HlVgR. Moreover, RNAi of HlVgR caused delayed or arrested development in the oocytes. The ovaries of control ticks showed all developmental stages of oocytes, whereas stage I-III oocytes were found in the ovaries of HlVgR-RNAi ticks at 5 days after engorgement. CONCLUSIONS These results suggest that active uptake of Vg is required for development from stage III to stage IV during oogenesis. Our data clearly revealed an apparent shift in the intracellular localization of VgR for both mRNA and protein level in oocytes during oogenesis.
Collapse
Affiliation(s)
- Rika Umemiya-Shirafuji
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-Cho, Obihiro, Hokkaido, 080-8555, Japan
| | - Ryo Mihara
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-Cho, Obihiro, Hokkaido, 080-8555, Japan
| | - Kozo Fujisaki
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-Cho, Obihiro, Hokkaido, 080-8555, Japan.,National Agricultural and Food Research Organization, Kannondai 3-1-5, Tsukuba, Ibaraki, 305-0856, Japan
| | - Hiroshi Suzuki
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-Cho, Obihiro, Hokkaido, 080-8555, Japan.
| |
Collapse
|
9
|
Bednarek AW, Sawadro MK, Nicewicz Ł, Babczyńska AI. Vitellogenins in the spider Parasteatoda tepidariorum - expression profile and putative hormonal regulation of vitellogenesis. BMC DEVELOPMENTAL BIOLOGY 2019; 19:4. [PMID: 30849941 PMCID: PMC6408786 DOI: 10.1186/s12861-019-0184-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 02/27/2019] [Indexed: 11/30/2022]
Abstract
BACKGROUND Knowledge about vitellogenesis in spiders is rudimentary. Therefore, the aim of study was to check the vitellogenin (Vg) presence in various tissues of the female spider Parasteatoda tepidariorum, determine when and where vitellogenesis starts and takes place, and the putative role of selected hormones in the vitellogenesis. RESULTS Here we show two genes encoding Vg (PtVg4 and PtVg6) in the genome of the spider P. tepidariorum. One gene PtVg4 and three subunits of Vg (250 kDa, 47 kDa and 30 kDa) are expressed in the midgut glands, ovaries and hemolymph. Heterosynthesis of the Vg in the midgut glands and autosynthesis in the ovaries were observed. Vitellogenesis begins in the last nymphal stage in the midgut glands (heterosynthesis). However, after sexual maturity is reached, Vg is also synthesized in the ovaries (autosynthesis). Changes in the PtVg4 expression level and in the Vg concentration after treatment with 20-hydroxyecdysone, a juvenile hormone analog (fenoxycarb) and an antijuvenoid compound (precocene I) were observed. Therefore, we propose a hypothetical model for the hormonal regulation of vitellogenesis in P. tepidariorum. CONCLUSIONS Our results are the first comprehensive study on spider vitellogenesis. In our opinion, this work will open discussion on the evolutionary context of possible similarities in the hormonal control of vitellogenesis between P. tepidariorum and other arthropods as well as their consequences.
Collapse
Affiliation(s)
- Agata W. Bednarek
- Department of Animal Physiology and Ecotoxicology, University of Silesia, Bankowa 9, PL40007 Katowice, Poland
| | - Marta K. Sawadro
- Department of Animal Physiology and Ecotoxicology, University of Silesia, Bankowa 9, PL40007 Katowice, Poland
| | - Łukasz Nicewicz
- Department of Animal Physiology and Ecotoxicology, University of Silesia, Bankowa 9, PL40007 Katowice, Poland
| | - Agnieszka I. Babczyńska
- Department of Animal Physiology and Ecotoxicology, University of Silesia, Bankowa 9, PL40007 Katowice, Poland
| |
Collapse
|
10
|
Wang F, Lu X, Guo F, Gong H, Zhang H, Zhou Y, Cao J, Zhou J. The immunomodulatory protein RH36 is relating to blood-feeding success and oviposition in hard ticks. Vet Parasitol 2017; 240:49-59. [PMID: 28449954 DOI: 10.1016/j.vetpar.2017.03.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 03/20/2017] [Accepted: 03/22/2017] [Indexed: 11/30/2022]
Abstract
An immunomodulatory protein designated RH36 was identified in the tick Rhipicephalus haemaphysaloides. The cDNA sequence of RH36 has 844bp and encodes a deduced protein with a predicted molecular weight of 24kDa. Bioinformatics analysis indicated that RH36 presented a degree of similarity of 34.36% with the immunomodulatory protein p36 from the tick Dermacentor andersoni. The recombinant RH36 (rRH36) expressed in Sf9 insect cells suppressed the T-lymphocyte mitogen-driven in vitro proliferation of splenocytes and the expression of several cytokines such as IL-2, IL-12, and TNF-α. Furthermore, the proliferation of splenocytes isolated from rRH36-inoculated mice was significantly lower than that in control mice, suggesting that rRH36 could directly suppress immune responses in vivo. In addition, microarray analysis of splenocytes indicated that the expression of several immunomodulatory genes was downregulated by rRH36. The silencing of the RH36 gene by RNAi led to a 37.5% decrease in the tick attachment rate 24h after placement into the rabbit ears, whereas vaccination with RH36 caused a 53.06% decrease in the tick engorgement rate. Unexpectedly, RNAi induced a significant decrease in the oviposition rate, ovary weight at day 12 after engorgement, and egg-hatching rate. The effects of RH36 on blood feeding and oviposition were further confirmed by vaccination tests using the recombinant protein. These results indicate that RH36 is a novel member of immunosuppressant proteins and affects tick blood feeding and oviposition.
Collapse
Affiliation(s)
- Fangfang Wang
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Xiaojuan Lu
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Fengxun Guo
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Haiyan Gong
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Houshuang Zhang
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Yongzhi Zhou
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Jie Cao
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Jinlin Zhou
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China.
| |
Collapse
|
11
|
Zhu J, Khalil SM, Mitchell RD, Bissinger BW, Egekwu N, Sonenshine DE, Roe RM. Mevalonate-Farnesal Biosynthesis in Ticks: Comparative Synganglion Transcriptomics and a New Perspective. PLoS One 2016; 11:e0141084. [PMID: 26959814 PMCID: PMC4785029 DOI: 10.1371/journal.pone.0141084] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 10/03/2015] [Indexed: 11/19/2022] Open
Abstract
Juvenile hormone (JH) controls the growth, development, metamorphosis, and reproduction of insects. For many years, the general assumption has been that JH regulates tick and other acarine development and reproduction the same as in insects. Although researchers have not been able to find the common insect JHs in hard and soft tick species and JH applications appear to have no effect on tick development, it is difficult to prove the negative or to determine whether precursors to JH are made in ticks. The tick synganglion contains regions which are homologous to the corpora allata, the biosynthetic source for JH in insects. Next-gen sequencing of the tick synganglion transcriptome was conducted separately in adults of the American dog tick, Dermacentor variabilis, the deer tick, Ixodes scapularis, and the relapsing fever tick, Ornithodoros turicata as a new approach to determine whether ticks can make JH or a JH precursor. All of the enzymes that make up the mevalonate pathway from acetyl-CoA to farnesyl diphosphate (acetoacetyl-CoA thiolase, HMG-S, HMG-R, mevalonate kinase, phosphomevalonate kinase, diphosphomevalonate decarboxylase, and farnesyl diphosphate synthase) were found in at least one of the ticks studied but most were found in all three species. Sequence analysis of the last enzyme in the mevalonate pathway, farnesyl diphosphate synthase, demonstrated conservation of the seven prenyltransferase regions and the aspartate rich motifs within those regions typical of this enzyme. In the JH branch from farnesyl diphosphate to JH III, we found a putative farnesol oxidase used for the conversion of farnesol to farnesal in the synganglion transcriptome of I. scapularis and D. variabilis. Methyltransferases (MTs) that add a methyl group to farnesoic acid to make methyl farnesoate were present in all of the ticks studied with similarities as high as 36% at the amino acid level to insect JH acid methyltransferase (JHAMT). However, when the tick MTs were compared to the known insect JHAMTs from several insect species at the amino acid level, the former lacked the farnesoic acid binding motif typical in insects. The P450s shown in insects to add the C10,11 epoxide to methyl farnesoate, are in the CYP15 family; this family was absent in our tick transcriptomes and in the I. scapularis genome, the only tick genome available. These data suggest that ticks do not synthesize JH III but have the mevalonate pathway and may produce a JH III precursor.
Collapse
Affiliation(s)
- Jiwei Zhu
- Department of Entomology, North Carolina State University, Raleigh, North Carolina, 27695, United States of America
| | - Sayed M. Khalil
- Department of Entomology, North Carolina State University, Raleigh, North Carolina, 27695, United States of America
| | - Robert D. Mitchell
- Department of Entomology, North Carolina State University, Raleigh, North Carolina, 27695, United States of America
| | - Brooke W. Bissinger
- Department of Entomology, North Carolina State University, Raleigh, North Carolina, 27695, United States of America
| | - Noble Egekwu
- Department of Biological Sciences, Old Dominion University, Norfolk, Virginia, 23529, United States of America
| | - Daniel E. Sonenshine
- Department of Biological Sciences, Old Dominion University, Norfolk, Virginia, 23529, United States of America
| | - R. Michael Roe
- Department of Entomology, North Carolina State University, Raleigh, North Carolina, 27695, United States of America
- * E-mail:
| |
Collapse
|
12
|
Cabrera AR, Shirk PD, Evans JD, Hung K, Sims J, Alborn H, Teal PEA. Three Halloween genes from the Varroa mite, Varroa destructor (Anderson & Trueman) and their expression during reproduction. INSECT MOLECULAR BIOLOGY 2015; 24:277-92. [PMID: 25488435 DOI: 10.1111/imb.12155] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The ecdysteroid biosynthetic pathway involves sequential enzymatic hydroxylations by a group of enzymes collectively known as Halloween gene proteins. Complete sequences for three Halloween genes, spook (Vdspo), disembodied (Vddib) and shade (Vdshd), were identified in varroa mites and sequenced. Phylogenetic analyses of predicted amino acid sequences for Halloween orthologues showed that the acarine orthologues were distantly associated with insect and crustacean clades indicating that acarine genes had more ancestral characters. The lack of orthologues or pseudogenes for remaining genes suggests these pathway elements had not evolved in ancestral arthropods. Vdspo transcript levels were highest in gut tissues, while Vddib transcript levels were highest in ovary-lyrate organs. In contrast, Vdshd transcript levels were lower overall but present in both gut and ovary-lyrate organs. All three transcripts were present in eggs removed from gravid female mites. A brood cell invasion assay was developed for acquiring synchronously staged mites. Mites within 4 h of entering a brood cell had transcript levels of all three that were not significantly different from mites on adult bees. These analyses suggest that varroa mites may be capable of modifying 7-dehydro-cholesterol precursor and hydroxylations of other steroid precursors, but whether the mites directly produce ecdysteroid precursors and products remains undetermined.
Collapse
Affiliation(s)
- A R Cabrera
- Entomology and Nematology Department, University of Florida, Gainesville, FL, 32611, USA
| | | | | | | | | | | | | |
Collapse
|
13
|
Molecular characterization of two vitellogenin genes from the tick, Amblyomma hebraeum (Acari: Ixodidae). Ticks Tick Borne Dis 2014; 5:821-33. [DOI: 10.1016/j.ttbdis.2014.06.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 06/16/2014] [Accepted: 06/19/2014] [Indexed: 12/19/2022]
|
14
|
Egekwu N, Sonenshine DE, Bissinger BW, Roe RM. Transcriptome of the female synganglion of the black-legged tick Ixodes scapularis (Acari: Ixodidae) with comparison between Illumina and 454 systems. PLoS One 2014; 9:e102667. [PMID: 25075967 PMCID: PMC4116169 DOI: 10.1371/journal.pone.0102667] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Accepted: 06/23/2014] [Indexed: 11/26/2022] Open
Abstract
Illumina and 454 pyrosequencing were used to characterize genes from the synganglion of female Ixodes scapularis. GO term searching success for biological processes was similar for samples sequenced by both methods. However, for molecular processes, it was more successful for the Illumina samples than for 454 samples. Functional assignments of transcripts predicting neuropeptides, neuropeptide receptors, neurotransmitter receptors and other genes of interest was done, supported by strong e-values (<-6), and high consensus sequence alignments. Transcripts predicting 15 putative neuropeptide prepropeptides ((allatostatin, allatotropin, bursicon α, corticotropin releasing factor (CRF), CRF-binding protein, eclosion hormone, FMRFamide, glycoprotein A, insulin-like peptide, ion transport peptide, myoinhibitory peptide, inotocin ( = neurophysin-oxytocin), Neuropeptide F, sulfakinin and SIFamide)) and transcripts predicting receptors for 14 neuropeptides (allatostatin, calcitonin, cardioacceleratory peptide, corazonin, CRF, eclosion hormone, gonadotropin-releasing hormone/AKH-like, insulin-like peptide, neuropeptide F, proctolin, pyrokinin, SIFamide, sulfakinin and tachykinin) are reported. Similar to Dermacentor variabilis, we found transcripts matching pro-protein convertase, essential for converting neuropeptide hormones to their mature form. Additionally, transcripts predicting 6 neurotransmitter/neuromodulator receptors (acetylcholine, GABA, dopamine, glutamate, octopamine and serotonin) and 3 neurotransmitter transporters (GABA transporter, noradrenalin-norepinephrine transporter and Na+-neurotransmitter/symporter) are described. Further, we found transcripts predicting genes for pheromone odorant receptor, gustatory receptor, novel GPCR messages, ecdysone nuclear receptor, JH esterase binding protein, steroidogenic activating protein, chitin synthase, chitinase, and other genes of interest. Also found were transcripts predicting genes for spermatogenesis-associated protein, major sperm protein, spermidine oxidase and spermidine synthase, genes not normally expressed in the female CNS of other invertebrates. The diversity of messages predicting important genes identified in this study offers a valuable resource useful for understanding how the tick synganglion regulates important physiological functions.
Collapse
Affiliation(s)
- Noble Egekwu
- Department of Biological Sciences, Old Dominion University, Norfolk, Virginia, United States of America
| | - Daniel E. Sonenshine
- Department of Biological Sciences, Old Dominion University, Norfolk, Virginia, United States of America
| | | | - R. Michael Roe
- Department of Entomology, North Carolina State University, Raleigh, North Carolina, United States of America
| |
Collapse
|
15
|
Smith AD, Reuben Kaufman W. Molecular characterization of the vitellogenin receptor from the tick, Amblyomma hebraeum (Acari: Ixodidae). INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2013; 43:1133-1141. [PMID: 24128609 DOI: 10.1016/j.ibmb.2013.10.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Revised: 10/01/2013] [Accepted: 10/04/2013] [Indexed: 06/02/2023]
Abstract
We have identified the full-length cDNA encoding a vitellogenin receptor (VgR) from the African bont tick Amblyomma hebraeum Koch (1844). VgRs are members of the low-density lipoprotein receptor superfamily that promote the uptake of the yolk protein vitellogenin (Vg), from the haemolymph. The AhVgR (GenBank accession No. JX846592) is 5703 bp, and encodes an 1801 aa protein with a 196.5 kDa molecular mass following cleavage of a 22 aa signal peptide. Phylogenetic analysis indicates that AhVgR is highly similar to other tick VgRs. AhVgR is expressed in only the ovary of mated, engorged females, and is absent in all other female tissues and in both fed and unfed males. Unfed, adult females injected with a VgR-dsRNA probe to knock-down VgR expression experienced a significant delay in ovary development and started oviposition significantly later than controls. These results indicate that the expression of AhVgR is important for the uptake of Vg and subsequent maturation of the oocytes.
Collapse
Affiliation(s)
- Alexander D Smith
- Department of Biological Sciences, University of Alberta, CW 405, Biological Sciences Building, Edmonton, Alberta T6G 2E9, Canada.
| | | |
Collapse
|
16
|
Heekin AM, Guerrero FD, Bendele KG, Saldivar L, Scoles GA, Dowd SE, Gondro C, Nene V, Djikeng A, Brayton KA. Gut transcriptome of replete adult female cattle ticks, Rhipicephalus (Boophilus) microplus, feeding upon a Babesia bovis-infected bovine host. Parasitol Res 2013; 112:3075-90. [PMID: 23749091 DOI: 10.1007/s00436-013-3482-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Accepted: 05/24/2013] [Indexed: 11/25/2022]
Abstract
As it feeds upon cattle, Rhipicephalus (Boophilus) microplus is capable of transmitting a number of pathogenic organisms, including the apicomplexan hemoparasite Babesia bovis, a causative agent of bovine babesiosis. The R. microplus female gut transcriptome was studied for two cohorts: adult females feeding on a bovine host infected with B. bovis and adult females feeding on an uninfected bovine. RNA was purified and used to generate a subtracted cDNA library from B. bovis-infected female gut, and 4,077 expressed sequence tags (ESTs) were sequenced. Gene expression was also measured by a microarray designed from the publicly available R. microplus gene index: BmiGI Version 2. We compared gene expression in the tick gut from females feeding upon an uninfected bovine to gene expression in tick gut from females feeding upon a splenectomized bovine infected with B. bovis. Thirty-three ESTs represented on the microarray were expressed at a higher level in female gut samples from the ticks feeding upon a B. bovis-infected calf compared to expression levels in female gut samples from ticks feeding on an uninfected calf. Forty-three transcripts were expressed at a lower level in the ticks feeding upon B. bovis-infected female guts compared with expression in female gut samples from ticks feeding on the uninfected calf. These array data were used as initial characterization of gene expression associated with the infection of R. microplus by B. bovis.
Collapse
Affiliation(s)
- Andrew M Heekin
- Knipling-Bushland US Livestock Insects Research Laboratory, USDA-ARS, 2700 Fredericksburg Road, Kerrville, TX 78028, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Cabrera Cordon AR, Shirk PD, Duehl AJ, Evans JD, Teal PEA. Variable induction of vitellogenin genes in the varroa mite, Varroa destructor (Anderson & Trueman), by the honeybee, Apis mellifera L, host and its environment. INSECT MOLECULAR BIOLOGY 2013; 22:88-103. [PMID: 23331492 DOI: 10.1111/imb.12006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Transcript levels of vitellogenins (Vgs) in the varroa mite, Varroa destructor (Anderson & Trueman), were variably induced by interactions between the developing honeybee, Apis mellifera L, as a food source and the capped honeybee cell environment. Transcripts for two Vgs of varroa mites were sequenced and putative Vg protein products characterized. Sequence analysis of VdVg1 and VdVg2 proteins showed that each had greater similarity with Vg1 and Vg2 proteins from ticks, respectively, than between themselves and were grouped separately by phylogenetic analyses. This suggests there was a duplication of the ancestral acarine Vg gene prior to the divergence of the mites and ticks. Low levels of transcript were detected in immature mites, males and phoretic females. Following cell invasion by phoretic females, VdVg1 and VdVg2 transcript levels were up-regulated after cell capping to a maximum at the time of partial cocoon formation by the honeybee. During oviposition the two transcripts were differentially expressed with higher levels of VdVg2 being observed. A bioassay based on assessing the transcript levels was established. Increases in VdVg1 and VdVg2 transcripts were induced experimentally in phoretic females when they were placed inside a cell containing an early metamorphosing last instar bee but not when exposed to the metamorphosing bee alone. The variable response of Vg expression to the food source as well as environmental cues within the capped cell demonstrates that perturbation of host-parasite interactions may provide avenues to disrupt the reproductive cycle of the varroa mites and prevent varroasis.
Collapse
|
18
|
Target of rapamycin (TOR) controls vitellogenesis via activation of the S6 kinase in the fat body of the tick, Haemaphysalis longicornis. Int J Parasitol 2012; 42:991-8. [DOI: 10.1016/j.ijpara.2012.08.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Revised: 08/10/2012] [Accepted: 08/13/2012] [Indexed: 11/23/2022]
|
19
|
Umemiya-Shirafuji R, Tanaka T, Boldbaatar D, Tanaka T, Fujisaki K. Akt is an essential player in regulating cell/organ growth at the adult stage in the hard tick Haemaphysalis longicornis. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2012; 42:164-173. [PMID: 22193391 DOI: 10.1016/j.ibmb.2011.12.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2011] [Revised: 12/02/2011] [Accepted: 12/05/2011] [Indexed: 05/31/2023]
Abstract
Ticks grow rapidly during blood feeding, and their body weight may ultimately increase 100-fold more than that before feeding. The molecular mechanisms controlling growth during blood feeding in ticks remain largely unknown. The conserved insulin/PI3K/Akt signaling pathway regulates growth and metabolism in eukaryotes. Here, we show evidence for the involvement of Akt in growth during blood feeding in the parthenogenetic strain of the hard tick Haemaphysalis longicornis. We identified a homolog of the Ser/Thr kinase Akt (HlAkt) from the EST database of the H. longicornis embryo. HlAkt cDNA had a 1,590 bp ORF that encodes 529 amino acids with a predicted molecular weight of 60 kDa. HlAkt possesses a PH domain, a Ser/Thr kinase domain, a hydrophobic motif, and dual phosphorylation residues (Thr 338 and Ser 503) that are essential for kinase activation. Knockdown of HlAkt by RNA interference caused inhibition of blood feeding in female ticks. Histological observation demonstrated that HlAkt knockdown led to the arrest of growth in internal organs. HlAkt knockdown also affected the expressions of blood meal-induced genes that are essential for blood digestion, development, and reproduction in the female tick. These results strongly indicate that HlAkt is essential to complete the blood feeding process accompanied by the growth of internal organs in adult ticks. This is the first report of identification and characterization of Akt in Chelicerata, including ticks.
Collapse
Affiliation(s)
- Rika Umemiya-Shirafuji
- Laboratory of Emerging Infectious Diseases, Department of Frontier Veterinary Medicine, Kagoshima University, Korimoto 1-21-24, Kagoshima 890-0065, Japan
| | | | | | | | | |
Collapse
|
20
|
Dong X, Zhai Y, Zhang J, Sun Z, Chen J, Chen J, Zhang W. Fork head transcription factor is required for ovarian mature in the brown planthopper, Nilaparvata lugens (Stål). BMC Mol Biol 2011; 12:53. [PMID: 22208615 PMCID: PMC3288825 DOI: 10.1186/1471-2199-12-53] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2011] [Accepted: 12/31/2011] [Indexed: 11/10/2022] Open
Abstract
Background The brown planthopper (BPH), Nilaparvata lugens, is the most devastating rice pest in many areas throughout Asia. The reproductive system of female N. lugens consists of a pair of ovaries with 24-33 ovarioles per ovary in most individuals which determine its fecundity. The fork head (Fox) is a transcriptional regulatory molecule, which regulates and controls many physiological processes in eukaryotes. The Fox family has several subclasses and members, and several Fox factors have been reported to be involved in regulating fecundity. Results We have cloned a fork head gene in N. lugens. The full-length cDNA of NlFoxA is 1789 bp and has an open reading frame of 1143 bp, encoding a protein of 380 amino acids. Quantitative real-time PCR (RT-qPCR) and Reverse Transcription- PCR (RT-PCR) analysis revealed that NlFoxA mRNA was mainly expressed in the fat body, midgut, cuticle and Malpighian tube, and was expressed continuously with little change during all the developmental stages. NlFoxA belongs to the FoxA subfamily of the Fox transcription factors. Knockdown of NlFoxA expression by RNAi using artificial diet containing double-stranded RNA (dsRNA) significantly decreased the number of offspring and impacted the development of ovaries. ELISA and Western blot analyses showed that feeding-based RNAi of NlFoxA gene also resulted in decreased expression of vitellogenin (Vg) protein. Conclusion NlFoxA plays an important role in regulation of fecundity and development of ovaries in the BPH via regulating vitellogenin expression.
Collapse
Affiliation(s)
- Xiaolin Dong
- School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, 510275 China
| | | | | | | | | | | | | |
Collapse
|
21
|
Bissinger BW, Donohue KV, Khalil SMS, Grozinger CM, Sonenshine DE, Zhu J, Roe RM. Synganglion transcriptome and developmental global gene expression in adult females of the American dog tick, Dermacentor variabilis (Acari: Ixodidae). INSECT MOLECULAR BIOLOGY 2011; 20:465-491. [PMID: 21689185 DOI: 10.1111/j.1365-2583.2011.01086.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
454 Pyrosequencing was used to characterize the expressed genes from the synganglion and associated neurosecretory organs of unfed and partially fed virgin and mated replete females of the American dog tick, Dermacentor variabilis. A total of 14,881 contiguous sequences (contigs) was assembled, with an average size of 229 bp. Gene ontology terms for Level 2 biological processes were assigned to 4366 contigs. Seven acetylcholinesterases, a muscarinic acetylcholine (ACh) receptor, two nicotinic ACh receptor β-subunits, two ACh unc-18 regulators, two dopamine receptors, two gamma aminobutyric acid (GABA) receptors, two GABA transporters, two norepinephrine transporters and an octopamine receptor are described. Microarrays were conducted to examine global gene expression and quantitative real-time polymerase chain reaction was used to verify expression of selected neuropeptides. Hierarchical clustering of all differentially expressed transcripts grouped part-fed and replete ticks as being more similar in terms of differentially expressed genes with unfed ticks as the outgroup. Nine putative neuropeptides (allatostatin, bursicon-β, preprocorazonin, glycoprotein hormone α, insulin-like peptide, three orcokinins, preprosulphakinin) and a gonadotropin releasing hormone receptor were differentially expressed, and their developmental expression and role in reproduction was investigated. The presence of eclosion hormone, corazonin and bursicon in the synganglion, which in insects regulate behaviour and cuticle development associated with moulting, suggest that this system may be used in ticks to regulate blood feeding, cuticle expansion and development related to female reproduction; adult ticks do not moult.
Collapse
Affiliation(s)
- B W Bissinger
- Department of Entomology, North Carolina State University, Raleigh, NC 27695-7647, USA
| | | | | | | | | | | | | |
Collapse
|
22
|
Khalil SMS, Donohue KV, Thompson DM, Jeffers LA, Ananthapadmanaban U, Sonenshine DE, Mitchell RD, Roe RM. Full-length sequence, regulation and developmental studies of a second vitellogenin gene from the American dog tick, Dermacentor variabilis. JOURNAL OF INSECT PHYSIOLOGY 2011; 57:400-408. [PMID: 21192946 DOI: 10.1016/j.jinsphys.2010.12.008] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2010] [Revised: 12/16/2010] [Accepted: 12/20/2010] [Indexed: 05/30/2023]
Abstract
Vitellogenin (Vg) is the precursor of vitellin (Vn) which is the major yolk protein in eggs. In a previous report, we isolated and characterized the first Vg message from the American dog tick Dermacentor variabilis. In the current study, we describe a second Vg gene from the same tick. The Vg2 cDNA is 5956 nucleotides with a 5775 nt open reading frame coding for 1925 amino acids. The conceptual amino acid translation contains a 16-residues putative signal peptide, N-terminal lipid binding domain and C-terminal von Willebrand factor type D domain present in all known Vgs. Moreover, the amino acid sequence shows a typical GLCG domain and several RXXR cleavage sites present in most isolated Vgs. Tryptic digest-mass fingerprinting of Vg and Vn recognized 11 fragments that exist in the amino acid translation of DvVg2 cDNA. Injection of virgin females with 20 hydroxyecdysone induced DvVg2 expression, vitellogenesis and oviposition. Using RT-PCR, DvVg2 expression was detected only in tick females after mating and feeding to repletion. Northern blot analysis showed that DvVg2 is expressed in fat body and gut cells of vitellogenic females but not in the ovary. DvVg2 expression was not detected in adult fed or unfed males. The characteristics that distinguish Vg from other similar tick storage proteins like the carrier protein, CP (another hemelipoglycoprotein) are discussed.
Collapse
Affiliation(s)
- Sayed M S Khalil
- Department of Entomology, North Carolina State University, Raleigh, NC 27695-7647, USA
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Boldbaatar D, Umemiya-Shirafuji R, Liao M, Tanaka T, Xuan X, Fujisaki K. Multiple vitellogenins from the Haemaphysalis longicornis tick are crucial for ovarian development. JOURNAL OF INSECT PHYSIOLOGY 2010; 56:1587-1598. [PMID: 20576517 DOI: 10.1016/j.jinsphys.2010.05.019] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2010] [Revised: 05/21/2010] [Accepted: 05/21/2010] [Indexed: 05/29/2023]
Abstract
Ovarian development and egg maturation are crucial processes for the success of reproduction in ticks. Three full-length cDNAs encoding the precursor of major yolk protein, vitellogenin, were obtained from cDNA libraries of the Haemaphysalis longicornis tick and designated as HlVg-1, HlVg-2 and HlVg-3. The HlVg mRNAs were found in fed females with major expression sites in the midgut, fat body and ovary. Native PAGE and Western blot demonstrated that HlVgs in the hemolymph, fat body and ovary of fed females consisted of four major polypeptides. RNAi results showed that HlVg dsRNA-injected ticks obtained lower body weight, egg weight and showed higher mortality of engorged females after blood sucking than control groups. Our results indicate that all HlVgs are essential for egg development and oviposition.
Collapse
Affiliation(s)
- Damdinsuren Boldbaatar
- Department of Frontier Veterinary Science, Faculty of Agriculture, Kagoshima University, Kagoshima, Japan
| | | | | | | | | | | |
Collapse
|
24
|
Donohue KV, Khalil SMS, Ross E, Grozinger CM, Sonenshine DE, Michael Roe R. Neuropeptide signaling sequences identified by pyrosequencing of the American dog tick synganglion transcriptome during blood feeding and reproduction. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2010; 40:79-90. [PMID: 20060044 DOI: 10.1016/j.ibmb.2009.12.014] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2008] [Revised: 12/18/2009] [Accepted: 12/21/2009] [Indexed: 05/28/2023]
Abstract
Ticks are important vectors of numerous pathogens that impact human and animal health. The tick central nervous system represents an understudied area in tick biology and no tick synganglion-specific transcriptome has been described to date. Here we characterize whole or partial cDNA sequences of fourteen putative neuropeptides (allatostatin, insulin-like peptide, ion-transport peptide, sulfakinin, bursicon alpha/beta, eclosion hormone, glycoprotein hormone alpha/beta, corazonin, four orcokinins) and five neuropeptide receptors (gonadotropin receptor, leucokinin-like receptor, sulfakinin receptor, calcitonin receptor, pyrokinin receptor) translated from cDNA synthesized from the synganglion of unfed, partially fed and replete female American dog ticks, Dermacentor variabilis. Their homology to the same neuropeptides in other taxa is discussed. Many of these neuropeptides such as an allatostatin, insulin-like peptide, eclosion hormone, bursicon alpha and beta and glycoprotein hormone alpha and beta have not been previously described in the Chelicerata. An insulin-receptor substrate protein was also found indicating that an insulin signaling network is present in ticks. A putative type-2 proprotein processing convertase was also sequenced that may be involved in cleavage at monobasic and dibasic endoproteolytic cleavage sites in prohormones. The possible physiological role of the proteins discovered in adult tick blood feeding and reproduction will be discussed.
Collapse
Affiliation(s)
- Kevin V Donohue
- Department of Entomology, Campus Box 7647, North Carolina State University, Raleigh, NC 27695-7647, USA
| | | | | | | | | | | |
Collapse
|
25
|
Cabrera AR, Donohue KV, Roe RM. Regulation of female reproduction in mites: a unifying model for the Acari. JOURNAL OF INSECT PHYSIOLOGY 2009; 55:1079-1090. [PMID: 19698719 DOI: 10.1016/j.jinsphys.2009.08.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2009] [Revised: 08/11/2009] [Accepted: 08/11/2009] [Indexed: 05/28/2023]
Abstract
It is well established in the literature that circulating high levels of juvenile hormone (JH) are responsible for the initiation of vitellogenesis and female reproduction in most insects studied so far. Exceptions include some Diptera, Lepidoptera and Hymenoptera. The current view is that JH also regulates yolk protein (vitellogenin, Vg) synthesis and female reproduction in mites. However, there is no published evidence that mites have the common insect JHs at any stage of their development. Also, research on the effects of exogenous applications of JH and JH analogs on the reproduction of mites is contradictory. Significant information is available on the life history of mite reproduction, and new information has become available on mite storage proteins including Vg. Although initial studies suggested that ticks may respond to exogenously applied juvenile hormone or anti-JHs, current research shows that ticks cannot synthesize the common insect JHs and have no detectable levels of these hormones in their hemolymph during female reproduction. In ticks, it appears that ecdysteroids, and not JH, regulate expression of the Vg gene and the synthesis and release of Vg protein into the hemolymph. In fact within the Arthropoda, JH has been found only in insects. Methyl farnesoate and not JH regulates Vg synthesis in the Crustacea, the sister group to the insects. Based on this evidence, a new working hypothesis is proposed, i.e., that ecdysteroids and not the JHs regulate vitellogenesis in the Acari including both ticks and mites. To the present, the role of neuropeptides in the regulation of female reproduction in mites is not known.
Collapse
Affiliation(s)
- Ana R Cabrera
- North Carolina State University, Department of Entomology, Raleigh, NC 27695, USA
| | | | | |
Collapse
|
26
|
Friesen KJ, Kaufman WR. Salivary gland degeneration and vitellogenesis in the ixodid tick Amblyomma hebraeum: Surpassing a critical weight is the prerequisite and detachment from the host is the trigger. JOURNAL OF INSECT PHYSIOLOGY 2009; 55:936-942. [PMID: 19555693 DOI: 10.1016/j.jinsphys.2009.06.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2009] [Revised: 06/10/2009] [Accepted: 06/12/2009] [Indexed: 05/28/2023]
Abstract
The normal engorged body weight of female ixodid ticks (Acari: Ixodidae) is about 100x the unfed weight. Virgin female Amblyomma hebraeum normally do not feed beyond 10x the unfed weight. However, about 10-20% of a population of virgins will feed to perhaps 20x the unfed weight, but not much beyond that. In A. hebraeum, when females surpass about 10x the unfed weight, the following changes in physiology occur if they are removed from the host: (a) they will not reattach if given the opportunity, (b) their salivary glands (SGs) will undergo autolysis within 4 days if they are mated or 8 days if they are virgin, and (c) egg maturation and oviposition will occur in due course. Mated or virgin female ticks removed from the host below about 10x the unfed weight do not experience the latter changes (Kaufman, W.R., Lomas, L., 1996. 'Male Factors' in ticks: their role in feeding and egg development. Invertebrate Reproduction and Development 30, 191-198). In 1984 we named this transitional weight, the 'critical weight' (CW). Its absolute value is probably a species-specific characteristic (Kaufman, W.R., 2007. Gluttony and sex in female ixodid ticks: how do they compare to other blood-sucking arthropods? Journal of Insect Physiology 53, 264-273). Although mated females tend to engorge within a day of surpassing the CW, virgin females surpassing the CW can remain attached to the host for at least several weeks more. It is not known whether the physiological changes in the SGs and ovaries listed above occur in those large virgins that remain attached, although we suppose that this would be maladaptive. Instead, we hypothesize in this study that surpassing the CW is only a prerequisite for inducing these changes, and that detachment is the actual trigger. We support our hypothesis by demonstrating that large virgins, remaining attached to a host for 8 days, did not undergo SG degeneration nor complete egg maturation during the attachment period. Those changes occurred only within 8 days following detachment. So some type of sensory information associated with attachment to the host, and still undefined, inhibits expression of the physiological changes hitherto associated merely with surpassing the CW.
Collapse
Affiliation(s)
- Kevin J Friesen
- Department of Biological Sciences, University of Alberta, Edmonton, Canada
| | | |
Collapse
|
27
|
Donohue KV, Khalil SMS, Ross E, Mitchell RD, Roe RM, Sonenshine DE. Male engorgement factor: Role in stimulating engorgement to repletion in the ixodid tick, Dermacentor variabilis. JOURNAL OF INSECT PHYSIOLOGY 2009; 55:909-918. [PMID: 19538967 DOI: 10.1016/j.jinsphys.2009.05.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2009] [Revised: 05/21/2009] [Accepted: 05/21/2009] [Indexed: 05/27/2023]
Abstract
Mating in ticks results in profound physiological changes that eventually results in egg production. In the American dog tick, Dermacentor variabilis, mating causes partially blood-fed female ticks to commence rapid engorgement to repletion and eventual detachment from the host and egg laying. The peptidic male pheromone (engorgement factor alpha/beta) transferred to the female during mating is known only from a single tick species, Amblyomma hebraeum, and was shown to consist of two peptides produced in the testis/vas deferens (TVD) and not in the male accessory gland (MAG). In the current study, we obtained 2704bp of sequence data for efalpha from D. variabilis, of 7kb as determined by Northern blot, and show that it is also present in the Southern cattle tick, Rhipicephalus microplus and the deer tick, Ixodes scapularis. Analysis of the male gonad transcriptome by pyrosequencing produced 563,093 reads of which 636 matched with efalpha; none matched with efbeta. No evidence of efbeta orthologs could be found in any publicly available database including the I. scapularis genome. Silencing efalpha in male ticks failed to significantly reduce the engorgement weight of females compared to controls. Injection of sephadex beads, replete female synganglia, fed male MAG, fed male TVD, or replete female vagina/seminal receptacle (VA/SR), separately, failed to initiate feeding to repletion like that found in normally mated females. However, a small percentage of females injected with VA/SR that fed beyond the arbitrary weight for repletion of 300mg, produced brown eggs (an indication of vitellogenin uptake by the oocytes). The greatest effect was observed in female ticks injected with a suspension of MAG and TVD combined; 50% fed to repletion and all of these dropped off from the host and laid brown eggs. The effect was abolished if the aqueous fraction of the MAG/TVD homogenate only was injected suggesting that EF in ticks is a non-secreted membrane-bound or intracellular protein. Overall, these data suggest that EFalpha in D. variabilis is not an engorgement factor.
Collapse
Affiliation(s)
- Kevin V Donohue
- Department of Entomology, North Carolina State University, Raleigh, 27695-7647, USA
| | | | | | | | | | | |
Collapse
|
28
|
Cabrera AR, Donohue KV, Khalil SMS, Sonenshine DE, Roe RM. Characterization of vitellin protein in the twospotted spider mite, Tetranychus urticae (Acari: Tetranychidae). JOURNAL OF INSECT PHYSIOLOGY 2009; 55:655-661. [PMID: 19394341 DOI: 10.1016/j.jinsphys.2009.04.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2009] [Revised: 04/13/2009] [Accepted: 04/13/2009] [Indexed: 05/27/2023]
Abstract
In mites, vitellogenin synthesis, regulation and uptake by the oocytes as vitellin remain practically unknown. Although a partial sequence of the gene is now available, no previous studies have been conducted that describe the native vitellin protein in mites. The objective of this study was to characterize vitellin in the twospotted spider mite, Tetranychus urticae. The native twospotted spider mite vitellin migrated as a single major band with a molecular weight of 476+/-14.5 kDa as compared to 590+/-25.5 kDa for vitellin from the American dog tick, Dermacentor variabilis. However, isoelectric focusing analysis of native spider mite vitellin showed five bands with pI values slightly acidic to neutral (pH 5.8, 6.2, 6.7, 7.0 and 7.2), as is the case for insect and tick vitellins. Reducing conditions (SDS-PAGE) also revealed multiple subunits ranging from 290.9 to 3.6 kDa and was similar to that found in D. variabilis. Spider mite vitellin weakly bound lipids and carbohydrates compared to the tick. Unlike D. variabilis, the spider mite egg yolk protein does not bind heme. The significance of non-heme binding in mites is discussed.
Collapse
Affiliation(s)
- Ana R Cabrera
- North Carolina State University, Department of Entomology, Campus Box 7613, Raleigh, NC 27695, USA
| | | | | | | | | |
Collapse
|
29
|
Donohue KV, Khalil SMS, Sonenshine DE, Roe RM. Heme-binding storage proteins in the Chelicerata. JOURNAL OF INSECT PHYSIOLOGY 2009; 55:287-296. [PMID: 19183556 DOI: 10.1016/j.jinsphys.2009.01.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2008] [Revised: 01/02/2009] [Accepted: 01/05/2009] [Indexed: 05/27/2023]
Abstract
Lipoglycoproteins in the Chelicerata that bind and store heme appear to represent a unique evolutionary strategy to both mitigate the toxicity of heme and utilize the molecule as a prosthetic group. Knowledge of heme-binding storage proteins in these organisms is in its infancy and much of what is known is from studies with vitellogenins (Vg) and more recently the main hemolymph storage protein in ixodid ticks characterized as a hemelipoglyco-carrier protein (CP). Data have also been reported from another arachnid, the black widow spider, Latrodectus mirabilis, and seem to suggest that the heme-binding capability of these large multimeric proteins is not a phenomenon found only in the Acari. CP appears to be most closely related to Vg in ticks in terms of primary structure but post-translational processing is different. Tick CP and L. mirabilis high-density lipoprotein 1 (HDL1) are similar in that they consist of two subunits of approximate molecular masses of 90 and 100 kDa, are found in the hemolymph as the dominant protein, and bind lipids, carbohydrates and cholesterol. CP binds heme which may also be the case for HDL1 since the protein was found to contain a brown pigment when analyzed by native polyacrylamide gel electrophoresis. Vgs in ticks are composed of multiple subunits and are the precursor of the yolk protein, vitellin. The phylogeny of these proteins, regulation of gene expression and putative functions of binding and storing heme throughout reproduction, blood-feeding and development are discussed. Comparisons with non-chelicerate arthropods are made in order to highlight the mechanisms and putative functions of heme-binding storage proteins and their possible critical function in the evolution of hematophagy.
Collapse
Affiliation(s)
- Kevin V Donohue
- Department of Entomology, Campus Box 7647, North Carolina State University, Raleigh, NC 27695-7647, USA
| | | | | | | |
Collapse
|
30
|
Dong SZ, Ye GY, Guo JY, Hu C. Roles of ecdysteroid and juvenile hormone in vitellogenesis in an endoparasitic wasp, Pteromalus puparum (Hymenoptera: Pteromalidae). Gen Comp Endocrinol 2009; 160:102-8. [PMID: 19032957 DOI: 10.1016/j.ygcen.2008.11.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2008] [Revised: 10/13/2008] [Accepted: 11/01/2008] [Indexed: 11/15/2022]
Abstract
To elucidate the endocrine regulation of vitellogenesis in an endoparastic wasp (Pteromalus puparum), the titers of ecdysteroid and juvenile hormone (JH) from the whole bodies are measured using the method of radioimmunoassay and GC-MS, and compared with the levels of vitellogenin (Vg) mRNA in the fat bodies, hemolymph Vg and ovarian vitellin (Vt), respectively. The results show that the ecdysteroid titer and fat body Vg mRNA level have a similar dynamics tendency, and the peak titer is at adult eclosion. The titer of JH III and ovarian Vt also have a similar dynamics tendency, and the peak titer is at 48h after eclosion. The profiles of hemolymph Vg, Vg mRNA in fat bodies and ovarian Vt, are also measured in the wasps after treated with different amounts of 20-hydroxyecdysone (20HE) or JH III in female pupa and adults. The results show that 20HE stimulates Vg synthesis in the fat bodies and its release into the hemolymph, and that JH III only accelerates Vg sequestration in the oocytes. Decapitation, which is believed to terminate synthesis of JH in insects, can not inhibit vitellogenesis and oocyte maturation in P. puparum. Furthermore, Vg gene is expressed with a lower titer of JH and depressed by a higher titer of JH III. These studies suggest that ecdysteroids play a role in Vg synthesis and believed to be the dominant hormones in regulation of vitellogenesis in P. puparum, and JHs are not the essential factors to female reproduction in this wasp.
Collapse
Affiliation(s)
- Sheng-zhang Dong
- State Key Laboratory of Rice Biology, Institute of Insect Sciences, Zhejiang University, Hangzhou, PR China.
| | | | | | | |
Collapse
|
31
|
Kawakami Y, Goto SG, Ito K, Numata H. Suppression of ovarian development and vitellogenin gene expression in the adult diapause of the two-spotted spider mite Tetranychus urticae. JOURNAL OF INSECT PHYSIOLOGY 2009; 55:70-77. [PMID: 19022260 DOI: 10.1016/j.jinsphys.2008.10.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2008] [Revised: 10/22/2008] [Accepted: 10/22/2008] [Indexed: 05/27/2023]
Abstract
Tetranychus urticae (Acari: Tetranychidae) possesses a sac-like ovary with characteristic oocytes that protrude from the ovarian surface. In nondiapause females, transparent oocytes became opaque with yolk deposition between days 0 and 1 in the adult stage at 20 degrees C. In diapause females, however, ovarian development ceased at a stage having transparent oocytes without yolk deposition; this stage corresponded to the day-0 stage of the nondiapause females. Four partial fragments of the vitellogenin (Vg) genes of T. urticae were isolated. This is the first report on the Vg genes of mites. The deduced amino acid sequences of these four Vg gene fragments contained the von Willebrand factor D domain and the GLCG motif, which were reported to be the common features of Vg sequences in insects and ticks. Northern blot analysis did not detect Vg mRNA in the diapause adult females of T. urticae. It is, therefore, suggested that diapause mites do not synthesize Vg mRNA and that vitellogenesis is regulated at the transcriptional level in diapause.
Collapse
Affiliation(s)
- Yuko Kawakami
- Department of Biology and Geosciences, Graduate School of Science, Osaka City University, Osaka 558-8585, Japan
| | | | | | | |
Collapse
|
32
|
Boldbaatar D, Battsetseg B, Matsuo T, Hatta T, Umemiya-Shirafuji R, Xuan X, Fujisaki K. Tick vitellogenin receptor reveals critical role in oocyte development and transovarial transmission of Babesia parasite. Biochem Cell Biol 2008; 86:331-44. [PMID: 18756328 DOI: 10.1139/o08-071] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
A cDNA encoding the vitellogenin receptor of the ixodid tick, Haemaphysalis longicornis Neumann (HlVgR) was cloned and characterized. The full-length cDNA is 5631 bp, including an intact ORF encoding an expected protein with 1782 amino acids. The deduced amino acid sequence of the HlVgR cDNA revealed two ligand-binding domains with four class A cysteine-rich repeats in the first domain and eight in the second domain similar to those of insect VgRs. The immunoblot analysis detected approximately 197 kDa protein in both tick ovary and egg. The developmental expression profile demonstrated that HlVgR mRNA exists throughout the ovarian development, and the transcriptional level is especially high in the previtellogenic period. Immuno electron microscopy analysis demonstrated that the localization of HlVgR is detected on the external surface of oocyte plasma membrane. RNAi showed that eggs of HlVgR dsRNA-injected adult ticks had not developed into fully mature oocytes and laid abnormal eggs. The Babesia parasite DNA was not detected in the eggs of HlVgR dsRNA-injected tick that fed on Babesia gibsoni infected dog, whereas it was detected in the eggs of PBS-injected ticks and noninjected ticks. Expression of HlVgR was increased by the vitellogenic hormone 20-hydroxyecdysone. These results indicate that HlVgR, which is produced by the developing oocytes, is essential for Vg uptake, egg development in the H. longicornis tick, and transovarial transmission of Babesia parasites.
Collapse
Affiliation(s)
- Damdinsuren Boldbaatar
- Laboratory of Emerging Infectious Diseases, Department of Frontier Veterinary Medicine, Kagoshima University, Korimoto, Kagoshima, Japan
| | | | | | | | | | | | | |
Collapse
|
33
|
Seixas A, Friesen KJ, Kaufman WR. Effect of 20-hydroxyecdysone and haemolymph on oogenesis in the ixodid tick Amblyomma hebraeum. JOURNAL OF INSECT PHYSIOLOGY 2008; 54:1175-1183. [PMID: 18634796 DOI: 10.1016/j.jinsphys.2008.05.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2008] [Revised: 05/14/2008] [Accepted: 05/20/2008] [Indexed: 05/26/2023]
Abstract
Earlier work from our laboratory indicated that injection of 20-hydroxyecdysone (20E) into non-vitellogenic female Amblyomma hebraeum ticks stimulates the synthesis of vitellogenin (Vg), but not its uptake into oocytes [Friesen, K., Kaufman, W.R., 2004. Effects of 20-hydroxyecdysone and other hormones on egg development, and identification of a vitellin-binding protein in the ovary of the tick, Amblyomma hebraeum. Journal of Insect Physiology 50, 519-529]. In contrast, Thompson et al. [Thompson, D.M., Khalil, S.M.S., Jeffers, L.A., Ananthapadmanaban, U., Sonenshine, D.E., Mitchell, R.D., Osgood, C.J., Apperson, C.S., Roe, M.R., 2005. In vivo role of 20-hydroxyecdysone in the regulation of the vitellogenin mRNA and egg development in the American dog tick, Dermacentor variabilis (Say). Journal of Insect Physiology 51, 1105-1116] demonstrated that injection of 20E into virgin female Dermacentor variabilis ticks stimulated both vitellogenesis and Vg uptake into oocytes. In addition to the species difference in the two studies there were substantially different methods for injecting 20E. In our earlier work we injected small partially fed ticks after removing them from the host. Thompson et al. injected the females while they remained attached to the host. So in this study we repeated our earlier experiments on A. hebraeum using on-host injection. We also injected 20E into off-host ticks with or without haemolymph collected from engorged ticks (days 2-10 post-engorgement), or from large partially fed mated ticks in the rapid phase of engorgement, to see whether we might detect a 'vitellogenin uptake factor' (VUF) in haemolymph. Off-host injection of 20E (0.45microg/g body weight (bw)) did not induce ovary development beyond that of vehicle-injected controls. But ticks in this study, receiving 20E plus haemolymph from engorged ticks, showed a significant increase in ovary weight beyond that of 20E alone (1.31+/-0.05% bw; 34 for 20E plus haemolymph and 1.03+/-0.05% bw; 25 for 20E alone). However, in normal engorged A. hebraeum, the ovary exceeds 7% bw at the onset of oviposition. As in our earlier work, in this study 20E stimulated Vg-synthesis (3.9+/-0.5mgVt-equivalents/ml) beyond that occurring in vehicle-injected ticks (0.76+/-0.14mgVt-equivalents/ml), and there was a further increase in ticks injected with 20E plus haemolymph from engorged ticks (8.9+/-1.0mgVt-equivalents/ml). On-host injection of 20E alone (6microg20E/g bw) did not produce a statistically significant increase in oocyte length over that of vehicle-injected controls, whereas on-host injection of 20E plus engorged haemolymph resulted in significantly larger oocytes (261+/-57microm) compared to vehicle-injected controls (132+/-11microm), compared to 20E alone (131+/-12microm), or haemolymph alone (124+/-24microm). There was a marked stimulation of Vg-synthesis by 31microg20E/g bw (6.0+/-1.5mgVt-equivalents/ml) compared to vehicle-injected controls (1.02+/-33mgVt-equivalents/ml). Vt accumulation by ovaries was significantly greater in ticks treated with haemolymph (12+/-3microgVt/mg ovary) or 20E plus haemolymph (56+/-26microgVt/mg ovary) compared to vehicle-injected controls (5.1+/-1.5microgVt/mg ovary). There was also a significant effect of 6microg20E/g bw plus engorged haemolymph on ovary weight (1.74+/-0.29% bw) compared to vehicle-injected ticks (0.95+/-0.10% bw), but not compared to ticks injected with 20E alone (1.25+/-0.19% bw). We conclude that at least some of the differences observed between the two laboratories relate to the species difference, and that there is some evidence that the engorged haemolymph of A. hebraeum contains a VUF.
Collapse
Affiliation(s)
- Adriana Seixas
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, CEP 91501-970, Brazil
| | | | | |
Collapse
|
34
|
Donohue KV, Khalil SMS, Mitchell RD, Sonenshine DE, Roe RM. Molecular characterization of the major hemelipoglycoprotein in ixodid ticks. INSECT MOLECULAR BIOLOGY 2008; 17:197-208. [PMID: 18477238 DOI: 10.1111/j.1365-2583.2008.00794.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The major hemelipoglyco-carrier protein (CP) found throughout the development of male and female adult American dog ticks, Dermacentor variabilis (Say) was sequenced. DvCP is a single transcript coding for two protein subunits that together contain three motifs: (1) a lipoprotein n-terminal domain that is a common attribute of proteins that bind lipids, carbohydrates and metals; (2) a domain of unknown function characteristic of proteins with several large open beta sheets; and (3) a von Willebrand factor type D domain near the carboxy-terminus apparently important for multimerization. These motifs, which are also found in tick vitellogenin, are not shared by heme-binding proteins studied thus far in other hematophagous insects. DvCP message was highest in fat body and salivary gland but was also found in midgut and ovary tissue. Expression was initiated by blood feeding in virgin females and not by mating, as is typical of tick vitellogenin; and the message was found in fed males at levels similar to part fed, virgin females. CP appears to be highly conserved among the Ixodida. The closest match by BlastP to DvCP is vitellogenin from Caenorhabditis elegans (AAC04423), suggesting that CP is a novel protein. The role of CP in heme sequestration, the evolution of hematophagy and host complementation are discussed.
Collapse
Affiliation(s)
- K V Donohue
- Department of Entomology, North Carolina State University, Raleigh, NC 27695, USA
| | | | | | | | | |
Collapse
|
35
|
Thompson DM, Khalil SMS, Jeffers LA, Sonenshine DE, Mitchell RD, Osgood CJ, Michael Roe R. Sequence and the developmental and tissue-specific regulation of the first complete vitellogenin messenger RNA from ticks responsible for heme sequestration. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2007; 37:363-74. [PMID: 17368200 DOI: 10.1016/j.ibmb.2007.01.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2006] [Revised: 01/03/2007] [Accepted: 01/03/2007] [Indexed: 05/14/2023]
Abstract
The first full-length mRNA for vitellogenin (Vg) from ticks was sequenced. This also represents the first complete sequence of Vg from the Chelicerata and of a heme binding Vg. The Vg cDNA from the American dog tick, Dermacentor variabilis was 5744nt in length (GenBank Accession number AY885250), which coded for a protein of 1843 aa with a calculated molecular weight of 208 kD. This protein had an 18 aa signal sequence, a single RXXR cleavage signal that would generate two subunits (49.5 and 157K in molecular weight) and lipoprotein N-terminal and carboxy von Willebrand factor type D domains. Tryptic digest MS analysis of vitellin protein confirmed the function of the cDNA as the tick yolk protein. Apparently, vitellin in D. variabilis is oligomeric (possibly dimeric) and is comprised of a mixture of the uncleaved monomer and subunits that were predicted from the single RXXR cleavage signal. The highly conserved GL/ICG motif close to the C-terminus in insect Vg genes was different in the tick Vg message, i.e., GLCS. This variant was also present in a partial sequence of Vg from Boophilus microplus. Phylogenic analysis showed that the full length Vg cDNA from D. variabilis and the partial cDNA from B. microplus were distinct from insects and Crustacea. The Vg message was not found in whole body RNA from unfed or fed males or in unfed and partially fed (virgin) females as determined by Northern blotting. The message was found in replete (mated) pre-ovipositional females, increased to higher levels in ovipositing females and was absent after egg laying was complete. The endocrine regulation of the Vg mRNA is discussed. The tissue sources of the Vg message are both the gut and fat body. Tryptic digest MS fingerprinting suggests that a second Vg mRNA might be present in the American dog tick, which needs further study.
Collapse
Affiliation(s)
- Deborah M Thompson
- Department of Entomology, Campus Box 7647, North Carolina State University, Raleigh, NC 27695-7647, USA
| | | | | | | | | | | | | |
Collapse
|
36
|
Mitchell RD, Ross E, Osgood C, Sonenshine DE, Donohue KV, Khalil SM, Thompson DM, Michael Roe R. Molecular characterization, tissue-specific expression and RNAi knockdown of the first vitellogenin receptor from a tick. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2007; 37:375-88. [PMID: 17368201 DOI: 10.1016/j.ibmb.2007.01.005] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2006] [Revised: 01/04/2007] [Accepted: 01/05/2007] [Indexed: 05/14/2023]
Abstract
This is the first full-length message for a vitellogenin receptor (VgR) sequenced from ticks. VgRs, members of the low-density lipoprotein receptor (LDLR) superfamily, mediate the uptake of the yolk protein, vitellogenin (Vg), from the hemolymph. The VgR message from the American dog tick, Dermacentor variabilis (GenBank accession No. DQ103506.4) comprised 5673 bp which coded for a 1798 aa deduced protein with a predicted 196.6 kDa molecular mass. After removing the 20 aa signal peptide, the 1778 aa deduced mature protein had a predicted 196.6 kDa molecular mass. BLAST comparisons showed the highest similarity to the VgR of the cockroach, Periplaneta americana. VgR message was expressed in mated female ovary but absent in female midgut and salivary glands or whole body mRNA from blood fed males, indicating that it is both sex and tissue specific. VgR transcript was absent in virgin (previtellogenic) females but present in ovaries of mated females following drop off. RNAi showed that unfed adult ticks injected with a VgR-dsRNA probe failed to lay eggs, develop brown eggs or fully express VgR transcript (Northern blots). In contrast, controls oviposited numerous normal brown eggs and showed strong expression of VgR transcripts. These results show that the expression of the VgR message is essential for Vg uptake and egg development in the American dog tick.
Collapse
Affiliation(s)
- Robert D Mitchell
- Department of Biological Sciences, Old Dominion University, Norfolk, VA 23529, USA
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Reuben Kaufman W. Gluttony and sex in female ixodid ticks: how do they compare to other blood-sucking arthropods? JOURNAL OF INSECT PHYSIOLOGY 2007; 53:264-73. [PMID: 17113595 DOI: 10.1016/j.jinsphys.2006.10.004] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2006] [Revised: 09/17/2006] [Accepted: 10/02/2006] [Indexed: 05/12/2023]
Abstract
The central issue dealt with here is the role of copulation in the control of feeding behaviour in ticks and some haematophagous insects. Female ticks of the family Ixodidae normally engorge to approximately 100 x their unfed body weight, and then drop from the host, produce and lay eggs, and die. Virgins, on the other hand, normally do not exceed 5-40% (depending on species) of the normal engorged body weight. But instead of detaching voluntarily at that point most virgins remain fixed to the host for extended periods, waiting for males to find them so they can complete engorgement. Virgin haematophagous insects, and virgin ticks of the family Argasidae display little, if any, reduction in blood meal size compared to mated females, at least not during the first ovarian cycle. During subsequent ovarian cycles, meal size in some virgin insects may be somewhat reduced depending on how many eggs are retained in the reproductive tract, but the reduction is not nearly to the same extent as that observed for virgin ixodid females. The stimulatory effect of copulation on engorgement in the latter is caused by a pair of proteins (voraxin alpha and beta) produced in the testis and transferred to the female with the spermatophore. Here, I propose why it might be adaptive for an ixodid female to remain small until mated. The hypothesis is suggested from the facts that ixodid ticks remain attached to the host for days (rather than minutes), and that virgin ticks, above a certain critical weight, lose all opportunity for producing viable offspring should they be groomed off the host prematurely, or should the host die while ticks are still attached.
Collapse
Affiliation(s)
- W Reuben Kaufman
- Department of Biological Sciences, University of Alberta, Edmonton, Alta., Canada T6G 2E9.
| |
Collapse
|
38
|
Ogihara K, Horigane M, Nakajima Y, Moribayashi A, Taylor D. Ecdysteroid hormone titer and its relationship to vitellogenesis in the soft tick, Ornithodoros moubata (Acari: Argasidae). Gen Comp Endocrinol 2007; 150:371-80. [PMID: 17166496 DOI: 10.1016/j.ygcen.2006.09.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2006] [Revised: 09/17/2006] [Accepted: 09/25/2006] [Indexed: 11/25/2022]
Abstract
A blood meal is required for reproduction in most argasid female ticks. The blood meal appears to stimulate an organ in the posterior end to produce a fat body stimulating factor (FSF), which is thought to be an ecdysteroid, to induce vitellogenin (Vg) synthesis. In this study, the relationship of vitellogenesis and ecdysteroids was investigated by measuring Vg and ecdysteroid titers while observing oocyte development and oviposition in mated and virgin females. Oviposition occurred from day 10 after engorgement in mated females and continued up to 40-50 days, whereas egg maturation and oviposition did not occur in virgin females. Vg titers in the hemolymph peaked on day 6 after engorgement and subsequently declined in mated females. Interestingly, Vg synthesis occurred and ovarian development progressed to the development of early vitellogenic oocytes in virgin females but oocyte maturation and oviposition did not occur. Topical application of ecdysteroids induced oviposition in fed virgin females indicating that ecdysteroids may induce oviposition. Concentrations of ecdysteroids for 20 days after engorgement revealed several peaks in mated female whole body extracts, but no peaks in virgin female extracts. In the hemolymph of only mated females, ecdysteroid titers showed two peaks that followed the early peak of ecdysteroids in the whole body on day 4 and 6 after engorgement. In addition, ecdysteroids in the reproductive tissues increased with the development of the ovary in mated females and this increase coincided with the latter peaks of the whole body. These observations indicate that physiological elevation of ecdysteroids accelerate Vg synthesis, and may induce egg maturation and stimulate oviposition in fed mated Ornithodoros moubata females.
Collapse
Affiliation(s)
- Kazumasa Ogihara
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki 305-8572, Japan
| | | | | | | | | |
Collapse
|
39
|
Claeys I, Breugelmans B, Simonet G, Franssens V, Van Soest S, Broeck JV. Regulation of Schistocerca gregaria neuroparsin transcript levels by juvenile hormone and 20-hydroxyecdysone. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2006; 62:107-15. [PMID: 16783827 DOI: 10.1002/arch.20127] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Neuroparsins (NPs) are small proteins that were originally discovered in the pars intercerebralis-corpus cardiacum neurosecretory complex of the migratory locust brain. From the desert locust, Schistocerca gregaria, we recently cloned four different transcripts, each coding for a distinct NP-related peptide. In addition to the brain, some NP-like precursor (Scg-NPP) transcripts also occur in a number of peripheral tissues, and their expression levels are controlled in a gender- and stage-dependent manner. Previous studies revealed a close correlation between Scg-NPP transcript levels and the gonotrophic cycle. In the present report, we demonstrate that certain Scg-NPP transcript levels are significantly altered upon injection of juvenile hormone (JH) or 20-hydroxyecdysone (20E) in adult gregarious desert locusts (five days after final ecdysis). While Scg-NPP1 transcript levels did not significantly change as a result of hormone treatment (animals were analyzed 24 h after injection), Scg-NPP2, Scg-NPP3, and Scg-NPP4 displayed hormone-dependent regulation in various tissues. Scg-NPP2 and Scg-NPP3 transcript levels significantly increased in the brain of JH-treated locusts. In addition, JH induction of Scg-NPP3 and Scg-NPP4 transcripts was observed in male fat body and in male and female gonads. Furthermore, 20E injection also induced Scg-NPP2, Scg-NPP3, and Scg-NPP4 transcripts in desert locust gonads. This is the first report showing NP-like precursor gene expression in insect ovaries. Our study indicates that the expression levels of some Scg-NPP transcripts are regulated by developmental hormones, suggesting a close correlation between NP expression and the endocrine control of the reproductive cycle.
Collapse
Affiliation(s)
- Ilse Claeys
- Laboratory of Developmental Physiology, Genomics and Proteomics, K.U. Leuven, Leuven, Belgium.
| | | | | | | | | | | |
Collapse
|