1
|
Barroso IG, Ferreira C, Terra WR. Water Transport and Enzyme Recycling in Tenebrio molitor Midgut: Insights From Transcriptomics, Proteomics, and In Vivo Inhibition Assays. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2025; 118:e70059. [PMID: 40199745 DOI: 10.1002/arch.70059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 03/27/2025] [Accepted: 03/30/2025] [Indexed: 04/10/2025]
Abstract
The low excretory rates of secreted digestive enzymes, such as trypsins, in insect species with peritrophic membranes led to the hypothesis of ectoperitrophic countercurrent water fluxes causing enzyme recycling. The midgut water flux model of Tenebrio molitor (T. molitor) is revisited and supported by in vivo experiments. Sequences from proteins putatively involved in water transport were retrieved from the T. molitor transcriptome by Blast and analyzed using bioinformatics tools. Gene expression of selected proteins was determined in three midgut sections (anterior, AM; middle, MM; posterior, PM) by RNA-seq, and transporter proteins were verified in microvillar-membrane-enriched midgut samples by proteomics. Genes encoding three cation chloride cotransporters (CCC) and four aquaporins were expressed in the midgut. TmNaCCC2, TmPrip, and TmEglp1 showed higher expression in the front half, while TmKCC, TmNKCC1, TmDrip, and TmEglp2 were more highly expressed in the back half. However, only TmNaCCC2 was found by proteomics. Midgut water fluxes were quantified by feeding T. molitor larvae with nonabsorbable dye and measuring its concentration along the midgut. The results suggest water absorption in AM and secretion in MM and PM, potentially caused by TmNaCCC2 and TmPrip in AM, and TmKCC and TmDrip in PM, whereas MM serves as a transition region. Larvae fed on furosemide, an NKCC and KCC inhibitor, showed altered midgut water fluxes, resulting in higher trypsin excretion into the hindgut, thus reinforcing the hypothesis of a countercurrent water flux generated by CCCs powering enzyme recycling in insect midguts.
Collapse
Affiliation(s)
- Ignacio G Barroso
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Clelia Ferreira
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Walter R Terra
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
2
|
Rezende TMT, Menezes HSG, Rezende AM, Cavalcanti MP, Silva YMG, de-Melo-Neto OP, Romão TP, Silva-Filha MHNL. Culex quinquefasciatus Resistant to the Binary Toxin from Lysinibacillus sphaericus Displays a Consistent Downregulation of Pantetheinase Transcripts. Biomolecules 2023; 14:33. [PMID: 38254633 PMCID: PMC10813629 DOI: 10.3390/biom14010033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/07/2023] [Accepted: 12/11/2023] [Indexed: 01/24/2024] Open
Abstract
Culex quinquefasciatus resistance to the binary (Bin) toxin, the major larvicidal component from Lysinibacillus sphaericus, is associated with mutations in the cqm1 gene, encoding the Bin-toxin receptor. Downregulation of the cqm1 transcript was found in the transcriptome of larvae resistant to the L. sphaericus IAB59 strain, which produces both the Bin toxin and a second binary toxin, Cry48Aa/Cry49Aa. Here, we investigated the transcription profiles of two other mosquito colonies having Bin resistance only. These confirmed the cqm1 downregulation and identified transcripts encoding the enzyme pantetheinase as the most downregulated mRNAs in both resistant colonies. Further quantification of these transcripts reinforced their strong downregulation in Bin-resistant larvae. Multiple genes were found encoding this enzyme in Cx. quinquefasciatus and a recombinant pantetheinase was then expressed in Escherichia coli and Sf9 cells, with its presence assessed in the midgut brush border membrane of susceptible larvae. The pantetheinase was expressed as a ~70 kDa protein, potentially membrane-bound, which does not seem to be significantly targeted by glycosylation. This is the first pantetheinase characterization in mosquitoes, and its remarkable downregulation might reflect features impacted by co-selection with the Bin-resistant phenotype or potential roles in the Bin-toxin mode of action that deserve to be investigated.
Collapse
Affiliation(s)
- Tatiana M. T. Rezende
- Department of Entomology, Instituto Aggeu Magalhães-Fiocruz, Recife 50740-465, PE, Brazil; (T.M.T.R.); (H.S.G.M.); (Y.M.G.S.); (T.P.R.)
| | - Heverly S. G. Menezes
- Department of Entomology, Instituto Aggeu Magalhães-Fiocruz, Recife 50740-465, PE, Brazil; (T.M.T.R.); (H.S.G.M.); (Y.M.G.S.); (T.P.R.)
| | - Antonio M. Rezende
- Department of Microbiology, Instituto Aggeu Magalhães-Fiocruz, Recife 50740-465, PE, Brazil; (A.M.R.); (M.P.C.); (O.P.d.-M.-N.)
| | - Milena P. Cavalcanti
- Department of Microbiology, Instituto Aggeu Magalhães-Fiocruz, Recife 50740-465, PE, Brazil; (A.M.R.); (M.P.C.); (O.P.d.-M.-N.)
| | - Yuri M. G. Silva
- Department of Entomology, Instituto Aggeu Magalhães-Fiocruz, Recife 50740-465, PE, Brazil; (T.M.T.R.); (H.S.G.M.); (Y.M.G.S.); (T.P.R.)
| | - Osvaldo P. de-Melo-Neto
- Department of Microbiology, Instituto Aggeu Magalhães-Fiocruz, Recife 50740-465, PE, Brazil; (A.M.R.); (M.P.C.); (O.P.d.-M.-N.)
| | - Tatiany P. Romão
- Department of Entomology, Instituto Aggeu Magalhães-Fiocruz, Recife 50740-465, PE, Brazil; (T.M.T.R.); (H.S.G.M.); (Y.M.G.S.); (T.P.R.)
| | - Maria Helena N. L. Silva-Filha
- Department of Entomology, Instituto Aggeu Magalhães-Fiocruz, Recife 50740-465, PE, Brazil; (T.M.T.R.); (H.S.G.M.); (Y.M.G.S.); (T.P.R.)
- National Institute for Molecular Entomology, Rio de Janeiro 21941-902, RJ, Brazil
| |
Collapse
|
3
|
Ashraf MZ, Mogilicherla K, Sellamuthu G, Siino V, Levander F, Roy A. Comparative gut proteomics study revealing adaptive physiology of Eurasian spruce bark beetle, Ips typographus (Coleoptera: Scolytinae). FRONTIERS IN PLANT SCIENCE 2023; 14:1157455. [PMID: 38078109 PMCID: PMC10703158 DOI: 10.3389/fpls.2023.1157455] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 11/01/2023] [Indexed: 01/23/2024]
Abstract
The bark beetle, Ips typographus (L.), is a major pest of Norway spruce, Picea abies (L.), causing enormous economic losses globally. The adult stage of the I. typographus has a complex life cycle (callow and sclerotized); the callow beetles feed ferociously, whereas sclerotized male beetles are more aggressive and pioneers in establishing new colonies. We conducted a comparative proteomics study to understand male and female digestion and detoxification processes in callow and sclerotized beetles. Proteome profiling was performed using high-throughput liquid chromatography-mass spectrometry. A total of >3000 proteins were identified from the bark beetle gut, and among them, 539 were differentially abundant (fold change ±2, FDR <0.05) between callow and sclerotized beetles. The differentially abundant proteins (DAPs) mainly engage with binding, catalytic activity, anatomical activity, hydrolase activity, metabolic process, and carbohydrate metabolism, and hence may be crucial for growth, digestion, detoxification, and signalling. We validated selected DAPs with RT-qPCR. Gut enzymes such as NADPH-cytochrome P450 reductase (CYC), glutathione S-transferase (GST), and esterase (EST) play a crucial role in the I. typographus for detoxification and digesting of host allelochemicals. We conducted enzyme activity assays with them and observed a positive correlation of CYC and GST activities with the proteomic results, whereas EST activity was not fully correlated. Furthermore, our investigation revealed that callow beetles had an upregulation of proteins associated with juvenile hormone (JH) biosynthesis and chitin metabolism, whereas sclerotized beetles exhibited an upregulation of proteins linked to fatty acid metabolism and the TCA cycle. These distinctive patterns of protein regulation in metabolic and functional processes are specific to each developmental stage, underscoring the adaptive responses of I. typographicus in overcoming conifer defences and facilitating their survival. Taken together, it is the first gut proteomic study comparing males and females of callow and sclerotized I. typographus, shedding light on the adaptive ecology at the molecular level. Furthermore, the information about bark beetle handling of nutritionally limiting and defence-rich spruce phloem diet can be utilized to formulate RNAi-mediated beetle management.
Collapse
Affiliation(s)
- Muhammad Zubair Ashraf
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Prague, Czechia
| | - Kanakachari Mogilicherla
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Prague, Czechia
| | - Gothandapani Sellamuthu
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Prague, Czechia
| | - Valentina Siino
- Department of Immunotechnology, Lund University, Lund, Sweden
| | - Fredrik Levander
- Department of Immunotechnology, Lund University, Lund, Sweden
- National Bioinformatics Infrastructure Sweden (NBIS), Science for Life Laboratory, Lund University, Lund, Sweden
| | - Amit Roy
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Prague, Czechia
| |
Collapse
|
4
|
Gomis-Rüth FX, Stöcker W. Structural and evolutionary insights into astacin metallopeptidases. Front Mol Biosci 2023; 9:1080836. [PMID: 36685277 PMCID: PMC9848320 DOI: 10.3389/fmolb.2022.1080836] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 11/30/2022] [Indexed: 01/05/2023] Open
Abstract
The astacins are a family of metallopeptidases (MPs) that has been extensively described from animals. They are multidomain extracellular proteins, which have a conserved core architecture encompassing a signal peptide for secretion, a prodomain or prosegment and a zinc-dependent catalytic domain (CD). This constellation is found in the archetypal name-giving digestive enzyme astacin from the European crayfish Astacus astacus. Astacin catalytic domains span ∼200 residues and consist of two subdomains that flank an extended active-site cleft. They share several structural elements including a long zinc-binding consensus sequence (HEXXHXXGXXH) immediately followed by an EXXRXDRD motif, which features a family-specific glutamate. In addition, a downstream SIMHY-motif encompasses a "Met-turn" methionine and a zinc-binding tyrosine. The overall architecture and some structural features of astacin catalytic domains match those of other more distantly related MPs, which together constitute the metzincin clan of metallopeptidases. We further analysed the structures of PRO-, MAM, TRAF, CUB and EGF-like domains, and described their essential molecular determinants. In addition, we investigated the distribution of astacins across kingdoms and their phylogenetic origin. Through extensive sequence searches we found astacin CDs in > 25,000 sequences down the tree of life from humans beyond Metazoa, including Choanoflagellata, Filasterea and Ichtyosporea. We also found < 400 sequences scattered across non-holozoan eukaryotes including some fungi and one virus, as well as in selected taxa of archaea and bacteria that are pathogens or colonizers of animal hosts, but not in plants. Overall, we propose that astacins originate in the root of Holozoa consistent with Darwinian descent and that the latter genes might be the result of horizontal gene transfer from holozoan donors.
Collapse
Affiliation(s)
- F. Xavier Gomis-Rüth
- Proteolysis Laboratory, Department of Structural Biology, Molecular Biology Institute of Barcelona (IBMB), Higher Scientific Research Council (CSIC), Barcelona, Catalonia, Spain,*Correspondence: F. Xavier Gomis-Rüth, ; Walter Stöcker,
| | - Walter Stöcker
- Institute of Molecular Physiology (IMP), Johannes Gutenberg-University Mainz (JGU), Mainz, Germany,*Correspondence: F. Xavier Gomis-Rüth, ; Walter Stöcker,
| |
Collapse
|
5
|
Hundacker J, Bittner N, Weise C, Bröhan G, Varama M, Hilker M. Pine defense against eggs of an herbivorous sawfly is elicited by an annexin-like protein present in egg-associated secretion. PLANT, CELL & ENVIRONMENT 2022; 45:1033-1048. [PMID: 34713898 DOI: 10.1111/pce.14211] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 10/18/2021] [Accepted: 10/18/2021] [Indexed: 06/13/2023]
Abstract
Known elicitors of plant defenses against eggs of herbivorous insects are low-molecular-weight organic compounds associated with the eggs. However, previous studies provided evidence that also proteinaceous compounds present in secretion associated with eggs of the herbivorous sawfly Diprion pini can elicit defensive responses in Pinus sylvestris. Pine responses induced by the proteinaceous secretion are known to result in enhanced emission of (E)-β-farnesene, which attracts egg parasitoids killing the eggs. Here, we aimed to identify the defense-eliciting protein and elucidate its function. After isolating the defense-eliciting protein from D. pini egg-associated secretion by ultrafiltration and gel electrophoresis, we identified it by MALDI-TOF mass spectrometry as an annexin-like protein, which we named 'diprionin'. Further GC-MS analyses showed that pine needles treated with heterologously expressed diprionin released enhanced quantities of (E)-β-farnesene. Our bioassays confirmed attractiveness of diprionin-treated pine to egg parasitoids. Expression of several pine candidate genes involved in terpene biosynthesis and regulation of ROS homeostasis was similarly affected by diprionin and natural sawfly egg deposition. However, the two treatments had different effects on expression of pathogenesis-related genes (PR1, PR5). Diprionin is the first egg-associated proteinaceous elicitor of indirect plant defense against insect eggs described so far.
Collapse
Affiliation(s)
- Janik Hundacker
- Department of Applied Zoology and Animal Ecology, Freie Universität Berlin, Dahlem Centre of Plant Sciences, Institute of Biology, Berlin, Germany
| | - Norbert Bittner
- Department of Applied Zoology and Animal Ecology, Freie Universität Berlin, Dahlem Centre of Plant Sciences, Institute of Biology, Berlin, Germany
| | - Christoph Weise
- Department of Biochemistry, Freie Universität Berlin, Institute of Chemistry and Biochemistry, Berlin, Germany
| | - Gunnar Bröhan
- Department of Applied Zoology and Animal Ecology, Freie Universität Berlin, Dahlem Centre of Plant Sciences, Institute of Biology, Berlin, Germany
| | - Martti Varama
- Natural Resources Institute Finland, Helsinki, Finland
| | - Monika Hilker
- Department of Applied Zoology and Animal Ecology, Freie Universität Berlin, Dahlem Centre of Plant Sciences, Institute of Biology, Berlin, Germany
| |
Collapse
|
6
|
Fuzita FJ, Palmisano G, Pimenta DC, Terra WR, Ferreira C. A proteomic approach to identify digestive enzymes, their exocytic and microapocrine secretory routes and their compartmentalization in the midgut of Spodoptera frugiperda. Comp Biochem Physiol B Biochem Mol Biol 2021; 257:110670. [PMID: 34438074 DOI: 10.1016/j.cbpb.2021.110670] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 08/12/2021] [Accepted: 08/16/2021] [Indexed: 11/16/2022]
Abstract
A proteomic approach was used to identify the digestive enzymes secreted by exocytosis and by microapocrine vesicles and enzyme midgut compartmentalization in Spodoptera frugiperda larvae. For this, proteomic analyses were performed in isolated midgut enterocyte microvillar membrane, in a fraction enriched in microapocrine vesicles (separated in soluble and membrane fractions), in the washings of the peritrophic membrane to isolate its loosely- and tightly-bound proteins, and in the peritrophic membrane contents. PM washings correspond to proteins extracted from the mucus layer surrounding PM. Serine endopeptidases (trypsins, chymotrypsins and serine endopeptidase homologs that have substitutions in the catalytic residues) and lipases are mainly secreted by exocytosis. Aminopeptidases are mainly microvillar enzymes and some are secreted membrane-bound to microapocrine vesicles, whereas carboxypeptidase isoforms follow different secretory routes. The results also showed that most polymer hydrolases (such as amylase and endopeptidases) are not retained in the ectoperitrophic fluid (found in PM washings but absent from PM contents). On the contrary, most enzymes involved in intermediate digestion (exemplified by carboxypeptidase and aminopeptidase) do not pass through the peritrophic membrane. Finally, the data revealed that the protein composition of PM includes peritrophins classified as peritrophic membrane proteins, PMP, and chitin deacetylase.
Collapse
Affiliation(s)
- Felipe J Fuzita
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Avenida Professor Lineu Prestes, 748, São Paulo 05508-000, Brazil
| | - Giuseppe Palmisano
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, 05508-000 São Paulo, Brazil
| | - Daniel C Pimenta
- Laboratório de Bioquímica e Biofísica, Instituto Butantan, Avenida Vital Brasil, 1500, São Paulo 05503-900, Brazil
| | - Walter R Terra
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Avenida Professor Lineu Prestes, 748, São Paulo 05508-000, Brazil
| | - Clélia Ferreira
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Avenida Professor Lineu Prestes, 748, São Paulo 05508-000, Brazil.
| |
Collapse
|
7
|
Fuzita FJ, Pimenta DC, Palmisano G, Terra WR, Ferreira C. Detergent-resistant domains in Spodoptera frugiperda midgut microvillar membranes and their relation to microapocrine secretion. Comp Biochem Physiol B Biochem Mol Biol 2019; 235:8-18. [DOI: 10.1016/j.cbpb.2019.05.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 05/09/2019] [Accepted: 05/16/2019] [Indexed: 11/27/2022]
|
8
|
Nebbia S, Lamberti C, Giorgis V, Giuffrida MG, Manfredi M, Marengo E, Pessione E, Schiavone A, Boita M, Brussino L, Cavallarin L, Rolla G. The cockroach allergen-like protein is involved in primary respiratory and food allergy to yellow mealworm (Tenebrio molitor). Clin Exp Allergy 2019; 49:1379-1382. [PMID: 31309657 DOI: 10.1111/cea.13461] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 06/21/2019] [Accepted: 07/05/2019] [Indexed: 11/29/2022]
Affiliation(s)
- Stefano Nebbia
- Institute of Science of Food Production, National Research Council, Grugliasco, Italy
| | - Cristina Lamberti
- Institute of Science of Food Production, National Research Council, Grugliasco, Italy
| | - Veronica Giorgis
- S.S.d.D.U. Allergologia e Immunologia Clinica A.O. Ordine Mauriziano Umberto I, University of Turin, Turin, Italy
| | | | - Marcello Manfredi
- Center for Translational Research on Autoimmune and Allergic Disease-CAAD, University of Piemonte Orientale, Novara, Italy
| | - Emilio Marengo
- Center for Translational Research on Autoimmune and Allergic Disease-CAAD, University of Piemonte Orientale, Novara, Italy
| | - Enrica Pessione
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | - Achille Schiavone
- Department of Veterinary Sciences, University of Turin, Turin, Italy
| | - Monica Boita
- S.S.d.D.U. Allergologia e Immunologia Clinica A.O. Ordine Mauriziano Umberto I, University of Turin, Turin, Italy
| | - Luisa Brussino
- S.S.d.D.U. Allergologia e Immunologia Clinica A.O. Ordine Mauriziano Umberto I, University of Turin, Turin, Italy
| | - Laura Cavallarin
- Institute of Science of Food Production, National Research Council, Grugliasco, Italy
| | - Giovanni Rolla
- S.S.d.D.U. Allergologia e Immunologia Clinica A.O. Ordine Mauriziano Umberto I, University of Turin, Turin, Italy
| |
Collapse
|
9
|
Hegedus DD, Toprak U, Erlandson M. Peritrophic matrix formation. JOURNAL OF INSECT PHYSIOLOGY 2019; 117:103898. [PMID: 31211963 DOI: 10.1016/j.jinsphys.2019.103898] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 06/10/2019] [Accepted: 06/10/2019] [Indexed: 06/09/2023]
Affiliation(s)
- Dwayne D Hegedus
- Molecular Genetics Section, Agriculture and Agri-Food Canada, Saskatoon, SK, Canada; Department of Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon, SK, Canada.
| | - Umut Toprak
- Molecular Genetics Section, Agriculture and Agri-Food Canada, Saskatoon, SK, Canada; Department of Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon, SK, Canada; Molecular Entomology Laboratory, College of Agriculture, Ankara University, Ankara, Turkey
| | - Martin Erlandson
- Molecular Genetics Section, Agriculture and Agri-Food Canada, Saskatoon, SK, Canada; Department of Biology, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
10
|
Dias RO, Cardoso C, Pimentel AC, Damasceno TF, Ferreira C, Terra WR. The roles of mucus-forming mucins, peritrophins and peritrophins with mucin domains in the insect midgut. INSECT MOLECULAR BIOLOGY 2018; 27:46-60. [PMID: 28833767 DOI: 10.1111/imb.12340] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Most insects have a gut lined with a peritrophic membrane (PM) consisting of chitin and proteins, mainly peritrophins that have chitin-binding domains. The PM is proposed to originate from mucus-forming mucins (Mf-mucins), which acquired a chitin-binding domain that interlocked with chitin, replacing mucus in function. We evaluated the expression of Mf-mucins and peritrophins by RNA-sequencing (RNA-seq) throughout the midgut of four distantly related insects. Mf-mucins were identified as proteins with high o-glycosylation and a series of uninterrupted Pro/Thr/Ser residues. The results demonstrate that the mucus layer is widespread in insects, and suggest that insect Mf-mucins are derived from those found in other animals by the loss of the cysteine knot and von Willebrand domains. The data also support a role of Mf-mucins in protecting the middle midgut of Musca domestica against acidic buffers. Mf-mucins may also produce a jelly-like material associated with the PM that immobilizes digestive enzymes in Spodoptera frugiperda. Peritrophins with a domain similar to Mf-mucins may be close to the ancestor of peritrophins. Expression data of peritrophins and chitin synthase genes throughout the midgut of M. domestica, S. frugiperda and Tenebrio molitor indicated that peritrophins were incorporated along the PM, according to their preferential sites of formation. Finally, the data support the view that mucus has functions distinct from the PM.
Collapse
Affiliation(s)
- R O Dias
- Departamento de Bioquimica, Instituto de Quimica, Universidade de São Paulo, São Paulo, Brazil
| | - C Cardoso
- Departamento de Bioquimica, Instituto de Quimica, Universidade de São Paulo, São Paulo, Brazil
| | - A C Pimentel
- Departamento de Bioquimica, Instituto de Quimica, Universidade de São Paulo, São Paulo, Brazil
| | - T F Damasceno
- Departamento de Bioquimica, Instituto de Quimica, Universidade de São Paulo, São Paulo, Brazil
| | - C Ferreira
- Departamento de Bioquimica, Instituto de Quimica, Universidade de São Paulo, São Paulo, Brazil
| | - W R Terra
- Departamento de Bioquimica, Instituto de Quimica, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
11
|
Silva W, Ribeiro AF, Silva MCP, Terra WR, Ferreira C. Gelsolin role in microapocrine secretion. INSECT MOLECULAR BIOLOGY 2016; 25:810-820. [PMID: 27627876 DOI: 10.1111/imb.12265] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
A role of gelsolin in opening the way along the microvilli for secretory vesicles during microapocrine secretion is proposed here. Data obtained with different techniques showed that many digestive enzymes are released by microapocrine secretion in insects. Proteins that might be involved in the machinery of microapocrine secretion were selected from our transcriptomes and literature searches. The proteins were annexin, Complex actin-related proteins 2 and 3 (ARP 2/3) cofilin, fimbrin, gelsolin 1, gelsolin 2, moesin, myosin 1, myosin 6, protein disulphide isomerase 1 (PDI 1), PDI 2 and profilin. The cDNAs coding for annexin, fimbrin, gelsolin 1, myosin 1, PDI 1 and PDI 2 were cloned and their sequences deposited in GenBank. Only gelsolin 1 and myosin 1 are expressed exclusively in the midgut (semiquantitative reverse transcriptase PCR). As myosin 1 may have a structural role in microvilli, gelsolin 1 is the best guess to be involved in the secretory machinery. A truncated recombinant gelsolin 1 was used to generate antibodies with which it was shown labelling inside and around midgut cell microvilli shown in an electron microscope, reinforcing a microvillar role for gelsolin 1. Suppression of gelsolin 1 synthesis by RNA interference prevents secretory vesicles from advancing inside the microvilli, in agreement with its putative role in severing the actin filaments to free the way for the vesicles.
Collapse
Affiliation(s)
- W Silva
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - A F Ribeiro
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | - M C P Silva
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - W R Terra
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - C Ferreira
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
12
|
Toprak U, Erlandson M, Baldwin D, Karcz S, Wan L, Coutu C, Gillott C, Hegedus DD. Identification of the Mamestra configurata (Lepidoptera: Noctuidae) peritrophic matrix proteins and enzymes involved in peritrophic matrix chitin metabolism. INSECT SCIENCE 2016; 23:656-674. [PMID: 25846407 DOI: 10.1111/1744-7917.12225] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/18/2015] [Indexed: 06/04/2023]
Abstract
The peritrophic matrix (PM) is essential for insect digestive system physiology as it protects the midgut epithelium from damage by food particles, pathogens, and toxins. The PM is also an attractive target for development of new pest control strategies due to its per os accessibility. To understand how the PM performs these functions, the molecular architecture of the PM was examined using genomic and proteomic approaches in Mamestra configurata (Lepidoptera: Noctuidae), a major pest of cruciferous oilseed crops in North America. Liquid chromatography-tandem mass spectrometry analyses of the PM identified 82 proteins classified as: (i) peritrophins, including a new class with a CBDIII domain; (ii) enzymes involved in chitin modification (chitin deacetylases), digestion (serine proteases, aminopeptidases, carboxypeptidases, lipases and α-amylase) or other reactions (β-1,3-glucanase, alkaline phosphatase, dsRNase, astacin, pantetheinase); (iii) a heterogenous group consisting of polycalin, REPATs, serpin, C-Type lectin and Lsti99/Lsti201 and 3 novel proteins without known orthologs. The genes encoding PM proteins were expressed predominantly in the midgut. cDNAs encoding chitin synthase-2 (McCHS-2), chitinase (McCHI), and β-N-acetylglucosaminidase (McNAG) enzymes, involved in PM chitin metabolism, were also identified. McCHS-2 expression was specific to the midgut indicating that it is responsible for chitin synthesis in the PM, the only chitinous material in the midgut. In contrast, the genes encoding the chitinolytic enzymes were expressed in multiple tissues. McCHS-2, McCHI, and McNAG were expressed in the midgut of feeding larvae, and NAG activity was present in the PM. This information was used to generate an updated model of the lepidopteran PM architecture.
Collapse
Affiliation(s)
- Umut Toprak
- Agriculture and Agri-Food Canada, Saskatoon, SK, Canada
- Department of Biology, University of Saskatchewan, Saskatoon, SK, Canada
- Department of Plant Protection, Faculty of Agriculture, University of Ankara, Ankara, Turkey
| | - Martin Erlandson
- Agriculture and Agri-Food Canada, Saskatoon, SK, Canada
- Department of Biology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Doug Baldwin
- Agriculture and Agri-Food Canada, Saskatoon, SK, Canada
| | - Steve Karcz
- Agriculture and Agri-Food Canada, Saskatoon, SK, Canada
| | - Lianglu Wan
- Plant Biotechnology Institute, National Research Council of Canada, Saskatoon, SK, Canada
| | - Cathy Coutu
- Agriculture and Agri-Food Canada, Saskatoon, SK, Canada
| | - Cedric Gillott
- Department of Biology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Dwayne D Hegedus
- Agriculture and Agri-Food Canada, Saskatoon, SK, Canada.
- Department of Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon, SK, Canada.
| |
Collapse
|
13
|
Sandoval-Mojica AF, Scharf ME. GUT GENES ASSOCIATED WITH THE PERITROPHIC MATRIX IN Reticulitermes flavipes (Blattodea: Rhinotermitidae): IDENTIFICATION AND CHARACTERIZATION. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2016; 92:127-142. [PMID: 27087028 DOI: 10.1002/arch.21325] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The peritrophic matrix (PM) is an acellular structure that lines the gut of most insects. It is an attractive target for pest management strategies because of its close involvement in digestive processes and role as a barrier against pathogens and toxins. The purpose of this study was to identify and characterize the genes that translate for principal components of the Reticulitermes flavipes PM. Genes encoding a gut chitin synthase (CHS), two proteins with peritrophin-A domains, and a chitin deacetylase were identified from an R. flavipes symbiont-free gut cDNA library, a pyrosequencing study of termite lignocellulose digestion, and a metatranscriptomic analysis of R. flavipes fed on agricultural biomass. Quantitative expression analysis of the identified genes, in the termite digestive tract, revealed that the transcripts coding for a CHS (RfCHSB) and the proteins with peritrophin-A domains (RfPPAD1 and RfPPAD2) were predominantly expressed in the midgut, suggesting an association with the PM. The peritrophin identity of the RfPPAD2 gene was confirmed by immunodetection of its translated peptide in the midgut and PM. The discovery and characterization of PM components of R. flavipes provides a basis for further investigation of the viability of this structure as a target for candidate termiticides.
Collapse
Affiliation(s)
| | - Michael E Scharf
- Department of Entomology, Purdue University, West Lafayette, Indiana, USA
| |
Collapse
|
14
|
|
15
|
Moreira NR, Cardoso C, Ribeiro AF, Ferreira C, Terra WR. Insect midgut α-mannosidases from family 38 and 47 with emphasis on those of Tenebrio molitor. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2015; 67:94-104. [PMID: 26187253 DOI: 10.1016/j.ibmb.2015.07.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 06/08/2015] [Accepted: 07/10/2015] [Indexed: 06/04/2023]
Abstract
α-Mannosidases are enzymes which remove non-reducing terminal residues from glycoconjugates. Data on both GH47 and GH38 (Golgi and lysosomal) enzymes are available. Data on insect midgut α-mannosidases acting in digestion are preliminary and do not include enzyme sequences. Tenebrio molitor midgut α-mannosidases were separated by chromatography into two activity peaks: a major (Man1) and a minor (Man2). An antibody generated against a synthetic peptide corresponding to a sequence of α-mannosidase fragment recognizes Man2 but not Man1. That fragment was later found to correspond to TmMan2 (GenBank access KP892646), showing that the cDNA coding for Man2 is actually TmMan2. TmMan2 codes for a mature α-mannosidase with 107.5 kDa. Purified Man2 originates after SDS-PAGE one band of about 72 kDa and another of 51 kDa, which sums 123 kDa, in agreement with gel filtration (123 kDa) data. These results suggest that Man2 is processed into peptides that remain noncovalently linked within the functional enzyme. The physical and kinetical properties of purified Man1 and Man2 are similar. They have a molecular mass of 123 kDa (gel filtration), pH optimum (5.6) and response to inhibitors like swainsonine (Man1 Ki, 68 nM; Man2 Ki, 63 nM) and deoxymannojirimycin (Man1 Ki, 0.12 mM; Man2 Ki, 0.15 mM). Their substrate specificities are a little different as Man2 hydrolyzes α-1,3 and α-1,6 bonds better than α-1,2, whereas the contrary is true for Man1. Thus, they pertain to Class II (GH38 α-mannosidases), that are catabolic α-mannosidases similar to lysosomal α-mannosidase. However, Man2, in contrast to true lysosomal α-mannosidase, is secreted (immunocytolocalization data) into the midgut contents. There, Man2 may participate in digestion of fungal cell walls, known to have α-mannosides in their outermost layer. The amount of family 38 α-mannosidase sequences found in the transcriptome (454 pyrosequencing) of the midgut of 9 insects pertaining to 5 orders is perhaps related to the diet of these organisms, as suggested by a large number of lysosomal α-mannosidase in the T. molitor midgut.
Collapse
Affiliation(s)
- Nathalia R Moreira
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, C.P. 26077, 05513-970 São Paulo, Brazil
| | - Christiane Cardoso
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, C.P. 26077, 05513-970 São Paulo, Brazil
| | - Alberto F Ribeiro
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, C.P. 11461, 05513-970 São Paulo, Brazil
| | - Clelia Ferreira
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, C.P. 26077, 05513-970 São Paulo, Brazil
| | - Walter R Terra
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, C.P. 26077, 05513-970 São Paulo, Brazil.
| |
Collapse
|
16
|
Ferreira C, Rebola KGO, Cardoso C, Bragatto I, Ribeiro AF, Terra WR. Insect midgut carboxypeptidases with emphasis on S10 hemipteran and M14 lepidopteran carboxypeptidases. INSECT MOLECULAR BIOLOGY 2015; 24:222-239. [PMID: 25488368 DOI: 10.1111/imb.12151] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
We compared the whole complement of midgut carboxypeptidases from 10 insects pertaining to five orders based on transcriptomes obtained by deep sequencing and biochemical data. Most of the carboxypeptidases were metallocarboxypeptidases from family M14, with carboxypeptidase A (CPA) predominating over carboxypeptidase B (CPB). They were found in all of the insects studied except for the hemipterans and a bruchid beetle. M14 carboxypeptidases were expressed only in the midgut of Spodoptera frugiperda (Lepidoptera). The most expressed CPA from this insect (SfCPA) was cloned, sequenced and expressed as a recombinant enzyme. This enzyme was used to generate antibodies used to demonstrate that SfCPA is secreted by an exocytic route. Serine carboxypeptidases from family S10 were found in all of the insects studied here. In S. frugiperda, they are expressed in all tissues besides the midgut, in accordance with their presumed lysosomal role. In the hemipteran Dysdercus peruvianus, S10 carboxypeptidases are expressed only in midgut, suggesting that they are digestive enzymes. This was confirmed by enzyme assays of midgut contents. Furthermore, the substrate specificity of D. peruvianus S10 carboxypeptidases are predicted to be one CPC (preferring hydrophobic residues) and one CPD (preferring basic residues), thus able to hydrolyse the peptides formed by their digestive cathepsin D and cathepsin L, respectively. The role of S10 carboxypeptidases in bruchid beetles are suggested to be the same as in hemipterans.
Collapse
Affiliation(s)
- C Ferreira
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | | | | | | | | | | |
Collapse
|
17
|
Arruda LK, Barbosa MCR, Santos ABR, Moreno AS, Chapman MD, Pomés A. Recombinant allergens for diagnosis of cockroach allergy. Curr Allergy Asthma Rep 2014; 14:428. [PMID: 24563284 DOI: 10.1007/s11882-014-0428-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Molecular cloning of cockroach allergens and their expression as recombinant proteins have allowed a better understanding of the mechanisms of cockroach allergic disease. Recombinant cockroach allergens have been used for skin testing or in vitro methods to measure IgE antibody levels in serum. Early studies evaluating selected U.S. patients revealed that a cocktail of four cockroach allergens, Bla g 1, Bla g 2, Bla g 4, and Bla g 5, would identify 95 % of cockroach allergic patients. More recent studies pointed to an important role of sensitization to tropomyosin among certain populations, and suggested that a cocktail of five allergens Bla g 1 and/or Per a 1, Bla g 2, Bla g 4, Bla g 5, and Bla g 7, and/or Per a 7, would be expected to diagnose 50- 64 % of cockroach-allergic patients worldwide. Variation in IgE reactivity profiles could be in part due to IgE responses to cross-reactive homologous allergens from different origins. The availability of purified natural or recombinant cockroach allergens provides the capacity to improve diagnosis of cockroach allergy and to develop novel forms of immunotherapy for cockroach-allergic patients.
Collapse
Affiliation(s)
- L Karla Arruda
- Department of Medicine, Ribeirao Preto Medical School, University of Sao Paulo, Av. Bandeirantes 3900, Ribeirao Preto, SP, 14049-900, Brazil,
| | | | | | | | | | | |
Collapse
|
18
|
Zhong X, Zhang L, Zou Y, Yi Q, Zhao P, Xia Q, Xiang Z. Shotgun analysis on the peritrophic membrane of the silkworm Bombyx mori. BMB Rep 2013. [PMID: 23187007 PMCID: PMC4133802 DOI: 10.5483/bmbrep.2012.45.11.261] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The insect midgut epithelium is generally lined with a unique chitin and protein structure, the peritrophic membrane (PM), which facilitates food digestion and protects the gut epithelium. We used gel electrophoresis and mass spectrometry to identify the extracted proteins from the silkworm PM to obtain an in-depth understanding of the biological function of the silkworm PM components. A total of 305 proteins, with molecular weights ranging from 8.02 kDa to 788.52 kDa and the isoelectric points ranging from 3.39 to 12.91, were successfully identified. We also found several major classes of PM proteins, i.e. PM chitin-binding protein, invertebrate intestinal mucin, and chitin deacetylase. The protein profile provides a basis for further study of the physiological events in the PM of Bombyx mori. [BMB Reports 2012; 45(11): 665-670]
Collapse
Affiliation(s)
- Xiaowu Zhong
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China
| | | | | | | | | | | | | |
Collapse
|
19
|
Pomés A, Arruda LK. Investigating cockroach allergens: aiming to improve diagnosis and treatment of cockroach allergic patients. Methods 2013; 66:75-85. [PMID: 23916425 DOI: 10.1016/j.ymeth.2013.07.036] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Revised: 07/24/2013] [Accepted: 07/26/2013] [Indexed: 12/16/2022] Open
Abstract
Cockroach allergy is an important health problem associated with the development of asthma, as a consequence of chronic exposure to low levels of allergens in susceptible individuals. In the last 20 years, progress in understanding the disease has been possible, thanks to the identification and molecular cloning of cockroach allergens and their expression as recombinant proteins. Assays for assessment of environmental allergen exposure have been developed and used to measure Bla g 1 and Bla g 2, as markers of cockroach exposure. IgE antibodies to cockroach extracts and to specific purified allergens have been measured to assess sensitization and analyze association with exposure and disease. With the development of the field of structural biology and the expression of recombinant cockroach allergens, insights into allergen structure, function, epitope mapping and allergen-antibody interactions have provided further understanding of mechanisms of cockroach allergic disease at the molecular level. This information will contribute to develop new approaches to allergen avoidance and to improve diagnosis and therapy of cockroach allergy.
Collapse
Affiliation(s)
- Anna Pomés
- Indoor Biotechnologies, Inc., Charlottesville, VA, USA.
| | | |
Collapse
|
20
|
Fescemyer HW, Sandoya GV, Gill TA, Ozkan S, Marden JH, Luthe DS. Maize toxin degrades peritrophic matrix proteins and stimulates compensatory transcriptome responses in fall armyworm midgut. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2013; 43:280-291. [PMID: 23306018 DOI: 10.1016/j.ibmb.2012.12.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Revised: 12/05/2012] [Accepted: 12/10/2012] [Indexed: 06/01/2023]
Abstract
Understanding the molecular mechanisms underlying insect compensatory responses to plant defenses could lead to improved plant resistance to herbivores. The Mp708 inbred line of maize produces the maize insect resistant 1-cysteine protease (Mir1-CP) toxin. Reduced feeding and growth of fall armyworm larvae fed on Mp708 was previously linked to impairment of nutrient utilization and degradation of the midgut (MG) peritrophic matrix (PM) by Mir1-CP. Here we examine the biochemical and transcriptional responses of fall armyworm larvae to Mir1-CP. Insect Intestinal Mucin (IIM) was severely depleted from pure PMs treated in vitro with recombinant Mir1-CP. Larvae fed on Mp708 midwhorls excrete frass largely depleted of IIM. Cracks, fissures and increased porosity previously observed in the PM of larvae fed on Mp708 midwhorls could ensue when Mir1-CP degrades the IIM that cross-links chitin fibrils in the PM. Both targeted and global transcriptome analyses were performed to determine how complete dissolution of the structure and function of the PM is prevented, enabling larvae to continue growing in the presence of Mir1-CP. The MGs from fall armyworm fed on Mp708 upregulate expression of genes encoding proteins involved in PM production as an apparent compensation to replace the disrupted PM structure and restore appropriate counter-current MG gradients. Also, several families of digestive enzymes (endopeptidases, aminopeptidases, lipases, amylase) were more highly expressed in MGs from larvae fed on Mp708 than MGs from larvae fed on diets lacking Mir1-CP (artificial diet, midwhorls from Tx601 or B73 maize). Impaired growth of larvae fed on Mp708 probably results from metabolic costs associated with higher production of PM constituents and digestive enzymes in a compensatory attempt to maintain MG function.
Collapse
Affiliation(s)
- Howard W Fescemyer
- Department of Biology, The Pennsylvania State University, 208 Mueller Laboratory, University Park, PA 16802, USA.
| | | | | | | | | | | |
Collapse
|
21
|
Silva W, Cardoso C, Ribeiro AF, Terra WR, Ferreira C. Midgut proteins released by microapocrine secretion in Spodoptera frugiperda. JOURNAL OF INSECT PHYSIOLOGY 2013; 59:70-80. [PMID: 23103730 DOI: 10.1016/j.jinsphys.2012.10.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Revised: 10/15/2012] [Accepted: 10/17/2012] [Indexed: 06/01/2023]
Abstract
Microapocrine vesicles bud from the lepidopteran midgut microvilli as double membrane vesicles. To identify the proteins secreted by this process, antibodies raised against isolated microapocrine vesicles from Spodoptera frugiperda were used for screening a midgut cDNA expression library. Positive clones were sequenced, assembled and N blasted against S. frugiperda sequences obtained by pyrosequencing midgut mRNA. This procedure led to the extension of microapocrine sequences that were annotated. A similar procedure was used to identify midgut microvillar proteins that necessarily are part of the microapocrine vesicle. Forty-eight proteins were associated with microvillar membranes. They pertain to 8 functional groups: digestive enzymes, peritrophic membrane, protection, transporters, receptors, secretory machinery, cytoskeleton and signaling, and unknown. Twenty-eight proteins are putatively secreted by microapocrine secretion. Most of them are digestive enzymes, but the list also includes proteins involved in protection and in peritrophic membrane formation. Among the identified digestive enzymes, aminopeptidases are typically microvillar and group into the classes 1, 2, 3, 5, and 6. There are two amylases secreted by microapocrine secretion: one is a digestive enzyme and the other is a transporter-like amylase with no clear function. One lipase has a predicted transmembrane loop, whereas the others are supposed to be secreted by microapocrine secretion and be digestive. Trypsin is membrane bound and is delivered by microapocrine secretion, but has no predicted features to bind membranes. It may remain bound through the signal peptide till be delivered into the midgut lumen. Proteins supposed to be involved in the microapocrine secretory machinery were: calmodulin, annexin, myosin 7a, and gelsolin 1. Their putative roles are discussed, but more research is necessary to settle this subject.
Collapse
Affiliation(s)
- Walciane Silva
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, C.P. 26077, 05513-970 São Paulo, Brazil
| | | | | | | | | |
Collapse
|
22
|
Molecular characterization of a peritrophic membrane protein from the silkworm, Bombyx mori. Mol Biol Rep 2012; 40:1087-95. [DOI: 10.1007/s11033-012-2151-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Accepted: 10/03/2012] [Indexed: 10/27/2022]
|
23
|
Bulushova NV, Zhuzhikov DP, Lyutikova LI, Kirillova NE, Zalunin IA, Chestukhina GG. Toxin-binding proteins isolated from yellow mealworm Tenebrio molitor and wax moth Galleria mellonella. BIOCHEMISTRY (MOSCOW) 2011; 76:202-8. [DOI: 10.1134/s0006297911020064] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
24
|
Qi W, Chen CL, Wang JY. Reducing Sugar-Producing Bacteria from Guts of Tenebrio Molitor Linnaeus (Yellow mealworm) for Lignocellulosic Waste Minimization. Microbes Environ 2011; 26:354-9. [DOI: 10.1264/jsme2.me11129] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Wei Qi
- School of Civil and Environmental Engineering, Nanyang Technological University
| | - Chia-Lung Chen
- Residues and Resource Reclamation Centre (R3C), Nanyang Technological University
| | - Jing-Yuan Wang
- School of Civil and Environmental Engineering, Nanyang Technological University
- Residues and Resource Reclamation Centre (R3C), Nanyang Technological University
| |
Collapse
|
25
|
Toprak U, Baldwin D, Erlandson M, Gillott C, Harris S, Hegedus DD. Expression patterns of genes encoding proteins with peritrophin A domains and protein localization in Mamestra configurata. JOURNAL OF INSECT PHYSIOLOGY 2010; 56:1711-1720. [PMID: 20619269 DOI: 10.1016/j.jinsphys.2010.06.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2010] [Revised: 06/23/2010] [Accepted: 06/29/2010] [Indexed: 05/29/2023]
Abstract
Genes encoding three proteins (McPPAD1-3) with peritrophin A chitin-binding domains (PADs) were identified from a Mamestra configurata larval midgut cDNA library. In addition to midgut, McPPAD1-3 and a previously identified gene encoding the peritrophin, McPM1, were expressed in foregut, hindgut, Malpighian tubules, tracheae, fat body and cuticle; however, the corresponding McPPAD proteins exhibited different localization patterns. McPPAD1 was restricted to the digestive tract and Malpighian tubules, McPPAD2 to Malpighian tubules, and McPPAD3 to the foregut, midgut, hindgut, tracheae and cuticle. Protein fold recognition analysis using tachycitin as a guide structure modelled the McPPAD1 PADs, but not McPPAD2 or McPPAD3 PADs. The McPPAD1 PADs were predicted to contain three anti-parallel β-sheets and a hevein-like fold that form a chitin-binding pocket containing two hydrophobic R-groups in a sandwich-like orientation.
Collapse
Affiliation(s)
- Umut Toprak
- Molecular Genetics Section, Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, Canada
| | | | | | | | | | | |
Collapse
|
26
|
Suazo A, Gore C, Schal C. RNA interference-mediated knock-down of Bla g 1 in the German cockroach, Blattella germanica L., implicates this allergen-encoding gene in digestion and nutrient absorption. INSECT MOLECULAR BIOLOGY 2009; 18:727-736. [PMID: 19758414 DOI: 10.1111/j.1365-2583.2009.00912.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
We used RNA interference (RNAi) to silence the expression of a gene encoding Bla g 1, a human allergen produced by the German cockroach, Blattella germanica L., to study its function in cockroach physiology. Females injected with 1 microg of double-stranded RNA contained 64% less Bla g 1 protein and Bla g 1 mRNA abundance was reduced by 91.4% compared to sham-injected females. Bla g 1 knockdown slowed the pace of weight gain, midgut growth, and colleterial gland and basal oocyte maturation, resulting in delayed egg case formation and lower fecundity. Exogenous juvenile hormone treatments rescued reproduction in RNAi-treated females, suggesting that Bla g 1 silencing lowered endogenous juvenile hormone, probably by reducing food intake and nutrient absorption.
Collapse
Affiliation(s)
- A Suazo
- Department of Entomology and W. M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, NC 27695-7613, USA
| | | | | |
Collapse
|
27
|
Pauchet Y, Muck A, Svatos A, Heckel DG. Chromatographic and electrophoretic resolution of proteins and protein complexes from the larval midgut microvilli of Manduca sexta. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2009; 39:467-474. [PMID: 19464367 DOI: 10.1016/j.ibmb.2009.05.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2009] [Revised: 05/11/2009] [Accepted: 05/13/2009] [Indexed: 05/27/2023]
Abstract
The microvillar proteome of Manduca sexta larval midguts was analyzed by subjecting brush border membrane vesicles (BBMV) to two different two-dimensional approaches: (i) Anion exchange chromatography followed by SDS-PAGE and (ii) Blue Native-PAGE followed by SDS-PAGE. The first technique was superior to conventional 2-D gel electrophoresis in resolving the most abundant proteins associated with the midgut microvilli. Twenty of them were successfully identified as digestive enzymes, binding targets of the insecticidal Cry1A toxins from Bacillus thuringiensis (Bt), and signal transduction proteins. A homolog of the chlorophyllide A binding protein from the silkworm and several aminopeptidases N represent the most abundant proteins associated with the BBMV. The second technique revealed protein oligomeric complexes associated with midgut microvilli in vivo. Two such complexes contained subunits of the vacuolar ATP synthase complex, and one was an oligomer of the chlorophyllide A binding protein. An additional complex consisted of homo- or hetero-tetramers of three different aminopeptidases N (APNs). As APNs are well-known binding partners of Cry1A toxins, their quaternary structure has implications for Bt toxin mode of action. Both techniques provide a useful complement to conventional 2-D gel electrophoresis in analyzing the complex proteome of the microvillar membrane fraction.
Collapse
Affiliation(s)
- Yannick Pauchet
- Entomology Department, Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, D-07745 Jena, Germany.
| | | | | | | |
Collapse
|
28
|
Hegedus D, Erlandson M, Gillott C, Toprak U. New insights into peritrophic matrix synthesis, architecture, and function. ANNUAL REVIEW OF ENTOMOLOGY 2009; 54:285-302. [PMID: 19067633 DOI: 10.1146/annurev.ento.54.110807.090559] [Citation(s) in RCA: 406] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The peritrophic matrix (PM) is a chitin and glycoprotein layer that lines the invertebrate midgut. Although structurally different, it is functionally similar to the mucous secretions of the vertebrate digestive tract. The PM is a physical barrier, protecting the midgut epithelium from abrasive food particles, digestive enzymes, and pathogens infectious per os. It is also a biochemical barrier, sequestering and, in some cases, inactivating ingested toxins. Finally, the PM compartmentalizes digestive processes, allowing for efficient nutrient acquisition and reuse of hydrolytic enzymes. The PM consists of an organized lattice of chitin fibrils held together by chitin binding proteins. Glycans fill the interstitial spaces, creating a molecular sieve, the properties of which are dependent on the immediate ion content and pH. In this review, we have integrated recent structural and functional information to create a holistic model for the PM. We also show how this information may generate novel technologies for use in insect pest management.
Collapse
Affiliation(s)
- Dwayne Hegedus
- Agriculture and Agri-Food Canada, Saskatoon, SK, S7N 0X2, Canada.
| | | | | | | |
Collapse
|
29
|
Ferreira AH, Cristofoletti PT, Pimenta DC, Ribeiro AF, Terra WR, Ferreira C. Structure, processing and midgut secretion of putative peritrophic membrane ancillary protein (PMAP) from Tenebrio molitor larvae. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2008; 38:233-243. [PMID: 18207083 DOI: 10.1016/j.ibmb.2007.11.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2007] [Revised: 11/13/2007] [Accepted: 11/15/2007] [Indexed: 05/25/2023]
Abstract
A cDNA coding for a Tenebrio molitor midgut protein named peritrophic membrane ancillary protein (PMAP) was cloned and sequenced. The complete cDNA codes for a protein of 595 amino acids with six insect-allergen-related-repeats that may be grouped in A (predicted globular)- and B (predicted nonglobular)-types forming an ABABAB structure. The PMAP-cDNA was expressed in Pichia pastoris and the recombinant protein (64kDa) was purified to homogeneity and used to raise antibodies in rabbits. The specific antibody detected PMAP peptides (22kDa) in the anterior and middle midgut tissue, luminal contents, peritrophic membrane and feces. These peptides derive from PMAP, as supported by mass spectrometry, and resemble those formed by the in vitro action of trypsin on recombinant PMAP. Both in vitro and in vivo PMAP processing seem to occur by attack of trypsin to susceptible bonds in the coils predicted to link AB pairs, thus releasing the putative functional AB structures. The AB-domain structure of PMAP is found in homologous proteins from several insect orders, except lepidopterans that have the apparently derived protein known as nitrile-specifier protein. Immunocytolocalization shows that PMAP is secreted by exocytosis and becomes entrapped in the glycocalyx, before being released into midgut contents. Circumstantial evidence suggests that PMAP-like proteins have a role in peritrophic membrane type 2 formation.
Collapse
Affiliation(s)
- A H Ferreira
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, C.P. 26077, 05513-970 São Paulo, Brasil
| | | | | | | | | | | |
Collapse
|