1
|
Ratnayake OC, Chotiwan N, Saavedra-Rodriguez K, Perera R. The buzz in the field: the interaction between viruses, mosquitoes, and metabolism. Front Cell Infect Microbiol 2023; 13:1128577. [PMID: 37360524 PMCID: PMC10289420 DOI: 10.3389/fcimb.2023.1128577] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 03/24/2023] [Indexed: 06/28/2023] Open
Abstract
Among many medically important pathogens, arboviruses like dengue, Zika and chikungunya cause severe health and economic burdens especially in developing countries. These viruses are primarily vectored by mosquitoes. Having surmounted geographical barriers and threat of control strategies, these vectors continue to conquer many areas of the globe exposing more than half of the world's population to these viruses. Unfortunately, no medical interventions have been capable so far to produce successful vaccines or antivirals against many of these viruses. Thus, vector control remains the fundamental strategy to prevent disease transmission. The long-established understanding regarding the replication of these viruses is that they reshape both human and mosquito host cellular membranes upon infection for their replicative benefit. This leads to or is a result of significant alterations in lipid metabolism. Metabolism involves complex chemical reactions in the body that are essential for general physiological functions and survival of an organism. Finely tuned metabolic homeostases are maintained in healthy organisms. However, a simple stimulus like a viral infection can alter this homeostatic landscape driving considerable phenotypic change. Better comprehension of these mechanisms can serve as innovative control strategies against these vectors and viruses. Here, we review the metabolic basis of fundamental mosquito biology and virus-vector interactions. The cited work provides compelling evidence that targeting metabolism can be a paradigm shift and provide potent tools for vector control as well as tools to answer many unresolved questions and gaps in the field of arbovirology.
Collapse
Affiliation(s)
- Oshani C. Ratnayake
- Center for Vector-borne Infectious Diseases, Dept. of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Nunya Chotiwan
- Center for Vector-borne Infectious Diseases, Dept. of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, United States
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Samut Prakan, Thailand
| | - Karla Saavedra-Rodriguez
- Center for Vector-borne Infectious Diseases, Dept. of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Rushika Perera
- Center for Vector-borne Infectious Diseases, Dept. of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, United States
| |
Collapse
|
2
|
Vatanparast M, Ahmed S, Herrero S, Kim Y. A non-venomous sPLA 2 of a lepidopteran insect: Its physiological functions in development and immunity. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 89:83-92. [PMID: 30107251 DOI: 10.1016/j.dci.2018.08.008] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Revised: 08/08/2018] [Accepted: 08/10/2018] [Indexed: 06/08/2023]
Abstract
Eicosanoids are oxygenated C20 polyunsaturated fatty acids that mediate various physiological processes in insects. Eicosanoid biosynthesis begins with a C20 precursor, arachidonic acid (5,8,11,14-eicosatetraenoic acid: AA). AA is usually released from phospholipids at sn-2 position by catalytic activity of phospholipase A2 (PLA2). Although various PLA2s classified into 16 gene families (= Groups) are known in various biological systems, few PLA2s are known in insects. Only two PLA2s involved in intracellular calcium independent PLA2 (iPLA2) group have been identified in lepidopteran insects with well known eicosanoid physiology. This study reports the first secretory PLA2 (sPLA2) in lepidopteran insects. A partial open reading frame (ORF) of PLA2 was obtained by interrogating Spodoptera exigua transcriptome. Subsequent 3'-RACE resulted in a full ORF (Se-sPLA2A) encoding 194 amino acid sequence containing signal peptide, calcium-binding domain, and catalytic site. Phylogenetic analysis indicated that Se-sPLA2A was clustered with other Group III sPLA2s. Se-sPLA2A was expressed in most larval instars except late last instar. Its expression was inducible by immune challenge and juvenile hormone analog injection. RNA interference of Se-sPLA2A significantly suppressed cellular immunity and impaired larval development. These results suggest that non-venomous sPLA2 plays a crucial role in immune and developmental processes in S. exigua, a lepidopteran insect.
Collapse
Affiliation(s)
- Mohammad Vatanparast
- Department of Plant Medicals, Andong National University, Andong, 36729, South Korea
| | - Shabbir Ahmed
- Department of Plant Medicals, Andong National University, Andong, 36729, South Korea
| | - Salvador Herrero
- Department of Genetics, Universitat de València, Dr Moliner 50, 46100, Burjassot, Valencia, Spain
| | - Yonggyun Kim
- Department of Plant Medicals, Andong National University, Andong, 36729, South Korea.
| |
Collapse
|
3
|
Kim Y, Ahmed S, Stanley D, An C. Eicosanoid-mediated immunity in insects. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 83:130-143. [PMID: 29225005 DOI: 10.1016/j.dci.2017.12.005] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 12/02/2017] [Accepted: 12/07/2017] [Indexed: 06/07/2023]
Abstract
Eicosanoid is a collective term for oxygenated metabolites of C20 polyunsaturated fatty acids. As seen in mammals, eicosanoids play crucial roles in mediating various physiological processes, including immune responses, in insects. Upon microbial pathogen infection, non-self recognition signals are propagated to nearly immune effectors such as hemocytes and fat body using various immune mediators, in which eicosanoid signals act as the ultimate downstream mediator. The chemical diversity of eicosanoids may operate to mediate various immune responses. Some entomopathogenic bacteria suppress eicosanoid biosynthesis, which inhibits host insect immunity and promotes their pathogenicity. This review introduces immune responses mediated by various eicosanoids. Then it explains the cross-talks of eicosanoids with other immune mediators including cytokines, biogenic monoamines, and nitric oxide to clarify the complexity of insect immune mediation. Finally, we highlight the biological significance of eicosanoids by demonstrating bacterial pathogenicity inhibiting a key enzyme - phospholipase A2 - in eicosanoid biosynthesis using their secondary metabolites to defend host insect immune attack.
Collapse
Affiliation(s)
- Yonggyun Kim
- Department of Plant Medicals, College of Natural Sciences, Andong National University, Andong 36729, Republic of Korea.
| | - Shabbir Ahmed
- Department of Plant Medicals, College of Natural Sciences, Andong National University, Andong 36729, Republic of Korea
| | - David Stanley
- USDA- ARS, Biological Control of Insects Research Laboratory, 1503 S. Providence Road, Columbia MO 65203, USA
| | - Chunju An
- Department of Entomology, China Agricultural University, Beijing 100193, China
| |
Collapse
|
4
|
Büyükgüzel E, Erdem M, Tunaz H, Küçük C, Atılgan UC, Stanley D, Büyükgüzel K. Inhibition of eicosanoid signaling leads to increased lipid peroxidation in a host/parasitoid system. Comp Biochem Physiol A Mol Integr Physiol 2017; 204:121-128. [DOI: 10.1016/j.cbpa.2016.11.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 11/18/2016] [Accepted: 11/19/2016] [Indexed: 12/14/2022]
|
5
|
Nucleopolyhedroviruses (NPV) induce the expression of small heat shock protein 25.4 in Antheraea pernyi. Gene 2016; 591:327-32. [DOI: 10.1016/j.gene.2016.06.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 05/19/2016] [Accepted: 06/01/2016] [Indexed: 11/16/2022]
|
6
|
Eicosanoids mediate Galleria mellonella immune response to hemocoel injection of entomopathogenic nematode cuticles. Parasitol Res 2015; 115:597-608. [DOI: 10.1007/s00436-015-4776-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2015] [Accepted: 10/06/2015] [Indexed: 11/25/2022]
|
7
|
Zhang CF, Dai LS, Wang L, Qian C, Wei GQ, Li J, Zhu BJ, Liu CL. Eicosanoids mediate sHSP 20.8 gene response to biotic stress in larvae of the Chinese oak silkworm Antheraea pernyi. Gene 2014; 562:32-9. [PMID: 25527122 DOI: 10.1016/j.gene.2014.12.035] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Revised: 12/11/2014] [Accepted: 12/15/2014] [Indexed: 11/16/2022]
Abstract
Small heat shock proteins (sHSPs) can regulate protein folding and protect cells from stress. To investigate the role of sHSPs in the silk-producing insect Antheraea pernyi (A. pernyi; Lepidoptera: Saturniidae), cDNA encoding HSP20.8 in A. pernyi, termed Ap-sHSP20.8, was identified as a 564 bp ORF. The translated amino acid sequence encoded 187 residues with a calculated molecular mass of 20.8 kDa and an isoelectronic point (pI) of 5.98; the sequence showed homology to sHSP chaperone proteins from other insects. Ap-sHSP20.8 mRNA transcript expression was abundant in the midgut and fat body and found to be both constitutive and inducible by infectious stimuli. Therefore, Ap-sHSP20.8 may play important roles in A. pernyi immune responses under biotic stress. Furthermore, we found that eicosanoids could mediate the induction of Ap-sHSP20.8 in the fat body and midgut. Our findings show that sHSPs may be promising molecules to target in order to cripple immunity in insect pests.
Collapse
Affiliation(s)
- Cong-Fen Zhang
- College of Life Science, Anhui Agricultural University, Anhui, Hefei 230036, PR China; Department of Pharmacology, Wannan Medical College, Anhui, Wuhu 241002, PR China
| | - Li-Shang Dai
- College of Life Science, Anhui Agricultural University, Anhui, Hefei 230036, PR China
| | - Lei Wang
- College of Life Science, Anhui Agricultural University, Anhui, Hefei 230036, PR China
| | - Cen Qian
- College of Life Science, Anhui Agricultural University, Anhui, Hefei 230036, PR China
| | - Guo-Qing Wei
- College of Life Science, Anhui Agricultural University, Anhui, Hefei 230036, PR China
| | - Jun Li
- College of Life Science, Anhui Agricultural University, Anhui, Hefei 230036, PR China
| | - Bao-Jian Zhu
- College of Life Science, Anhui Agricultural University, Anhui, Hefei 230036, PR China.
| | - Chao-Liang Liu
- College of Life Science, Anhui Agricultural University, Anhui, Hefei 230036, PR China.
| |
Collapse
|
8
|
Eicosanoids: Exploiting Insect Immunity to Improve Biological Control Programs. INSECTS 2012; 3:492-510. [PMID: 26466540 PMCID: PMC4553607 DOI: 10.3390/insects3020492] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Revised: 04/24/2012] [Accepted: 05/09/2012] [Indexed: 01/30/2023]
Abstract
Insects, like all invertebrates, express robust innate, but not adaptive, immune reactions to infection and invasion. Insect immunity is usually resolved into three major components. The integument serves as a physical barrier to infections. Within the hemocoel, the circulating hemocytes are the temporal first line of defense, responsible for clearing the majority of infecting bacterial cells from circulation. Specific cellular defenses include phagocytosis, microaggregation of hemocytes with adhering bacteria, nodulation and encapsulation. Infections also stimulate the humoral component of immunity, which involves the induced expression of genes encoding antimicrobial peptides and activation of prophenoloxidase. These peptides appear in the hemolymph of challenged insects 6-12 hours after the challenge. Prostaglandins and other eicosanoids are crucial mediators of innate immune responses. Eicosanoid biosynthesis is stimulated by infection in insects. Inhibition of eicosanoid biosynthesis lethally renders experimental insects unable to clear bacterial infection from hemolymph. Eicosanoids mediate specific cell actions, including phagocytosis, microaggregation, nodulation, hemocyte migration, hemocyte spreading and the release of prophenoloxidase from oenocytoids. Some invaders have evolved mechanisms to suppress insect immunity; a few of them suppress immunity by targeting the first step in the eicosanoid biosynthesis pathways, the enzyme phospholipase A₂. We proposed research designed to cripple insect immunity as a technology to improve biological control of insects. We used dsRNA to silence insect genes encoding phospholipase A₂, and thereby inhibited the nodulation reaction to infection. The purpose of this article is to place our view of applying dsRNA technologies into the context of eicosanoid actions in insect immunity. The long-term significance of research in this area lies in developing new pest management technologies to contribute to food security in a world with a rapidly growing human population.
Collapse
|
9
|
Valadez-Lira J, Alcocer-Gonzalez J, Damas G, Nuñez-Mejía G, Oppert B, Rodriguez-Padilla C, Tamez-Guerra P. Comparative evaluation of phenoloxidase activity in different larval stages of four lepidopteran pests after exposure to Bacillus thuringiensis. JOURNAL OF INSECT SCIENCE (ONLINE) 2012; 12:80. [PMID: 23414117 PMCID: PMC3593704 DOI: 10.1673/031.012.8001] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2010] [Accepted: 11/18/2011] [Indexed: 04/30/2023]
Abstract
Microbial entomopathogen-based bioinsecticides are recognized as alternatives to synthetic pesticides. Insects defend themselves against microbial pathogens by innate mechanisms, including increased phenoloxidase (PO) activity, but its relationship with microbial bioinsecticides efficacy is little known. This study evaluated the differences in PO activity at different developmental stages of the tobacco budworm Heliothis virescens Fabricius (Lepidoptera: Noctuidae), Indian meal moth Plodia interpunctella (Hübner) (Pyralidae), beet armyworm Spodoptera exigua (Hübner) (Noctuidae), and cabbage looper Trichoplusia ni (Hübner) (Noctuidae). Additionally, 2(nd)- and 4(th)-instars were exposed to the LC(50) value of the commercial Bacillus thuringiensis (Bt) spray, Biobit(®). The percentage of insecticidal activity (IA%) on 2(nd)-instar Biobit-exposed larvae was approximately the predicted 50 % mortality for all species except S. exigua. With all 4(th) instar Biobit-exposed larvae, mortality was not significantly different from that of unexposed larvae. Unexposed insects had a significantly higher PO activity in pre-pupae and pupae than early-instar larvae and adults, whereas PO activity was higher in adult females than in males. Correlation analysis between IA% and PO activity revealed significant r-values (p < 0.01) in 2(nd) instar H. virescens (r = 0.979) and P. interpunctella (r = 0.930). Second instar Biobit-exposed P. interpunctella had 10 times more PO activity than unexposed larvae. Similarly, the amount of total protein was lower in 4(th) instar Biobit-exposed H. virescens and higher in S. exigua. Therefore, the results indicated a relationship between Biobit susceptibility and PO activity in some cases. This information may be useful if the Biobit application period is timed for a developmental stage with low PO activity. However, more studies are needed to determine the correlation of each insect with a particular bioinsecticide.
Collapse
Affiliation(s)
- J.A. Valadez-Lira
- Departamento de Microbiología e Inmunologia, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, México
| | - J.M. Alcocer-Gonzalez
- Departamento de Microbiología e Inmunologia, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, México
| | - G. Damas
- Departamento de Microbiología e Inmunologia, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, México
| | - G. Nuñez-Mejía
- Departamento de Microbiología e Inmunologia, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, México
| | - B. Oppert
- USDA-ARS, Center for Grain and Animal Health Research, 1515 College Ave., Manhattan, Kansas, USA
| | - C. Rodriguez-Padilla
- Departamento de Microbiología e Inmunologia, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, México
| | - P. Tamez-Guerra
- Departamento de Microbiología e Inmunologia, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, México
| |
Collapse
|
10
|
Kim J, Kim Y. Benzylideneacetone, an eicosanoid biosynthesis inhibitor enhances baculovirus pathogenicity in the diamondback moth, Plutella xylostella. J Invertebr Pathol 2010; 106:308-13. [PMID: 21112333 DOI: 10.1016/j.jip.2010.11.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2010] [Revised: 11/13/2010] [Accepted: 11/19/2010] [Indexed: 01/22/2023]
Abstract
Benzylideneacetone (BZA) is a monoterpenoid compound produced by an entomopathogenic bacterium, Xenorhabdus nematophila. BZA inhibits phospholipase A(2) to suppress biosynthesis of eicosanoids that mediate immune responses in insects. In response to per os infection of Autographa californica multiple nucleopolyhedrosis virus (AcMNPV), the diamondback moth, Plutella xylostella, developed red spots on the midgut epithelium. The midgut exhibiting red spot formation suffered abnormal cell integrity, such as genomic DNA fragmentation and condensed spots in the nucleoplasm. The number of red spots increased with viral dose and incubation time after the viral treatment. BZA inhibited the formation of the midgut red spots in a dose-dependent manner. However, the inhibitory effect of BZA on the red spot formation was reversed by addition of arachidonic acid, suggesting that the red spot response may be mediated by eicosanoids. BZA treatment resulted in significant enhancement of AcMNPV occlusion body (OB) pathogenicity to P. xylostella.
Collapse
Affiliation(s)
- Jiwan Kim
- Department of Bioresource Sciences, Andong National University, Andong 760-749, Republic of Korea
| | | |
Collapse
|
11
|
McNeil J, Cox-Foster D, Slavicek J, Hoover K. Contributions of immune responses to developmental resistance in Lymantria dispar challenged with baculovirus. JOURNAL OF INSECT PHYSIOLOGY 2010; 56:1167-1177. [PMID: 20350551 DOI: 10.1016/j.jinsphys.2010.03.020] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2010] [Revised: 03/11/2010] [Accepted: 03/15/2010] [Indexed: 05/29/2023]
Abstract
How the innate immune system functions to defend insects from viruses is an emerging field of study. We examined the impact of melanized encapsulation, a component of innate immunity that integrates both cellular and humoral immune responses, on the success of the baculovirus Lymantria dispar multiple nucleocapsid nucleopolyhedrovirus (LdMNPV) in its host L. dispar. L. dispar exhibits midgut-based and systemic, age-dependent resistance to LdMNPV within the fourth instar; the LD(50) in newly molted larvae is approximately 18-fold lower than in mid-instar larvae (48-72h post-molt). We examined the role of the immune system in systemic resistance by measuring differences in hemocyte immunoresponsiveness to foreign targets, hemolymph phenoloxidase (PO) and FAD-glucose dehydrogenase (GLD) activities, and melanization of infected tissue culture cells. Mid-instar larvae showed a higher degree of hemocyte immunoresponsiveness, greater potential PO activity (pro-PO) at the time the virus is escaping the midgut to enter the hemocoel (72h post-inoculation), greater GLD activity, and more targeted melanization of infected tissue, which correlate with reduced viral success in the host. These findings support the hypothesis that innate immune responses can play an important role in anti-viral defenses against baculoviruses and that the success of these defenses can be age-dependent.
Collapse
Affiliation(s)
- James McNeil
- Department of Entomology, The Pennsylvania State University, 501 ASI, University Park, PA 16802, USA
| | | | | | | |
Collapse
|
12
|
Büyükgüzel E, Hyršl P, Büyükgüzel K. Eicosanoids mediate hemolymph oxidative and antioxidative response in larvae of Galleria mellonella L. Comp Biochem Physiol A Mol Integr Physiol 2010; 156:176-83. [DOI: 10.1016/j.cbpa.2010.01.020] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2009] [Revised: 01/24/2010] [Accepted: 01/24/2010] [Indexed: 11/26/2022]
|
13
|
Stanley DW, Shapiro M. Eicosanoids influence insect susceptibility to nucleopolyhedroviruses. J Invertebr Pathol 2009; 102:245-9. [PMID: 19761772 DOI: 10.1016/j.jip.2009.09.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2009] [Accepted: 09/10/2009] [Indexed: 11/30/2022]
Abstract
Nine pharmaceutical inhibitors of eicosanoid biosynthesis (e.g., bromophenacyl bromide, clotrimazole, diclofenamic acid, esculetin, flufenamic acid, indomethacin, nimesulide, sulindac, tolfenamic acid) that increased the susceptibility of the gypsy moth, Lymantria dispar (L.), to the nucleopolyhedrovirus LdMNPV were tested against the beet armyworm Spodoptera exigua (Hübner), the corn earworm Helicoverpa zea (Boddie) and the fall armyworm Spodoptera frugiperda (J.E. Smith) and their respective NPVs to determine whether these compounds also alter the susceptibility of these insects. The susceptibility of the beet armyworm was increased by six inhibitors (bromophenacyl bromide, clotrimazole, diclofenic acid, esculetin, flufenamic acid, nimesulide). The susceptibility of the fall armyworm was increased by seven inhibitors, (bromophenacyl bromide, diclofenamic acid, esculetin, indomethacin, nimesulide, sulindac, tolfenamic acid), whereas the susceptibility of the corn earworm was increased by only one inhibitor (sulindac). The influence of the cyclooxygenase inhibitor, indomethacin was expressed in a concentration-related manner in beet armyworms. We infer from these findings that eicosanoids, including prostaglandins and lipoxygenase products, act in insect anti-viral defenses.
Collapse
Affiliation(s)
- David W Stanley
- USDA/Agricultural Research Service, Biological Control of Insects Research Laboratory, 1503 S. Providence Road, Columbia MO 65203, USA.
| | | |
Collapse
|
14
|
Garcia ES, Castro DP, Figueiredo MB, Genta FA, Azambuja P. Trypanosoma rangeli: a new perspective for studying the modulation of immune reactions of Rhodnius prolixus. Parasit Vectors 2009; 2:33. [PMID: 19615044 PMCID: PMC2719633 DOI: 10.1186/1756-3305-2-33] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2009] [Accepted: 07/17/2009] [Indexed: 11/11/2022] Open
Abstract
Insects are exposed to a wide range of microorganisms (bacteria, fungi, parasites and viruses) and have interconnected powerful immune reactions. Although insects lack an acquired immune system they have well-developed innate immune defences that allow a general and rapid response to infectious agents. Over the last few decades we have observed a dramatic increase in the knowledge of insect innate immunity, which relies on both humoral and cellular responses. However, innate reactions to natural insect pathogens and insect-transmitted pathogens, such as parasites, still remain poorly understood. In this review, we briefly introduce the general immune system of insects and highlight our current knowledge of these reactions focusing on the interactions of Trypanosoma rangeli with Rhodnius prolixus, an important model for innate immunity investigation.
Collapse
Affiliation(s)
- Eloi S Garcia
- Laboratório de Bioquímica e Fisiologia de Insetos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Avenida Brasil 4365, Rio de Janeiro, 21045-900, RJ, Brazil.
| | | | | | | | | |
Collapse
|
15
|
Zhao F, Stanley D, Wang Y, Zhu F, Lei CL. Eicosanoids mediate nodulation reactions to a mollicute bacterium in larvae of the blowfly, Chrysomya megacephala. JOURNAL OF INSECT PHYSIOLOGY 2009; 55:192-196. [PMID: 19071132 DOI: 10.1016/j.jinsphys.2008.10.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2008] [Revised: 10/20/2008] [Accepted: 10/28/2008] [Indexed: 05/27/2023]
Abstract
Nodulation is the temporally and quantitatively most important cellular defense response to bacterial, fungal and some viral infections in insects. We tested the hypothesis that prostaglandins and other eicosanoids are responsible for mediating nodulation reactions to bacterial infection in larvae of the blowfly Chrysomya megacephala. Third-instar larvae treated with Ureaplasma urealyticum formed nodules in a challenge dose-dependent manner. Nodulation was evoked shortly after injection and reached a maximum of approximately 25 nodules/larva within 8h. Larvae treated with the glucocorticoid, dexamethasone and the cyclooxygenase inhibitors, indomethacin and piroxicam were impaired in their ability to form nodules following U. urealyticum infection. The number of nodules decreased with increasing doses of piroxicam. Contrarily, treating larvae with the lipooxygenase inhibitor, esculetin, and the dual cyclooxygenase/lipooxygenase inhibitor, phenidone did not influence nodulation reactions to infection. Supplying dexamethasone-treated larvae with the eicosanoid precursor, arachidonic acid, reversed the inhibitory effect of dexamethasone on nodulation. We infer from these results that eicosanoids mediate nodulation reactions to infection of a bacterial species that lacks cell walls in larvae of the blowfly, C. megacephala.
Collapse
Affiliation(s)
- Fu Zhao
- Key Laboratory of Insect Resources Utilization and Sustainable Pest Management of Hubei Province, Huazhong, Agricultural University, Wuhan 430070, China
| | | | | | | | | |
Collapse
|
16
|
Thiem SM. Baculovirus genes affecting host function. In Vitro Cell Dev Biol Anim 2009; 45:111-26. [PMID: 19247726 DOI: 10.1007/s11626-008-9170-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2008] [Accepted: 12/20/2008] [Indexed: 12/24/2022]
Abstract
Baculoviruses are insect-specific viruses. These large DNA viruses encode many genes in addition to those required to replicate and build new virions. These auxiliary genes provide selective advantages to the virus for invading and infecting host insects. Eight of these genes, which help the virus overcome insect defenses against invasion, are discussed. These include genes whose products help the virus traverse physical or physiological barriers and those that overcome host immune defenses.
Collapse
Affiliation(s)
- Suzanne M Thiem
- Department of Entomology, Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48825, USA.
| |
Collapse
|
17
|
Insect cell culture and applications to research and pest management. In Vitro Cell Dev Biol Anim 2009; 45:93-105. [DOI: 10.1007/s11626-009-9181-x] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2008] [Accepted: 01/05/2009] [Indexed: 12/11/2022]
|
18
|
Figueiredo MB, Genta FA, Garcia ES, Azambuja P. Lipid mediators and vector infection: Trypanosoma rangeli inhibits Rhodnius prolixus hemocyte phagocytosis by modulation of phospholipase A2 and PAF-acetylhydrolase activities. JOURNAL OF INSECT PHYSIOLOGY 2008; 54:1528-1537. [PMID: 18835273 DOI: 10.1016/j.jinsphys.2008.08.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2008] [Revised: 08/11/2008] [Accepted: 08/21/2008] [Indexed: 05/26/2023]
Abstract
In this work we investigated the effects of Trypanosoma rangeli infection through a blood meal on the hemocyte phagocytosis in experiments using the 5th instar larvae of Rhodnius prolixus. Hemocyte phagocytic activity was strongly blocked by oral infection with the parasites. In contrast, hemocyte phagocytosis inhibition caused by T. rangeli infection was rescued by exogenous arachidonic acid (20 microg/insect) or platelet activating factor (PAF; 1 microg/insect) applied by hemocelic injection. Following the oral infection with the protozoan we observed significant attenuation of phospholipase A2 (PLA2) activities in R. prolixus hemocytes (cytosolic PLA2: cPLA2, secreted PLA2: sPLA2 and Ca+2-independent PLA2: iPLA2) and enhancement of sPLA2 activities in cell-free hemolymph. At the same time, the PAF-acetyl hydrolase (PAF-AH) activity in the cell-free hemolymph increased considerably. Our results suggest that T. rangeli infection depresses eicosanoid and insect PAF analogous (iPAF) pathways giving support to the role of PLA2 in the regulation of arachidonic acid and iPAF biosynthesis and of PAF-AH by reducing the concentration of iPAF in R. prolixus. This illustrates the ability of T. rangeli to modulate the immune responses of R. prolixus to favor its own multiplication in the hemolymph.
Collapse
Affiliation(s)
- Marcela B Figueiredo
- Laboratório de Bioquímica e Fisiologia de Insetos, Instituto Oswaldo Cruz, Av. Brasil 4365, Rio de Janeiro 21045-900, RJ, Brazil
| | | | | | | |
Collapse
|
19
|
Figueiredo MB, Garcia ES, Azambuja P. Blockades of phospholipase A(2) and platelet-activating factor receptors reduce the hemocyte phagocytosis in Rhodnius prolixus: in vitro experiments. JOURNAL OF INSECT PHYSIOLOGY 2008; 54:344-350. [PMID: 18036540 DOI: 10.1016/j.jinsphys.2007.10.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2007] [Revised: 10/09/2007] [Accepted: 10/12/2007] [Indexed: 05/25/2023]
Abstract
The hemocytes phagocytosis in response to microorganisms may play an important role in the cellular immune responses of insects. Here, we have evaluated the effects of the platelet-activating factor (PAF) and eicosanoids in the phagocytosis of hemocyte monolayers of Rhodnius prolixus to the yeast Saccharomyces cerevisiae. Experiments showed that the phagocytosis of yeast cells by Rhodnius hemocytes is very efficient in both controls and cells treated with PAF and arachidonic acid. Phagocytosis of yeast particles is significantly blocked when the specific phopholipase A(2) inhibitor, dexamethasone, is applied on the hemocytes. By contrast, dexamethasone-pretreated hemocyte monolayers exhibit a drastic increase in the quantity of yeast cell-hemocyte internalization when the cells are treated by arachidonic acid. In addition, phagocytosis presents significant reduction in hemocyte monolayers treated with a specific PAF receptor antagonist, WEB 2086. Nevertheless, inhibition of phagocytosis with WEB 2086 is counteracted by the treatment of the hemocyte monolayers with PAF. In conclusion, phagocytosis of yeast cells by hemocytes is related to the activation of PAF receptors and eicosanoid pathways in the bloodsucking bug, R. prolixus.
Collapse
Affiliation(s)
- Marcela B Figueiredo
- Laboratório de Bioquímica e Fisiologia de Insetos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, Brazil
| | | | | |
Collapse
|
20
|
Merchant D, Ertl RL, Rennard SI, Stanley DW, Miller JS. Eicosanoids mediate insect hemocyte migration. JOURNAL OF INSECT PHYSIOLOGY 2008; 54:215-221. [PMID: 17996890 DOI: 10.1016/j.jinsphys.2007.09.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2007] [Revised: 09/11/2007] [Accepted: 09/12/2007] [Indexed: 05/25/2023]
Abstract
Hemocyte migration toward infection and wound sites is an essential component of insect defense reactions, although the biochemical signal mechanisms responsible for mediating migration in insect cells are not well understood. Here we report on the outcomes of experiments designed to test the hypotheses that (1) insect hemocytes are able to detect and migrate toward a source of N-formyl-Met-Leu-Phe (fMLP), the major chemotactic peptide from Escherichia coli and (2) that pharmaceutical modulation of eicosanoid biosynthesis inhibits hemocyte migration. We used primary hemocyte cultures prepared from fifth-instar tobacco hornworms, Manduca sexta in Boyden chambers to assess hemocyte migration toward buffer (negative control) and toward buffer amended with fMLP (positive control). Approximately 42% of negative control hemocytes migrated toward buffer and about 64% of positive control hemocytes migrated toward fMLP. Hemocyte migration was inhibited (by >40%) by treating hornworms with pharmaceutical modulators of cycloxygenase (COX), lipoxygenase and phospholipase A2 (PLA2) before preparing primary hemocyte cultures. The influence of the COX inhibitor, indomethacin, and the glucocorticoid, dexamethasone, which leads to inhibition of PLA2, was expressed in a dose-dependent way. The influence of dexamethasone was reversed by injecting arachidonic acid (precursor to eicosanoid biosynthesis) into hornworms before preparing primary hemocyte cultures. The saturated fatty acid, palmitic acid, did not reverse the inhibitor effect. These findings support both our hypotheses, first that insect hemocytes can detect and respond to fMLP, and second, that insect hemocyte migration is mediated by eicosanoids.
Collapse
Affiliation(s)
- Deepali Merchant
- Department of Biological Sciences, Northern Illinois University, DeKalb, IL, USA
| | | | | | | | | |
Collapse
|