1
|
Goyal B, Tushir S, Sharma A, Singh S, Tatu U, Pandey K, Chakraborti S. Unveiling role of HSP70 genes for development and survival of Indian malaria vector Anopheles culicifacies. Int J Biol Macromol 2025; 308:142173. [PMID: 40120896 DOI: 10.1016/j.ijbiomac.2025.142173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 03/12/2025] [Accepted: 03/14/2025] [Indexed: 03/25/2025]
Abstract
Heat shock proteins (HSPs) play a pivotal role in maintaining cellular homeostasis and mediating stress responses across diverse organisms. Among them, the HSP70 family is crucial for protein folding and stress regulation. However, its functions remain underexplored in mosquito species, particularly in major Indian malaria vectors such as Anopheles culicifacies (Ac). This study aims to contribute to mosquito control by investigating the role of HSP70 in An. culicifacies. Given the persistent global challenge posed by malaria, understanding the regulatory mechanisms of HSP70 is essential for developing effective control strategies. In this study, we identified seven HSP70 genes in An. culicifacies and analyzed their expression profiles across different life stages. Six of these HSP70 genes (1, 2, 3, 5, 6, and 7) exhibited significant upregulation during the third instar larval stage, emphasizing their critical role in larval development. Using specific HSP70 inhibitors, quercetin and KNK437, we observed that KNK437 displayed potent larvicidal activity, comparable to the widely used insecticide temephos. Additionally, we successfully purified and characterized recombinant AcHSP70-1, which demonstrated unique interactions with adenosine triphosphate (ATP) and its co-chaperone AcHSP40, distinguishing it from other HSP70 systems. Through a combination of confocal microscopy, qRT-PCR analysis, and inhibitor assays, we further established the essential role of HSP70 in both larval development and adult female mosquitoes during blood meal acquisition. These findings provide novel insights into the functional diversification and regulatory mechanisms of HSP70 genes in An. culicifacies. This study not only enhances our understanding of their developmental roles but also highlights innovative targets for the development of mosquito control strategies.
Collapse
Affiliation(s)
- Bharti Goyal
- Parasite-Host Biology Group, ICMR National Institute of Malaria Research, New Delhi, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, UP, India
| | - Sheetal Tushir
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | - Arvind Sharma
- Parasite-Host Biology Group, ICMR National Institute of Malaria Research, New Delhi, India
| | - Shailja Singh
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India.
| | - Utpal Tatu
- Department of Biochemistry, Indian Institute of Science, Bangalore, India.
| | - Kailash Pandey
- Parasite-Host Biology Group, ICMR National Institute of Malaria Research, New Delhi, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, UP, India.
| | - Soumyananda Chakraborti
- Parasite-Host Biology Group, ICMR National Institute of Malaria Research, New Delhi, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, UP, India; Department of Biological Science, Birla Institute of Technology and Science, Pilani, Hyderabad Campus, Jawahar Nagar, Kapra Mandal, Medchal District, Telangana 500078, India.
| |
Collapse
|
2
|
Kajimoto A, Toyota K, Ohira T, Yusa Y. Transcriptomic analysis of sexually dimorphic cypris larvae of the rhizocephalan barnacle Peltogasterella gracilis. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2024; 52:101342. [PMID: 39437456 DOI: 10.1016/j.cbd.2024.101342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/12/2024] [Accepted: 10/09/2024] [Indexed: 10/25/2024]
Abstract
Peltogasterella gracilis (Cirripedia: Rhizocephala), a crustacean parasite of hermit crabs, displays genotypic sex determination. Its larvae are planktonic, and female larvae settle on the host. Subsequently, the females control the host's behavior by spreading a root-like structure called "the interna" within the host's body, and form sacs containing eggs called "the externae" outside the host's body. On the other hand, male larvae settle on immature externae and become dwarf males. The cypris larvae of P. gracilis show sexual dimorphism in size and morphology. However, there is no understanding of the molecular mechanisms underlying the sexual dimorphism observed at the larval stage. Here, we conducted a transcriptome analysis and compared the expression of genes in male and female cyprids to better understand their sexual differentiation and settlement processes. A total of 2870 differentially expressed transcripts, comprising 456 female- and 2414 male-biased transcripts were identified. Among the male-biased ones, ionotropic glutamate receptor-, heat shock protein-, acetylcholine-, and homeobox-, cuticle-related transcripts were included. Additionally, 29 gene ontology terms were associated with the sex-specific traits. The present study improves our understanding of sex determination, sexual differentiation, and settlement processes of rhizocephalans.
Collapse
Affiliation(s)
- Asami Kajimoto
- Nara Women's University, Kitauoya-nishi 630-8506, Nara, Japan.
| | - Kenji Toyota
- Department of Biological Sciences, Faculty of Science, Kanagawa University, 3-27-1, Rokkakubashi, Kanagawa-ku, Yokohama-city, Kanagawa 221-8686, Japan; Department of Bioresource Science, Graduate School of Integrated Sciences for Life, Hiroshima University, 1-4-4, Kagamiyama, Higashihiroshima-shi, Hiroshima 739-8528, Japan; Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585, Japan.
| | - Tsuyoshi Ohira
- Department of Biological Sciences, Faculty of Science, Kanagawa University, 3-27-1, Rokkakubashi, Kanagawa-ku, Yokohama-city, Kanagawa 221-8686, Japan
| | - Yoichi Yusa
- Nara Women's University, Kitauoya-nishi 630-8506, Nara, Japan
| |
Collapse
|
3
|
Anantanawat K, Papanicolaou A, Hill K, Liao Y, Xu W. Divergent Heat Stress Responses in Bactrocera tryoni and Ceratitis capitata. INSECTS 2024; 15:759. [PMID: 39452334 PMCID: PMC11508621 DOI: 10.3390/insects15100759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/23/2024] [Accepted: 09/26/2024] [Indexed: 10/26/2024]
Abstract
Invasive Tephritid fruit flies rank among the most destructive agricultural and horticultural pests worldwide. Heat treatment is commonly employed as a post-harvest method to exterminate fruit flies in fruits or vegetables. These pest species exhibit distinct tolerance to heat treatments, suggesting that the molecular pathways affected by heat may differ among species. In this study, the Queensland fruit fly (Qfly), Bactrocera tryoni, was utilised as a model investigate its molecular response to heat stress through heat bioassays. RNA samples from flies before and after heat treatment were extracted and sequenced to identify genes with significant changes in expression. These findings were compared to another serious Tephritid fruit fly species, the Mediterranean fruit fly (Medfly), Ceratitis capitata, under similar heat treatment conditions. The analysis reveals only three common genes: heat shock protein 70 (HSP70), HSP68, and 14-3-3 zeta protein. However, despite these shared genes, their expression patterns differ between Qfly and Medfly. This suggests that these genes might play different roles in the heat responses of each species and could be regulated differently. This study presents the first evidence of differing molecular responses to heat between Qfly and Medfly, potentially linked to their varied origins, habitats, and genetic backgrounds. These findings offer new insights into Tephritid fruit fly responses to heat at the molecular level, which may help refine post-harvest strategies to control these pests in the future.
Collapse
Affiliation(s)
- Kay Anantanawat
- Food Futures Institute, Murdoch University, Perth, WA 6150, Australia
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, VA 2753, Australia;
- South Australian Research and Development Institute, Hartley Grove, Urrbrae, SA 5064, Australia
- Ithree Institute, University of Technology, Sydney, NSW 2007, Australia
| | - Alexie Papanicolaou
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, VA 2753, Australia;
| | - Kelly Hill
- South Australian Research and Development Institute, Hartley Grove, Urrbrae, SA 5064, Australia
| | - Yalin Liao
- Food Futures Institute, Murdoch University, Perth, WA 6150, Australia
| | - Wei Xu
- Food Futures Institute, Murdoch University, Perth, WA 6150, Australia
| |
Collapse
|
4
|
Duan Y, Chen Q, Bilal M, Wu Y, Gong Z, Wu R, Miao J. Comparative Transcriptome Analysis Reveals Different Responses in Three Developmental Stages of Mythimna loreyi to Cold Stress. INSECTS 2024; 15:554. [PMID: 39057286 PMCID: PMC11276649 DOI: 10.3390/insects15070554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/09/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024]
Abstract
The loreyi leafworm Mythimna loreyi (Lepidoptera: Noctuidae) is a serious pest of agriculture that causes particular damage to Gramineae crops in Asia, Europe, Australia, Africa, and the Middle East. Low temperature is one of the important environmental factors that limits the survival, distribution, colonization, and abundance of M. loreyi. However, the metabolic synthesis pathways of cold-tolerant substances in M. loreyi and the key genes involved in the regulation under cold stress remain largely unknown. In this study, we sequenced the transcriptomes of three developmental stages (larvae, pupae, and adults) of M. loreyi to discover the molecular mechanisms of their responses to cold stress. In total, sequencing generated 120.64 GB of clean data from 18 samples, of which 19,459 genes and 1740 differentially expressed genes (DEGs) were identified. The enrichment analysis of Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) revealed that many DEGs were mainly enriched in pathways associated with energy metabolism and hormone metabolism. Among these, genes encoding multiple metabolic enzymes, cuticle proteins (CPs), and heat shock proteins (HSPs) were differentially expressed. These results indicate that there are significant differences among the three developmental stages of M. loreyi exposed to cold stress and provide a basis for further studying the molecular mechanisms of cold tolerance in insects.
Collapse
Affiliation(s)
- Yun Duan
- Henan Key Laboratory of Crop Pest Control, Key Laboratory of Integrated Pest Management on Crops in Southern Region of North China, Institute of Plant Protection, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China; (Y.D.); (M.B.); (Y.W.); (Z.G.)
| | - Qi Chen
- Luohe Academy of Agricultural Sciences, Luohe 462000, China;
| | - Muhammad Bilal
- Henan Key Laboratory of Crop Pest Control, Key Laboratory of Integrated Pest Management on Crops in Southern Region of North China, Institute of Plant Protection, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China; (Y.D.); (M.B.); (Y.W.); (Z.G.)
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China
| | - Yuqing Wu
- Henan Key Laboratory of Crop Pest Control, Key Laboratory of Integrated Pest Management on Crops in Southern Region of North China, Institute of Plant Protection, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China; (Y.D.); (M.B.); (Y.W.); (Z.G.)
| | - Zhongjun Gong
- Henan Key Laboratory of Crop Pest Control, Key Laboratory of Integrated Pest Management on Crops in Southern Region of North China, Institute of Plant Protection, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China; (Y.D.); (M.B.); (Y.W.); (Z.G.)
| | - Renhai Wu
- Henan Key Laboratory of Crop Pest Control, Key Laboratory of Integrated Pest Management on Crops in Southern Region of North China, Institute of Plant Protection, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China; (Y.D.); (M.B.); (Y.W.); (Z.G.)
| | - Jin Miao
- Henan Key Laboratory of Crop Pest Control, Key Laboratory of Integrated Pest Management on Crops in Southern Region of North China, Institute of Plant Protection, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China; (Y.D.); (M.B.); (Y.W.); (Z.G.)
| |
Collapse
|
5
|
Wu X, Zhang Z, Cui W, Han L, Liu Z, Song X, Tan J. The analysis of inducible family members in the water flea Daphnia magna led to the identification of an uncharacterized lineage of heat shock protein 70. Heliyon 2024; 10:e30288. [PMID: 38765176 PMCID: PMC11098801 DOI: 10.1016/j.heliyon.2024.e30288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 04/21/2024] [Accepted: 04/23/2024] [Indexed: 05/21/2024] Open
Abstract
To explore the function and evolutionary relationships of inducible heat shock protein 70 (Hsp70) in Daphnia magna, cDNAs of four Hsp70 family members (DmaHsp70, DmaHsp70-2, DmaHsp70-12, DmaHsp70-14) were cloned. While all DmaHsp70s possess three function domains, it is noteworthy that only DmaHsp70 ends with a "EEVD" motif. Phylogenetic analysis indicates that the Hsp70-12 lineage is distanced from the rest, and therefore it is an uncharacterized lineage of Hsp70. The differences in isoelectric point and 3-dimensional (3D) conformation of the N-terminal nucleotide binding domain (NBD) of DmaHsp70s further support the theory. DmaHsp70s exhibit varied motif distribution patterns and the logo sequences of motifs have diverse signature characteristics, indicating that different mechanisms are involved in the regulation of ATP binding and hydrolysis for the DmaHsp70s. Protein-protein network together with the predicted subcellular locations of DmaHsp70s suggest that they likely fulfill distinct roles in cells. The transcription of four DmaHsp70s were changed during the recovery stage after thermal stress or oxidative stress. But the expression pattern of them were dissimilar. Collectively, these results collectively elucidated the identification of a previously uncharacterizedHsp70 lineage in animal and extended our understanding of the Hsp70 family.
Collapse
Affiliation(s)
- Xiangyang Wu
- Laboratory of Comparative Immunology, School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Zhiwei Zhang
- Laboratory of Comparative Immunology, School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Wenfeng Cui
- Laboratory of Comparative Immunology, School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Linfei Han
- Laboratory of Comparative Immunology, School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Zijie Liu
- Laboratory of Comparative Immunology, School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Xiaojun Song
- Laboratory of Comparative Immunology, School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Jiabo Tan
- Laboratory of Comparative Immunology, School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| |
Collapse
|
6
|
Pei T, Zhang M, Nwanade CF, Meng H, Bai R, Wang Z, Wang R, Zhang T, Liu J, Yu Z. Sequential expression of small heat shock proteins contributing to the cold response of Haemaphysalis longicornis (Acari: Ixodidae). PEST MANAGEMENT SCIENCE 2024; 80:2061-2071. [PMID: 38117216 DOI: 10.1002/ps.7941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 12/08/2023] [Accepted: 12/20/2023] [Indexed: 12/21/2023]
Abstract
BACKGROUND Haemaphysalis longicornis is an important livestock pest and a serious threat to public health. Cold is a common form of stress affecting its survival and distribution. However, H. longicornis exhibits different physiological responses to cold stress. In this study, we systematically explored the regulation and functions of small heat shock proteins (sHsps) in H. longicornis during cold stress. RESULTS Seven sHsp genes (HlsHsp14.9, HlsHsp19.9, HlsHsp20.3, HlsHsp21.4, HlsHsp23.7, HlsHsp24.0, and HlsHsp26.1) with open reading frame lengths ranging from 408 bp (HlsHsp14.9) to 673 bp (HlsHsp26.1) were cloned from H. longicornis, and featured the typical α-crystallin domain. Phylogenetic analysis revealed high similarity with the sHsps of arachnid species. Quantitative polymerase chain reaction analysis revealed that the regulation of sHsp genes depended on the severity and duration of cold treatment. Moreover, the relative expression of each gene was largely dependent on the treatment period (P < 0.01; 3, 6, and 9 days of treatment at 8, 4, 0, and -4 °C). Among all genes, HlsHsp14.9, HlsHsp19.9, HlsHsp20.3, and HlsHsp24.0 were most sensitive to rapid cold treatment. After RNA interference, the mortality of H. longicornis was significantly increased at -14 °C (P < 0.05), suggesting that the expression of sHsp genes is closely related to cold tolerance in H. longicornis. CONCLUSION Our results indicate that sHsps play an important role in the cold stress response of H. longicornis, which may enhance our understanding of the cold adaptation mechanisms in ticks. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Tingwei Pei
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, Hebei Collaborative Innovation Center for Eco-Environment, Hebei Research Center of the Basic Discipline of Cell Biology, Ministry of Education Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Meng Zhang
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, Hebei Collaborative Innovation Center for Eco-Environment, Hebei Research Center of the Basic Discipline of Cell Biology, Ministry of Education Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Chuks F Nwanade
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, Hebei Collaborative Innovation Center for Eco-Environment, Hebei Research Center of the Basic Discipline of Cell Biology, Ministry of Education Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Hao Meng
- Department of Pathogenic Biology, Hebei Medical University, Shijiazhuang, China
| | - Ruwei Bai
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, Hebei Collaborative Innovation Center for Eco-Environment, Hebei Research Center of the Basic Discipline of Cell Biology, Ministry of Education Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Zihao Wang
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, Hebei Collaborative Innovation Center for Eco-Environment, Hebei Research Center of the Basic Discipline of Cell Biology, Ministry of Education Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Ruotong Wang
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, Hebei Collaborative Innovation Center for Eco-Environment, Hebei Research Center of the Basic Discipline of Cell Biology, Ministry of Education Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Tianai Zhang
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, Hebei Collaborative Innovation Center for Eco-Environment, Hebei Research Center of the Basic Discipline of Cell Biology, Ministry of Education Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Jingze Liu
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, Hebei Collaborative Innovation Center for Eco-Environment, Hebei Research Center of the Basic Discipline of Cell Biology, Ministry of Education Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Zhijun Yu
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, Hebei Collaborative Innovation Center for Eco-Environment, Hebei Research Center of the Basic Discipline of Cell Biology, Ministry of Education Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| |
Collapse
|
7
|
Chang YW, Yan YQ, Hu J, Du YZ. Characterization of genes encoding heat shock proteins reveals a differential response to temperature in two geographic populations of Liriomyza trifolii (Diptera: Agromyzidae). COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2024; 49:101156. [PMID: 37976966 DOI: 10.1016/j.cbd.2023.101156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 10/31/2023] [Accepted: 11/06/2023] [Indexed: 11/19/2023]
Abstract
Liriomyza trifolii is a significant, invasive pest that damages horticultural crops and vegetables. The distribution of L. trifolii is influenced by temperature, and prior research has demonstrated that variations in thermal adaptability differ among geographic populations of the insect. Heat shock proteins (Hsps) are involved in adaptation to temperatures; however, the underlying molecular mechanism for thermal adaption in different L. trifolii populations remains unclear. This study examines the temperature adaptability of two L. trifolii populations from Hainan (HN) and Jiangsu (JS) provinces. The results indicate that the HN population has a higher survival rate and a higher critical thermal maximum (CTmax) than the JS population under high temperature stress. Transcriptome data at 42 °C revealed that the JS population has more differentially expressed genes (DEGs) than the HN population, while the HN population has more upregulated DEGs. The two populations were similar in functional annotation of DEGs, and a large number of Hsps were upregulated. However, the HN population had larger numbers and higher expression levels of Hsps during heat stress as compared to the JS population. Additionally, the expression patterns of differentially expressed Hsps varied between the HN and JS populations in response to different elevated temperatures. Notably, the transcription levels of Hsp70s were higher in the HN population as compared to the JS population, while the expression level of genes encoding small heat shock proteins was higher in the JS population. These findings have significant scientific value in understanding the underlying mechanism of temperature adaption in L. trifolii and provide a fresh perspective on the distribution of this invasive pest.
Collapse
Affiliation(s)
- Ya-Wen Chang
- School of Plant Protection & Institute of Applied Entomology, Yangzhou University, Yangzhou, China
| | - Yu-Qing Yan
- School of Plant Protection & Institute of Applied Entomology, Yangzhou University, Yangzhou, China
| | - Jie Hu
- Plant Protection and Quarantine Station of Jiangsu Province, Nanjing, China
| | - Yu-Zhou Du
- School of Plant Protection & Institute of Applied Entomology, Yangzhou University, Yangzhou, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education, Yangzhou University, Yangzhou, China.
| |
Collapse
|
8
|
Planelló R, Aquilino M, Beaugeard L, Llorente L, Herrero Ó, Siaussat D, Lécureuil C. Unveiling Molecular Effects of the Secondary Metabolite 2-Dodecanone in the Model Hymenopteran Nasonia vitripennis. TOXICS 2024; 12:159. [PMID: 38393254 PMCID: PMC10892068 DOI: 10.3390/toxics12020159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 02/14/2024] [Accepted: 02/15/2024] [Indexed: 02/25/2024]
Abstract
Over the past decade, multiple studies have suggested that the secondary metabolites produced by plants against herbivorous insects could be used as biopesticides. However, as the molecular mechanism of action of these compounds remains unknown, it is difficult to predict how they would affect non-target insects; thus, their innocuity needs to be clarified. Here, we investigate, from the molecular level to the organism, the responses of a useful parasitic insect Nasonia vitripennis (Walker, 1836) being exposed at the pupae stage for 48 h (up to 6 days) to sublethal doses (5 µg/L and 500 µg/L) of 2-Dodecanone. 2-Dodecanone altered the gene expression of genes related to ecdysone-related pathways, biotransformation, and cell homeostasis. A significant induction of ecdysone response-genes (EcR, usp, E78, Hr4, Hr38) was detected, despite no significant differences in ecdysteroid levels. Regarding the cell homeostasis processes, the gene l(2)efl was differentially altered in both experimental conditions, and a dose-dependent induction of hex81 was observed. 2-Dodecanone also triggered an induction of Cyp6aQ5 activity. Finally, 2-Dodecanone exposure had a significant effect on neither development time, energy reserves, nor egg-laying capacity; no potential genotoxicity was detected. For the first time, this study shows evidence that 2-Dodecanone can modulate gene expression and interfere with the ecdysone signalling pathway in N. vitripennis. This could lead to potential endocrine alterations and highlight the suitability of this organism to improve our general understanding of the molecular effects of plant defences in insects. Our findings provide new insights into the toxicity of 2-Dodecanone that could potentially be explored in other species and under field conditions for plant protection and pest management as a means to reduce reliance on synthetic pesticides.
Collapse
Affiliation(s)
- Rosario Planelló
- Molecular Entomology, Biomarkers and Environmental Stress Group, Faculty of Science, National Distance education University (UNED), 28232 Las Rozas de Madrid, Spain; (M.A.); (L.L.); (Ó.H.)
| | - Mónica Aquilino
- Molecular Entomology, Biomarkers and Environmental Stress Group, Faculty of Science, National Distance education University (UNED), 28232 Las Rozas de Madrid, Spain; (M.A.); (L.L.); (Ó.H.)
| | - Laureen Beaugeard
- Institut de Recherche sur la Biologie de l’Insecte (IRBI), CNRS-Université de Tours, 37200 Tours, France;
| | - Lola Llorente
- Molecular Entomology, Biomarkers and Environmental Stress Group, Faculty of Science, National Distance education University (UNED), 28232 Las Rozas de Madrid, Spain; (M.A.); (L.L.); (Ó.H.)
| | - Óscar Herrero
- Molecular Entomology, Biomarkers and Environmental Stress Group, Faculty of Science, National Distance education University (UNED), 28232 Las Rozas de Madrid, Spain; (M.A.); (L.L.); (Ó.H.)
| | - David Siaussat
- Institute of Ecology and Environmental Sciences of Paris, Department of Sensory Ecology, Sorbonne Université, Campus Pierre et Marie Curie, 75005 Paris, France;
| | - Charlotte Lécureuil
- Institut de Recherche sur la Biologie de l’Insecte (IRBI), CNRS-Université de Tours, 37200 Tours, France;
| |
Collapse
|
9
|
Abou-Shaara HF. The response of heat shock proteins in honey bees to abiotic and biotic stressors. J Therm Biol 2024; 119:103784. [PMID: 38232472 DOI: 10.1016/j.jtherbio.2024.103784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 01/01/2024] [Accepted: 01/03/2024] [Indexed: 01/19/2024]
Abstract
Honey bees, Apis mellifera, are the most important managed pollinators worldwide. They are highly impacted by various abiotic and biotic stressors, especially temperature extremes, which can lead to cellular damage and death. The induction of heat shock proteins (HSPs) has been recorded in honey bees as a response to various types of stressors. HSPs are classified into different gene families according to their molecular weights. HSPs play an important role in maintaining cellular protein homeostasis due to their contribution as molecular chaperones or co-chaperones. HSPs in honey bees have complex functions with induction even under normal colony conditions. Previous studies have suggested various functions of HSPs to protect cells from damage under exposure to environmental stressors, pollutants, and pathogens. Surprisingly, HSPs have also been found to play roles in larval development and age-related tasks. The expression of HSPs varies depending on tissue type, developmental stage, age, and stress period. This article reviews studies on HSPs (sHSPs, HSP40, HSP60, HSP70, and HSP90) in honey bees and highlights gaps in the available knowledge. This review is crucial for honey bee research, particularly in the face of climate change challenges.
Collapse
Affiliation(s)
- Hossam F Abou-Shaara
- Department of Plant Protection, Faculty of Agriculture, Damanhour University, Damanhour, 22516, Egypt.
| |
Collapse
|
10
|
Tao YD, Liu Y, Wan XS, Xu J, Fu DY, Zhang JZ. High and Low Temperatures Differentially Affect Survival, Reproduction, and Gene Transcription in Male and Female Moths of Spodoptera frugiperda. INSECTS 2023; 14:958. [PMID: 38132631 PMCID: PMC10743771 DOI: 10.3390/insects14120958] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/08/2023] [Accepted: 12/15/2023] [Indexed: 12/23/2023]
Abstract
In this study, we found that both heat and cold stresses significantly affected the survival and reproduction of both sexes in Spodoptera frugiperda adults, with larvae showing relatively higher extreme temperature tolerance. Further transcriptomic analysis in adults found remarkable differences and similarities between sexes in terms of temperature stress responses. Metabolism-related processes were suppressed in heat stressed females, which did not occur to the same extend in males. Moreover, both heat and cold stress reduced immune activities in both sexes. Heat stress induced the upregulation of many heat shock proteins in both sexes, whereas the response to cold stress was insignificant. More cold tolerance-related genes, such as cuticle proteins, UDP-glucuronosyltransferase, and facilitated trehalose transporter Tret1, were found upregulated in males, whereas most of these genes were downregulated in females. Moreover, a large number of fatty acid-related genes, such as fatty acid synthases and desaturases, were differentially expressed under heat and cold stresses in both sexes. Heat stress in females induced the upregulation of a large number of zinc finger proteins and reproduction-related genes; whereas cold stress induced downregulation in genes linked to reproduction. In addition, TRPA1-like encoding genes (which have functions involved in detecting temperature changes) and sex peptide receptor-like genes were found to be differentially expressed in stressed moths. These results indicate sex-specific heat and cold stress responses and adaptive mechanisms and suggest sex-specific trade-offs between stress-resistant progresses and fundamental metabolic processes as well as between survival and reproduction.
Collapse
Affiliation(s)
- Yi-Dong Tao
- Laboratory of Forest Disaster Warning and Control in Yunnan Province, Faculty of Biodiversity Conservation, Southwest Forestry University, Kunming 650224, China; (Y.-D.T.); (D.-Y.F.)
| | - Yu Liu
- Laboratory of Forest Disaster Warning and Control in Yunnan Province, Faculty of Biodiversity Conservation, Southwest Forestry University, Kunming 650224, China; (Y.-D.T.); (D.-Y.F.)
| | - Xiao-Shuang Wan
- Laboratory of Forest Disaster Warning and Control in Yunnan Province, Faculty of Biodiversity Conservation, Southwest Forestry University, Kunming 650224, China; (Y.-D.T.); (D.-Y.F.)
| | - Jin Xu
- Laboratory of Forest Disaster Warning and Control in Yunnan Province, Faculty of Biodiversity Conservation, Southwest Forestry University, Kunming 650224, China; (Y.-D.T.); (D.-Y.F.)
- Yunnan Key Laboratory of Plateau Wetland Conservation, Restoration and Ecological Services, Southwest Forestry University, Kunming 650224, China
| | - Da-Ying Fu
- Laboratory of Forest Disaster Warning and Control in Yunnan Province, Faculty of Biodiversity Conservation, Southwest Forestry University, Kunming 650224, China; (Y.-D.T.); (D.-Y.F.)
| | - Jun-Zhong Zhang
- Laboratory of Forest Disaster Warning and Control in Yunnan Province, Faculty of Biodiversity Conservation, Southwest Forestry University, Kunming 650224, China; (Y.-D.T.); (D.-Y.F.)
| |
Collapse
|
11
|
Zhao S, Liu Y, Li H, Li Z, Hao D. Spatiotemporal Patterns of Five Small Heat Shock Protein Genes in Hyphantria cunea in Response to Thermal Stress. Int J Mol Sci 2023; 24:15176. [PMID: 37894858 PMCID: PMC10606853 DOI: 10.3390/ijms242015176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 09/29/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023] Open
Abstract
Hyphantria cunea (Drury), a destructive polyphagous pest, has been spreading southward after invading northern China, which indicates that this insect species is facing a huge thermal challenge. Small heat shock proteins (sHSPs) function as ATP-independent molecular chaperones that protect insects from heat stress damage. In order to explore the role of sHSPs in the thermotolerance of H. cunea, five novel sHSP genes of H. cunea were cloned, including an orthologous gene (HcHSP21.4) and four species-specific sHSP genes (HcHSP18.9, HcHSP20.1, HcHSP21.5, and HcHSP29.8). Bioinformatics analysis showed that the proteins encoded by these five HcHSPs contained typical α-crystallin domains. Quantitative real-time PCR analysis revealed the ubiquitous expression of all HcHSPs across all developmental stages of H. cunea, with the highest expression levels in pupae and adults. Four species-specific HcHSPs were sensitive to high temperatures. The expression levels of HcHSPs were significantly up-regulated under heat stress and increased with increasing temperature. The expression levels of HcHSPs in eggs exhibited an initial up-regulation in response to a temperature of 40 °C. In other developmental stages, the transcription of HcHSPs was immediately up-regulated at 30 °C or 35 °C. HcHSPs transcripts were abundant in the cuticle before and after heat shock. The expression of HcHSP21.4 showed weak responses to heat stress and constitutive expression in the tissues tested. These results suggest that most of the HcHSPs are involved in high-temperature response and may also have functions in the normal development and reproduction of H. cunea.
Collapse
Affiliation(s)
- Shiyue Zhao
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; (S.Z.); (Y.L.); (H.L.); (Z.L.)
- College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| | - Yukun Liu
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; (S.Z.); (Y.L.); (H.L.); (Z.L.)
- College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| | - Hui Li
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; (S.Z.); (Y.L.); (H.L.); (Z.L.)
- College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| | - Zichun Li
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; (S.Z.); (Y.L.); (H.L.); (Z.L.)
- College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| | - Dejun Hao
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; (S.Z.); (Y.L.); (H.L.); (Z.L.)
- College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
12
|
Liang C, Li L, Zhao H, Lan M, Tang Y, Zhang M, Qin D, Wu G, Gao X. Identification and expression analysis of heat shock protein family genes of gall fly (Procecidochares utilis) under temperature stress. Cell Stress Chaperones 2023; 28:303-320. [PMID: 37071342 PMCID: PMC10167091 DOI: 10.1007/s12192-023-01338-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 03/18/2023] [Accepted: 03/21/2023] [Indexed: 04/19/2023] Open
Abstract
Heat shock proteins (HSP) are molecular chaperones involved in many normal cellular processes and environmental stresses. At the genome-wide level, there were no reports on the diversity and phylogeny of the heat shock protein family in Procecidochares utilis. In this study, 43 HSPs were identified from the genome of P. utilis, including 12 small heat shock proteins (sHSPs), 23 heat shock protein 40 (DNAJs), 6 heat shock protein 70 (HSP70s), and 2 heat shock protein 90 (HSP90s). The characteristics of these candidates HSP genes were analyzed by BLAST, and then phylogenetic analysis was carried out. Quantitative real-time PCR (qRT-PCR) was used to analyze the spatiotemporal expression patterns of sHSPs and HSP70s in P. utilis after temperature stress. Results showed that most sHSPs could be induced under heat stress during the adult stage of P. utilis, while a few HSP70s could be induced at the larval stage. This study provides an information framework for the HSP family of P. utilis. Moreover, it lays an important foundation for a better understanding of the role of HSP in the adaptability of P. utilis to various environments.
Collapse
Affiliation(s)
- Chen Liang
- College of Plant Protection, Yunnan Agricultural University, Kunming, Yunnan, 650201 China
| | - Lifang Li
- College of Plant Protection, Yunnan Agricultural University, Kunming, Yunnan, 650201 China
| | - Hang Zhao
- College of Plant Protection, Yunnan Agricultural University, Kunming, Yunnan, 650201 China
| | - Mingxian Lan
- College of Plant Protection, Yunnan Agricultural University, Kunming, Yunnan, 650201 China
| | - Yongyu Tang
- College of Plant Protection, Yunnan Agricultural University, Kunming, Yunnan, 650201 China
| | - Man Zhang
- College of Plant Protection, Yunnan Agricultural University, Kunming, Yunnan, 650201 China
| | - Deqiang Qin
- College of Plant Protection, Yunnan Agricultural University, Kunming, Yunnan, 650201 China
| | - Guoxing Wu
- College of Plant Protection, Yunnan Agricultural University, Kunming, Yunnan, 650201 China
| | - Xi Gao
- College of Plant Protection, Yunnan Agricultural University, Kunming, Yunnan, 650201 China
| |
Collapse
|
13
|
Grinder RM, Wiens JJ. Niche width predicts extinction from climate change and vulnerability of tropical species. GLOBAL CHANGE BIOLOGY 2023; 29:618-630. [PMID: 36260367 DOI: 10.1111/gcb.16486] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 09/27/2022] [Accepted: 10/04/2022] [Indexed: 06/16/2023]
Abstract
Climate change may be a major threat to global biodiversity, especially to tropical species. Yet, why tropical species are more vulnerable to climate change remains unclear. Tropical species are thought to have narrower physiological tolerances to temperature, and they have already experienced a higher estimated frequency of climate-related local extinctions. These two patterns suggest that tropical species are more vulnerable to climate change because they have narrower thermal niche widths. However, no studies have tested whether species with narrower climatic niche widths for temperature have experienced more local extinctions, and if these narrower niche widths can explain the higher frequency of tropical local extinctions. Here, we test these ideas using resurvey data from 538 plant and animal species from 10 studies. We found that mean niche widths among species and the extent of climate change (increase in maximum annual temperatures) together explained most variation (>75%) in the frequency of local extinction among studies. Surprisingly, neither latitude nor occurrence in the tropics alone significantly predicted local extinction among studies, but latitude and niche widths were strongly inversely related. Niche width also significantly predicted local extinction among species, as well as among and (sometimes) within studies. Overall, niche width may offer a relatively simple and accessible predictor of the vulnerability of populations to climate change. Intriguingly, niche width has the best predictive power to explain extinction from global warming when it incorporates coldest yearly temperatures.
Collapse
Affiliation(s)
- Rollie M Grinder
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona, USA
| | - John J Wiens
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona, USA
| |
Collapse
|
14
|
Kumar V, Roy S, Behera BK, Das BK. Heat Shock Proteins (Hsps) in Cellular Homeostasis: A Promising Tool for Health Management in Crustacean Aquaculture. Life (Basel) 2022; 12:1777. [PMID: 36362932 PMCID: PMC9699388 DOI: 10.3390/life12111777] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/27/2022] [Accepted: 10/28/2022] [Indexed: 09/28/2023] Open
Abstract
Heat shock proteins (Hsps) are a family of ubiquitously expressed stress proteins and extrinsic chaperones that are required for viability and cell growth in all living organisms. These proteins are highly conserved and produced in all cellular organisms when exposed to stress. Hsps play a significant role in protein synthesis and homeostasis, as well as in the maintenance of overall health in crustaceans against various internal and external environmental stresses. Recent reports have suggested that enhancing in vivo Hsp levels via non-lethal heat shock, exogenous Hsps, or plant-based compounds, could be a promising strategy used to develop protective immunity in crustaceans against both abiotic and biotic stresses. Hence, Hsps as the agent of being an immune booster and increasing disease resistance will present a significant advancement in reducing stressful conditions in the aquaculture system.
Collapse
Affiliation(s)
| | | | - Bijay Kumar Behera
- Aquatic Environmental Biotechnology and Nanotechnology (AEBN) Division, ICAR-Central Inland Fisheries Research Institute (CIFRI), Barrackpore 700120, India
| | - Basanta Kumar Das
- Aquatic Environmental Biotechnology and Nanotechnology (AEBN) Division, ICAR-Central Inland Fisheries Research Institute (CIFRI), Barrackpore 700120, India
| |
Collapse
|
15
|
Meng JY, Yang CL, Wang HC, Cao Y, Zhang CY. Molecular characterization of six heat shock protein 70 genes from Arma chinensis and their expression patterns in response to temperature stress. Cell Stress Chaperones 2022; 27:659-671. [PMID: 36264419 PMCID: PMC9672165 DOI: 10.1007/s12192-022-01303-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 09/28/2022] [Accepted: 09/29/2022] [Indexed: 01/25/2023] Open
Abstract
Arma chinensis is an important predatory enemy of many agricultural and forest pests. Heat shock protein 70 (Hsp70) plays an essential role in insect adaptation to various stress factors. To explore the functions of Hsp70s in relation to thermal tolerance of A. chinensis, full-length cDNAs of six Hsp70 genes (AcHsp70Ba, AcHsp70-4, AcHsp68a, AcHsp68b, AcHsp70-2, and AcHsc70-4) were cloned. Their open reading frames (ORFs) were 1902, 2454, 1884, 1905, 1872, and 1947 bp, respectively. Developmental expression profiles showed that AcHsp70Ba, AcHsp70-4, and AcHsc70-4 were extremely highly expressed in adult stages. AcHsp68a and AcHsp70-2 showed the highest level of expression in nymph stages, and AcHsp68b was mainly expressed in male adults. Tissue distribution analysis demonstrated that the AcHsp70s were ubiquitously expressed but showing gene-specific and sex-driven patterns of expression. High temperature induced the expression of the six AcHsp70s. Among them, AcHsp70Ba, AcHsp70-4, AcHsp68a, and AcHsc70-4 were significantly induced at 38 °C for 6 h, while all six AcHsp70s were significantly induced at 38 °C for 24 h. There were differences in responses of the six AcHsp70s to low-temperature stress. The expressions of AcHsp70-4, AcHsp68a, and AcHsp68b in male adults were significantly repressed at 4 °C for 6 h, whereas AcHsp70Ba and AcHsp70-2 were significantly induced. The levels of AcHsp70Ba, AcHsp68b, and AcHsp70-2 in female adults were significantly repressed at 4 °C for 24 h, whereas AcHsc70-4 was significantly induced. These results suggested that AcHsp70s play important roles in various developmental stages and tissue function, and contribute to the tolerance of A. chinensis to extreme temperatures.
Collapse
Affiliation(s)
- Jian-Yu Meng
- Guizhou Tobacco Science Research Institute, Guiyang, 550081, China
| | - Chang-Li Yang
- Institute of Entomology, Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Guizhou University, Guiyang, 550025, China
| | - Han-Cheng Wang
- Guizhou Tobacco Science Research Institute, Guiyang, 550081, China
| | - Yi Cao
- Guizhou Tobacco Science Research Institute, Guiyang, 550081, China
| | - Chang-Yu Zhang
- Institute of Entomology, Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Guizhou University, Guiyang, 550025, China.
| |
Collapse
|
16
|
Liu NN, Ren ZY, Ren QD, Chang ZG, Li JL, Li XA, Sun ZY, He JM, Niu QS, Xing XM. Full length transcriptomes analysis of cold-resistance of Apis cerana in Changbai Mountain during overwintering period. Gene 2022; 830:146503. [PMID: 35487395 DOI: 10.1016/j.gene.2022.146503] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 03/21/2022] [Accepted: 04/14/2022] [Indexed: 11/15/2022]
Abstract
Apis cerana in Changbai Mountain is an ecological type of Apis cerana, which is an excellent breeding material with cold-resistant developed by long-term natural selection under the ecological conditions. However, the physiological and molecular mechanisms of Changbai Mountain population under cold stress are still unclear. In this study, the Nanopore sequencing was carried out for the transcriptome of Apis cerana in Changbai Mountain in the coldest period of overwintering, which will provide a reference to the cold-resistant mechanism. We determined 5,941 complete ORF sequences, 1,193 lncRNAs, 619 TFs, 10,866 SSRs and functional annotations of 11,599 new transcripts. Our results showed that the myosin family and the C2H2 zinc finger protein transcription factor family possibly have significant impacts on the response mechanism of cold stress during overwintering. In addition, the cold environment alters genes expression profiles in honeybees via different AS and APA mechanisms. These altered genes in Hippo, Foxo, and MARK pathways help them counter the stress of cold in overwinter period. Our results might provide clues about the response of eastern honeybees to extreme cold, and reflect the possible genetic basis of physiological changes.
Collapse
Affiliation(s)
- Nan-Nan Liu
- Institute of Special Animal and Plant Sciences of Chinese Academy of Agricultural Sciences, Changchun, Jilin 130112, PR China; Apiculture Science Institute of Jilin Province, Jilin, Jilin 132108, PR China.
| | - Zhong-Yuan Ren
- Jilin Institute of Chemical Technology, Jilin, Jilin 132022, PR China
| | - Qing-Dan Ren
- Jilin Provincial Animal Husbandry General Station, Changchun, Jilin 130699, PR China
| | - Zhi-Guang Chang
- Apiculture Science Institute of Jilin Province, Jilin, Jilin 132108, PR China
| | - Jie-Luan Li
- Apiculture Science Institute of Jilin Province, Jilin, Jilin 132108, PR China
| | - Xing-An Li
- Apiculture Science Institute of Jilin Province, Jilin, Jilin 132108, PR China
| | - Zhi-Yu Sun
- Apiculture Science Institute of Jilin Province, Jilin, Jilin 132108, PR China
| | - Jin-Ming He
- Apiculture Science Institute of Jilin Province, Jilin, Jilin 132108, PR China
| | - Qing-Sheng Niu
- Apiculture Science Institute of Jilin Province, Jilin, Jilin 132108, PR China.
| | - Xiu-Mei Xing
- Institute of Special Animal and Plant Sciences of Chinese Academy of Agricultural Sciences, Changchun, Jilin 130112, PR China.
| |
Collapse
|
17
|
Yuan JW, Song HX, Chang YW, Yang F, Xie HF, Gong WR, Du YZ. Identification, expression analysis and functional verification of two genes encoding small heat shock proteins in the western flower thrips, Frankliniella occidentalis (Pergande). Int J Biol Macromol 2022; 211:74-84. [PMID: 35561856 DOI: 10.1016/j.ijbiomac.2022.05.056] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/07/2022] [Accepted: 05/07/2022] [Indexed: 11/26/2022]
Abstract
Small heat shock proteins (sHSPs) help prevent the irreversible aggregation of denatured proteins that occurs in response to organismal stress. In this study, we identified two intron-free genes encoding sHSPs from Frankliniella occidentalis; these were designated FoHSP11.6 and FoHSP28.0 and belonged to an atypical and typical sHSP family, respectively. Both FoHSPs were transcribed in all developmental stages of F. occidentalis with the highest expression levels in pupae and adults and greater expression in males than females. Although the FoHSPs had different temperature-induced expression profiles, they were generally induced by both low and high temperatures and reached maximal expression levels after 0.5-1 h of temperature stress. The FoHSPs expression levels in pupae were induced by drought and high humidity, and higher expression levels were correlated with lower survival rates. The thermotolerance of F. occidentalis decreased when theFoHSPs were silenced by RNA interference. Our results show that FoHSP11.6 and FoHSP28.0 are involved in the response to temperature and drought and may also function in growth and development of F. occidentalis.
Collapse
Affiliation(s)
- Jia-Wen Yuan
- College of Horticulture and Plant Protection, Institute of Applied Entomology, Yangzhou University, Yangzhou 225009, China
| | - Hai-Xia Song
- College of Horticulture and Plant Protection, Institute of Applied Entomology, Yangzhou University, Yangzhou 225009, China
| | - Ya-Wen Chang
- College of Horticulture and Plant Protection, Institute of Applied Entomology, Yangzhou University, Yangzhou 225009, China
| | - Fei Yang
- Department of Entomology, Texas A&M University, College Station, TX, USA
| | - Hong-Fang Xie
- Plant Protection and Quarantine Station of Nanjing City, Jiangsu Province, Nanjing 210029, China
| | - Wei-Rong Gong
- Plant Protection and Quarantine Station of Jiangsu Province, Nanjing 210036, China
| | - Yu-Zhou Du
- College of Horticulture and Plant Protection, Institute of Applied Entomology, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education, Yangzhou University, Yangzhou, China.
| |
Collapse
|
18
|
Shen ZJ, Liu YJ, Cheng J, Li Z, Michaud JP, Liu XX. High temperature exposure reduces the susceptibility of Helicoverpa armigera to its nucleopolyhedrovirus (HearNPV) by enhancing expression of heat shock proteins. PEST MANAGEMENT SCIENCE 2022; 78:2378-2389. [PMID: 35289068 DOI: 10.1002/ps.6868] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 02/17/2022] [Accepted: 03/15/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND High temperatures will occur more frequently with global warming, with potential impacts on the efficacy of biological control agents. Heat shock proteins (HSPs) are induced by high temperature, but their possible roles in pest resistance to entomopathogens remain unexplored. We investigated the effects of high temperature (35 °C) on Helicoverpa armigera resistance to H. armigera nucleopolyhedrovirus (HearNPV) and the putative roles of HSPs in this process. RESULTS Even short periods (24 h) of high temperature (35 °C) reduced mortality in HearNPV-infected H. armigera larvae. Sustained 35 °C exposure significantly shortened developmental time, and increased fresh weight and locomotor activity in infected larvae. Moreover, high temperature inhibited virus replication and thickened the epidermis of H. armigera, resulting in reduced spread of infection from cadavers. Real-time polymerase chain reaction (PCR) analysis showed that expression of 11 HSP genes was altered by the 35 °C treatment, and that mostly small heat shock protein (sHSP) genes were up-regulated, the same sHSPs were induced when larvae were infected with HearNPV. Finally, RNA interference (RNAi) suppression of these sHSPs showed that only Hsp24.91 and Hsp21.8 diminished H. armigera defensive responses to HearNPV infection. CONCLUSION Even short periods of exposure to high temperature can significantly reduce susceptibility of H. armigera larvae to HearNPV by stimulating the production of sHSPs which enhance immune responses, with important implications for the use of entomopathogens as biological control agents under global warming scenarios. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Zhong-Jian Shen
- Department of Entomology, MOA Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Yan-Jun Liu
- Department of Entomology, MOA Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Jie Cheng
- Department of Entomology, MOA Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Zhen Li
- Department of Entomology, MOA Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - J P Michaud
- Department of Entomology, Kansas State University, Agricultural Research Center-Hays, Hays, KS, USA
| | - Xiao-Xia Liu
- Department of Entomology, MOA Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| |
Collapse
|
19
|
Miano FN, Jiang T, Zhang J, Zhang WN, Peng Y, Xiao HJ. Identification and up-regulation of three small heat shock proteins in summer and winter diapause in response to temperature stress in Pieris melete. Int J Biol Macromol 2022; 209:1144-1154. [PMID: 35461858 DOI: 10.1016/j.ijbiomac.2022.04.093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 04/11/2022] [Accepted: 04/13/2022] [Indexed: 11/05/2022]
Abstract
Small heat shock proteins (sHSPs) are conserved proteins that play key roles in organismal adaptation to adversity stressors. However, little is known about sHSPs during summer diapause. Three sHSP genes: PmHSP19.5, PmHSP19.9, and PmHSP20.0 were identified and cloned from Pieris melete. Sequence alignment and phylogenetic analysis revealed that the three sHSPs have a typical, conserved α-crystallin domain. PmHSP19.5 and PmHSP20.0 were both upregulated in summer diapause (SD) and winter diapause (WD), compared to non-diapause (ND) pupae. All three sHSPs were upregulated and showed similar trends in response to thermal stress. The 0 °C chilling treatment slightly affected sHSP transcripts in ND pupae, whereas both PmHSP19.5 and PmHSP19.9 were upregulated and PmHSP20.0 was downregulated after chilling at 0 °C for 24-96 h in both SD and WD pupae. The transcripts of PmHSP19.5 and PmHSP19.9 were significantly induced at 31 °C for 30 d in SD and WD pupae. The PmHSP20.0 transcript gradually decreased during the SD and WD programs. This is the first time that sHSPs have been linked to both overwintering and summer diapause processes. These findings suggest that sHSPs are involved in both summer and winter diapause maintenance and play a possible key role in temperature stress.
Collapse
Affiliation(s)
- Falak Naz Miano
- Institute of Entomology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Ting Jiang
- Institute of Entomology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Jing Zhang
- Institute of Entomology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Wan-Na Zhang
- Institute of Entomology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Yingchuan Peng
- Institute of Entomology, Jiangxi Agricultural University, Nanchang 330045, China.
| | - Hai-Jun Xiao
- Institute of Entomology, Jiangxi Agricultural University, Nanchang 330045, China; School of Grassland Science, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
20
|
Anantanawat K, Papanicolaou A, Hill K, Xu W. Mediterranean fruit fly genes exhibit different expression patterns between heat and cold treatments. BULLETIN OF ENTOMOLOGICAL RESEARCH 2022; 112:236-242. [PMID: 34496982 DOI: 10.1017/s000748532100078x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Invasive Tephritid fruit flies are a global threat to both agriculture and horticulture industries. Biosecurity has played a critical role in reducing their damage but becomes more and more challenging after several key chemical pesticides were banned or withdrawn for health or environmental reasons. This has led to non-chemical approaches including heat and cold treatments being broadly utilized to get rid of fruit fly infestation. However, the molecular mechanisms to kill the flies underlying these stressors are not clear yet. This knowledge will certainly help refine current post-harvest treatment strategies and develop more efficient, cost-effective and environmentally friendly approaches for fruit fly management. Previously, the molecular response of the Mediterranean fruit fly, Ceratitis capitata (Wiedemann) to heat was examined thoroughly, in which 31 key genes were identified with significant changes in expression levels and their high-resolution expression timeline was constructed across 11 timepoints. However, whether these candidate genes respond to cold in the same way was unknown. Here, a temperature bioassay was conducted and the expression profiles of these genes were investigated across the same 11 timepoints using cold treatment. The results showed that most of candidate genes exhibited divergent expression profiles compared to heat treatment, suggesting that the fly molecular response to cold may be different from those to heat. This study provides new knowledge of Tephritid fruit fly response to cold at a molecular level, which could aid in improving current fruit fly management and facilitate the development of new strategies to control this serious horticultural insect pest.
Collapse
Affiliation(s)
- Kay Anantanawat
- Agricultural Sciences, Murdoch University, Perth, WA6150, Australia
- Hawkesbury Institute for the Environment, University of Western Sydney, Hawkesbury, Richmond NSW2753, Australia
- South Australian Research and Development Institute, Hartley Grove, Urrbrae, SA5064, Australia
| | - Alexie Papanicolaou
- Hawkesbury Institute for the Environment, University of Western Sydney, Hawkesbury, Richmond NSW2753, Australia
| | - Kelly Hill
- South Australian Research and Development Institute, Hartley Grove, Urrbrae, SA5064, Australia
| | - Wei Xu
- Agricultural Sciences, Murdoch University, Perth, WA6150, Australia
| |
Collapse
|
21
|
Dynamics of heat shock proteins and heat shock factor expression during heat stress in daughter workers in pre-heat-treated (rapid heat hardening) Apis mellifera mother queens. J Therm Biol 2022; 104:103194. [DOI: 10.1016/j.jtherbio.2022.103194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 01/08/2022] [Accepted: 01/21/2022] [Indexed: 11/24/2022]
|
22
|
Tian Y, Qu Y, Dong K, He S, Jie W, Huang J. Characterization and Developmental Expression Patterns of Four Hexamerin Genes in the Bumble Bee, Bombus terrestris (Hymenoptera: Apidae). JOURNAL OF INSECT SCIENCE (ONLINE) 2021; 21:6391129. [PMID: 34636890 PMCID: PMC8507971 DOI: 10.1093/jisesa/ieab078] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Indexed: 06/13/2023]
Abstract
Hexamerins are members of the hemocyanin superfamily and play essential roles in providing amino acids and energy for the nonfeeding stages of insects. In this study, we cloned and analyzed the expression patterns of four hexamerin genes (hex 70a, hex 70b, hex 70c, and hex 110) at different worker development stages and queen diapause statuses in the bumble bee, Bombus terrestris. The results of this study showed that hex 110 has the longest open reading frame (ORF; 3,297 bp) compared to the ORFs of hex 70a (2,034 bp), hex 70b (2,067 bp), and hex 70c (2,055 bp). The putative translation product of Hex 70a, Hex 70b, Hex70c, and Hex 110 has 677, 688, 684, and 1,098aa with predicted molecular mass of 81.13, 79.69, 81.58, and 119 kDa. In the development stages of workers, the expression levels of hex 70a, hex 70b, and hex 70c increased gradually from the larval stage and exhibited high expression levels at the pink eyed and brown eyed pupae stage, whereas hex 110 exhibited the highest expression level at the larval period. Four hexamerin genes were highly expressed at the prediapause status of queen (P < 0.05), and compared to the eclosion queen, the lowest upregulation was 3.7-fold, and the highest upregulation was 1,742-fold. The expression levels of hex 70b, hex 70c, and hex 110 at diapause were significantly higher than those at postdiapause (P < 0.05). In conclusion, hexamerins may play important roles in queen diapause and metamorphosis of larval and pupal stages.
Collapse
Affiliation(s)
- Yakai Tian
- Key Laboratory for Insect-Pollinator Biology of the Ministry of Agriculture and Rural Affairs, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650000, China
| | - Yingping Qu
- Key Laboratory for Insect-Pollinator Biology of the Ministry of Agriculture and Rural Affairs, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| | - Kun Dong
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650000, China
| | - Shaoyu He
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650000, China
| | - Wu Jie
- Key Laboratory for Insect-Pollinator Biology of the Ministry of Agriculture and Rural Affairs, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| | - Jiaxing Huang
- Key Laboratory for Insect-Pollinator Biology of the Ministry of Agriculture and Rural Affairs, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| |
Collapse
|
23
|
Wang YC, Chang YW, Du YZ. Transcriptome analysis reveals gene expression differences in Liriomyza trifolii exposed to combined heat and abamectin exposure. PeerJ 2021; 9:e12064. [PMID: 34540370 PMCID: PMC8415278 DOI: 10.7717/peerj.12064] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 08/04/2021] [Indexed: 11/20/2022] Open
Abstract
Liriomyza trifolii is an invasive pest of horticultural and vegetable crops that possesses robust competitive advantages that enable it to replace closely-related species. High temperatures often occur concomitantly with insecticide usage during L. trifolii outbreaks. In this study, we compared the transcriptomes of L. trifolii exposed to high temperature (40 °C T40), insecticide (LC50 of technical grade abamectin, I50) and combined high temperature and abamectin exposure (IT5040, I50 followed by T40; and TI4050, T40 followed by I50). RNA-seq generated and revealed 44,633 unigenes with annotation data; these were compared with COG and KEGG databases for functional classification and enrichment analysis. Compared with the I50 treatment, COG classification indicated that 'post-translational modification, protein turnover, chaperones' was enriched in the IT5040 treatment. In the TI4050 treatment, 'carbohydrate transport and metabolism' was the most abundant group. The most enriched KEGG pathways in the TI4050 and IT5040 treatments were 'longevity regulating pathway - multiple species' and 'protein processing in endoplasmic reticulum', respectively. Subsequent annotation and enrichment analyses indicated that stress-related genes such as CYP450s and HSPs were differentially expressed in the I50 vs. TI4050 or I50 vs. IT5040 treatment groups. Three commercial insecticide formulations were also used to further verify the expression of selected differentially-expressed genes. This study will be conductive to consider the temperature effect on insecticide tolerance in L. trifolii, and provides a framework for improving the application efficiency of insecticides in hot weather, which will ultimately reduce the overuse of pesticides.
Collapse
Affiliation(s)
- Yu-Cheng Wang
- Yangzhou University, College of Horticulture and Plant Protection & Institute of Applied Entomology, Yangzhou, China
| | - Ya-Wen Chang
- Yangzhou University, College of Horticulture and Plant Protection & Institute of Applied Entomology, Yangzhou, China
| | - Yu-Zhou Du
- Yangzhou University, College of Horticulture and Plant Protection & Institute of Applied Entomology, Yangzhou, China
- Yangzhou University, Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou, China
| |
Collapse
|
24
|
Characterization and functional analysis of Cshsp19.0 encoding a small heat shock protein in Chilo suppressalis (Walker). Int J Biol Macromol 2021; 188:924-931. [PMID: 34352319 DOI: 10.1016/j.ijbiomac.2021.07.186] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 07/27/2021] [Accepted: 07/29/2021] [Indexed: 11/22/2022]
Abstract
Small heat shock proteins (sHSPs) function as ATP-independent chaperones that preserve cellular proteostasis under stressful conditions. In this study, Cshsp19.0, which encodes a new small heat shock protein, was isolated and characterized from Chilo suppressalis (Walker) to better understand the contribution of sHSPs to insect development and stress tolerance. The full-length Cshsp19.0 cDNA was 697 bp and encoded a 19.0 kDa protein with an isoelectric point of 5.95. Phylogenetic analysis and amino acid alignments indicated that Cshsp19.0 is a member of the sHSP family. Cshsp19.0 was expressed at maximal levels in foreguts and showed the least amount of expression in fat bodies. Expression analysis in different developmental stages of C. suppressalis revealed that Cshsp19.0 was most highly expressed in 1st instar larvae. Furthermore, Cshsp19.0 was upregulated when insects were exposed to heat and cold stress for a 2-h period. There were significant differences in the male and female pupae in response to humidity; Cshsp19.0 expression increased in male pupae as RH increased, whereas the inverse pattern was observed in female pupae. Larvae exhibited a lower rate of survival when Cshsp19.0 was silenced by a nanomaterial-promoted RNAi method. The results confirm that Cshsp19.0 functions to increase environmental stress tolerance and regulates physiological activities in C. suppressalis.
Collapse
|
25
|
Yang CL, Meng JY, Zhou L, Yao MS, Zhang CY. Identification of five small heat shock protein genes in Spodoptera frugiperda and expression analysis in response to different environmental stressors. Cell Stress Chaperones 2021; 26:527-539. [PMID: 33609257 PMCID: PMC8065089 DOI: 10.1007/s12192-021-01198-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 01/30/2021] [Accepted: 02/12/2021] [Indexed: 12/30/2022] Open
Abstract
Spodoptera frugiperda (J. E. Smith) is a highly adaptable polyphagous migratory pest in tropical and subtropical regions. Small heat shock proteins (sHsps) are molecular chaperones that play important roles in the adaptation to various environment stressors. The present study aimed to clarify the response mechanisms of S. frugiperda to various environmental stressors. We obtained five S. furcifera sHsp genes (SfsHsp21.3, SfsHsp20, SfsHsp20.1, SfsHsp19.3, and SfsHsp29) via cloning. The putative proteins encoded by these genes contained a typical α-crystallin domain. The expression patterns of these genes during different developmental stages, in various tissues of male and female adults, as well as in response to extreme temperatures and UV-A stress were studied via real-time quantitative polymerase chain reaction. The results showed that the expression levels of all five SfsHsp genes differed among the developmental stages as well as among the different tissues of male and female adults. The expression levels of most SfsHsp genes under extreme temperatures and UV-A-induced stress were significantly upregulated in both male and female adults. In contrast, those of SfsHsp20.1 and SfsHsp19.3 were significantly downregulated under cold stress in male adults. Therefore, the different SfsHsp genes of S. frugiperda play unique regulatory roles during development as well as in response to various environmental stressors.
Collapse
Affiliation(s)
- Chang-Li Yang
- Institute of Entomology, Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Guizhou University, Guiyang, Guizhou, 550025, People's Republic of China
| | - Jian-Yu Meng
- Guizhou Tobacco Science Research Institute, Guiyang, Guizhou, 550081, People's Republic of China
| | - Lv Zhou
- Institute of Entomology, Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Guizhou University, Guiyang, Guizhou, 550025, People's Republic of China
| | - Meng-Shuang Yao
- Institute of Entomology, Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Guizhou University, Guiyang, Guizhou, 550025, People's Republic of China
| | - Chang-Yu Zhang
- Institute of Entomology, Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Guizhou University, Guiyang, Guizhou, 550025, People's Republic of China.
| |
Collapse
|
26
|
Yi J, Liu J, Li D, Sun D, Li J, An Y, Wu H. Transcriptome responses to heat and cold stress in prepupae of Trichogramma chilonis. Ecol Evol 2021; 11:4816-4825. [PMID: 33976850 PMCID: PMC8093697 DOI: 10.1002/ece3.7383] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 02/02/2021] [Accepted: 02/05/2021] [Indexed: 11/13/2022] Open
Abstract
Trichogramma is a useful species that is widely applied in biocontrol. Temperature profoundly affects the commercial application of T. chilonis. Different developmental transcriptomes of prepupae and pupae of T. chilonis under 10, 25, and 40°C were obtained from our previous study. In this study, transcriptomic analysis was further conducted to gain a clear understanding of the molecular changes in the prepupae of T. chilonis under different thermal conditions. A total of 37,295 unigenes were identified from 3 libraries of prepupae of T. chilonis, 17,293 of which were annotated. Differential expression analysis showed that 408 and 108 differentially expressed genes (DEGs) were identified after heat and cold treatment, respectively. Under heat stress, the pathway of protein processing in endoplasmic reticulum was found to be active. Most of the genes involved in this pathway were annotated as lethal (2) essential for life [l(2)efl] and heat shock protein genes (hsps), which were both highly upregulated. Nevertheless, most of the genes involved in another significantly enriched pathway of starch and sucrose metabolism were downregulated, including 1 alpha-glucosidase gene and 2 beta-glucuronidase genes. Under cold stress, no significantly enriched pathway was found, and the significantly enriched GO terms were related to the interaction with host and immune defenses. Together, these results provide us with a comprehensive view of the molecular mechanisms of T. chilonis in response to temperature stresses and will provide new insight into the mass rearing and utilization of T. chilonis.
Collapse
Affiliation(s)
- Jiequn Yi
- Guangdong Engineering Research Center for Pesticide and FertilizerInstitute of BioengineeringGuangdong Academy of SciencesGuangzhouChina
| | - Jianbai Liu
- Guangdong Engineering Research Center for Pesticide and FertilizerInstitute of BioengineeringGuangdong Academy of SciencesGuangzhouChina
| | - Dunsong Li
- Guangdong Provincial Key Laboratory of High Technology for Plant Protection/Plant Protection Research InstituteGuangdong Academy of Agricultural SciencesGuangzhouChina
| | - Donglei Sun
- Guangdong Engineering Research Center for Pesticide and FertilizerInstitute of BioengineeringGuangdong Academy of SciencesGuangzhouChina
| | - Jihu Li
- Guangdong Engineering Research Center for Pesticide and FertilizerInstitute of BioengineeringGuangdong Academy of SciencesGuangzhouChina
| | - Yuxing An
- Guangdong Engineering Research Center for Pesticide and FertilizerInstitute of BioengineeringGuangdong Academy of SciencesGuangzhouChina
| | - Han Wu
- Guangdong Engineering Research Center for Pesticide and FertilizerInstitute of BioengineeringGuangdong Academy of SciencesGuangzhouChina
| |
Collapse
|
27
|
Samanta S, Barman M, Chakraborty S, Banerjee A, Tarafdar J. Involvement of small heat shock proteins (sHsps) in developmental stages of fall armyworm, Spodoptera frugiperda and its expression pattern under abiotic stress condition. Heliyon 2021; 7:e06906. [PMID: 33997419 PMCID: PMC8105634 DOI: 10.1016/j.heliyon.2021.e06906] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 04/09/2021] [Accepted: 04/20/2021] [Indexed: 11/03/2022] Open
Abstract
Fall armyworm (FAW), Spodoptera frugiperda a recent invasive pest in India is reported to cause significant damage by feeding voraciously on maize and other economic crops from tropical to temperate provinces. It is becoming an arduous challenge to control the pest as it can survive in a wide range of temperature conditions and is already said to develop resistance towards certain insecticides. The small Heat shock proteins (hereafter, sHsps) are known to play an important role in adaptation of insects under such stress conditions. Our present study involved characterization of the three sHsps genes (sHsp19.74, sHsp20.7 and sHsp19.07) which encoded proteins of about 175, 176 and 165 amino acids with a conserved α-crystalline domain. Phylogenetic analysis of deduced amino acid sequences of the three genes showed strong similarity with the other lepidopteran sHsps. The effect of different growth stages on the expression profile of these stress proteins has also been studied and the Quantitative real time PCR (qRT-PCR) analysis revealed that the transcript level of sHsp19.07 and sHsp20.7 were significantly upregulated under extreme heat (44 °C) and cold (5 °C) stress. However, sHsp19.74 responded only to heat treatment but not to the cold treatment. In addition, the expression profile of all three sHsps was significantly lower in the larval stage (5th instar). Chlorantraniliprole treatment resulted in maximum expression of sHsp19.07 and sHsp20.7 after 12hr of exposure to the insecticide. Meanwhile, the same expression was observed after 8hr of exposure in case of sHsp19.74. These results proved that the sHsp genes of S. frugiperda were induced and modulated in response to abiotic stress, thus influencing the physiological function leading to survival of FAW in diversified climate in India.
Collapse
Affiliation(s)
- Snigdha Samanta
- Department of Agricultural Entomology, B.C.K.V, West Bengal, India
| | - Mritunjoy Barman
- Department of Agricultural Entomology, B.C.K.V, West Bengal, India
| | | | - Amitava Banerjee
- Department of Agricultural Entomology, B.C.K.V, West Bengal, India
| | - Jayanta Tarafdar
- Department of Plant Pathology, B.C.K.V, Nadia, West Bengal, India.,Directorate of Research, B.C.K.V, Kalyani, 741235, India
| |
Collapse
|
28
|
Molecular Characterization of Heat-Induced HSP11.0 and Master-Regulator HSF from Cotesia chilonis and Their Consistent Response to Heat Stress. INSECTS 2021; 12:insects12040322. [PMID: 33916570 PMCID: PMC8066536 DOI: 10.3390/insects12040322] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/30/2021] [Accepted: 03/31/2021] [Indexed: 11/27/2022]
Abstract
Simple Summary Small heat shock proteins (sHSPs) are members of the heat shock protein (HSP) family that play an important role in heat stress, and heat shock factors (HSFs) are transcriptional activators that mainly regulate the expression of HSPs. Cotesia chilonis, the major endoparasitoid of Chilo suppressalis, widely distributes in China and other Asian regions. Previous studies have shown that C. chilonis has a certain thermal tolerance. Here, heat-induced HSP11.0 and master-regulator HSF were cloned and characterized from C. chilonis. The transcription patterns of them in response to different temperatures and time course after temperature treatment were analyzed. This study is the first report on the analysis on hsf gene of C. chilonis. The results of expression patterns will provide new insights into thermoregulation of C. chilonis in response to climate change. Abstract Small heat shock proteins (sHSPs) are members of the heat shock protein (HSP) family that play an important role in temperature stress, and heat shock factors (HSFs) are transcriptional activators that regulate HSP expression. Cotesia chilonis, the major endoparasitoid of Chilo suppressalis, modulates the C. suppressalis population in the field. In this study, we cloned and characterized two genes from C.chilonis: the heat-induced HSP11.0 gene (Cchsp11.0) that consisted of a 306-bp ORF, and the master regulator HSF (Cchsf) containing an 1875-bp ORF. CcHSP11.0 contained a chaperonin cpn10 signature motif that is conserved in other hymenopteran insects. CcHSF is a typical HSF and contains a DNA-binding domain, two hydrophobic heptad repeat domains, and a C-terminal trans-activation domain. Neither Cchsp11.0 or Cchsf contain introns. Real-time quantitative PCR revealed that Cchsp11.0 and Cchsf were highly induced at 36 °C and 6 °C after a 2-h exposure. Overall, the induction of Cchsf was lower than Cchsp11.0 at low temperatures, whereas the opposite was true at high temperatures. In conclusion, both Cchsp11.0 and Cchsf are sensitive to high and low temperature stress, and the expression pattern of the two genes were positively correlated during temperature stress.
Collapse
|
29
|
Li H, Qiao H, Liu Y, Li S, Tan J, Hao D. Characterization, expression profiling, and thermal tolerance analysis of heat shock protein 70 in pine sawyer beetle, Monochamus alternatus hope (Coleoptera: Cerambycidae). BULLETIN OF ENTOMOLOGICAL RESEARCH 2021; 111:217-228. [PMID: 32935660 DOI: 10.1017/s0007485320000541] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Monochamus alternatus Hope (Coleoptera: Cerambycidae) warrants attention as a dominant transmission vector of the pinewood nematode, and it exhibits tolerance to high temperature. Heat shock protein 70 (HSP70) family members, including inducible HSP70 and heat shock cognate protein 70 (HSC70), are major contributors to the molecular chaperone networks of insects under heat stress. In this regard, we specifically cloned and characterized three MaltHSP70s and three MaltHSC70s. Bioinformatics analysis on the deduced amino acid sequences showed these genes, having close genetic relationships with HSP70s of Coleopteran species, collectively shared conserved signature structures and ATPase domains. Subcellular localization prediction revealed the HSP70s of M. alternatus were located not only in the cytoplasm and endoplasmic reticulum but also in the nucleus and mitochondria. The transcript levels of MaltHSP70s and MaltHSC70s in each state were significantly upregulated by exposure to 35-50°C for early 3 h, while MaltHSP70s reached a peak after exposure to 45°C for 2-3 h in contrast to less-upregulated MaltHSC70s. In terms of MaltHSP70s, the expression threshold in females was lower than that in males. Also, both fat bodies and Malpighian tubules were the tissues most sensitive to heat stress in M. alternatus larvae. Lastly, the ATPase activity of recombinant MaltHSP70-2 in vitro remained stable at 25-40°C, and this recombinant availably enhanced the thermotolerance of Escherichia coli. Overall, our findings unraveled HSP70s might be the intrinsic mediators of the strong heat tolerance of M. alternatus due to their stabilized structure and bioactivity.
Collapse
Affiliation(s)
- Hui Li
- Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
- College of Forestry, Nanjing Forestry University, Nanjing, China
| | - Heng Qiao
- Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
- College of Forestry, Nanjing Forestry University, Nanjing, China
| | - Yujie Liu
- Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
- College of Forestry, Nanjing Forestry University, Nanjing, China
| | - Shouyin Li
- Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
- College of Forestry, Nanjing Forestry University, Nanjing, China
| | - Jiajin Tan
- Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
- College of Forestry, Nanjing Forestry University, Nanjing, China
| | - Dejun Hao
- Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
- College of Forestry, Nanjing Forestry University, Nanjing, China
| |
Collapse
|
30
|
Xu Y, Li Y, Wang Q, Zheng C, Zhao D, Shi F, Liu X, Tao J, Zong S. Identification of key genes associated with overwintering in Anoplophora glabripennis larva using gene co-expression network analysis. PEST MANAGEMENT SCIENCE 2021; 77:805-816. [PMID: 32909651 DOI: 10.1002/ps.6082] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 09/06/2020] [Accepted: 09/10/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Anoplophora glabripennis (Coleoptera: Cerambycidae) is a major quarantine pest in forestry. It is widely distributed throughout many regions such as Asia, Europe, and North America, and has enormous destructive potential for forests. The larvae of A. glabripennis overwinter in a dormant state with strong cold tolerance, and whether the larvae survive winter determines the population density in the following year. However, the molecular mechanisms of this process are not clear. RESULTS RNA sequencing (RNA-Seq) analysis of A. glabripennis larvae at five overwintering stages identified 6876 differentially expressed genes (DEGs). Among these, 46 functional genes that might respond to low temperature were identified. Weighted gene co-expression network analysis revealed that the MEturquoise module was correlated with the overwintering process. The STPK, PP2A, DGAT, and HSF genes were identified as hub genes using visualization of gene network. In addition, four genes related to sugar transport, gluconeogenesis and glycosylation were screened, which may be involved in the metabolic regulation of overwintering larvae. The protein-protein interaction network indicated that ribosomal protein and ATP synthase may play an important role in connecting with other proteins. The expression levels of fifteen hub genes were further validated by quantitative RT-PCR, and the results were consistent with RNA-Seq. CONCLUSION This study demonstrates key genes that may reveal the molecular mechanism of overwintering in A. glabripennis larvae. The genes may be the potential targets to prevent larvae from surviving the cold winter by developing new biological agents using genetic engineering.
Collapse
Affiliation(s)
- Yabei Xu
- Key Laboratory of Beijing for the Control of Forest Pests, Beijing Forestry University, Beijing, China
| | - Yurong Li
- Key Laboratory of Beijing for the Control of Forest Pests, Beijing Forestry University, Beijing, China
| | - Qianqian Wang
- Key Laboratory of Beijing for the Control of Forest Pests, Beijing Forestry University, Beijing, China
| | - Chunchun Zheng
- Key Laboratory of Beijing for the Control of Forest Pests, Beijing Forestry University, Beijing, China
| | - Dongfang Zhao
- Key Laboratory of Beijing for the Control of Forest Pests, Beijing Forestry University, Beijing, China
| | - Fengming Shi
- Key Laboratory of Beijing for the Control of Forest Pests, Beijing Forestry University, Beijing, China
| | - Xinhai Liu
- Ulanqab Municipal Bureau of Parks, Ulanqab, China
| | - Jing Tao
- Key Laboratory of Beijing for the Control of Forest Pests, Beijing Forestry University, Beijing, China
| | - Shixiang Zong
- Key Laboratory of Beijing for the Control of Forest Pests, Beijing Forestry University, Beijing, China
| |
Collapse
|
31
|
Yang M, Wang Z, Wang R, Zhang X, Li M, Xin J, Qin Y, Zhang C, Meng F. Transcriptomic and proteomic analyses of the mechanisms of overwintering diapause in soybean pod borer (Leguminivora glycinivorella). PEST MANAGEMENT SCIENCE 2020; 76:4248-4257. [PMID: 32633047 DOI: 10.1002/ps.5989] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 05/24/2020] [Accepted: 07/06/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Soybean pod borer (Leguminivora glycinivorella) is an important soybean pest in north-eastern Asia, whose mature larvae overwinter in a diapause state. Disruption of winter diapause may be a valuable tool in pest management. However, the molecular mechanisms regulating diapause in this species have not yet been elucidated. RESULTS We compared the transcriptomes and proteomes between diapause and mature larvae and between mature and newly developed pupae to identify the genes and proteins associated with diapause. Thirty-seven differentially expressed genes and their proteins changed synchronously between diapause and mature larvae and 82 changed synchronously between diapause larvae and newly developed pupae. Among these, genes involved in fatty acid biosynthesis and the longevity regulating pathway were up-regulated in diapause larvae and down-regulated in newly developed pupae, suggesting that they may regulate diapause. One fatty acid synthase (FAS) gene and two small heat shock genes (HSP19.8 and HSP18.9) were chosen for further functional analysis. After RNA interference (RNAi)-mediated knockdown of FAS, the survival of mature larvae was significantly lower than that of control larvae, but the mean developmental time from first-instar larva to adult remained unchanged. RNAi-mediated knockdown of HSP19.8 and HSP18.9 severely shortened the mean developmental time, causing approximately 50% larvae to develop directly into pupae. CONCLUSION FAS and the small heat shock gene play roles in diapause regulation and larvae survival. This study provides important information that may assist in understanding the molecular regulatory mechanisms of overwintering diapause of this important agricultural insect pest. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Mingyu Yang
- Key Laboratory of Soybean Biology in Chinese Ministry of Education, Northeast Agricultural University, Harbin, China
| | - Zhanchun Wang
- Key Laboratory of Soybean Biology in Chinese Ministry of Education, Northeast Agricultural University, Harbin, China
| | - Rui Wang
- Key Laboratory of Soybean Biology in Chinese Ministry of Education, Northeast Agricultural University, Harbin, China
| | - Xiaoming Zhang
- Key Laboratory of Soybean Biology in Chinese Ministry of Education, Northeast Agricultural University, Harbin, China
| | - Mingyue Li
- Key Laboratory of Soybean Biology in Chinese Ministry of Education, Northeast Agricultural University, Harbin, China
| | - Junjie Xin
- Key Laboratory of Soybean Biology in Chinese Ministry of Education, Northeast Agricultural University, Harbin, China
| | - Yushi Qin
- Key Laboratory of Soybean Biology in Chinese Ministry of Education, Northeast Agricultural University, Harbin, China
| | - Chuan Zhang
- Key Laboratory of Soybean Biology in Chinese Ministry of Education, Northeast Agricultural University, Harbin, China
| | - Fanli Meng
- Key Laboratory of Soybean Biology in Chinese Ministry of Education, Northeast Agricultural University, Harbin, China
| |
Collapse
|
32
|
Deng Y, Hu Z, Shang L, Chai Z, Tang YZ. Transcriptional Responses of the Heat Shock Protein 20 (Hsp20) and 40 (Hsp40) Genes to Temperature Stress and Alteration of Life Cycle Stages in the Harmful Alga Scrippsiella trochoidea (Dinophyceae). BIOLOGY 2020; 9:biology9110408. [PMID: 33233461 PMCID: PMC7700488 DOI: 10.3390/biology9110408] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/13/2020] [Accepted: 11/18/2020] [Indexed: 01/17/2023]
Abstract
Simple Summary As the greatest contributors to harmful algal blooms, dinoflagellates account for roughly 75% of bloom events, which become an escalating threat to coastal ecosystems and cause substantial economic loss worldwide. Resting cyst production and broad temperature tolerance are well proven as adaptive strategies for blooming dinoflagellates; however, to date, the underlying molecular information is scarce. In the present study, we characterized two heat shock protein genes from the representative dinoflagellate Scrippsiella trochoidea, with the aim to primarily determine their possible roles in response to temperature stress and alteration of the life cycle. The yielded results enhance our knowledge about the functions of cross-talk of different Hsp members in temperature adaptation of dinoflagellates and facilitate further exploration in their potential physiological relevance during different life-stage alternation in this ecological important lineage. Abstract The small heat shock protein (sHsp) and Hsp40 are Hsp members that have not been intensively investigated but are functionally important in most organisms. In this study, the potential roles of a Hsp20 (StHsp20) and a Hsp40 (StHsp40) in dinoflagellates during adaptation to temperature fluctuation and alteration of different life stages were explored using the representative harmful algal blooms (HABs)-causative dinoflagellate species, Scrippsiella trochoidea. We isolated the full-length cDNAs of the two genes via rapid amplification of cDNA ends (RACE) and tracked their differential transcriptions via real-time qPCR. The results revealed StHsp20 and StHsp40 exhibited mRNA accumulation patterns that were highly similar in response to heat stress but completely different toward cold stress, which implies that the mechanisms underlying thermal and cold acclimation in dinoflagellates are regulated by different sets of genes. The StHsp20 was probably related to the heat tolerance of the species, and StHsp40 was closely involved in the adaptation to both higher and lower temperature fluctuations. Furthermore, significantly higher mRNA abundance of StHsp40 was detected in newly formed resting cysts, which might be a response to intrinsic stress stemmed from encystment. This finding also implied StHsp40 might be engaged in resting cyst formation of S. trochoidea. Our findings enriched the knowledge about possible cross-talk of different Hsp members in dinoflagellates and provided clues to further explore the molecular underpinnings underlying resting cyst production and broad temperature tolerance of this group of HABs contributors.
Collapse
Affiliation(s)
- Yunyan Deng
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (Y.D.); (Z.H.); (L.S.); (Z.C.)
- Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Zhangxi Hu
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (Y.D.); (Z.H.); (L.S.); (Z.C.)
- Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Lixia Shang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (Y.D.); (Z.H.); (L.S.); (Z.C.)
- Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Zhaoyang Chai
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (Y.D.); (Z.H.); (L.S.); (Z.C.)
- Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Ying Zhong Tang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (Y.D.); (Z.H.); (L.S.); (Z.C.)
- Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
- Correspondence: ; Tel./Fax: +86-532-8289-6098
| |
Collapse
|
33
|
Jia D, Liu YH, Zhang B, Ji ZY, Wang YX, Gao LL, Ma RY. Induction of Heat Shock Protein Genes is the Hallmark of Egg Heat Tolerance in Agasicles hygrophila (Coleoptera: Chrysomelidae). JOURNAL OF ECONOMIC ENTOMOLOGY 2020; 113:1972-1981. [PMID: 32449773 DOI: 10.1093/jee/toaa105] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Indexed: 06/11/2023]
Abstract
Insects are ecotothermic organisms. Their development, survival, reproduction as well as distribution and abundance are affected by temperature. Heat shock protein (HSP) gene expression is closely associated with temperature variation and influences the adaptation of organisms to adverse environments. The beetle Agasicles hygrophila has successfully been used for biological control of the invasive plant alligator weed (Alternanthera philoxeroides). As A. hygrophila populations are substantially inhibited by high temperatures in the summer, increasing global temperatures may limit the efficacy of this control agent. We previously established that A. hygrophila eggs have low tolerance to heat and this factored into the decreased numbers of A. hygrophila beetles at temperatures of 37.5°C and above. Here, we identified 26 HSP genes in A. hygrophila and examined the relationship between the transcript levels of these genes and heat tolerance. The temperature at which the expression of these 21 HSP genes peaked (Tpeak) was 37.5°C, which is in line with the limit of the high temperatures that A. hygrophila eggs tolerate. Therefore, we speculate that the Tpeak of HSP gene expression in eggs indicates the upper limit of temperatures that A. hygrophila eggs tolerate. This study identifies HSP genes as potential robust biomarkers and emphasizes that determining species' heat tolerance in their natural habitats remains an important consideration for biocontrol. HSP gene expression data provide information about a species' heat tolerance and may be used to predict its geographical distribution.
Collapse
Affiliation(s)
- Dong Jia
- College of Agriculture, Shanxi Agricultural University, Taigu, China
| | - Yan-Hong Liu
- College of Agriculture, Shanxi Agricultural University, Taigu, China
| | - Bin Zhang
- College of Horticulture, Shanxi Agricultural University, Taigu, China
| | - Zhou-Yu Ji
- College of Agriculture, Shanxi Agricultural University, Taigu, China
| | - Yuan-Xin Wang
- College of Agriculture, Shanxi Agricultural University, Taigu, China
| | - Ling-Ling Gao
- CSIRO Agriculture and Food, Centre for Environment and Life Sciences, Wembley, Western Australia, Australia
| | - Rui-Yan Ma
- College of Agriculture, Shanxi Agricultural University, Taigu, China
| |
Collapse
|
34
|
Li HB, Dai CG, Hu Y. Characterization and expression analysis of genes encoding three small heat shock proteins in the oriental armyworm, Mythimna separata (Walker). PLoS One 2020; 15:e0235912. [PMID: 32776931 PMCID: PMC7417081 DOI: 10.1371/journal.pone.0235912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Accepted: 06/24/2020] [Indexed: 11/18/2022] Open
Abstract
Small heat shock proteins (sHsps) function in the response of insects to abiotic
stress; however, their role in response to biotic stress has been
under-investigated. Mythimna separata, the oriental armyworm,
is polyphenetic and exhibits gregarious and solitary phases in response to high
and low population density, respectively. In this study, three genes were
identified encoding sHsps, namely
MsHsp19.7,
MsHsp19.8 and
MsHsp21.4, and expression levels in
solitary and gregarious M. separata were
compared. The deduced protein sequences of the three MsHsps had
molecular weights of 19.7, 19.8 and 21.4 kDa, respectively, and contained a
conserved α-crystalline domain. Real-time PCR analyses revealed that the three
sHsps were transcribed in all developmental stages and were
dramatically up-regulated at the 6th larval stage in gregarious
individuals. Expression of the three MsHsps was variable in
different tissues of 6th instar larvae, but exhibited consistent up-
and down-regulation in the hindgut and Malpighian tubules of gregarious
individuals, respectively. In addition,
MsHsp19.7 and
MsHsp19.8 were significantly induced when
solitary forms were subjected to crowding for 36 h, but all three
MsHsps were down-regulated when gregarious forms were
isolated. Our findings suggest that population density functions as a stress
factor and impacts MsHsps expression in M.
separata.
Collapse
Affiliation(s)
- Hong-Bo Li
- Institute of Plant Protection, Guizhou Academy of
Agricultural Sciences, Guiyang, China
- * E-mail:
| | - Chang-Geng Dai
- Institute of Plant Protection, Guizhou Academy of
Agricultural Sciences, Guiyang, China
| | - Yang Hu
- Institute of Plant Protection, Guizhou Academy of
Agricultural Sciences, Guiyang, China
| |
Collapse
|
35
|
Zhu GH, Chereddy SCRR, Howell JL, Palli SR. Genome editing in the fall armyworm, Spodoptera frugiperda: Multiple sgRNA/Cas9 method for identification of knockouts in one generation. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2020; 122:103373. [PMID: 32276113 DOI: 10.1016/j.ibmb.2020.103373] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 03/26/2020] [Accepted: 03/31/2020] [Indexed: 06/11/2023]
Abstract
The CRISPR/Cas9 system is an efficient genome editing method that can be used in functional genomics research. The fall armyworm, Spodoptera frugiperda, is a serious agricultural pest that has spread over most of the world. However, very little information is available on functional genomics for this insect. We performed CRISPR/Cas9-mediated site-specific mutagenesis of three target genes: two marker genes [Biogenesis of lysosome-related organelles complex 1 subunit 2 (BLOS2) and tryptophan 2, 3-dioxygenase (TO)], and a developmental gene, E93 (a key ecdysone-induced transcription factor that promotes adult development). The knockouts (KO) of BLOS2, TO and E93 induced translucent mosaic integument, olive eye color, and larval-pupal intermediate phenotypes, respectively. Sequencing RNA isolated from wild-type and E93 KO insects showed that E93 promotes adult development by influencing the expression of the genes coding for transcription factor, Krüppel homolog 1, the pupal specifier, Broad-Complex, serine proteases, and heat shock proteins. Often, gene-edited insects display mosaicism in which only a fraction of the cells are edited as intended, and establishing a homozygous line is both costly and time-consuming. To overcome these limitations, a method to completely KO the target gene in S. frugiperda by injecting the Cas9 protein and multiple sgRNAs targeting one exon of the E93 gene into embryos was developed. Ten percent of the G0 larvae exhibited larval-pupal intermediates. The mutations were confirmed by T7E1 assay, and the mutation frequency was determined as >80%. Complete KO of the E93 gene was achieved in one generation using the multiple sgRNA method, demonstrating a powerful approach to improve genome editing in lepidopteran and other non-model insects.
Collapse
Affiliation(s)
- Guan-Heng Zhu
- Department of Entomology, College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY, 40546, USA
| | - Shankar C R R Chereddy
- Department of Entomology, College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY, 40546, USA
| | - Jeffrey L Howell
- Department of Entomology, College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY, 40546, USA
| | - Subba Reddy Palli
- Department of Entomology, College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY, 40546, USA.
| |
Collapse
|
36
|
Li G, Zhao H, Guo H, Wang Y, Cui X, Li H, Xu B, Guo X. Analyses of the function of DnaJ family proteins reveal an underlying regulatory mechanism of heat tolerance in honeybee. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 716:137036. [PMID: 32059293 DOI: 10.1016/j.scitotenv.2020.137036] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 01/29/2020] [Accepted: 01/29/2020] [Indexed: 06/10/2023]
Abstract
There is clear evidence of severe honeybee declines in recent years, and parallel declines of plant community and crop productivity that rely on them. Different stresses, including heat stress, are among the primary drivers of this decline. However, the mechanisms by which honeybees respond to heat stress are elusive. Though heat shock proteins (Hsps) play important roles in heat stress response, the function of DnaJs (a subfamily of Hsps) is unclear. Here, we aimed to determine the underlying regulatory mechanism of honeybees to heat stress mediated by DnaJs. We found that several DnaJ genes, including DnaJA1, DnaJB12 and DnaJC8, are key for honeybee heat tolerance. DnaJA1 and DnaJB12 are cytoplasmic proteins, and DnaJC8 is a nuclear protein. The expression of DnaJA1, DnaJB12 and DnaJC8 was induced at different levels under short-term and long-term heat stress. Phenotypic analysis indicated that DnaJA1, DnaJB12 and DnaJC8 knockdown attenuated honeybee heat resistance. In addition, DnaJA1 participated in the heat stress response by upregulating many heat-inducible genes at the transcriptome-wide level, especially LOC108002668 and LOC107995148. Importantly, the upregulation of LOC108002668 and LOC107995148 was significantly repressed under heat stress when DnaJA1 was knocked down. We also found that knockdown of DnaJA1, DnaJB12 and DnaJC8 decreased antioxidant defense ability and increased the degree of oxidative damage in the honeybee. Taken together, our results indicate that DnaJ genes play important roles under heat stress in the honeybee. Overexpression of DnaJ genes may protect honeybees from heat stress-induced injuries and increase their survival rate.
Collapse
Affiliation(s)
- Guilin Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, PR China
| | - Hang Zhao
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, PR China
| | - Hongbin Guo
- Statistics Department, University of Auckland, 38 Princes Street, Auckland, New Zealand
| | - Ying Wang
- College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong 271018, PR China
| | - Xuepei Cui
- College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong 271018, PR China
| | - Han Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, PR China
| | - Baohua Xu
- College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong 271018, PR China.
| | - Xingqi Guo
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, PR China.
| |
Collapse
|
37
|
Chu J, Jiang DL, Yan MW, Li YJ, Wang J, Wu FA, Sheng S. Identifications, Characteristics, and Expression Patterns of Small Heat Shock Protein Genes in a Major Mulberry Pest, Glyphodes pyloalis (Lepidoptera: Pyralidae). JOURNAL OF INSECT SCIENCE (ONLINE) 2020; 20:5828987. [PMID: 32365175 PMCID: PMC7197948 DOI: 10.1093/jisesa/ieaa029] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Indexed: 06/11/2023]
Abstract
Six candidate sHSP genes were identified from the Glyphodes pyloalis transcriptome. All sHSP genes included full-length open reading frames and shared high similarity with the sequences of other lepidopteran species. These sHSP genes encoded 175-191 amino acid residues, and the predicted proteins had a molecular weight from 19.5 to 21.8 kDa. All GpsHSPs were expressed at lower levels at larval stages. All GpsHSPs were expressed at higher levels at diapaused, prepupal, or pupal stages, suggesting that sHSPs may be involved in metamorphosis in G. pyloalis. In addition to the developmental stage, extreme temperatures can induce variations in the expression of sHSPs genes. All GpsHSPs were significantly upregulated in larvae following exposure to heat shock, except GpHSP21.4 which downregulated at 4 h following exposure to the cold shock treatment. Furthermore, Starvation influenced the expression patterns of GpsHSPs as a function of the duration of food deprivation. Four GpsHSPs increased their expression with time of starvation until reaching to the peak level at 6 d of starvation. Finally, parasitism by the endoparasitoid Aulacocentrum confusum He et van Achterberg (Hymenoptera: Braconidae)-induced fluctuations in the expression of all GpsHSPs, and the expression varied with time after parasitization. Our results from this study strongly suggest functional differentiation within the sHSPs subfamily in G. pyloalis. The present study would provide further insight into the roles of sHSPs in G. pyloalis and novel avenues for promoting integrated management of this pest.
Collapse
Affiliation(s)
- Jie Chu
- Jiangsu Key Laboratory of Sericutural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, PR China
| | - De-lei Jiang
- Jiangsu Key Laboratory of Sericutural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, PR China
| | - Meng-wen Yan
- Jiangsu Key Laboratory of Sericutural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, PR China
| | - Yi- jiangcheng Li
- Jiangsu Key Laboratory of Sericutural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, PR China
| | - Jun Wang
- Jiangsu Key Laboratory of Sericutural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, PR China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, PR China
| | - Fu-an Wu
- Jiangsu Key Laboratory of Sericutural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, PR China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, PR China
| | - Sheng Sheng
- Jiangsu Key Laboratory of Sericutural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, PR China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, PR China
| |
Collapse
|
38
|
Farahani S, Bandani AR, Alizadeh H, Goldansaz SH, Whyard S. Differential expression of heat shock proteins and antioxidant enzymes in response to temperature, starvation, and parasitism in the Carob moth larvae, Ectomyelois ceratoniae (Lepidoptera: Pyralidae). PLoS One 2020; 15:e0228104. [PMID: 31995629 PMCID: PMC6988935 DOI: 10.1371/journal.pone.0228104] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 01/07/2020] [Indexed: 01/08/2023] Open
Abstract
Insects face diverse biotic and abiotic stresses that can affect their survival. Many of these stressors impact cellular metabolism, often resulting in increased accumulation of reactive oxygen species (ROS). Consequently, insects will respond to these stressors by increasing antioxidant activity and increased production of heat shock proteins (HSPs). In this study, the effect of heat, cold, starvation, and parasitism by Habroacon hebetor wasps was examined in the carob moth, Ectomyelois ceratoniae, to determine which responses were common to different stresses. For all stressors, malondialdehyde levels increased, indicative of oxidative stress in the insects. The activity of two antioxidant enzymes, superoxide dismutase (SOD) and catalase (CAT), increased with each stress, suggesting that these enzymes were serving a protective role for the insects. Heat (46°C for 100 min) and cold (-15°C for 30 min) treatments caused significant mortalities to all developmental stages, but pretreatments of moderate heat (37°C for 10 min) or cold (10°C for 10 min) induced thermotolerance and reduced the mortality rates when insects were subsequently exposed to lethal temperatures. Quantitative RT-PCR confirmed that heat and cold tolerance were associated with up-regulation of two HSPs, HSP70 and HSP90. Interestingly, HSP70 transcripts increased to a greater extent with cold treatment, while HSP90 transcripts increased more in response to high temperatures. RNA interference (RNAi)-mediated knockdown of either HSP70 or HSP90 transcripts was achieved by injecting larvae with dsRNA targeting each gene's transcripts, and resulted in a loss of acquired thermotolerance in insects subjected to the heat or cold pretreatments. These observations provide convincing evidence that both HSP70 and HSP90 are important mediators of the acquired thermotolerance. Starvation and parasitism by wasps caused differential expression of the HSP genes. In response to starvation, HSP90 transcripts increased to a greater extent than HSP70, while in contrast, HSP70 transcripts increased to a greater extent than those of HSP90 during the first 48 h of wasp parasitism. These results showed the differential induction of the two HSPs' transcripts with variable stresses. As well as, heat, cold, starvation, and parasitism induce oxidative stress, and antioxidant enzymes likely play an important role in reducing oxidative damage in E. ceratoniae.
Collapse
Affiliation(s)
- Saeed Farahani
- Plant Protection Department, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Ali R. Bandani
- Plant Protection Department, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Houshang Alizadeh
- Department of Agronomy and Plant Breeding, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Seyed Hossein Goldansaz
- Plant Protection Department, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Steven Whyard
- Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
39
|
Analysis of Differentially Expressed Transcripts in Apolygus lucorum (Meyer-Dür) Exposed to Different Temperature Coefficient Insecticides. Int J Mol Sci 2020; 21:ijms21020658. [PMID: 31963875 PMCID: PMC7014463 DOI: 10.3390/ijms21020658] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 01/16/2020] [Accepted: 01/16/2020] [Indexed: 12/25/2022] Open
Abstract
The existence of a temperature effect of insecticides frustrated the control of the green plant bug Apolygus lucorum (Meyer-Dür). Previous studies mostly focused on the application of insecticides, but the underlying mechanism remains incompletely understood. Here, we report a transcriptome profiling of A. lucorum treated by three kinds of temperature coefficient insecticides (TCIs) (positive TCI: imidacloprid, negative TCI: b-cypermethrin and non-effect TCI: phoxim) at 15 °C, 25 °C and 35 °C by using next- and third-generation RNA-Seq methods. A total of 34,739 transcripts were annotated from 277.74 Gb of clean data. There were more up-regulated transcripts than down-regulated transcripts in all three kinds of TCI treatments. Further Venn diagrams indicate the regulatory transcripts and regulatory modes were different at the three temperatures. The responses to imidacloprid involved more detox and stress response transcripts such as cytochrome P450 (CYP450), carboxylesterase (CarE) and catalase (CAT) at 35 °C, which was the case for beta-cypermethrin at 15 °C. UDP-glucuronyltransferase (UGT) and heat shock protein (HSP) transcripts were heavily involved, and thus deserve particular note in the temperature effect of insecticides. This high-confidence transcriptome atlas provides improved gene information for further study on the insecticide temperature effect related physiological and biochemical processes of A. lucorum.
Collapse
|
40
|
Jin J, Zhao M, Wang Y, Zhou Z, Wan F, Guo J. Induced Thermotolerance and Expression of Three Key Hsp Genes ( Hsp70, Hsp21, and sHsp21) and Their Roles in the High Temperature Tolerance of Agasicles hygrophila. Front Physiol 2020; 10:1593. [PMID: 31992993 PMCID: PMC6971057 DOI: 10.3389/fphys.2019.01593] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 12/19/2019] [Indexed: 01/14/2023] Open
Abstract
Thermal adaptation plays a fundamental role in the expansion and distribution of insects, and heat shock proteins (Hsps) play important roles in the temperature adaptation of various organisms. To determine the roles of Hsp genes (Hsp70, Hsp21, and sHsp21) on the high temperature tolerance of Agasicles hygrophila, we obtained complete cDNA (complementary DNA) sequences for Hsp70, Hsp21, and sHsp21 by rapid amplification of cDNA ends (RACE), analyzed their expression profiles under different high temperature treatments by quantitative reverse transcription polymerase chain reaction (RT-qPCR), and performed functional verification by RNA interference (RNAi). The open reading frames of Hsp70, Hsp21, and sHsp21 were 1940, 543, and 567 bp, encoding 650, 180, and 188 amino acids, respectively. Their molecular weights (MWs) were 71.757, 20.879, and 21.510 kDa, and the isoelectric points were 5.63, 6.45, and 6.24, respectively. Phylogenetic tree analysis showed that the Hsp70, Hsp21, and sHsp21 genes of A. hygrophila were relatively conserved in evolution. The Hsp70 and Hsp21 genes in A. hygrophila were homologous to those in Leptinotarsa decemlineata (87 and 79% similarity, respectively), and the sHsp21 gene in A. hygrophila was homologous to that in Lissorhoptrus oryzophilus (74% similarity). The amino acid polypeptide chain had highly conserved sequences of DLGGGTFD, VLVGGSTR, and GPTIEEVD. The sequence of EEVD was the characteristic motif of cytoplasmic Hsp70, and the highly conserved sequences of MALFR and MSLLP were characteristic sequences of Hsp2 and sHsp21, respectively. Relative quantitative real time PCR showed that the three Hsps could be induced by 4-h treatment at high temperatures. Significant upregulation of these Hsps was observed when the temperature was further increased. The RNAi results showed that the injection of the three Hsps' dsRNA could suppress the expression at the gene level significantly. Compared with the control group, high temperature heat shock reduced the fecundity of A. hygrophila significantly, and the fecundity decreased with the increase in temperature. Our results suggest that Hsp70, Hsp21, and sHsp21 might play key roles in high temperature adaptation of A. hygrophila and help improve our understanding of their mechanism of thermotolerance.
Collapse
Affiliation(s)
- Jisu Jin
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China.,College of Plant Protection, Hunan Agricultural University, Changsha, China
| | - Meiting Zhao
- College of Agriculture, Ludong University, Yantai, China
| | - Yao Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhongshi Zhou
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - FangHao Wan
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jianying Guo
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
41
|
Quan G, Duan J, Fick W, Candau JN. Molecular characterization of eight ATP-dependent heat shock protein transcripts and their expression profiles in response to stresses in the spruce budworm, Choristoneura fumiferana (L.). J Therm Biol 2020; 88:102493. [PMID: 32125981 DOI: 10.1016/j.jtherbio.2019.102493] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 12/03/2019] [Accepted: 12/23/2019] [Indexed: 12/11/2022]
Abstract
Heat shock proteins (HSPs) greatly contribute to insect stress tolerance and enhance survival and adaptation in severe environmental conditions. To investigate the potential roles of HSPs in the spruce budworm, Choristoneura fumiferana (L.), an important native pest of forests in North America, we found eight ATP-dependent HSP transcripts (CfHSPs). Based on molecular characteristics, the identified HSP genes were classified into HSP70 and HSP90 families, and phylogenetic results showed that they had orthologues in other insects. The transcript levels of these HSPs were measured using RT-qPCR under normal and stressful conditions in the laboratory. Under normal conditions, three HSP genes were consistently expressed in all life stages, whereas expression of the other five genes was dependent on the developmental stage. In the larvae, most CfHSP transcripts displayed similar expression levels among different tissues. Under heat shock conditions, one HSP70 gene and one HSP90 gene were upregulated in all life stages. One HSP70 gene was upregulated after cold injury in the larval stage. With starvation, HSP gene expression exhibited complex expression patterns; most of them were downregulated. These results suggest that the ATP-dependent HSPs have multiple roles during normal development as well as under stressful conditions including heat, cold injury and starvation.
Collapse
Affiliation(s)
- Guoxing Quan
- Natural Resources Canada, Great Lakes Forestry Centre, 1219 Queen Street East, Sault Ste. Marie, Ontario, P6A 2E5, Canada.
| | - Jun Duan
- Natural Resources Canada, Great Lakes Forestry Centre, 1219 Queen Street East, Sault Ste. Marie, Ontario, P6A 2E5, Canada
| | - William Fick
- Natural Resources Canada, Great Lakes Forestry Centre, 1219 Queen Street East, Sault Ste. Marie, Ontario, P6A 2E5, Canada
| | - Jean-Noël Candau
- Natural Resources Canada, Great Lakes Forestry Centre, 1219 Queen Street East, Sault Ste. Marie, Ontario, P6A 2E5, Canada
| |
Collapse
|
42
|
Chen K, Tang T, Song Q, Wang Z, He K, Liu X, Song J, Wang L, Yang Y, Feng C. Transcription Analysis of the Stress and Immune Response Genes to Temperature Stress in Ostrinia furnacalis. Front Physiol 2019; 10:1289. [PMID: 31681003 PMCID: PMC6803539 DOI: 10.3389/fphys.2019.01289] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 09/25/2019] [Indexed: 11/20/2022] Open
Abstract
Ostrinia furnacalis is one of the most important pests on maize. O. furnacalis larvae are frequently exposed to the temperature challenges such as high temperature in summer and cold temperature in winter in the natural environment. High and low temperature stress, like any abiotic stress, impairs the physiology and development of insects. Up to now, there is limited information about gene regulation and signaling pathways related to the high and cold stress response in O. furnacalis. High-throughput sequencing of transcriptome provides a new approach for detecting stress and immune response genes under high and low temperature stresses in O. furnacalis. In the present study, O. furnacalis larvae were treated with the temperature at 8 and 40°C, and the responses of O. furnacalis larvae to the temperature stress were investigated through RNA-sequencing and further confirmation. The results showed that immune responses were up-regulated in larvae by the cold stress at 8°C while some stress response genes, such as HSP family, GST-2, Bax inhibitor and P450, were significantly increased at 40°C. Furthermore, quantitative real time polymerase chain reaction were performed to quantify the expression levels of immune related genes, such as PGRP-LB, antimicrobial peptides, lysozyme, serine protease and stress response genes such as small HSPs and HSP90, and the expression levels of these genes were similar to the RNA-seq results. In addition, the iron storage protein Ferritin was found to be involved in the response to temperature stress, and the changes of total iron concentration in the hemolymph were, in general, consistent with the expression levels of Ferritin. Taken together, our results suggested that the stress response genes were involved in the defense against the heat stress at 40°C, and the immune responses triggered by cold stress might provide protection for larvae from cold stress at 8°C. More interestingly, our results showed that during the responses to temperature stress, the total iron concentration in hemolymph regulated by Ferritin increased, which might help O. furnacalis in surviving the low and high temperature stress.
Collapse
Affiliation(s)
- Kangkang Chen
- Department of Plant Protection, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Tai Tang
- Department of Plant Protection, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Qisheng Song
- Division of Plant Sciences, University of Missouri, Columbia, MO, United States
| | - Zhenying Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Kanglai He
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xu Liu
- Department of Plant Protection, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Jiahui Song
- Department of Plant Protection, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Libao Wang
- Department of Plant Protection, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Yizhong Yang
- Department of Plant Protection, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Congjing Feng
- Department of Plant Protection, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| |
Collapse
|
43
|
Chang YW, Zhang XX, Lu MX, Du YZ, Zhu-Salzman K. Molecular Cloning and Characterization of Small Heat Shock Protein Genes in the Invasive Leaf Miner Fly, Liriomyza trifolii. Genes (Basel) 2019; 10:genes10100775. [PMID: 31623413 PMCID: PMC6826454 DOI: 10.3390/genes10100775] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Revised: 09/26/2019] [Accepted: 09/27/2019] [Indexed: 11/26/2022] Open
Abstract
Small heat shock proteins (sHSPs) comprise numerous proteins with diverse structure and function. As molecular chaperones, they play essential roles in various biological processes, especially under thermal stresses. In this study, we identified three sHSP-encoding genes, LtHSP19.5, LtHSP20.8 and LtHSP21.7b from Liriomyza trifolii, an important insect pest of ornamental and vegetable crops worldwide. Putative proteins encoded by these genes all contain a conserved α-crystallin domain that is typical of the sHSP family. Their expression patterns during temperature stresses and at different insect development stages were studied by reverse-transcription quantitative PCR (RT-qPCR). In addition, the expression patterns were compared with those of LtHSP21.3 and LtHSP21.7, two previously published sHSPs. When pupae were exposed to temperatures ranging from −20 to 45 °C for 1 h, all LtsHSPs were strongly induced by either heat or cold stresses, but the magnitude was lower under the low temperature range than high temperatures. Developmentally regulated differential expression was also detected, with pupae and prepupae featuring the highest expression of sHSPs. Results suggest that LtsHSPs play a role in the development of the invasive leaf miner fly and may facilitate insect adaptation to climate change.
Collapse
Affiliation(s)
- Ya-Wen Chang
- College of Horticulture and Plant Protection, Institute of Applied Entomology, Yangzhou University, Yangzhou 225009, China.
| | - Xiao-Xiang Zhang
- College of Horticulture and Plant Protection, Institute of Applied Entomology, Yangzhou University, Yangzhou 225009, China.
| | - Ming-Xing Lu
- College of Horticulture and Plant Protection, Institute of Applied Entomology, Yangzhou University, Yangzhou 225009, China.
| | - Yu-Zhou Du
- College of Horticulture and Plant Protection, Institute of Applied Entomology, Yangzhou University, Yangzhou 225009, China.
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education, Yangzhou University, Yangzhou 225009, China.
| | - Keyan Zhu-Salzman
- Department of Entomology, Texas A&M University, College Station, TX 77843, USA.
| |
Collapse
|
44
|
Identification and Expression Analysis of Four Small Heat Shock Protein Genes in Cigarette Beetle, Lasioderma serricorne (Fabricius). INSECTS 2019; 10:insects10050139. [PMID: 31096618 PMCID: PMC6572347 DOI: 10.3390/insects10050139] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 05/08/2019] [Accepted: 05/12/2019] [Indexed: 11/17/2022]
Abstract
Small heat shock proteins (sHsps) are molecular chaperones that play crucial roles in the stress adaption of insects. In this study, we identified and characterized four sHsp genes (LsHsp19.4, 20.2, 20.3, and 22.2) from the cigarette beetle, Lasioderma serricorne (Fabricius). The four cDNAs encoded proteins of 169, 180, 181, and 194 amino acids with molecular weights of 19.4, 20.2, 20.3, and 22.2 kDa, respectively. The four LsHsp sequences possessed a typical sHsp domain structure. Quantitative real-time PCR analyses revealed that LsHsp19.4 and 20.3 transcripts were most abundant in pupae, whereas the transcript levels of LsHsp20.2 and 22.2 were highest in adults. Transcripts of three LsHsp genes were highly expressed in the larval fat body, whereas LsHsp20.2 displayed an extremely high expression level in the gut. Expression of the four LsHsp genes was dramatically upregulated in larvae exposed to 20-hydroxyecdysone. The majority of the LsHsp genes were significantly upregulated in response to heat and cold treatments, while LsHsp19.4 was insensitive to cold stress. The four genes were upregulated when challenged by immune triggers (peptidoglycan isolated from Staphylococcus aureus and from Escherichia coli 0111:B4). Exposure to CO2 increased LsHsp20.2 and 20.3 transcript levels, but the LsHsp19.4 transcript level declined. The results suggest that different LsHsp genes play important and distinct regulatory roles in L. serricorne development and in response to diverse stresses.
Collapse
|
45
|
Chen Q, Wen M, Li J, Zhou H, Jin S, Zhou JJ, Wang Y, Ren B. Involvement of heat shock protein 40 in the wing dimorphism of the house cricket Acheta domesticus. JOURNAL OF INSECT PHYSIOLOGY 2019; 114:35-44. [PMID: 30776423 DOI: 10.1016/j.jinsphys.2019.02.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 02/14/2019] [Accepted: 02/14/2019] [Indexed: 06/09/2023]
Abstract
Wing dimorphism is a common phenomenon in a wide range of insect taxa. In most insects, the two morphs are macropterous and micropterous, in extreme cases of the latter, wing shedding can occur. Wing dimorphism contributes significantly to the ecological success of many insect species. However, the molecular basis of wing dimorphism is not fully understood, especially for wing-shed. Here, differentially expressed genes over eight developmental stages of the house cricket Acheta domesticus, which undergoes wing-shed dimorphism, were studied. The results revealed a wing-shed peak during adult development in which many DEGs were highly upregulated and it's influenced by cricket population density. A weighted correlation network analysis (WGCNA) grouped 21,922 DEGs among 141,456 unigenes into 18 modules of different expression patterns. The module in which the gene expression pattern correlated with the wing-shed phenotypic data was selected for further analyses with STEM and Cytoscape, and three candidate genes (AdomHSP40: Heat shock protein 40, AdomCFDP: Craniofacial development protein, AdomDIS3L: DIS3 Like 3'-5' Exoribonuclease) were identified by gene network analysis as the DEGs most relevant to wing-shed occurrence. The RNA interference of these genes together with an insulin receptor and Nylanderia fulva virus showed that the silencing of AdomHSP40 significantly decreased wing-shed occurrence, whereas the silencing of other candidate genes did not, suggesting that AdomHSP40 plays a crucial role in the wing-shed of Acheta domesticus. These findings provide insights into the molecular mechanisms underlying wing dimorphism in the house crickets, which differ from those found in other insects such as the planthopper.
Collapse
Affiliation(s)
- Qi Chen
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, Jilin, China; Key Laboratory of Vegetation Ecology, MOE, Northeast Normal University, Changchun, China
| | - Ming Wen
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, Jilin, China; Key Laboratory of Vegetation Ecology, MOE, Northeast Normal University, Changchun, China
| | - Jiaxin Li
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, Jilin, China; Key Laboratory of Vegetation Ecology, MOE, Northeast Normal University, Changchun, China
| | - Haifeng Zhou
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, Jilin, China; Key Laboratory of Vegetation Ecology, MOE, Northeast Normal University, Changchun, China
| | - Sha Jin
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, Jilin, China; Key Laboratory of Vegetation Ecology, MOE, Northeast Normal University, Changchun, China
| | - Jing-Jiang Zhou
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, Jilin, China; Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ, UK
| | - Yinliang Wang
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, Jilin, China; Key Laboratory of Vegetation Ecology, MOE, Northeast Normal University, Changchun, China.
| | - Bingzhong Ren
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, Jilin, China; Key Laboratory of Vegetation Ecology, MOE, Northeast Normal University, Changchun, China.
| |
Collapse
|
46
|
Chang YW, Zhang XX, Chen JY, Lu MX, Gong WR, Du YZ. Characterization of three heat shock protein 70 genes from Liriomyza trifolii and expression during thermal stress and insect development. BULLETIN OF ENTOMOLOGICAL RESEARCH 2019; 109:150-159. [PMID: 29743123 DOI: 10.1017/s0007485318000354] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Heat shock proteins (HSPs) participate in diverse physiological processes in insects, and HSP70 is one of the most highly conserved proteins in the HSP family. In this study, full-length cDNAs of three HSP70 genes (Lthsc70, Lthsp701, and Lthsp702) were cloned and characterized from Liriomyza trifolii, an important invasive pest of vegetable crops and horticultural crops worldwide. These three HSP70s exhibited signature sequences and motifs that are typical of the HSP70 family. The expression patterns of the three Lthsp70s during temperature stress and in different insect development stages were studied by real-time quantitative PCR. Lthsp701 was strongly induced by high- and low-temperature stress, but Lthsc70 and Lthsp702 were not very sensitive to temperature changes. All three Lthsp70s were expressed during insect development stages, but the expression patterns were quite different. The expression of Lthsc70 and Lthsp702 showed significant differences in expression during leafminer development; Lthsc70 was most highly expressed in female adults, whereas Lthsp702 was abundantly expressed in larvae and prepupae. Lthsp701 expression was not significantly different among leafminer stages. These results suggest that functional differentiation within the LtHSP70 subfamily has occurred in response to thermal stress and insect development.
Collapse
Affiliation(s)
- Y-W Chang
- School of Horticulture and Plant Protection & Institute of Applied Entomology, Yangzhou University,Yangzhou 225009,China
| | - X-X Zhang
- School of Horticulture and Plant Protection & Institute of Applied Entomology, Yangzhou University,Yangzhou 225009,China
| | - J-Y Chen
- School of Horticulture and Plant Protection & Institute of Applied Entomology, Yangzhou University,Yangzhou 225009,China
| | - M-X Lu
- School of Horticulture and Plant Protection & Institute of Applied Entomology, Yangzhou University,Yangzhou 225009,China
| | - W-R Gong
- Plant Protection and Quarantine Station of Jiangsu Province,Nanjing 21003,China
| | - Y-Z Du
- School of Horticulture and Plant Protection & Institute of Applied Entomology, Yangzhou University,Yangzhou 225009,China
| |
Collapse
|
47
|
Xie J, Hu X, Zhai M, Yu X, Song X, Gao S, Wu W, Li B. Characterization and functional analysis of hsp18.3 gene in the red flour beetle, Tribolium castaneum. INSECT SCIENCE 2019; 26:263-273. [PMID: 28980406 PMCID: PMC7379568 DOI: 10.1111/1744-7917.12543] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 08/23/2017] [Accepted: 09/04/2017] [Indexed: 05/07/2023]
Abstract
Small heat shock proteins (sHSPs) are diverse and mainly function as molecular chaperones to protect organisms and cells from various stresses. In this study, hsp18.3, one Tribolium castaneum species-specific shsp, has been identified. Quantitative real-time polymerase chain reaction illustrated that Tchsp18.3 is expressed in all developmental stages, and is highly expressed at early pupal and late adult stages, while it is highly expressed in ovary and fat body at the adult period. Moreover, it was up-regulated 4532 ± 396-fold in response to enhanced heat stress but not to cold stress; meanwhile the lifespan of adults in ds-Tchsp18.3 group reduced by 15.8% from control group under starvation. Laval RNA interference (RNAi) of Tchsp18.3 caused 86.1% ± 4.5% arrested pupal eclosion and revealed that Tchsp18.3 played an important role in insect development. In addition, parental RNAi of Tchsp18.3 reduced the oviposition amount by 94.7%. These results suggest that Tchsp18.3 is not only essential for the resistance to heat and starvation stress, but also is critical for normal development and reproduction in T. castaneum.
Collapse
Affiliation(s)
- Jia Xie
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life SciencesNanjing Normal UniversityNanjingChina
| | - Xing‐Xing Hu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life SciencesNanjing Normal UniversityNanjingChina
| | - Meng‐Fan Zhai
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life SciencesNanjing Normal UniversityNanjingChina
| | - Xiao‐Juan Yu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life SciencesNanjing Normal UniversityNanjingChina
| | - Xiao‐Wen Song
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life SciencesNanjing Normal UniversityNanjingChina
| | - Shan‐Shan Gao
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life SciencesNanjing Normal UniversityNanjingChina
| | - Wei Wu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life SciencesNanjing Normal UniversityNanjingChina
| | - Bin Li
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life SciencesNanjing Normal UniversityNanjingChina
| |
Collapse
|
48
|
Zhang M, Zhang D, Li Y, Sun Q, Li Q, Fan Y, Wu Y, Xi Z, Zheng X. Water-induced strong protection against acute exposure to low subzero temperature of adult Aedes albopictus. PLoS Negl Trop Dis 2019; 13:e0007139. [PMID: 30716071 PMCID: PMC6382212 DOI: 10.1371/journal.pntd.0007139] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 02/20/2019] [Accepted: 01/07/2019] [Indexed: 12/17/2022] Open
Abstract
As an important vector of dengue and Zika, Aedes albopictus has been the fastest spreading invasive mosquitoes in the world over the last 3–4 decades. Cold tolerance is important for survival and expansion of insects. Ae. albopictus adults are generally considered to be cold-intolerant that cannot survive at subzero temperature. However, we found that Ae. albopictus could survive for several hours’ exposure to -9 to -19 oC so long as it was exposed with water. Median lethal time (LT50) of Ae. albopictus exposed to -15 and -19 oC with water increased by more than 100 times compared to those exposed to the same subzero temperature without water. This phenomenon also existed in adult Aedes aegypti and Culex quinquefasciatus. Ae. albopictus female adults which exposed to low subzero temperature at -9 oC with water had similar longevity and reproductive capacity to those of females without cold exposure. Cold exposure after a blood meal also have no detrimental impact on survival capacity of female adult Ae. albopictus compared with those cold exposed without a blood meal. Moreover, our results showed that rapid cold hardening (RCH) was induced in Ae. albopictus during exposing to low subzero temperature with water. Both the RCH and the relative high subzero temperature of water immediate after cold exposure might provide this strong protection against low subzero temperature. The molecular basis of water-induced protection for Ae. albopictus might refer to the increased glycerol during cold exposure, as well as the increased glucose and hsp70 during recovery from cold exposure. Our results suggested that the water-induced strong protection against acute decrease of air temperature for adult mosquitoes might be important for the survival and rapid expansion of Ae. albopictus. Aedes albopictus is one of two most important vectors for dengue and zika. During the last 3–4 decades, this mosquito has spread from native Asian area to all continents except Antarctica, becoming the most invasive mosquitoes which imposed extensive public health threat to human beings throughout the world. Cold tolerance is important for distribution and survival of insects. During the expansion of Ae. albopictus, especially a spatial expansion to cooler climate areas, it needs to cope with cold temperatures. Moreover, because of such widespread distribution adult Ae. albopictus will certainly often encounter sudden drops in air temperature even below subzero that often happens in early spring and winter, and late autumn. Thus far, adult Ae. albopictus are generally considered to be cold-intolerant that can not survive at subzero temperature. In this study, we found that water can provide strong protection against low subzero temperature even below -10 oC. Cold exposure of adult female Ae. albopictus to low subzero temperature with water either before or after a blood meal have no detrimental impact on fitness costs of these adult mosquitoes. Considering water is common in nature, our results indicated that during the expansion of Ae. albopictus especially when adult mosquitoes encounter a sudden drop in air temperature water could be a good shelter for cope with such cold temperature below subzero.
Collapse
Affiliation(s)
- Meichun Zhang
- Sun Yat-sen University—Michigan State University Joint Center of Vector Control for Tropical Diseases, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory for Tropical Disease Control, Ministry of Education, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Engineering Technology Research Center for Diseases-Vectors Control, Sun Yat-sen University, Guangzhou, China
| | - Dongjing Zhang
- Sun Yat-sen University—Michigan State University Joint Center of Vector Control for Tropical Diseases, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory for Tropical Disease Control, Ministry of Education, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Engineering Technology Research Center for Diseases-Vectors Control, Sun Yat-sen University, Guangzhou, China
| | - Yongjun Li
- Sun Yat-sen University—Michigan State University Joint Center of Vector Control for Tropical Diseases, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory for Tropical Disease Control, Ministry of Education, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Engineering Technology Research Center for Diseases-Vectors Control, Sun Yat-sen University, Guangzhou, China
| | - Qiang Sun
- Sun Yat-sen University—Michigan State University Joint Center of Vector Control for Tropical Diseases, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Qin Li
- Section of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, United States of America
| | - Yali Fan
- Sun Yat-sen University—Michigan State University Joint Center of Vector Control for Tropical Diseases, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory for Tropical Disease Control, Ministry of Education, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Engineering Technology Research Center for Diseases-Vectors Control, Sun Yat-sen University, Guangzhou, China
| | - Yu Wu
- Sun Yat-sen University—Michigan State University Joint Center of Vector Control for Tropical Diseases, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory for Tropical Disease Control, Ministry of Education, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Engineering Technology Research Center for Diseases-Vectors Control, Sun Yat-sen University, Guangzhou, China
| | - Zhiyong Xi
- Sun Yat-sen University—Michigan State University Joint Center of Vector Control for Tropical Diseases, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, United States of America
- * E-mail: (ZX); (XZ)
| | - Xiaoying Zheng
- Sun Yat-sen University—Michigan State University Joint Center of Vector Control for Tropical Diseases, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory for Tropical Disease Control, Ministry of Education, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Engineering Technology Research Center for Diseases-Vectors Control, Sun Yat-sen University, Guangzhou, China
- * E-mail: (ZX); (XZ)
| |
Collapse
|
49
|
Yi J, Wu H, Liu J, Lai X, Guo J, Li D, Zhang G. Molecular characterization and expression of six heat shock protein genes in relation to development and temperature in Trichogramma chilonis. PLoS One 2018; 13:e0203904. [PMID: 30226893 PMCID: PMC6143235 DOI: 10.1371/journal.pone.0203904] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 08/29/2018] [Indexed: 11/26/2022] Open
Abstract
Trichogramma is a kind of egg parasitoid wasp that is widely used to control lepidopterous pests. Temperature is one of the main factors that determines the various life activities of this species, including development, reproduction and parasitism efficiency. Heat shock proteins (HSPs) are highly conserved and ubiquitous proteins that are best known for their responsiveness to temperature and other stresses. To explore the potential role of HSPs in Trichogramma species, we obtained the full-length cDNAs of six HSP genes (Tchsp10, Tchsp21.6, Tchsp60, Tchsp70, Tchsc70-3, and Tchsp90) from T. chilonis and analyzed their expression patterns during development and exposure to temperature stress. The deduced amino acid sequences of these HSP genes contained the typical signatures of their corresponding protein family and showed high homology to their counterparts in other species. The expression levels of Tchsp10, Tchsp21.6 and Tchsp60 decreased during development. However, the expression of Tchsc70-3 increased from the pupal stage to the adult stage. Tchsp70 and Tchsp90 exhibited the highest expression levels in the adult stage. The expression of six Tchsps was dramatically upregulated after 1 h of exposure to 32 and 40°C but did not significantly change after 1 h of exposure to 10 and 17°C. This result indicated that heat stress, rather than cold stress, induced the expression of HSP genes. Furthermore, the expression of these genes was time dependent, and the expression of each gene reached its peak after 1 h of heat exposure (40°C). Tchsp10 and Tchsp70 exhibited a low-intensity cold response after 4 and 8 h of exposure to 10°C, respectively, but the other genes did not respond to cold at any time points. These results suggested that HSPs may play different roles in the development of this organism and in its response to temperature stress.
Collapse
Affiliation(s)
- Jiequn Yi
- State Key Laboratory for Biocontrol & Institute of Entomology, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Han Wu
- State Key Laboratory for Biocontrol & Institute of Entomology, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Jianbai Liu
- State Key Laboratory for Biocontrol & Institute of Entomology, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Xueshuang Lai
- State Key Laboratory for Biocontrol & Institute of Entomology, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Jixing Guo
- State Key Laboratory for Biocontrol & Institute of Entomology, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Dunsong Li
- Guangdong Provincial Key Laboratory of High Technology for Plant Protection/Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong, China
- * E-mail: (DL); (GZ)
| | - Guren Zhang
- State Key Laboratory for Biocontrol & Institute of Entomology, Sun Yat-Sen University, Guangzhou, Guangdong, China
- * E-mail: (DL); (GZ)
| |
Collapse
|
50
|
Rowarth NM, MacRae TH. Post-diapause synthesis of ArHsp40-2, a type 2 J-domain protein from Artemia franciscana, is developmentally regulated and induced by stress. PLoS One 2018; 13:e0201477. [PMID: 30048537 PMCID: PMC6062144 DOI: 10.1371/journal.pone.0201477] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 07/16/2018] [Indexed: 12/16/2022] Open
Abstract
Post-diapause cysts of Artemia franciscana undergo a well-defined developmental process whereby internal differentiation leads to rupture of the cyst shell, release of membrane-enclosed nauplii and hatching to yield swimming larvae. The post-diapause development of A. franciscana has been examined at biochemical and molecular levels, yet little is known about molecular chaperone function during this process. In addressing this we recently described ArHsp40, a type 1 J-domain protein in post-diapause A. franciscana cysts and larvae. The current report describes ArHsp40-2, a second J-domain protein from A. franciscana. ArHsp40-2 is a type 2 J-domain protein, lacking a zinc binding domain but containing other domains characteristic of these proteins. Notably, ArHsp40-2 possesses a double barrel β-domain structure in its substrate binding region, as does ArHsp40. qPCR revealed a relatively low amount of ArHsp40-2 mRNA in 0 h cysts which increased significantly until the E1 stage, most likely as a result of enhanced transcription, after which it declined. An antibody specific to ArHsp40-2 was produced and used to show that like its mRNA, ArHsp40-2 accumulated until the E1 stage and then decreased to amounts lower than those in 0 h cysts. The synthesis of ArHsp40-2 was induced by heat shock indicating that ArHsp40-2 is involved in stress resistance in cysts and nauplii. Accumulation in cysts during early post-diapause development followed by its sharp decline suggests a role in protein disaggregation/refolding, a function of Hsp40s from other organisms, where ArHsp40-2 assists in the rescue of proteins sequestered during diapause by p26, an abundant small heat shock protein (sHsp) in A. franciscana cysts.
Collapse
Affiliation(s)
| | - Thomas H. MacRae
- Department of Biology, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|