1
|
Xie Z, Lu Y, Tian Y, Li Q, Zou X, Sui L, Zhang Z. Fusarium citri as an entomopathogenic fungus mediating plant resistance against insect pests and phytopathogens. Sci Rep 2025; 15:12957. [PMID: 40234726 PMCID: PMC12000352 DOI: 10.1038/s41598-025-98103-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Accepted: 04/09/2025] [Indexed: 04/17/2025] Open
Abstract
Fusarium citri has been historically recognized as a phytopathogen but never as an entomophagous fungus (EPF) with plant endogeneity. In the present study, an F. citri strain, FcS1GZL-1, was isolated and identified from diseased Spodoptera litura larvae in a soybean field. The pathogenicity and antagonistic activity of FcS1GZL-1 against five insect pests were assessed, as well as its ability to colonize plants via root irrigation, and its induced resistance to insect pests and phytopathogens was also measured. The expression of plant resistance related genes was analyzed using real-time RT-PCR. According to the results, the FcS1GZL-1 strain could not only kill insect pests with high pathogenicity but also inhibited phytopathogen growth in vitro. Furthermore, the FcS1GZL-1 strain could repel insect pest feeding and enhance plant resistance to phytopathogens through endophytic customization following root irrigation, which upregulated 12 genes related to the jasmonic acid, salicylic acid, ethylene, and pathogen-related defense pathways in soybean roots. Herein, we present the first documented case of F. citri naturally infecting insects, and its dual role in controlling insect pests and phytopathogens, with promising biocontrol applications.
Collapse
Affiliation(s)
- Zhao Xie
- Institute of Plant Protection, Jilin Key Laboratory of Agricultural Microbiology, Key Laboratory of Integrated Pest Management on Crops in Northeast China, Jilin Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Gongzhuling, Jilin, China
| | - Yang Lu
- Institute of Plant Protection, Jilin Key Laboratory of Agricultural Microbiology, Key Laboratory of Integrated Pest Management on Crops in Northeast China, Jilin Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Gongzhuling, Jilin, China
| | - Yifan Tian
- Institute of Plant Protection, Jilin Key Laboratory of Agricultural Microbiology, Key Laboratory of Integrated Pest Management on Crops in Northeast China, Jilin Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Gongzhuling, Jilin, China
| | - Qiyun Li
- Institute of Plant Protection, Jilin Key Laboratory of Agricultural Microbiology, Key Laboratory of Integrated Pest Management on Crops in Northeast China, Jilin Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Gongzhuling, Jilin, China
- Jilin Agricultural University, Changchun, 130118, Jilin, China
| | - Xiaowei Zou
- Institute of Plant Protection, Jilin Key Laboratory of Agricultural Microbiology, Key Laboratory of Integrated Pest Management on Crops in Northeast China, Jilin Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Gongzhuling, Jilin, China
| | - Li Sui
- Institute of Plant Protection, Jilin Key Laboratory of Agricultural Microbiology, Key Laboratory of Integrated Pest Management on Crops in Northeast China, Jilin Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Gongzhuling, Jilin, China.
| | - Zhengkun Zhang
- Institute of Plant Protection, Jilin Key Laboratory of Agricultural Microbiology, Key Laboratory of Integrated Pest Management on Crops in Northeast China, Jilin Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Gongzhuling, Jilin, China.
| |
Collapse
|
2
|
Kumar D, Roy S, Babu A, Pandey AK. Harnessing Fungal Bioagents Rich in Volatile Metabolites for Sustainable Crop Protection: A Critical Review. J Basic Microbiol 2025; 65:e70003. [PMID: 40007229 DOI: 10.1002/jobm.70003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 12/29/2024] [Accepted: 01/11/2025] [Indexed: 02/27/2025]
Abstract
Pests and diseases have a significant impact on crop health and yields, posing a serious threat to global agriculture. Effective management strategies, such as integrated pest management (IPM), including crop rotation, use of synthetic pesticides, biological control, and resistant/tolerant crop varieties, are essential to mitigate these risks and ensure sustainable agricultural practices. Fungal bioagents play an important role in managing phytopathogens and insect pests by acting as biological agents. They promote healthy plant growth by enhancing the uptake of nutrients and combating systemic resistance in plants. Furthermore, fungal bioagents are environmentally friendly, reducing application of fungicides and insecticides and minimizing their negative impact on the crops and environment. Their use in IPM promotes sustainable agriculture and ensures high-quality crops while maintaining soil health and microbial biodiversity. These fungal bioagents are rich sources of volatile organic compounds (VOCs), which play an important role in biological communication during interaction with insect pests and phytopathogens. In pest management, VOC production by beneficial fungi is accountable for their efficacy against pests and pathogens. Thus, this review discusses the important fungal bioagents producing VOCs, extraction methods of VOC, and the use of VOC-producing fungi in pest and disease management, knowledge gaps, and future research areas.
Collapse
Affiliation(s)
- Dheeraj Kumar
- Department of Mycology & Microbiology, Tea Research Association, North Bengal Regional R & D Center, Nagrakata, India
| | - Somnath Roy
- Entomology Department, Tea Research Association, Tocklai Tea Research Institute, Jorhat, India
| | - Azariah Babu
- Entomology Department, Tea Research Association, Tocklai Tea Research Institute, Jorhat, India
| | - Abhay K Pandey
- Department of Mycology & Microbiology, Tea Research Association, North Bengal Regional R & D Center, Nagrakata, India
| |
Collapse
|
3
|
Saha N, Sharma A, Bora P. Expanding the functional landscape of microbial entomopathogens in agriculture beyond pest management. Folia Microbiol (Praha) 2025; 70:343-357. [PMID: 40042570 DOI: 10.1007/s12223-025-01251-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 02/13/2025] [Indexed: 05/09/2025]
Abstract
Microbial entomopathogens that include fungi, bacteria, viruses, and nematodes have long been valued for their role in biological control of insect pests. However, recent research highlights their expanded applications beyond pest management. Entomopathogenic fungi such as Beauveria bassiana and Metarhizium spp. are increasingly recognized for their potential as biocontrol agents in integrated pest management systems. These fungi exhibit not only direct insecticidal effects but also secondary metabolites that contribute to plant disease suppression, thereby enhancing crop health and yield. Bacterial entomopathogen Bacillus thuringiensis, as the most widely used biopesticide, has also demonstrated potency not only against insects but also as systemic resistance inducer, thereby boosting plant immunity against pathogens. Moreover, entomopathogens are emerging as growth promoters and biostimulants, enhancing crop vigor through nutrient uptake and root development. This review consolidates current knowledge on the mechanisms of action of microbial entomopathogens against pests as well as current understanding on its other plant-beneficial traits. It also discusses their environmental impact and potential integration into sustainable agricultural practices. This comprehensive exploration underscores the transformative potential of microbial entomopathogens in shaping future strategies for holistic crop health management including pest management in agriculture.
Collapse
Affiliation(s)
- Nikita Saha
- ARRI-Assam Agricultural University, Titabor, Jorhat, 785630, India
| | - Anwesha Sharma
- Department of Plant Pathology, AAU, Jorhat, 785013, India
| | - Popy Bora
- ARRI-Assam Agricultural University, Titabor, Jorhat, 785630, India.
| |
Collapse
|
4
|
Wang Y, Zou X, Zhu X, Qi J, Liu J, Zhang Z. The PKS-NRPS Gene BBA_09856 Deletion Mutant of Beauveria bassiana Enhanced Its Virulence Against Ostrinia furnacalis Larvae and Strengthened the Host Plant's Resistance to Botrytis cinerea as an Endotype. J Fungi (Basel) 2025; 11:197. [PMID: 40137235 PMCID: PMC11942696 DOI: 10.3390/jof11030197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Revised: 02/28/2025] [Accepted: 03/03/2025] [Indexed: 03/27/2025] Open
Abstract
Nonribosomal peptide synthetase (NRPS) and polyketide synthase (PKS) play crucial roles in the development and pathogenicity of the entomopathogenic fungus Beauveria bassiana. However, they are among the few biosynthetic gene clusters with unknown functions in B. bassiana. To investigate the role of the hybrid PKS-NRPS synthetase gene BBA_09856 in B. bassiana, we constructed a mutant strain, ∆BBA09856-WT, by deleting the BBA_09856 gene through Agrobacterium-mediated transformation. We then analyzed the biological characteristics of the mutant strain and the virulence of the mutant strain toward Ostrinia furnacalis larvae, as well as its antagonistic effects against the phytopathogen Botrytis cinerea. We found that the average growth rate of the three mutant strains, ∆BBA09856-WT, was significantly higher compared to the wild-type (WT) strain on the 15th day of culture on potato dextrose agar (PDA) plates (7.01 cm vs. 6.30 cm, p < 0.01). Additionally, the average spore production(3.16 × 107/cm2 vs. 9.95 × 106/cm2, p < 0.001) and germination rate (82.50% vs. 54.72%, 12 h, p < 0.001) were significantly different between the three mutant strains, ∆BBA09856-WT, and the WT strain. The average survival rates of O. furnacalis infected with the WT strain and the three mutant strains, ∆BBA09856-WT, after 8 days were 61.66%, and 30.00%, respectively, indicating that the pathogenicity of the tested mutant strains was significantly greater than that of the WT strain. The results of the dual culture test indicated that the inhibitory rates of the WT and ∆BBA09856-WT strains against B. cinerea were 40.25% and 47.65%, respectively (p < 0.001). Similarly, in the dual culture test, the WT strain reduced the growth of B. cinerea by 9.90%, while the ∆BBA09856-WT exhibited a significantly greater inhibition rate of 28.29% (p < 0.05). The diameters of disease spots, measured 6 d after inoculation with B. cinerea in the tomato treatment groups, revealed significant differences in endophytic colonization between the WT and ∆BBA09856-WT strains in the WT+Bc and ∆BBA09856-WT+Bc treatment groups (15.26 mm vs. 12.16 mm, p < 0.01). Notably, ∆BBA09856-WT exhibited enhanced virulence toward O. furnacalis larvae and increased antagonistic activity against B. cinerea. Our results indicate that the gene BBA_09856 may have a negative correlation with the development and virulence of B. bassiana toward the insect pest O. furnacalis larvae, as well as its antagonism against B. cinerea. These findings suggest that molecular techniques, such as gene editing, could be employed to develop superior strains of B. bassiana for the biological control of plant diseases and insect pests.
Collapse
Affiliation(s)
- Yanan Wang
- College of Life Sciences, Jilin Normal University, Siping 136000, China; (Y.W.)
- Key Laboratory of Integrated Pest Management on Crops in Northeast China, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Jilin Academy of Agricultural Sciences, Changchun 130033, China; (X.Z.); (X.Z.)
| | - Xiaowei Zou
- Key Laboratory of Integrated Pest Management on Crops in Northeast China, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Jilin Academy of Agricultural Sciences, Changchun 130033, China; (X.Z.); (X.Z.)
| | - Xiaomin Zhu
- Key Laboratory of Integrated Pest Management on Crops in Northeast China, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Jilin Academy of Agricultural Sciences, Changchun 130033, China; (X.Z.); (X.Z.)
| | - Ji Qi
- College of Life Sciences, Jilin Normal University, Siping 136000, China; (Y.W.)
- Key Laboratory of Integrated Pest Management on Crops in Northeast China, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Jilin Academy of Agricultural Sciences, Changchun 130033, China; (X.Z.); (X.Z.)
| | - Jianfeng Liu
- College of Life Sciences, Jilin Normal University, Siping 136000, China; (Y.W.)
| | - Zhengkun Zhang
- Key Laboratory of Integrated Pest Management on Crops in Northeast China, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Jilin Academy of Agricultural Sciences, Changchun 130033, China; (X.Z.); (X.Z.)
| |
Collapse
|
5
|
Paweer MMZ, Namikoye ES, Nchore SB, Akutse KS. Can fungal endophytes suppress Trialeurodes vaporariorum and the transmission of tomato infectious chlorosis and chlorosis viruses in field conditions? Front Cell Infect Microbiol 2025; 15:1470821. [PMID: 39967792 PMCID: PMC11832475 DOI: 10.3389/fcimb.2025.1470821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 01/16/2025] [Indexed: 02/20/2025] Open
Abstract
Field trials were conducted for two seasons in two experimental sites (Mwea in Kirinyaga and Ngoliba in Kiambu counties of Kenya) to assess the efficacy of fungal endophytes Hypocrea lixii F3ST1 and Trichoderma asperellum M2RT4 in the control of Trialeurodes vaporariorum vector of tomato infectious chlorosis virus (TICV) and tomato chlorosis virus (ToCV) through seeds inoculation. TICV and ToCV's disease incidence, severity and the yield were also evaluated. All the fungal endophytes successfully colonized all the tomato plant parts, but the highest root colonization was observed in H. lixii F3ST1 compared to the T. asperellum M2RT4 in both seasons. The number of nymphs was significantly lower in the endophytically colonized tomato plants than the control treatments in all the seasons and at both sites. However, the lowest number of nymphs was recorded in H. lixii F3ST1 compared to T. asperellum M2RT4. On the other hand, the TICV and ToCV disease incidence and severity rates were lower in endophytically colonized tomato crops compared to the control plots. This could be attributed to the reduction in the virus replication and lower feeding ability of T. vaporariorum that was characterized by less excretion of honeydew causing sooty mold. However, no significant difference was observed in ToCV disease severity rates among the treatments and across the seasons. The yield was significantly higher in endophyte plots than the control treatments in both sites and across the two seasons. This study demonstrates that H. lixii F3ST1 and T. asperellum M2RT4 endophytically colonized tomato plants and conferred systemic resistance against T. vaporariorum vector, and significantly reduced the transmission of TICV and ToCV, contributing to high reduction of both diseases' incidence and severity in the field. However, further studies are warranted to confirm these results at large scale trials.
Collapse
Affiliation(s)
- Marial Makur Zechariah Paweer
- International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya
- Department of Agricultural Science and Technology, Kenyatta University, Nairobi, Kenya
| | | | - Shem Bonuke Nchore
- Department of Agricultural Science and Technology, Kenyatta University, Nairobi, Kenya
| | - Komivi Senyo Akutse
- International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya
- Unit of Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
| |
Collapse
|
6
|
Panwar N, Szczepaniec A. Endophytic entomopathogenic fungi as biological control agents of insect pests. PEST MANAGEMENT SCIENCE 2024; 80:6033-6040. [PMID: 39046187 DOI: 10.1002/ps.8322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/11/2024] [Accepted: 07/05/2024] [Indexed: 07/25/2024]
Abstract
Entomopathogenic fungi capable of establishing mutualistic endophytic relationships with plants have a tremendous potential as biocontrol agents of insect pests. While fungi have long played an important and highly effective role in pest suppression, the utility of endophytic entomopathogenic fungi in pest management is a relatively new and emerging topic of biocontrol. Here we discuss the relevance of endophytic fungi to plant health in general, synthesize the current knowledge of the effectiveness of endophytic entomopathogenic fungi against diverse insect pests, discuss the indirect plant-mediated effects of endophytic entomopathogenic fungi on arthropods, and describe the diverse benefits of endophytic fungi to plants that are likely to affect herbivores and plant pathogens as well. Lastly, we consider major challenges to incorporating endophytic entomopathogenic fungi in biocontrol, such as their non-target effects and field efficacy, which can be variable and influenced by environmental factors. Continued research on endophyte-insect-plant-environment interactions is critical to advancing our knowledge of these fungi as a sustainable pest management tactic. © 2024 The Author(s). Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Neha Panwar
- Department of Agricultural Biology, Colorado State University, Fort Collins, CO, USA
| | - Adrianna Szczepaniec
- Department of Agricultural Biology, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
7
|
Kong D, Cui L, Wang X, Wo J, Xiong F. Fungus-derived opine enhances plant photosynthesis. J Adv Res 2024:S2090-1232(24)00547-2. [PMID: 39592078 DOI: 10.1016/j.jare.2024.11.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 11/20/2024] [Accepted: 11/22/2024] [Indexed: 11/28/2024] Open
Abstract
INTRODUCTION Plant-fungal interactions stimulate endophytic fungi to produce a plethora of metabolites that enhance plant growth and improve stress resistance. Opines, naturally occurring compounds formed through the condensation of amino acids with α-keto acids or sugars, have diverse biological functions and are mainly present in bacteria. Interestingly, investigations have revealed the presence of opine synthases (OSases) in fungal species as well, and their functions are yet to be studied. OBJECTIVES The objective of this study is to investigate the occurrence of OSases in fungal species, identify their products, and characterize the potential biological activity of the metabolites. METHODS We identified a putative class of OSases in fungi through sequence similarity network (SSN) analysis. The function of these enzymes was elucidated using methods including protein heterologous expression, in vitro biochemical characterization, in vivo gene knock-out, as well as product isolation and identification. Additionally, we conducted plant activity testing on the secondary metabolites through foliar spraying and performed transcriptomic analysis to uncover their functions. RESULTS A quarter of the PF18631 family members, which contain the C-terminal helical bundle domain of cucumopine synthase, are derived from endophytic fungi. Some of these enzymes catalyze the synthesis of tryptopine A (1-acetyl-3-carboxy-β-carboline) by condensing L-tryptophan and methylglyoxal. The tryptopine A can act as a growth regulator, promoting plant growth and transcriptionally reprogramming photosynthesis-related pathways, while enhancing the rate of plant photosynthesis by 25 %. CONCLUSION The findings of this study suggest that tryptopine A plays a crucial role as a signaling molecule in the establishment and maintenance of mutualistic associations between endophytic fungi and host plants, thereby enhancing our comprehension of fungal-plant symbiosis.
Collapse
Affiliation(s)
- Dekun Kong
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Li Cui
- State Key Laboratory of Microbial Metabolism, Joint International Laboratory of Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaozheng Wang
- State Key Laboratory of Microbial Metabolism, Joint International Laboratory of Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jing Wo
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China.
| | - Fangjie Xiong
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China.
| |
Collapse
|
8
|
Sun ZB, Song HJ, Liu YQ, Ren Q, Wang QY, Li XF, Pan HX, Huang XQ. The Potential of Microorganisms for the Control of Grape Downy Mildew-A Review. J Fungi (Basel) 2024; 10:702. [PMID: 39452654 PMCID: PMC11508768 DOI: 10.3390/jof10100702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 09/27/2024] [Accepted: 10/06/2024] [Indexed: 10/26/2024] Open
Abstract
Plasmopara viticola (Berk.et Curtis) Berl. Et de Toni is the pathogen that causes grape downy mildew, which is an airborne disease that severely affects grape yield and causes huge economic losses. The usage of effective control methods can reduce the damage to plants induced by grape downy mildew. Biocontrol has been widely used to control plant diseases due to its advantages of environmental friendliness and sustainability. However, to date, only a few comprehensive reviews on the biocontrol of grape downy mildew have been reported. In this review, we summarize the biological characteristics of P. viticola and its infection cycle, followed by a detailed overview of current biocontrol agents, including bacteria and fungi that could be used to control grape downy mildew, and their control effects. Furthermore, potential control mechanisms of biocontrol agents against grape downy mildew are discussed. Lastly, suggestions for future research on the biocontrol of grape downy mildew are provided. This review provides the basis for the application of grape downy mildew biocontrol.
Collapse
Affiliation(s)
- Zhan-Bin Sun
- School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing 100048, China; (Z.-B.S.)
| | - Han-Jian Song
- School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing 100048, China; (Z.-B.S.)
| | - Yong-Qiang Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Qing Ren
- School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing 100048, China; (Z.-B.S.)
| | - Qi-Yu Wang
- School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing 100048, China; (Z.-B.S.)
| | - Xiao-Feng Li
- School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing 100048, China; (Z.-B.S.)
| | - Han-Xu Pan
- School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing 100048, China; (Z.-B.S.)
| | - Xiao-Qing Huang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
9
|
Dessauvages K, Scheifler M, Francis F, Ben Fekih I. A New Isolate Beauveria bassiana GxABT-1: Efficacy against Myzus persicae and Promising Impact on the Beet Mild Yellow Virus-Aphid Association. INSECTS 2024; 15:697. [PMID: 39336665 PMCID: PMC11432153 DOI: 10.3390/insects15090697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/06/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024]
Abstract
Within the context of ecofriendly alternatives to neonicotinoids, we explored the direct and endophytic potential of two Beauveria bassiana isolates, GHA from BotaniGard and the new endemic isolate GxABT-1, against the Sugar Beet Mild Yellow Virus (BMYV)-Myzus persicae pathosystem. A mortality rate of 96 and 91% was registered after 8 days of treatment with GHA and Gx-ABT-1, respectively. To assess the endophytic impact, sugar beet seeds were treated, and the ability of the fungi to colonize the plant was assessed and correlated with the aphids' (1) life cycle, (2) attraction towards the plants, and (3) ability to transmit BMYV. Both fungi colonized the plants, and the GxABT-1 isolate impaired the aphids' life cycle. Myzus persicae were more attracted to leaf discs from non-treated plants than to the fungal-treated ones. Interestingly, when the choice test dealt only with the fungal treatments, aphids were more attracted to leaves from plants harboring Gx-ABT-1 than those with GHA. Moreover, no significant impact was observed for BMYV transmission despite the slight decrease in the viral load in GxABT-1 isolate-treated plants. Our findings constitute a baseline to delve more into the performance of the new endemic isolate B. bassiana in other pathosystems using different treatment methods.
Collapse
Affiliation(s)
- Kenza Dessauvages
- Functional and Evolutionary Entomology, Terra, Gembloux Agro-Bio Tech, University of Liege, Passage des Déportés 2, 5030 Gembloux, Belgium
| | - Mathilde Scheifler
- Evolution and Ecophysiology Group, Functional and Evolutionary Entomology, Terra, Gembloux Agro-Bio Tech, University of Liege, 5030 Gembloux, Belgium
| | - Frédéric Francis
- Functional and Evolutionary Entomology, Terra, Gembloux Agro-Bio Tech, University of Liege, Passage des Déportés 2, 5030 Gembloux, Belgium
| | - Ibtissem Ben Fekih
- Functional and Evolutionary Entomology, Terra, Gembloux Agro-Bio Tech, University of Liege, Passage des Déportés 2, 5030 Gembloux, Belgium
| |
Collapse
|
10
|
Ranesi M, Vitale S, Staropoli A, Di Lelio I, Izzo LG, De Luca MG, Becchimanzi A, Pennacchio F, Lorito M, Woo SL, Vinale F, Turrà D. Field isolates of Beauveria bassiana exhibit biological heterogeneity in multitrophic interactions of agricultural importance. Microbiol Res 2024; 286:127819. [PMID: 38986181 DOI: 10.1016/j.micres.2024.127819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/18/2024] [Accepted: 06/20/2024] [Indexed: 07/12/2024]
Abstract
Beauveria bassiana (Bb) is a widespread entomopathogenic fungus widely used in agriculture for crop protection. Other than pest control, fungi belonging to the B. bassiana complex represent an important microbial resource in agroecosystems, considering their multiple interactions with other microorganisms as antagonists of phytopathogens, or with plants as endophytic colonizers and growth promoters. Here, we characterised field collected or commercial isolates of B. bassiana relative to the environmental factors that affect their growth. We further compared the metabolome, the entomopathogenic potential and biocontrol activity of the tested isolates respectively on the insect pest Spodoptera littoralis or against the fungal plant pathogen Fusarium oxysporum. Our analysis revealed that the B. bassiana complex is characterised by a high level of inter-isolate heterogeneity in terms of nutritional requirements, establishment of intra- or inter-kingdom interactions, and the nature of metabolites produced. Interestingly, certain B. bassiana isolates demonstrated a preference for low nutrient plant-derived media, which hints at their adaptation towards an endophytic lifestyle over a saprophytic one. In addition, there was a noticeable variation among different B. bassiana isolates in their capacity to kill S. littoralis larvae in a contact infection test, but not in an intrahaemocoelic injection experiment, suggesting a unique level of adaptability specific to the host. On the other hand, most B. bassiana isolates exhibited similar biocontrol efficacy against the soil-dwelling ascomycete F. oxysporum f. sp. lycopersici, a pathogen responsible for vascular wilt disease in tomato plants, effectively averting wilting. Overall, we show that the effectiveness of B. bassiana isolates can greatly vary, emphasising the importance of isolate selection and nutritional adaptability consideration for their use in sustainable agriculture.
Collapse
Affiliation(s)
- M Ranesi
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, Portici (Na) 80055, Italy
| | - S Vitale
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, Portici (Na) 80055, Italy; Institute for Sustainable Plant Protection - National Research Council, Piazzale E. Fermi 1, Portici (Na) 80055, Italy
| | - A Staropoli
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, Portici (Na) 80055, Italy; Institute for Sustainable Plant Protection - National Research Council, Piazzale E. Fermi 1, Portici (Na) 80055, Italy
| | - I Di Lelio
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, Portici (Na) 80055, Italy; Center for Studies on Bioinspired Agro-Environmental Technology, University of Naples Federico II, Via Università, 100, Portici 80055, Italy
| | - L G Izzo
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, Portici (Na) 80055, Italy
| | - M G De Luca
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, Portici (Na) 80055, Italy
| | - A Becchimanzi
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, Portici (Na) 80055, Italy; Center for Studies on Bioinspired Agro-Environmental Technology, University of Naples Federico II, Via Università, 100, Portici 80055, Italy
| | - F Pennacchio
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, Portici (Na) 80055, Italy; Center for Studies on Bioinspired Agro-Environmental Technology, University of Naples Federico II, Via Università, 100, Portici 80055, Italy
| | - M Lorito
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, Portici (Na) 80055, Italy; Center for Studies on Bioinspired Agro-Environmental Technology, University of Naples Federico II, Via Università, 100, Portici 80055, Italy
| | - S L Woo
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, Naples 80131, Italy; Center for Studies on Bioinspired Agro-Environmental Technology, University of Naples Federico II, Via Università, 100, Portici 80055, Italy
| | - F Vinale
- Institute for Sustainable Plant Protection - National Research Council, Piazzale E. Fermi 1, Portici (Na) 80055, Italy; Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Via F. Delpino 1, Naples 80137, Italy; Center for Studies on Bioinspired Agro-Environmental Technology, University of Naples Federico II, Via Università, 100, Portici 80055, Italy
| | - D Turrà
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, Portici (Na) 80055, Italy; Center for Studies on Bioinspired Agro-Environmental Technology, University of Naples Federico II, Via Università, 100, Portici 80055, Italy; Computational and Quantitative Biology Task Force, University of Naples Federico II, Naples, Italy; Bioelectronics Task Force, University of Naples Federico II, Naples, Italy.
| |
Collapse
|
11
|
Pishchik VN, Chizhevskaya EP, Kichko AA, Aksenova TS, Andronov EE, Chebotar VK, Filippova PS, Shelenga TV, Belousova MH, Chikida NN. Metabolome and Mycobiome of Aegilops tauschii Subspecies Differing in Susceptibility to Brown Rust and Powdery Mildew Are Diverse. PLANTS (BASEL, SWITZERLAND) 2024; 13:2343. [PMID: 39273827 PMCID: PMC11397189 DOI: 10.3390/plants13172343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/15/2024] [Accepted: 08/21/2024] [Indexed: 09/15/2024]
Abstract
The present study demonstrated the differences in the seed metabolome and mycobiome of two Aegilops tauschii Coss accessions with different resistance to brown rust and powdery mildew. We hypothesized that the seeds of resistant accession k-1958 Ae. tauschii ssp. strangulata can contain a larger number of metabolites with antifungal activity compared with the seeds of susceptible Ae. tauschii ssp meyeri k-340, which will determine differences in the seed fungal community. Our study emphasizes the differences in the seed metabolome of the studied Ae. tauschii accessions. The resistant accession k-1958 had a higher content of glucose and organic acids, including pyruvic, salicylic and azelaic acid, as well as pipecolic acids, galactinol, glycerol and sitosterol. The seeds of Ae. tauschii-resistant accession k-1958 were found to contain more active substances with antifungal activity. The genera Cladosporium and Alternaria were dominant in the seed mycobiome of the resistant accession. The genera Alternaria, Blumeria and Cladosporium dominated in seed mycobiome of susceptible accession k-340. In the seed mycobiome of the resistant k-1958, a higher occurrence of saprotrophic micromycetes was found, and many of the micromycetes were biocontrol agents. It was concluded that differences in the seed metabolome of Ae. tauschii contributed to the determination of the differences in mycobiomes.
Collapse
Affiliation(s)
- Veronika N Pishchik
- All-Russia Research Institute for Agricultural Microbiology, Podbelskogo hwy 3, Pushkin, 196608 St. Petersburg, Russia
| | - Elena P Chizhevskaya
- All-Russia Research Institute for Agricultural Microbiology, Podbelskogo hwy 3, Pushkin, 196608 St. Petersburg, Russia
| | - Arina A Kichko
- All-Russia Research Institute for Agricultural Microbiology, Podbelskogo hwy 3, Pushkin, 196608 St. Petersburg, Russia
| | - Tatiana S Aksenova
- All-Russia Research Institute for Agricultural Microbiology, Podbelskogo hwy 3, Pushkin, 196608 St. Petersburg, Russia
| | - Evgeny E Andronov
- All-Russia Research Institute for Agricultural Microbiology, Podbelskogo hwy 3, Pushkin, 196608 St. Petersburg, Russia
| | - Vladimir K Chebotar
- All-Russia Research Institute for Agricultural Microbiology, Podbelskogo hwy 3, Pushkin, 196608 St. Petersburg, Russia
| | - Polina S Filippova
- St. Petersburg North-West Centre of Interdisciplinary Researches of Problems of Food Maintenance, Podbelskogo hwy, 7, Pushkin, 196608 St. Petersburg, Russia
| | - Tatiana V Shelenga
- Federal Center N. I. Vavilov All-Russian Institute of Plant Genetic Resources, Bolshaya Morskaya Street, 44, 190121 St. Petersburg, Russia
| | - Maria H Belousova
- Federal Center N. I. Vavilov All-Russian Institute of Plant Genetic Resources, Bolshaya Morskaya Street, 44, 190121 St. Petersburg, Russia
| | - Nadezhda N Chikida
- Federal Center N. I. Vavilov All-Russian Institute of Plant Genetic Resources, Bolshaya Morskaya Street, 44, 190121 St. Petersburg, Russia
| |
Collapse
|
12
|
Wallis CM, Sisterson MS. Opportunities for optimizing fungal biological control agents for long-term and effective management of insect pests of orchards and vineyards: a review. FRONTIERS IN FUNGAL BIOLOGY 2024; 5:1443343. [PMID: 39149520 PMCID: PMC11324555 DOI: 10.3389/ffunb.2024.1443343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 07/18/2024] [Indexed: 08/17/2024]
Abstract
Novel tactics for controlling insect pests in perennial fruit and nut crops are needed because target pests often display decreased susceptibility to chemical controls due to overreliance on a handful of active ingredients and regulatory issues. As an alternative to chemical controls, entomopathogenic fungi could be utilized as biological control agents to manage insect pest populations. However, development of field ready products is hampered by a lack of basic knowledge. Development of field ready products requires collecting, screening, and characterizing a greater variety of potential entomopathogenic fungal species and strains. Creation of a standardized research framework to study entomopathogenic fungi will aid in identifying the potential mechanisms of biological control activity that fungi could possess, including antibiotic metabolite production; strains and species best suited to survive in different climates and agroecosystems; and optimized combinations of entomopathogenic fungi and novel formulations. This mini review therefore discusses strategies to collect and characterize new entomopathogenic strains, test different potential mechanisms of biocontrol activity, examine ability of different species and strains to tolerate different climates, and lastly how to utilize this information to develop strains into products for growers.
Collapse
Affiliation(s)
- Christopher M Wallis
- Crop Diseases, Pest and Genetics Research Unit, San Joaquin Valley Agricultural Sciences Center, U.S. Department of Agriculture - Agricultural Research Service, Parlier, CA, United States
| | - Mark S Sisterson
- Crop Diseases, Pest and Genetics Research Unit, San Joaquin Valley Agricultural Sciences Center, U.S. Department of Agriculture - Agricultural Research Service, Parlier, CA, United States
| |
Collapse
|
13
|
Zhang Z, Sui L, Tian Y, Lu Y, Xia X, Liu W, Cheng K, Li Q, Shi W. Metarhizium rileyi with broad-spectrum insecticidal ability confers resistance against phytopathogens and insect pests as a phytoendophyte. PEST MANAGEMENT SCIENCE 2024; 80:3246-3257. [PMID: 38358040 DOI: 10.1002/ps.8027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 01/19/2024] [Accepted: 02/15/2024] [Indexed: 02/16/2024]
Abstract
BACKGROUND Entomophagous fungi (EPF) not only directly kill insect pests, but also colonize plants and improve their resistance against pests. However, most previous research has focused on Beauveria bassiana and Metarhizium anisopliae, and there are few reports on whether other EPF can enhance resistance against pests via endogenous colonization. Herein, an EPF strain was isolated from diseased larvae of Spodoptera litura in a soybean field, and subjected to genome-wide sequencing at the chromosomal level. The pathogenicity of the isolate toward various pest insects was evaluated, and the ability to colonize plants and induce resistance against phytopathogens and insect pests was tested. RESULTS The purified isolate was identified as M. rileyi and designated MrS1Gz1-1. Biological assays revealed its strong pathogenicity toward five insect pests belonging to Lepidoptera and Hemiptera. Furthermore, the strain inhibited the growth of soil-borne plant disease caused by Sclerotinia sclerotiorum in vitro. It colonized plants as an endophyte via soil application, thereby inducing plant resistance-related genes against phytopathogen infection, and it disrupted the feeding selectivity of S. litura larvae. CONCLUSION M. rileyi MrS1Gz1-1 has potential as a broad-spectrum microbial control agent that can induce resistance against phytopathogens and insect pests feeding as an endotype. The complete genome provides a valuable resource for exploring host interactions. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Zhengkun Zhang
- Institute of Plant Protection, Jilin Academy of Agricultural Sciences, Jilin Key Laboratory of Agricultural Microbiology, Key Laboratory of Integrated Pest Management on Crops in Northeast China, Ministry of Agriculture and Rural Areas, Changchun, China
| | - Li Sui
- Institute of Plant Protection, Jilin Academy of Agricultural Sciences, Jilin Key Laboratory of Agricultural Microbiology, Key Laboratory of Integrated Pest Management on Crops in Northeast China, Ministry of Agriculture and Rural Areas, Changchun, China
| | - Yifan Tian
- Institute of Plant Protection, Jilin Academy of Agricultural Sciences, Jilin Key Laboratory of Agricultural Microbiology, Key Laboratory of Integrated Pest Management on Crops in Northeast China, Ministry of Agriculture and Rural Areas, Changchun, China
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Yang Lu
- Institute of Plant Protection, Jilin Academy of Agricultural Sciences, Jilin Key Laboratory of Agricultural Microbiology, Key Laboratory of Integrated Pest Management on Crops in Northeast China, Ministry of Agriculture and Rural Areas, Changchun, China
| | - Xinyao Xia
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wende Liu
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ke Cheng
- Institute of Plant Protection, Jilin Academy of Agricultural Sciences, Jilin Key Laboratory of Agricultural Microbiology, Key Laboratory of Integrated Pest Management on Crops in Northeast China, Ministry of Agriculture and Rural Areas, Changchun, China
| | - Qiyun Li
- Institute of Plant Protection, Jilin Academy of Agricultural Sciences, Jilin Key Laboratory of Agricultural Microbiology, Key Laboratory of Integrated Pest Management on Crops in Northeast China, Ministry of Agriculture and Rural Areas, Changchun, China
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, China
- Jilin Agricultural Science and Technology University, Jilin, P. R. China
| | - Wangpeng Shi
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, China
| |
Collapse
|
14
|
Yiallouris A, Pana ZD, Marangos G, Tzyrka I, Karanasios S, Georgiou I, Kontopyrgia K, Triantafyllou E, Seidel D, Cornely OA, Johnson EO, Panagiotou S, Filippou C. Fungal diversity in the soil Mycobiome: Implications for ONE health. One Health 2024; 18:100720. [PMID: 38699438 PMCID: PMC11064618 DOI: 10.1016/j.onehlt.2024.100720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 04/02/2024] [Indexed: 05/05/2024] Open
Abstract
Today, over 300 million individuals worldwide are afflicted by severe fungal infections, many of whom will perish. Fungi, as a result of their plastic genomes have the ability to adapt to new environments and extreme conditions as a consequence of globalization, including urbanization, agricultural intensification, and, notably, climate change. Soils and the impact of these anthropogenic environmental factors can be the source of pathogenic and non-pathogenic fungi and subsequent fungal threats to public health. This underscores the growing understanding that not only is fungal diversity in the soil mycobiome a critical component of a functioning ecosystem, but also that soil microbial communities can significantly contribute to plant, animal, and human health, as underscored by the One Health concept. Collectively, this stresses the importance of investigating the soil microbiome in order to gain a deeper understanding of soil fungal ecology and its interplay with the rhizosphere microbiome, which carries significant implications for human health, animal health and environmental health.
Collapse
Affiliation(s)
- Andreas Yiallouris
- School of Medicine, European University, Cyprus
- Medical innovation center (MEDIC), School of Medicine, European University, Cyprus
| | - Zoi D. Pana
- School of Medicine, European University, Cyprus
- Medical innovation center (MEDIC), School of Medicine, European University, Cyprus
| | | | | | | | | | | | | | - Danila Seidel
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Translational Research, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD) and Excellence Center for Medical Mycology (ECMM), Cologne, Germany
- German Centre for Infection Research (DZIF), Partner Site Bonn-Cologne, Cologne, Germany
| | - Oliver A. Cornely
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Translational Research, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD) and Excellence Center for Medical Mycology (ECMM), Cologne, Germany
- German Centre for Infection Research (DZIF), Partner Site Bonn-Cologne, Cologne, Germany
| | - Elizabeth O. Johnson
- School of Medicine, European University, Cyprus
- Medical innovation center (MEDIC), School of Medicine, European University, Cyprus
| | - Stavros Panagiotou
- School of Medicine, European University, Cyprus
- Division of Medical Education, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester
| | - Charalampos Filippou
- School of Medicine, European University, Cyprus
- Medical innovation center (MEDIC), School of Medicine, European University, Cyprus
| |
Collapse
|
15
|
Mao A, Wang J, Zhu S, Jin D, Fan Y. An efficient visual screening of gene knockout mutants in the insect pathogenic fungus Beauveria bassiana. Microb Biotechnol 2024; 17:e14512. [PMID: 38923821 PMCID: PMC11201804 DOI: 10.1111/1751-7915.14512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024] Open
Abstract
Beauveria bassiana is an entomopathognic fungus, which is widely employed in the biological control of pests. Gene disruption is a common method for studying the functions of genes involved in fungal development or its interactions with hosts. However, generating gene deletion mutants was a time-consuming work. The transcriptional factor OpS3 has been identified as a positive regulator of a red secondary metabolite oosporein in B. bassiana. In this study, we have designed a new screening system by integrating a constitutive OpS3 expression cassette outside one of the homologous arms of target gene. Ectopic transformants predominantly exhibit a red colour with oosporein production, while knockout mutants appear as white colonies due to the loss of the OpS3 expression cassette caused by recombinant events. This screening strategy was used to obtain the deletion mutants of both tenS and NRPS genes. Correct mutants were obtained by screening fewer than 10 mutants with a positive efficiency ranging from 50% to 75%. This system significantly reduces the workload associated with DNA extraction and PCR amplification, thereby enhancing the efficiency of obtaining correct transformants in B. bassiana.
Collapse
Affiliation(s)
- Ajing Mao
- College of Agronomy and BiotechnologySouthwest UniversityChongqingChina
| | - Junyao Wang
- College of Agronomy and BiotechnologySouthwest UniversityChongqingChina
| | - Shengan Zhu
- College of Agronomy and BiotechnologySouthwest UniversityChongqingChina
| | - Dan Jin
- College of Agronomy and BiotechnologySouthwest UniversityChongqingChina
| | - Yanhua Fan
- College of Agronomy and BiotechnologySouthwest UniversityChongqingChina
| |
Collapse
|
16
|
Muola A, Birge T, Helander M, Mathew S, Harazinova V, Saikkonen K, Fuchs B. Endophytic Beauveria bassiana induces biosynthesis of flavonoids in oilseed rape following both seed inoculation and natural colonization. PEST MANAGEMENT SCIENCE 2024; 80:2461-2470. [PMID: 37467342 DOI: 10.1002/ps.7672] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 04/25/2023] [Accepted: 07/19/2023] [Indexed: 07/21/2023]
Abstract
BACKGROUND Cultivation of oilseed rape Brassica napus is pesticide-intensive, and alternative plant protection strategies are needed because both pesticide resistance and legislation narrow the range of effective chemical pesticides. The entomopathogenic fungus Beauveria bassiana is used as a biocontrol agent against various insect pests, but little is known about its endophytic potential and role in plant protection for oilseed rape. First, we studied whether B. bassiana can establish as an endophyte in oilseed rape, following seed inoculation. To evaluate the plant protection potential of endophytic B. bassiana on oilseed rape, we next examined its ability to induce plant metabolite biosynthesis. In another experiment, we tested the effect of seed inoculation on seedling survival in a semi-field experiment. RESULTS Beauveria bassiana endophytically colonized oilseed rape following seed inoculation, and, in addition, natural colonization was also recorded. Maximum colonization rate was 40%, and generally increased with inoculation time. Seed inoculation did not affect the germination probability or growth of oilseed rape, but B. bassiana inoculated seeds germinated more slowly compared to controls. Endophytic colonization of B. bassiana induced biosynthesis of several flavonoids in oilseed rape leaves under controlled conditions. In the experiment conducted in semi-field conditions, inoculated seedlings had slightly higher mortality compared to control seedlings. CONCLUSION Beauveria bassiana showed endophytic potential on oilseed rape via both natural colonization and seed inoculation, and it induced the biosynthesis of flavonoids. However, its use as an endophyte for plant protection against pests or pathogens for oilseed rape remains unclear. © 2023 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Anne Muola
- Biodiversity Unit, University of Turku, Turku, Finland
- Division of Biotechnology and Plant Health, Norwegian Institute of Bioeconomy Research, Tromsø, Norway
| | - Traci Birge
- Biodiversity Unit, University of Turku, Turku, Finland
| | - Marjo Helander
- Department of Biology, University of Turku, Turku, Finland
| | - Suni Mathew
- Biodiversity Unit, University of Turku, Turku, Finland
- Department of Biology, University of Turku, Turku, Finland
| | - Vili Harazinova
- Department of Entomology, Agricultural University-Plovdiv, Plovdiv, Bulgaria
| | | | | |
Collapse
|
17
|
Manfrino R, Gutierrez A, Ben Gharsa H, Schuster C, López Lastra C, Leclerque A. Molecular taxonomic characterization and infra-specific diversity of entomopathogenic Beauveria bassiana fungi from Argentina. Fungal Biol 2024; 128:1800-1805. [PMID: 38796264 DOI: 10.1016/j.funbio.2024.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 04/05/2024] [Accepted: 04/22/2024] [Indexed: 05/28/2024]
Abstract
It has been the aim of this study to molecular-taxonomically identify 15 Beauveria isolates collected from different geographical regions and insect hosts in Argentina and to investigate the levels of inter- and intra-specific diversity across this set of isolates. Based on phylogenetic analyses of EF1A-RPB1-RPB2 concatenated genes and BLOC markers, all Beauveria strains were identify as Beauveria bassiana. Within the B. bassiana clades of both phylogenies, isolates from Argentina were not clustered according to geographic origin or host. The 15 fungal isolates were further analyzed by PCR amplification of the intron insertion hot spot region of the nuclear 28S rRNA encoding sequence. By intron sequence and position, seven different group-I intron combinations termed variants A, B1, B2, C, D, E and F were found in the 15 isolates under study. Variants B1/B2 consisting of a single 28Si2 intron were found in ten isolates, whereas variant A occurred twice and variants C through F were unique across the set of isolates under study. The determination of the different introns and intron combinations in the 28S rRNA gene is a powerful tool for achieving infraspecific differentiation of B. bassiana isolates from Argentina.
Collapse
Affiliation(s)
- Romina Manfrino
- IDICAL-Instituto de Investigación de la Cadena Láctea, CONICET-Consejo Nacional de Investigaciones Científicas y Técnicas, INTA-Instituto Nacional de Tecnología Agropecuaria, Rafaela, 2300, Santa Fe, Argentina.
| | - Alejandra Gutierrez
- CEPAVE-Centro de Estudios Parasitológicos y de Vectores, Consejo Nacional de Investigaciones Científicas y Técnicas, UNLP-Universidad Nacional de La Plata, La Plata, 1900, Buenos Aires, Argentina
| | - Haifa Ben Gharsa
- Insect-Associated Microorganisms and Microbial Control, Department of Biology, Technische Universität Darmstadt, 64287, Darmstadt, Germany
| | - Christina Schuster
- Insect-Associated Microorganisms and Microbial Control, Department of Biology, Technische Universität Darmstadt, 64287, Darmstadt, Germany
| | - Claudia López Lastra
- CEPAVE-Centro de Estudios Parasitológicos y de Vectores, Consejo Nacional de Investigaciones Científicas y Técnicas, UNLP-Universidad Nacional de La Plata, La Plata, 1900, Buenos Aires, Argentina
| | - Andreas Leclerque
- Insect-Associated Microorganisms and Microbial Control, Department of Biology, Technische Universität Darmstadt, 64287, Darmstadt, Germany.
| |
Collapse
|
18
|
Mutungi PM, Wekesa VW, Onguso J, Kanga E, Baleba SBS, Boga HI. Fungal endophytes from saline-adapted shrubs induce salinity stress tolerance in tomato seedlings. FEMS MICROBES 2024; 5:xtae012. [PMID: 38770063 PMCID: PMC11104533 DOI: 10.1093/femsmc/xtae012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 03/15/2024] [Accepted: 04/27/2024] [Indexed: 05/22/2024] Open
Abstract
To meet the food and feed demands of the growing population, global food production needs to double by 2050. Climate change-induced challenges to food crops, especially soil salinization, remain a major threat to food production. We hypothesize that endophytic fungi isolated from salt-adapted host plants can confer salinity stress tolerance to salt-sensitive crops. Therefore, we isolated fungal endophytes from shrubs along the shores of saline alkaline Lake Magadi and evaluated their ability to induce salinity stress tolerance in tomato seeds and seedlings. Of 60 endophytic fungal isolates, 95% and 5% were from Ascomycetes and Basidiomycetes phyla, respectively. The highest number of isolates (48.3%) were from the roots. Amylase, protease and cellulase were produced by 25, 30 and 27 isolates, respectively; and 32 isolates solubilized phosphate. Only eight isolates grew at 1.5 M NaCl. Four fungal endophytes (Cephalotrichum cylindricum, Fusarium equiseti, Fusarium falciforme and Aspergilus puniceus) were tested under greenhouse conditions for their ability to induce salinity tolerance in tomato seedlings. All four endophytes successfully colonized tomato seedlings and grew in 1.5 M NaCl. The germination of endophyte-inoculated seeds was enhanced by 23%, whereas seedlings showed increased chlorophyll and biomass content and decreased hydrogen peroxide content under salinity stress, compared with controls. The results suggest that the the four isolates can potentially be used to mitigate salinity stress in tomato plants in salt-affected soils.
Collapse
Affiliation(s)
- Priscillar Mumo Mutungi
- Jomo Kenyatta University of Agriculture and Technology, Institute for Biotechnology Research, P.O. Box 62000–00200, Nairobi, Kenya
- Wildlife Research and Training Institute, Research, Development and Coordination, P.O. Box 842–20117, Naivasha, Kenya
| | - Vitalis Wafula Wekesa
- Bioline Agrosciences Africa Limited, Production, P.O. Box 1927–20117, Naivasha, Kenya
| | - Justus Onguso
- Jomo Kenyatta University of Agriculture and Technology, Institute for Biotechnology Research, P.O. Box 62000–00200, Nairobi, Kenya
| | - Erustus Kanga
- Kenya Wildlife Service, P.O. Box 40241–00100, Nairobi, Kenya
| | - Steve B S Baleba
- Department of Evolutionary Neuroethology, Max Planck Institute of Chemical Ecology, Hans-Knöll-Straße 8, D-07745 Jena, Germany
| | - Hamadi Iddi Boga
- Jomo Kenyatta University of Agriculture and Technology, Institute for Biotechnology Research, P.O. Box 62000–00200, Nairobi, Kenya
| |
Collapse
|
19
|
Muhammad M, Basit A, Ali K, Ahmad H, Li WJ, Khan A, Mohamed HI. A review on endophytic fungi: a potent reservoir of bioactive metabolites with special emphasis on blight disease management. Arch Microbiol 2024; 206:129. [PMID: 38416214 DOI: 10.1007/s00203-023-03828-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 12/30/2023] [Indexed: 02/29/2024]
Abstract
Phytopathogenic microorganisms have caused blight diseases that present significant challenges to global agriculture. These diseases result in substantial crop losses and have a significant economic impact. Due to the limitations of conventional chemical treatments in effectively and sustainably managing these diseases, there is an increasing interest in exploring alternative and environmentally friendly approaches for disease control. Using endophytic fungi as biocontrol agents has become a promising strategy in recent years. Endophytic fungi live inside plant tissues, forming mutually beneficial relationships, and have been discovered to produce a wide range of bioactive metabolites. These metabolites demonstrate significant potential for fighting blight diseases and provide a plentiful source of new biopesticides. In this review, we delve into the potential of endophytic fungi as a means of biocontrol against blight diseases. We specifically highlight their significance as a source of biologically active compounds. The review explores different mechanisms used by endophytic fungi to suppress phytopathogens. These mechanisms include competing for nutrients, producing antifungal compounds, and triggering plant defense responses. Furthermore, this review discusses the challenges of using endophytic fungi as biocontrol agents in commercial applications. It emphasizes the importance of conducting thorough research to enhance their effectiveness and stability in real-world environments. Therefore, bioactive metabolites from endophytic fungi have considerable potential for sustainable and eco-friendly blight disease control. Additional research on endophytes and their metabolites will promote biotechnology solutions.
Collapse
Affiliation(s)
- Murad Muhammad
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Abdul Basit
- Department of Horticultural Science, Kyungpook National University, Daegu, 41566, Korea
| | - Kashif Ali
- Center of Biotechnology and Microbiology, University of Peshawar, Peshawar, 25120, Pakistan
| | - Haris Ahmad
- Center of Biotechnology and Microbiology, University of Peshawar, Peshawar, 25120, Pakistan
| | - Wen-Jun Li
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, People's Republic of China
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Ayesha Khan
- Department of Horticulture, Faculty of Crop Production Sciences, The University of Agriculture, Peshawar, 25120, Pakistan
| | - Heba I Mohamed
- Biological and Geological Sciences Department, Faculty of Education, Ain Shams University, Cairo, 11341, Egypt.
| |
Collapse
|
20
|
Zhang Z, Tian Y, Sui L, Lu Y, Cheng K, Zhao Y, Li Q, Shi W. First record of Aspergillus nomiae as a broad-spectrum entomopathogenic fungus that provides resistance against phytopathogens and insect pests by colonization of plants. Front Microbiol 2024; 14:1284276. [PMID: 38260878 PMCID: PMC10801167 DOI: 10.3389/fmicb.2023.1284276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 12/13/2023] [Indexed: 01/24/2024] Open
Abstract
Introduction Aspergillus nomiae is known as a pathogenic fungus that infects humans and plants but has never been reported as an entomophagous fungus (EPF) that can provide other functions as an endotype. Methods A strain of EPF was isolated and identified from diseased larvae of Spodoptera litura in a soybean field and designated AnS1Gzl-1. Pathogenicity of the strain toward various insect pests was evaluated, especially the ability to colonize plants and induce resistance against phytopathogens and insect pests. Results The isolated EPF strain AnS1Gzl-1 was identified as A. nomiae; it showed strong pathogenicity toward five insect pests belonging to Lepidoptera and Hemiptera. Furthermore, the strain inhibited the growth of Sclerotinia sclerotiorum in vitro, a causal agent of soil-borne plant disease. It colonized plants as an endophyte via root irrigation with a high colonization rate of 90%, thereby inducing plant resistance against phytopathogen infection, and disrupting the feeding selectivity of S. litura larvae. Discussion This is the first record of a natural infection of A. nomiae on insects. A. nomiae has the potential to be used as a dual biocontrol EPF because of its ability to not only kill a broad spectrum of insect pests directly but also induce resistance against phytopathogens via plant colonization.
Collapse
Affiliation(s)
- Zhengkun Zhang
- Institute of Plant Protection, Jilin Academy of Agricultural Sciences, Changchun, China
- Jilin Key Laboratory of Agricultural Microbiology, Changchun, China
- Key Laboratory of Integrated Pest Management on Crops in Northeast China, Ministry of Agriculture and Rural Areas, Changchun, China
| | - Yifan Tian
- Institute of Plant Protection, Jilin Academy of Agricultural Sciences, Changchun, China
- Jilin Key Laboratory of Agricultural Microbiology, Changchun, China
- Key Laboratory of Integrated Pest Management on Crops in Northeast China, Ministry of Agriculture and Rural Areas, Changchun, China
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Li Sui
- Institute of Plant Protection, Jilin Academy of Agricultural Sciences, Changchun, China
- Jilin Key Laboratory of Agricultural Microbiology, Changchun, China
- Key Laboratory of Integrated Pest Management on Crops in Northeast China, Ministry of Agriculture and Rural Areas, Changchun, China
| | - Yang Lu
- Institute of Plant Protection, Jilin Academy of Agricultural Sciences, Changchun, China
- Jilin Key Laboratory of Agricultural Microbiology, Changchun, China
- Key Laboratory of Integrated Pest Management on Crops in Northeast China, Ministry of Agriculture and Rural Areas, Changchun, China
| | - Ke Cheng
- Institute of Plant Protection, Jilin Academy of Agricultural Sciences, Changchun, China
- Jilin Key Laboratory of Agricultural Microbiology, Changchun, China
- Key Laboratory of Integrated Pest Management on Crops in Northeast China, Ministry of Agriculture and Rural Areas, Changchun, China
| | - Yu Zhao
- Institute of Plant Protection, Jilin Academy of Agricultural Sciences, Changchun, China
- Jilin Key Laboratory of Agricultural Microbiology, Changchun, China
- Key Laboratory of Integrated Pest Management on Crops in Northeast China, Ministry of Agriculture and Rural Areas, Changchun, China
| | - Qiyun Li
- Institute of Plant Protection, Jilin Academy of Agricultural Sciences, Changchun, China
- Jilin Key Laboratory of Agricultural Microbiology, Changchun, China
- Key Laboratory of Integrated Pest Management on Crops in Northeast China, Ministry of Agriculture and Rural Areas, Changchun, China
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, China
- Jilin Agricultural Science and Technology University, Jilin, China
| | - Wangpeng Shi
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, China
| |
Collapse
|
21
|
Nzabanita C, Zhang L, Wang Y, Wang S, Guo L. The Wheat Endophyte Epicoccum layuense J4-3 Inhibits Fusarium graminearum and Enhances Plant Growth. J Fungi (Basel) 2023; 10:10. [PMID: 38248920 PMCID: PMC10817605 DOI: 10.3390/jof10010010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/11/2023] [Accepted: 12/20/2023] [Indexed: 01/23/2024] Open
Abstract
Fungal endophytes are well-known for their ability to promote plant growth and hinder fungal diseases, including Fusarium head blight (FHB) caused by Fusarium graminearum. This study aimed to characterize the biocontrol efficacy of strain J4-3 isolated from the stem of symptomless wheat collected from Heilongjiang Province, China. It was identified as Epicoccum layuense using morphological characteristics and phylogenetic analysis of the rDNA internal transcribed spacer (ITS) and beta-tubulin (TUB). In a dual culture assay, strain J4-3 significantly inhibited the mycelial growth of F. graminearum strain PH-1 and other fungal pathogens. In addition, wheat coleoptile tests showed that lesion symptoms caused by F. graminearum were significantly reduced in wheat seedlings treated with hyphal fragment suspensions of strain J4-3 compared to the controls. Under field conditions, applying spore suspensions and culture filtrates of strain J4-3 with conidial suspensions of F. graminearum on wheat spikes resulted in the significant biocontrol efficacy of FHB. In addition, wheat seedlings previously treated with spore suspensions of strain J4-3 before sowing successfully resulted in FHB reduction after the application of conidial suspensions of F. graminearum at anthesis. More importantly, wheat seedlings treated with hyphal fragments and spore suspensions of strain J4-3 showed significant increases in wheat growth compared to the controls under greenhouse and field conditions. Overall, these findings suggest that E. layuense J4-3 could be a promising biocontrol agent (BCA) against F. graminearum, causing FHB and a growth-promoting fungus in wheat.
Collapse
Affiliation(s)
| | | | | | | | - Lihua Guo
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (C.N.); (L.Z.); (Y.W.); (S.W.)
| |
Collapse
|
22
|
Russo A, Winkler JB, Ghirardo A, Monti MM, Pollastri S, Ruocco M, Schnitzler JP, Loreto F. Interaction with the entomopathogenic fungus Beauveria bassiana influences tomato phenome and promotes resistance to Botrytis cinerea infection. FRONTIERS IN PLANT SCIENCE 2023; 14:1309747. [PMID: 38173923 PMCID: PMC10762804 DOI: 10.3389/fpls.2023.1309747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 11/29/2023] [Indexed: 01/05/2024]
Abstract
Plants are central to complex networks of multitrophic interactions. Increasing evidence suggests that beneficial microorganisms (BMs) may be used as plant biostimulants and pest biocontrol agents. We investigated whether tomato (Solanum lycopersicum) plants are thoroughly colonized by the endophytic and entomopathogenic fungus Beauveria bassiana, and how such colonization affects physiological parameters and the phenotype of plants grown under unstressed conditions or exposed to the pathogenic fungus Botrytis cinerea. As a positive control, a strain of the well-known biocontrol agent and growth inducer Trichoderma afroharzianum was used. As multitrophic interactions are often driven by (or have consequences on) volatile organic compounds (VOCs) released by plants constitutively or after induction by abiotic or biotic stresses, VOC emissions were also studied. Both B. bassiana and T. afroharzianum induced a significant but transient (one to two-day-long) reduction of stomatal conductance, which may indicate rapid activation of defensive (rejection) responses, but also limited photosynthesis. At later stages, our results demonstrated a successful and complete plant colonization by B. bassiana, which induced higher photosynthesis and lower respiration rates, improved growth of roots, stems, leaves, earlier flowering, higher number of fruits and yield in tomato plants. Beauveria bassiana also helped tomato plants fight B. cinerea, whose symptoms in leaves were almost entirely relieved with respect to control plants. Less VOCs were emitted when plants were colonized by B. bassiana or infected by B. cinerea, alone or in combination, suggesting no activation of VOC-dependent defensive mechanisms in response to both fungi.
Collapse
Affiliation(s)
- Assunta Russo
- University of Naples Federico II, Department of Agricultural Sciences, Portici, Italy
- National Research Council of Italy, Institute for Sustainable Plant Protection (CNR-IPSP), Portici, Italy
| | - Jana Barbro Winkler
- Helmholtz Zentrum München, Research Unit Environmental Simulation, Neuherberg, Germany
| | - Andrea Ghirardo
- Helmholtz Zentrum München, Research Unit Environmental Simulation, Neuherberg, Germany
| | - Maurilia M. Monti
- National Research Council of Italy, Institute for Sustainable Plant Protection (CNR-IPSP), Portici, Italy
| | - Susanna Pollastri
- National Research Council of Italy, Institute for Sustainable Plant Protection (CNR-IPSP), Portici, Italy
| | - Michelina Ruocco
- National Research Council of Italy, Institute for Sustainable Plant Protection (CNR-IPSP), Portici, Italy
| | - Jörg-Peter Schnitzler
- Helmholtz Zentrum München, Research Unit Environmental Simulation, Neuherberg, Germany
| | - Francesco Loreto
- National Research Council of Italy, Institute for Sustainable Plant Protection (CNR-IPSP), Portici, Italy
- Department of Biology, University of Naples Federico II, Naples, Italy
| |
Collapse
|
23
|
Bandeira JB, Rodrigues JN, de Oliveira RS, Pinto IO, Chagas-Júnior AF, Nascimento VL, Sarmento MI, de Moraes CB, Sarmento RA. Endophytic colonization of five Trichoderma species and their effects on growth of a Eucalyptus hybrid. Braz J Microbiol 2023; 54:3113-3125. [PMID: 37661212 PMCID: PMC10689710 DOI: 10.1007/s42770-023-01112-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 08/22/2023] [Indexed: 09/05/2023] Open
Abstract
The study aimed to evaluate the effectiveness of endophytic colonization via leaf and root inoculation of five Trichoderma species in a Eucalyptus hybrid, as well as the effects of inoculation on plant growth. The experimental design was completely randomized in a 6 × 2 factorial scheme. Plant growth was evaluated during the experimental period at three different times: 20 days after inoculation (d.a.i), 40 d.a.i., and 60 d.a.i. A statistical difference was observed between the inoculation methods during each period and between the Trichoderma species. Plants inoculated with T. asperellum showed the greatest growth among the treatments. Root-inoculated plants produced the greatest growth response. This showed that the presence of Trichoderma in the roots assisted in nutrient assimilation, promoted greater plant growth, when compared with leaf-inoculated plants. Evaluation of the effectiveness of endophytic colonization was performed at each sampling period by collecting leaf samples, and at 60 d.a.i., by collecting leaf, stem, and root samples. T. longibrachiatum and T. harzianum were isolated from leaves at 20 d.a.i., with an increase in the number of colonized plants throughout the evaluation of leaf-inoculated plants. In root-inoculated plants, treatment with T. longibrachiatum, T. harzianum, and T. asperellum presented the highest endophytic colonization in the stem and root samples (at 60 d.a.i.).
Collapse
Affiliation(s)
- Jéssica Bezerra Bandeira
- Programa de Pós-Graduação em Ciências Florestais e Ambientais, Universidade Federal do Tocantins (UFT)-Campus Gurupi, Gurupi, TO, 77402-970, Brazil
| | - Jovielly Neves Rodrigues
- Programa de Pós-Graduação em Ciências Florestais e Ambientais, Universidade Federal do Tocantins (UFT)-Campus Gurupi, Gurupi, TO, 77402-970, Brazil
| | - Rodrigo Silva de Oliveira
- Programa de Pós-Graduação em Produção Vegetal, Universidade Federal do Tocantins (UFT)-Campus Gurupi, Gurupi, TO, 77402-970, Brazil
| | - Ismael Oliveira Pinto
- Programa de Pós-Graduação em Produção Vegetal, Universidade Federal do Tocantins (UFT)-Campus Gurupi, Gurupi, TO, 77402-970, Brazil
- Setor de Agricultura, Instituto Federal do Tocantins (IFTO)-Campus Avançado Formoso do Araguaia, Formoso do Araguaia, TO, 77470-000, Brazil
| | - Aloísio Freitas Chagas-Júnior
- Programa de Pós-Graduação em Ciências Florestais e Ambientais, Universidade Federal do Tocantins (UFT)-Campus Gurupi, Gurupi, TO, 77402-970, Brazil
- Programa de Pós-Graduação em Produção Vegetal, Universidade Federal do Tocantins (UFT)-Campus Gurupi, Gurupi, TO, 77402-970, Brazil
| | - Vitor L Nascimento
- Setor de Fisiologia Vegetal-Departamento de Biologia, Universidade Federal de Lavras (UFLA), Lavras, MG, 37200-900, Brazil
| | - Maíra Ignacio Sarmento
- Programa de Pós-Graduação em Ciências Florestais e Ambientais, Universidade Federal do Tocantins (UFT)-Campus Gurupi, Gurupi, TO, 77402-970, Brazil
| | - Cristiano Bueno de Moraes
- Programa de Pós-Graduação em Ciências Florestais e Ambientais, Universidade Federal do Tocantins (UFT)-Campus Gurupi, Gurupi, TO, 77402-970, Brazil
| | - Renato Almeida Sarmento
- Programa de Pós-Graduação em Ciências Florestais e Ambientais, Universidade Federal do Tocantins (UFT)-Campus Gurupi, Gurupi, TO, 77402-970, Brazil.
- Programa de Pós-Graduação em Produção Vegetal, Universidade Federal do Tocantins (UFT)-Campus Gurupi, Gurupi, TO, 77402-970, Brazil.
| |
Collapse
|
24
|
Quesada-Moraga E, Garrido-Jurado I, González-Mas N, Yousef-Yousef M. Ecosystem services of entomopathogenic ascomycetes. J Invertebr Pathol 2023; 201:108015. [PMID: 37924859 DOI: 10.1016/j.jip.2023.108015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 10/27/2023] [Accepted: 10/31/2023] [Indexed: 11/06/2023]
Abstract
Entomopathogenic ascomycetes (EA) are an important part of the microbiota in most terrestrial ecosystems, where they can be found regulating natural populations of arthropod pests in both epigeous and hypogeous habitats while also establishing unique relationships with plants. These fungi offer direct benefits to agriculture and human welfare. In the present work, we conducted a systematic review to comprehensively assess the range of ecosystem services provided by EA, including direct and indirect pest biocontrol, plant growth promotion, plant defense against other biotic and abiotic stresses, nutrient cycling, and the production of new bioactive compounds with agricultural, pharmaceutical and medical importance. Moreover, EA are compatible with the ecosystem services provided by other microbial and macrobial biocontrol agents. This systematic review identified the need for future research to focus on evaluating the economic value of the ecological services provided by EA with a special emphasis on hypocrealean fungi. This evaluation is essential not only for the conservation but also for better regulation and exploitation of the benefits of EA in promoting agricultural sustainability, reducing the use of chemicals that enter the environment, and minimizing the negative impacts of crop protection on the carbon footprint and human health.
Collapse
Affiliation(s)
- Enrique Quesada-Moraga
- Department of Agronomy, Maria de Maeztu Excellence Unit DAUCO, ETSIAM, University of Cordoba, Edificio C4 Celestino Mutis, Campus de Rabanales, 14071 Cordoba, Spain.
| | - Inmaculada Garrido-Jurado
- Department of Agronomy, Maria de Maeztu Excellence Unit DAUCO, ETSIAM, University of Cordoba, Edificio C4 Celestino Mutis, Campus de Rabanales, 14071 Cordoba, Spain
| | - Natalia González-Mas
- Department of Agronomy, Maria de Maeztu Excellence Unit DAUCO, ETSIAM, University of Cordoba, Edificio C4 Celestino Mutis, Campus de Rabanales, 14071 Cordoba, Spain
| | - Meelad Yousef-Yousef
- Department of Agronomy, Maria de Maeztu Excellence Unit DAUCO, ETSIAM, University of Cordoba, Edificio C4 Celestino Mutis, Campus de Rabanales, 14071 Cordoba, Spain
| |
Collapse
|
25
|
Bamisile BS, Afolabi OG, Siddiqui JA, Xu Y. Endophytic insect pathogenic fungi-host plant-herbivore mutualism: elucidating the mechanisms involved in the tripartite interactions. World J Microbiol Biotechnol 2023; 39:326. [PMID: 37776438 DOI: 10.1007/s11274-023-03780-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 09/22/2023] [Indexed: 10/02/2023]
Abstract
Various techniques used by crop plants to evade insect pests and pathogen attacks have been documented. Among these, plant defense strategies induced by endophytic insect pathogenic fungi are arguably one of the most discussed. Endophytic fungi frequently colonize plants and inhabit their internal tissues for a portion of their lifespan without producing visible symptoms of the disease. This phenomenon is widespread and diverse in both natural and agricultural ecosystems, and is present in almost all plant organs. Many fungi can obtain nutrients by infecting and killing insects, and this ability has been developed numerous times in different fungal lineages. These species mainly consist of those in the order Hypocreales (Ascomycota), where the generalist insect pathogens, Beauveria sp. (Cordycipitaceae) and Metarhizium sp. (Clavicipitaceae) are two of the most studied endophytic entomopathogenic fungal genera. However, most fungi that kill insects do not survive in the tissues of living plants. The data published thus far show a high degree of variability and do not provide consistent explanations for the underlying mechanisms that may be responsible for these effects. This implies that available knowledge regarding the colonization of plant tissues by endophytic insect pathogenic fungi, the effects of colonization on plant metabolism, and how this contributes to a decrease in herbivore and pathogens damage is limited. To adequately utilize fungal-based products as biological control agents, these products must be effective and the reduction of pests and infection must be consistent and similar to that of chemical insecticides after application. This article discusses this possibility and highlights the benefits and the specific techniques utilized by endophytically challenged plants in invading insect pests and disease pathogens.
Collapse
Affiliation(s)
- Bamisope Steve Bamisile
- Department of Entomology, South China Agricultural University, Guangzhou, 510642, China
- Henry Fok School of Biology and Agriculture, Shaoguan University, Shaoguan, 512005, China
| | | | - Junaid Ali Siddiqui
- College of Agriculture, College of Tobacco Science, Guizhou University, Guiyang, 550025, China
| | - Yijuan Xu
- Department of Entomology, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
26
|
Iida Y, Higashi Y, Nishi O, Kouda M, Maeda K, Yoshida K, Asano S, Kawakami T, Nakajima K, Kuroda K, Tanaka C, Sasaki A, Kamiya K, Yamagishi N, Fujinaga M, Terami F, Yamanaka S, Kubota M. Entomopathogenic fungus Beauveria bassiana-based bioinsecticide suppresses severity of powdery mildews of vegetables by inducing the plant defense responses. FRONTIERS IN PLANT SCIENCE 2023; 14:1211825. [PMID: 37692425 PMCID: PMC10484095 DOI: 10.3389/fpls.2023.1211825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 08/07/2023] [Indexed: 09/12/2023]
Abstract
The entomopathogenic fungus Beauveria bassiana is used commercially as a microbial insecticides against a wide range of agricultural insect pests. Some strains of B. bassiana protect the plants from pathogens, but the underlying mechanisms are largely unknown. Here, we found that prophylactic sprays of commercial bioinsecticide Botanigard on cucumber, tomato, and strawberry plants suppressed the severity of economically damaging powdery mildews. On leaf surfaces, hyphal elongation and spore germination of cucumber powdery mildew, Podosphaera xanthii, were inhibited, but B. bassiana strain GHA, the active ingredient isolated from Botanigard, only inhibited hyphal elongation but had no effect on spore germination of P. xanthii. In addition, strain GHA suppressed powdery mildew symptoms locally, not systemically. Treatment with Botanigard and strain GHA induced a hypersensitive response (HR)-like cell death in epidermal cells of the cucumber leaves in a concentration-dependent manner and inhibited penetration by P. xanthii. Transcriptome analysis and mass spectrometry revealed that GHA induced expression of salicylic acid (SA)-related genes, and treatment with Botanigard and GHA increased the SA level in the cucumber leaves. In NahG-transgenic tomato plants, which do not accumulate SA, the biocontrol effect of tomato powdery mildew by GHA was significantly reduced. These results suggested that B. bassiana GHA induces SA accumulation, leading to the induction of HR-like cell death against powdery mildew and subsequent suppression of fungal penetration. Thus, Botanigard has the potential to control both insect pests and plant diseases.
Collapse
Affiliation(s)
- Yuichiro Iida
- Laboratory of Plant Pathology, Faculty of Agriculture, Setsunan University, Hirakata, Japan
- National Agriculture and Food Research Organization, Tsu, Japan
| | - Yumiko Higashi
- National Agriculture and Food Research Organization, Tsu, Japan
| | - Oumi Nishi
- National Agriculture and Food Research Organization, Tsu, Japan
| | - Mariko Kouda
- Laboratory of Plant Pathology, Faculty of Agriculture, Setsunan University, Hirakata, Japan
| | - Kazuya Maeda
- Laboratory of Plant Pathology, Faculty of Agriculture, Setsunan University, Hirakata, Japan
| | - Kandai Yoshida
- Nara Prefecture Agricultural Research and Development Center, Sakurai, Japan
| | - Shunsuke Asano
- Nara Prefecture Agricultural Research and Development Center, Sakurai, Japan
| | - Taku Kawakami
- Mie Prefecture Agricultural Research Institute, Matsusaka, Japan
| | - Kaori Nakajima
- Mie Prefecture Agricultural Research Institute, Matsusaka, Japan
| | | | - Chiharu Tanaka
- Mie Prefecture Agricultural Research Institute, Matsusaka, Japan
| | - Ayano Sasaki
- Mie Prefecture Agricultural Research Institute, Matsusaka, Japan
| | - Katsumi Kamiya
- Gifu Prefectural Agricultural Technology Center, Gifu, Japan
| | - Naho Yamagishi
- Nagano Vegetable and Ornamental Crops Experiment Station, Shiojiri, Japan
| | - Masashi Fujinaga
- Nagano Vegetable and Ornamental Crops Experiment Station, Shiojiri, Japan
| | - Fumihiro Terami
- National Agriculture and Food Research Organization, Tsu, Japan
| | | | - Masaharu Kubota
- National Agriculture and Food Research Organization, Tsukuba, Japan
| |
Collapse
|
27
|
Sui L, Lu Y, Zhou L, Li N, Li Q, Zhang Z. Endophytic Beauveria bassiana promotes plant biomass growth and suppresses pathogen damage by directional recruitment. Front Microbiol 2023; 14:1227269. [PMID: 37664126 PMCID: PMC10468600 DOI: 10.3389/fmicb.2023.1227269] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 08/03/2023] [Indexed: 09/05/2023] Open
Abstract
Introduction Entomopathogenic fungi (EPF) can colonize and establish symbiotic relationships with plants as endophytes. Recently, EPF have been reported to suppress plant pathogens and induce plant resistance to diseases. However, the potential mechanisms via which EPF as endophytes control major plant diseases in situ remain largely unknown. Methods Pot and field experiments were conducted to investigate the mechanisms via which an EPF, Beauveria bassiana, colonizes tomato, under Botrytis cinerea infection stress. B. bassiana blastospores were inoculated into tomato plants by root irrigation. Tomato resistance to tomato gray mold caused by B. cinerea was evaluated by artificial inoculation, and B. bassiana colonization in plants and rhizosphere soil under B. cinerea infection stress was evaluated by colony counting and quantitative PCR. Furthermore, the expression levels of three disease resistance-related genes (OXO, CHI, and atpA) in tomato leaves were determined to explore the effect of B. bassiana colonization on plant disease resistance performance in pot experiments. Results B. bassiana colonization could improve resistance of tomato plants to gray mold caused by B. cinerea. The incidence rate, lesion diameter, and disease index of gray mold decreased in both the pot and field experiments following B. bassiana colonization. B. bassiana was more likely to accumulate in the pathogen infected leaves, while decreasing in the rhizosphere soil, and induced the expression of plant resistance genes, which were up-regulated in leaves. Discussion The results indicated that plants could "recruit" B. bassiana from rhizosphere soil to diseased plants as directional effects, which then enhanced plant growth and resistance against pathogens, consequently inhibiting pathogen infection and multiplication in plants. Our findings provide novel insights that enhance our understanding of the roles of EPF during pathogen challenge.
Collapse
Affiliation(s)
- Li Sui
- Institute of Plant Protection, Jilin Academy of Agricultural Sciences, Gongzhuling, Jilin, China
| | - Yang Lu
- Institute of Plant Protection, Jilin Academy of Agricultural Sciences, Gongzhuling, Jilin, China
| | - Linyan Zhou
- College of Plant Protection, Jilin Agricultural University, Changchun, China
| | - Nannan Li
- College of Plant Protection, Jilin Agricultural University, Changchun, China
| | - Qiyun Li
- Institute of Plant Protection, Jilin Academy of Agricultural Sciences, Gongzhuling, Jilin, China
- College of Plant Protection, Jilin Agricultural University, Changchun, China
- Jilin Agricultural Science and Technology University, Jilin, China
| | - Zhengkun Zhang
- Institute of Plant Protection, Jilin Academy of Agricultural Sciences, Gongzhuling, Jilin, China
- College of Plant Protection, Jilin Agricultural University, Changchun, China
| |
Collapse
|
28
|
Mantzoukas S, Papantzikos V, Katsogiannou S, Papanikou A, Koukidis C, Servis D, Eliopoulos P, Patakioutas G. Biostimulant and Bioinsecticidal Effect of Coating Cotton Seeds with Endophytic Beauveria bassiana in Semi-Field Conditions. Microorganisms 2023; 11:2050. [PMID: 37630610 PMCID: PMC10457994 DOI: 10.3390/microorganisms11082050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/07/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
Increasing commercial demands from the textile and food industries are putting strong pressure on the cultivation of cotton and its derivatives to produce high yields. At the same time, cotton has high nutrient and irrigation requirements and is highly susceptible to insect pests. Coating cotton seeds with beneficial fungi could address these problems. The aim of this study was to investigate the growth of cotton using (A) conventional seeds and (B) seeds coated with the entomopathogenic fungus Beauveria bassiana (Hypocreales: Cordycipitaceae). The experiment was conducted in a greenhouse of the Department of Agriculture of the University of Ioannina, in a completely randomized design. The growth characteristics of cotton plants were recorded weekly while the fresh weight and dry matter of the leaves, shoots and roots of the developed cotton plants were calculated at the end of the experiment. Weekly determination of total chlorophyll content (TCHL) was used as an indicator of plant robustness during the 80-day experiment. Many cotton growth parameters of treated plants, like number of leaves, shoots and apical buds, plant height, stem diameter, fresh and dried biomass and TCHL, were significantly higher than those of the untreated ones. Apart from plant growth, naturally occurring by Aphis gossypii (Hemiptera: Aphididae) infestation which also monitored for six weeks. A significantly lower aphid population was recorded for inoculated plants after the fifth week compared to the control. The overall evaluation revealed that B. bassiana coating treatments appear to have a significant biostimulatory and bioinsecticidal effect. Our results could represent responsive applications to the demands of intensive cotton growing conditions.
Collapse
Affiliation(s)
- Spiridon Mantzoukas
- Department of Agriculture, University of Ioannina, Arta Campus, 45100 Ioannina, Greece; (V.P.); (S.K.); (A.P.); (G.P.)
| | - Vasileios Papantzikos
- Department of Agriculture, University of Ioannina, Arta Campus, 45100 Ioannina, Greece; (V.P.); (S.K.); (A.P.); (G.P.)
| | - Spiridoula Katsogiannou
- Department of Agriculture, University of Ioannina, Arta Campus, 45100 Ioannina, Greece; (V.P.); (S.K.); (A.P.); (G.P.)
| | - Areti Papanikou
- Department of Agriculture, University of Ioannina, Arta Campus, 45100 Ioannina, Greece; (V.P.); (S.K.); (A.P.); (G.P.)
| | | | | | - Panagiotis Eliopoulos
- Laboratory of Plant Health Management, Department of Agrotechnology, University of Thessaly, 41500 Larissa, Greece
| | - George Patakioutas
- Department of Agriculture, University of Ioannina, Arta Campus, 45100 Ioannina, Greece; (V.P.); (S.K.); (A.P.); (G.P.)
| |
Collapse
|
29
|
Proietti S, Falconieri GS, Bertini L, Pascale A, Bizzarri E, Morales-Sanfrutos J, Sabidó E, Ruocco M, Monti MM, Russo A, Dziurka K, Ceci M, Loreto F, Caruso C. Beauveria bassiana rewires molecular mechanisms related to growth and defense in tomato. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:4225-4243. [PMID: 37094092 PMCID: PMC10400115 DOI: 10.1093/jxb/erad148] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 04/21/2023] [Indexed: 05/03/2023]
Abstract
Plant roots can exploit beneficial associations with soil-inhabiting microbes, promoting growth and expanding the immune capacity of the host plant. In this work, we aimed to provide new information on changes occurring in tomato interacting with the beneficial fungus Beauveria bassiana. The tomato leaf proteome revealed perturbed molecular pathways during the establishment of the plant-fungus relationship. In the early stages of colonization (5-7 d), proteins related to defense responses to the fungus were down-regulated and proteins related to calcium transport were up-regulated. At later time points (12-19 d after colonization), up-regulation of molecular pathways linked to protein/amino acid turnover and to biosynthesis of energy compounds suggests beneficial interaction enhancing plant growth and development. At the later stage, the profile of leaf hormones and related compounds was also investigated, highlighting up-regulation of those related to plant growth and defense. Finally, B. bassiana colonization was found to improve plant resistance to Botrytis cinerea, impacting plant oxidative damage. Overall, our findings further expand current knowledge on the possible mechanisms underlying the beneficial role of B. bassiana in tomato plants.
Collapse
Affiliation(s)
- Silvia Proietti
- Department of Ecological and Biological Sciences, University of Tuscia, largo dell’Università snc, 01100 Viterbo, Italy
| | - Gaia Salvatore Falconieri
- Department of Ecological and Biological Sciences, University of Tuscia, largo dell’Università snc, 01100 Viterbo, Italy
| | - Laura Bertini
- Department of Ecological and Biological Sciences, University of Tuscia, largo dell’Università snc, 01100 Viterbo, Italy
| | - Alberto Pascale
- Plant-Microbe Interactions, Department of Biology, Science for Life, Utrecht University, Padualaan 8, 3584 CH Utrecht, Netherlands
| | - Elisabetta Bizzarri
- Department of Ecological and Biological Sciences, University of Tuscia, largo dell’Università snc, 01100 Viterbo, Italy
| | - Julia Morales-Sanfrutos
- Proteomics Unit, Centre de Regulació Genòmica, Barcelona Institute of Science and Technology (BIST), Carrer Dr. Aiguader 88, 08003 Barcelona, Spain
- Proteomics Unit, Universitat Pompeu Fabra, Carrer Dr Aiguader 88, 08003 Barcelona, Spain
| | - Eduard Sabidó
- Proteomics Unit, Centre de Regulació Genòmica, Barcelona Institute of Science and Technology (BIST), Carrer Dr. Aiguader 88, 08003 Barcelona, Spain
- Proteomics Unit, Universitat Pompeu Fabra, Carrer Dr Aiguader 88, 08003 Barcelona, Spain
| | - Michelina Ruocco
- Institute for Sustainable Plant Protection (IPSP-CNR), Piazzale Enrico Fermi, 1, 80055 Portici (NA), Italy
| | - Maurilia M Monti
- Institute for Sustainable Plant Protection (IPSP-CNR), Piazzale Enrico Fermi, 1, 80055 Portici (NA), Italy
| | - Assunta Russo
- Institute for Sustainable Plant Protection (IPSP-CNR), Piazzale Enrico Fermi, 1, 80055 Portici (NA), Italy
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055 Portici (NA), Italy
| | - Kinga Dziurka
- Department of Biotechnology, The Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Niezapominajek 21, 30-239 Kraków, Poland
| | - Marcello Ceci
- Department of Ecological and Biological Sciences, University of Tuscia, largo dell’Università snc, 01100 Viterbo, Italy
| | - Francesco Loreto
- Department of Biology, Via Cinthia, University of Naples Federico II, 80126, Naples, Italy
| | - Carla Caruso
- Department of Ecological and Biological Sciences, University of Tuscia, largo dell’Università snc, 01100 Viterbo, Italy
| |
Collapse
|
30
|
Chen W, Modi D, Picot A. Soil and Phytomicrobiome for Plant Disease Suppression and Management under Climate Change: A Review. PLANTS (BASEL, SWITZERLAND) 2023; 12:2736. [PMID: 37514350 PMCID: PMC10384710 DOI: 10.3390/plants12142736] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/17/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023]
Abstract
The phytomicrobiome plays a crucial role in soil and ecosystem health, encompassing both beneficial members providing critical ecosystem goods and services and pathogens threatening food safety and security. The potential benefits of harnessing the power of the phytomicrobiome for plant disease suppression and management are indisputable and of interest in agriculture but also in forestry and landscaping. Indeed, plant diseases can be mitigated by in situ manipulations of resident microorganisms through agronomic practices (such as minimum tillage, crop rotation, cover cropping, organic mulching, etc.) as well as by applying microbial inoculants. However, numerous challenges, such as the lack of standardized methods for microbiome analysis and the difficulty in translating research findings into practical applications are at stake. Moreover, climate change is affecting the distribution, abundance, and virulence of many plant pathogens, while also altering the phytomicrobiome functioning, further compounding disease management strategies. Here, we will first review literature demonstrating how agricultural practices have been found effective in promoting soil health and enhancing disease suppressiveness and mitigation through a shift of the phytomicrobiome. Challenges and barriers to the identification and use of the phytomicrobiome for plant disease management will then be discussed before focusing on the potential impacts of climate change on the phytomicrobiome functioning and disease outcome.
Collapse
Affiliation(s)
- Wen Chen
- Ottawa Research and Development Centre, Science and Technology Branch, Agriculture and Agri-Food Canada, Ottawa, ON K1A 0C6, Canada
- Department of Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Dixi Modi
- Ottawa Research and Development Centre, Science and Technology Branch, Agriculture and Agri-Food Canada, Ottawa, ON K1A 0C6, Canada
| | - Adeline Picot
- Univ Brest, INRAE, Laboratoire Universitaire de Biodiversité et Écologie Microbienne, F-29280 Plouzané, France
| |
Collapse
|
31
|
Solano-González S, Castro-Vásquez R, Molina-Bravo R. Genomic Characterization and Functional Description of Beauveria bassiana Isolates from Latin America. J Fungi (Basel) 2023; 9:711. [PMID: 37504700 PMCID: PMC10381237 DOI: 10.3390/jof9070711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/07/2023] [Accepted: 06/08/2023] [Indexed: 07/29/2023] Open
Abstract
Beauveria bassiana is an entomopathogenic fungus used in agriculture as a biological controller worldwide. Despite being a well-studied organism, there are no genomic studies of B. bassiana isolates from Central American and Caribbean countries. This work characterized the functional potential of eight Neotropical isolates and provided an overview of their genomic characteristics, targeting genes associated with pathogenicity, the production of secondary metabolites, and the identification of CAZYmes as tools for future biotechnological applications. In addition, a comparison between these isolates and reference genomes was performed. Differences were observed according to geographical location and the lineages of the B. bassiana complex to which each isolate belonged.
Collapse
Affiliation(s)
- Stefany Solano-González
- Laboratorio de Bioinformática Aplicada (LABAP), Escuela de Ciencias Biológicas, Universidad Nacional, Heredia 40104, Costa Rica
| | - Ruth Castro-Vásquez
- Centro de Investigación en Biología Celular y Molecular, Universidad de Costa Rica, San José 11501, Costa Rica
| | - Ramón Molina-Bravo
- Biotecnología Vegetal y Recursos Genéticos para el Fitomejoramiento (BIOVERFI), Escuela de Ciencias Agrarias, Universidad Nacional, Heredia 40104, Costa Rica
| |
Collapse
|
32
|
Toppo P, Kagatay LL, Gurung A, Singla P, Chakraborty R, Roy S, Mathur P. Endophytic fungi mediates production of bioactive secondary metabolites via modulation of genes involved in key metabolic pathways and their contribution in different biotechnological sector. 3 Biotech 2023; 13:191. [PMID: 37197561 PMCID: PMC10183385 DOI: 10.1007/s13205-023-03605-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 05/03/2023] [Indexed: 05/19/2023] Open
Abstract
Endophytic fungi stimulate the production of an enormous number of bioactive metabolites in medicinal plants and affect the different steps of biosynthetic pathways of these secondary metabolites. Endophytic fungi possess a number of biosynthetic gene clusters that possess genes for various enzymes, transcription factors, etc., in their genome responsible for the production of secondary metabolites. Additionally, endophytic fungi also modulate the expression of various genes responsible for the synthesis of key enzymes involved in metabolic pathways of such as HMGR, DXR, etc. involved in the production of a large number of phenolic compounds as well as regulate the expression of genes involved in the production of alkaloids and terpenoids in different plants. This review aims to provide a comprehensive overview of gene expression related to endophytes and their impact on metabolic pathways. Additionally, this review will emphasize the studies done to isolate these secondary metabolites from endophytic fungi in large quantities and assess their bioactivity. Due to ease in synthesis of secondary metabolites and their huge application in the medical industry, these bioactive metabolites are now being extracted from strains of these endophytic fungi commercially. Apart from their application in the pharmaceutical industry, most of these metabolites extracted from endophytic fungi also possess plant growth-promoting ability, bioremediation potential, novel bio control agents, sources of anti-oxidants, etc. The review will comprehensively shed a light on the biotechnological application of these fungal metabolites at the industrial level.
Collapse
Affiliation(s)
- Prabha Toppo
- Microbiology Laboratory, Department of Botany, University of North Bengal, Rajarammohunpur, Dist. Darjeeling, Siliguri, West Bengal India
| | - Lahasang Lamu Kagatay
- Microbiology Laboratory, Department of Botany, University of North Bengal, Rajarammohunpur, Dist. Darjeeling, Siliguri, West Bengal India
| | - Ankita Gurung
- Microbiology Laboratory, Department of Botany, University of North Bengal, Rajarammohunpur, Dist. Darjeeling, Siliguri, West Bengal India
| | - Priyanka Singla
- Department of Botany, Mount Carmel College, Bengaluru, Karnataka India
| | - Rakhi Chakraborty
- Department of Botany, Acharya Prafulla Chandra Roy Government College, Dist. Darjeeling, Siliguri, West Bengal India
| | - Swarnendu Roy
- Plant Biochemistry Laboratory, Department of Botany, University of North Bengal, Rajarammohunpur, Dist. Darjeeling, Siliguri, West Bengal India
| | - Piyush Mathur
- Microbiology Laboratory, Department of Botany, University of North Bengal, Rajarammohunpur, Dist. Darjeeling, Siliguri, West Bengal India
| |
Collapse
|
33
|
Zhao Y, Mao W, Tang W, Soares MA, Li H. Wild Rosa Endophyte M7SB41-Mediated Host Plant's Powdery Mildew Resistance. J Fungi (Basel) 2023; 9:620. [PMID: 37367556 DOI: 10.3390/jof9060620] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/20/2023] [Accepted: 05/25/2023] [Indexed: 06/28/2023] Open
Abstract
Our previous studies indicated that endophyte M7SB41 (Seimatosporium sp.) can significantly enhance host plants powdery mildew (PM) resistance. To recover the mechanisms, differentially expressed genes (DEGs) were compared between E+ (endophte-inoculated) and E- (endophyte-free) plants by transcriptomics. A total of 4094, 1200 and 2319 DEGs between E+ and E- were identified at 0, 24, and 72 h after plants had been infected with PM pathogen Golovinomyces cichoracearum, respectively. Gene expression pattern analysis displayed a considerable difference and temporality in response to PM stress between the two groups. Transcriptional profiling analysis revealed that M7SB41 induced plant resistance to PM through Ca2+ signaling, salicylic acid (SA) signaling, and the phenylpropanoid biosynthesis pathway. In particular, we investigated the role and the timing of the SA and jasmonic acid (JA)-regulated defensive pathways. Both transcriptomes and pot experiments showed that SA-signaling may play a prominent role in PM resistance conferred by M7SB41. Additionally, the colonization of M7SB41 could effectively increase the activities and the expression of defense-related enzymes under PM pathogen stress. Meanwhile, our study revealed reliable candidate genes from TGA (TGACG motif-binding factor), WRKY, and pathogenesis-related genes related to M7SB41-mediate resistance. These findings offer a novel insight into the mechanisms of endophytes in activating plant defense responses.
Collapse
Affiliation(s)
- Yi Zhao
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, Yunnan Minzu University, Kunming 650500, China
| | - Wenqin Mao
- Life Science and Technology & Medical Faculty, Kunming University of Science and Technology, Kunming 650500, China
| | - Wenting Tang
- Life Science and Technology & Medical Faculty, Kunming University of Science and Technology, Kunming 650500, China
| | - Marcos Antônio Soares
- Department of Botany and Ecology, Federal University of Mato Grosso, Cuiabá 78060-900, Brazil
| | - Haiyan Li
- Life Science and Technology & Medical Faculty, Kunming University of Science and Technology, Kunming 650500, China
| |
Collapse
|
34
|
Geedi R, Canas L, Reding ME, Ranger CM. Attraction of Myzus persicae (Hemiptera: Aphididae) to Volatiles Emitted From the Entomopathogenic Fungus Beauveria bassiana. ENVIRONMENTAL ENTOMOLOGY 2023; 52:31-38. [PMID: 36421055 DOI: 10.1093/ee/nvac100] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Indexed: 06/16/2023]
Abstract
Beauveria bassiana (Balsamo) Vuillemin infects a wide variety of insects, including the green peach aphid, Myzus persicae (Sulzer). Volatiles emitted from B. bassiana can act as semiochemical attractants or repellents, with most responses reported to date resulting in insects avoiding B. bassiana. Since insects can detect 'enemy-specific volatile compounds', we hypothesized the preference behavior of M. persicae would be influenced by volatile emissions from B. bassiana. We conducted Petri dish and Y-tube olfactometer bioassays to characterize the preference of M. persicae to B. bassiana strain GHA. During Petri dish bioassays, more apterous and alate M. persicae were recorded in the vicinity of agar colonized by B. bassiana compared to agar, or Fusarium proliferatum (Matsushima) Nirenberg and Ambrosiella grosmanniae Mayers, McNew, & Harrington as representatives of nonentomopathogenic fungi. Petri dish bioassays also determined that apterous and alate M. persicae preferred filter paper saturated with 1 × 107, 1 × 106, and 1 × 105B. bassiana conidia/ml compared to Tween 80. Y-tube bioassays documented that more apterous and alate M. persicae oriented upwind to volatiles from B. bassiana mycelia compared to agar. Apterous and alate Myzus persicae were also preferentially attracted to 1 × 107 and 1 × 106B. bassiana conidia/ml compared to Tween-80 during Y-tube bioassays. These results complement a previous finding that the mosquito Anopheles stephensi (Diptera: Culicidae) Liston is attracted to volatiles from B. bassiana. Future studies aimed at characterizing the olfactory mechanism leading to the attraction of M. persicae to B. bassiana could aid in optimizing lure-and-kill strategies.
Collapse
Affiliation(s)
- Ruchika Geedi
- USDA-Agricultural Research Service, Horticultural Insects Research Lab, 1680 Madison Avenue, Wooster, OH 44691, USA
| | - Luis Canas
- The Ohio State University, Department of Entomology, 1680 Madison Avenue, Wooster, OH 44691, USA
| | - Michael E Reding
- USDA-Agricultural Research Service, Horticultural Insects Research Lab, 1680 Madison Avenue, Wooster, OH 44691, USA
| | - Christopher M Ranger
- USDA-Agricultural Research Service, Horticultural Insects Research Lab, 1680 Madison Avenue, Wooster, OH 44691, USA
| |
Collapse
|
35
|
Zhang MD, Wu SY, Yan JJ, Reitz S, Gao YL. Establishment of Beauveria bassiana as a fungal endophyte in potato plants and its virulence against potato tuber moth, Phthorimaea operculella (Lepidoptera: Gelechiidae). INSECT SCIENCE 2023; 30:197-207. [PMID: 35499984 DOI: 10.1111/1744-7917.13049] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 03/23/2022] [Accepted: 04/06/2022] [Indexed: 06/14/2023]
Abstract
The potato tuber moth, Phthorimaea operculella, is the most damaging potato pest in the world and is difficult to control as the larvae are internal feeders in the foliage and tubers. Entomopathogenic fungi that colonize plants as endophytes have lethal and sublethal pathological effects on insect pests. We show that Beauveria bassiana colonizes the aerial parts of potato plants endophytically after inoculation through soil drenching. Endophytic B. bassiana persisted in potato foliage for more than 50 days postinoculation. Bioassays indicated that foliage of B. bassiana-inoculated potato plants were pathogenic against larvae of P. operculella. Sublethal experiments indicated that B. bassiana negatively affected the growth, development, and reproduction of P. operculella. Development experiments showed that the weight of P. operculella pupae reared on B. bassiana-colonized potato plants (4.25 mg) was significantly less than that of those reared on uninoculated control plants (8.89 mg). Compared with newly eclosed larvae fed on control plants, those fed on B. bassiana-inoculated plants had significantly lower survivorship, with only 17.8% developing to the adult stage. Oviposition of P. operculella females reared on B. bassiana endophytically colonized plants was significantly lower (35 eggs/female) than of those reared on uninoculated plants (115 eggs/female). This study demonstrates that endophytic B. bassiana can be a potential biological control agent for the control and management of P. operculella. Comparing pupal weights of P. operculella reared on potato plants inoculated with the B. bassiana strain GZGY-1-3 and on untreated control plants, pupae from the control plants were significantly heavier than those from treated plants.
Collapse
Affiliation(s)
- Meng-Di Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Sheng-Yong Wu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jun-Jie Yan
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Stuart Reitz
- Department of Crop and Soil Sciences, Malheur Experiment Station, Oregon State University, Ontario, OR, USA
| | - Yu-Lin Gao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- National Center of Excellence for Tuber and Root Crop Research, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
36
|
Ramos Aguila LC, Sánchez Moreano JP, Akutse KS, Bamisile BS, Liu J, Haider FU, Ashraf HJ, Wang L. Comprehensive genome-wide identification and expression profiling of ADF gene family in Citrus sinensis, induced by endophytic colonization of Beauveria bassiana. Int J Biol Macromol 2023; 225:886-898. [PMID: 36403770 DOI: 10.1016/j.ijbiomac.2022.11.153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/30/2022] [Accepted: 11/01/2022] [Indexed: 11/19/2022]
Abstract
Endophytic entomopathogenic species are known to systematically colonize host plants and form symbiotic associations that benefit the plants they live with. The actin-depolymerizing factors (ADFs) are a group of gene family that regulate growth, development, and defense-related functions in plants. Systematic studies of ADF family at the genome-wide level and their expression in response to endophytic colonization are essential to understand its functions but are currently lacking in this field. 14ADF genes were identified and characterized in the Citrus sinensis genome. The ADF genes of C. sinensis were classified into five groups according to the phylogenetic analysis of plant ADFs. Additionally, the cis-acting analysis revealed that these genes play essential role in plant growth/development, phytohormone, and biotic and abiotic responses; and the expression analysis showed that the symbiotic interactions generate a significant expression regulation level of ADF genes in leaves, stems and roots, compared to controls; thus enhancing seedlings' growth. Additionally, the 3D structures of the ADF domain were highly conserved during evolution. These results will be helpful for further functional validation of ADFs candidate genes and provide important insights into the vegetative growth, development and stress tolerance of C. sinensis in responses to endophytic colonization by B. bassiana.
Collapse
Affiliation(s)
- Luis Carlos Ramos Aguila
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Biopesticide and Biochemistry, MOE, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Jessica Paola Sánchez Moreano
- Carrera de Agroecología, Facultad de Ciencias Socio-Ambientales, Universidad Regional Amazónica Ikiam, Tena 150102, Ecuador
| | - Komivi Senyo Akutse
- International Centre of Insect Physiology and Ecology (icipe), Nairobi, P.O. Box 30772-00100, Kenya
| | - Bamisope Steve Bamisile
- Department of Entomology, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Juxiu Liu
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Fasih Ullah Haider
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Hafiza Javaira Ashraf
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Biopesticide and Biochemistry, MOE, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Liande Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Biopesticide and Biochemistry, MOE, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
37
|
Gupta A, Tiwari RK, Shukla R, Singh AN, Sahu PK. Salinity alleviator bacteria in rice ( Oryza sativa L.), their colonization efficacy, and synergism with melatonin. FRONTIERS IN PLANT SCIENCE 2023; 13:1060287. [PMID: 36714774 PMCID: PMC9878605 DOI: 10.3389/fpls.2022.1060287] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 12/12/2022] [Indexed: 06/18/2023]
Abstract
In this study, rhizospheric and endophytic bacteria were tested for the alleviation of salinity stress in rice. Endophytic isolates were taken from previous studies based on their salt stress-alleviating traits. The rhizospheric bacteria were isolated from rice and screened based on salt tolerance and plant growth-promoting traits. Molecular identification indicated the presence of class Gammaproteobacteria, Bacillota, and Actinomycetia. Two-two most potential isolates each from rhizospheric and endophytic bacteria were selected for in planta trials. Results showed that microbial inoculation significantly improved germination and seedling vigor under elevated salinity. The confocal scanning laser microscopy showed higher bacterial colonization in inoculated rice roots than in control. Based on this experiment, rhizospheric bacteria Brevibacterium frigoritolerans W19 and endophytic Bacillus safensis BTL5 were selected for pot trial along with a growth-inducing compound melatonin 20 ppm. Inoculation of these two bacteria improved the levels of chlorophyll, proline, phenylalanine ammonia-lyase, catalase, superoxide dismutase, polyphenol oxidase, root-shoot length, and dry weight under elevated salt concentration. The gene expression studies showed modulation of SOD1, CATa, NHX1, and PAL1 genes by the bacterial strains and melatonin application. The inoculation was found to have additive effects with 20 ppm melatonin. This enhancement in dry matter accumulation, compatible solute production, and oxidative stress regulation could help plants in mitigating the ill effects of high salinity. Exploring such a combination of microbes and inducer molecules could be potentially useful in developing stress-alleviating bioformulations.
Collapse
Affiliation(s)
- Amrita Gupta
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow, India
- Indian Council of Agricultural Research (ICAR)-National Bureau of Agriculturally Important Microorganisms, Kushmaur, Maunath Bhanjan, India
- Indian Council of Agricultural Research (ICAR)-Indian Institute of Seed Sciences, Kushmaur, Maunath Bhanjan, India
| | - Rajesh Kumar Tiwari
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow, India
| | - Renu Shukla
- Indian Council of Agricultural Research (ICAR)-National Bureau of Agriculturally Important Microorganisms, Kushmaur, Maunath Bhanjan, India
| | - Arvind Nath Singh
- Indian Council of Agricultural Research (ICAR)-Indian Institute of Seed Sciences, Kushmaur, Maunath Bhanjan, India
| | - Pramod Kumar Sahu
- Indian Council of Agricultural Research (ICAR)-National Bureau of Agriculturally Important Microorganisms, Kushmaur, Maunath Bhanjan, India
| |
Collapse
|
38
|
Kramski DJ, Nowinski D, Kowalczuk K, Kruszyński P, Radzimska J, Greb-Markiewicz B. Beauveria bassiana Water Extracts' Effect on the Growth of Wheat. PLANTS (BASEL, SWITZERLAND) 2023; 12:326. [PMID: 36679039 PMCID: PMC9863656 DOI: 10.3390/plants12020326] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/29/2022] [Accepted: 01/05/2023] [Indexed: 06/17/2023]
Abstract
For a long time, entomopathogenic fungi were considered alternative biological control factors. Recently, these organisms were shown to fulfill additional roles supporting plants' development, improving their resistance to disease and survival under stress conditions. Considering the documented interactions of B. bassiana with a wide range of plants, we aimed to evaluate the impact of aqueous extracts of the fungus on the growth of an agriculturally significant plant-wheat. The usage of fungal extracts instead of fungi could be beneficial especially in unfavorable, environmentally speaking, regions. Selected dilutions of the crude extract obtained under different pH and temperature conditions were used to establish the optimal method of extraction. Plant growth parameters such as length, total fresh weight, and chlorophyll composition were evaluated. Additionally, the antibacterial activity of extracts was tested to exclude negative impacts on the beneficial soil microorganisms. The best results were obtained after applying extracts prepared at 25 °C and used at 10% concentration. Enhancement of the tested wheat's growth seems to be related to the composition of the extracts, which we documented as a rich source of macro- and microelements. Our preliminary results are the first confirming the potential of fungal water extracts as factors promoting plant growth. Further detailed investigation needs to be carried out to confirm the effects in real environment conditions. Additionally, the consistency of the plant growth stimulation across different entomopathogenic fungi and agriculturally used plant species should be tested.
Collapse
Affiliation(s)
- Dawid J. Kramski
- Department of Advanced Material Technology, Faculty of Chemistry, Wroclaw University of Science and Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland
- Department of Analytical Chemistry and Chemical Metallurgy, Faculty of Chemistry, Wroclaw University of Science and Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland
- Students Science Association Bio-Top, Faculty of Chemistry, Wroclaw University of Science and Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland
| | - Daria Nowinski
- Students Science Association Bio-Top, Faculty of Chemistry, Wroclaw University of Science and Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland
- Department of Organic and Organic and Medicinal Chemistry, Faculty of Chemistry, Wroclaw University of Science and Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland
| | - Kaja Kowalczuk
- Students Science Association Bio-Top, Faculty of Chemistry, Wroclaw University of Science and Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland
| | - Piotr Kruszyński
- Students Science Association Bio-Top, Faculty of Chemistry, Wroclaw University of Science and Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland
| | - Jagoda Radzimska
- Students Science Association Bio-Top, Faculty of Chemistry, Wroclaw University of Science and Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland
| | - Beata Greb-Markiewicz
- Department of Biochemistry, Molecular Biology and Biotechnology, Faculty of Chemistry, Wroclaw University of Science and Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland
| |
Collapse
|
39
|
Uniting the Role of Endophytic Fungi against Plant Pathogens and Their Interaction. J Fungi (Basel) 2023; 9:jof9010072. [PMID: 36675893 PMCID: PMC9860820 DOI: 10.3390/jof9010072] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/21/2022] [Accepted: 12/25/2022] [Indexed: 01/06/2023] Open
Abstract
Endophytic fungi are used as the most common microbial biological control agents (MBCAs) against phytopathogens and are ubiquitous in all plant parts. Most of the fungal species have roles against a variety of plant pathogens. Fungal endophytes provide different services to be used as pathogen control agents, using an important aspect in the form of enhanced plant growth and induced systemic resistance, produce a variety of antifungal secondary metabolites (lipopeptides, antibiotics and enzymes) through colonization, and compete with other pathogenic microorganisms for growth factors (space and nutrients). The purpose of this review is to highlight the biological control potential of fungal species with antifungal properties against different fungal plant pathogens. We focused on the introduction, biology, isolation, identification of endophytic fungi, and their antifungal activity against fungal plant pathogens. The endosymbionts have developed specific genes that exhibited endophytic behavior and demonstrated defensive responses against pathogens such as antibiosis, parasitism, lytic enzyme and competition, siderophore production, and indirect responses by induced systemic resistance (ISR) in the host plant. Finally, different microscopic detection techniques to study microbial interactions (endophytic and pathogenic fungal interactions) in host plants are briefly discussed.
Collapse
|
40
|
Nasif SO, Siddique AB, Siddique AB, Islam MM, Hassan O, Deepo DM, Hossain A. Prospects of endophytic fungi as a natural resource for the sustainability of crop production in the modern era of changing climate. Symbiosis 2022. [DOI: 10.1007/s13199-022-00879-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
41
|
Pan X, Li T, Liao C, Zhu Y, Yang M. The influences of fungal endophytes inoculation on the biochemical status of grape cells of different varieties in vitro. PLANT BIOTECHNOLOGY (TOKYO, JAPAN) 2022; 39:335-343. [PMID: 37283619 PMCID: PMC10240921 DOI: 10.5511/plantbiotechnology.22.0730a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 07/30/2022] [Indexed: 06/08/2023]
Abstract
The metabolic patterns of grape cells can be specifically shaped by different strains of dual-cultured fungal endophytes. In this work, a solid co-culture system was furtherly proposed to illustrate the different impacts of endophytic fungi on the biochemical status of grape cells of different varieties. By measuring the metabolic impacts of contact fungal endophytes on grape cells of the varieties 'Rose honey' (RH) and 'Cabernet sauvignon' (CS), we observed that most of the fungal strains used had promoting effects on grape cellular biochemistry parameters. Compared with the control, inoculation with most of the fungal strains increased the superoxide dismutase (SOD) and phenylalanine ammonia-lyase (PAL) activities as well as the total flavonoid (TF) and total phenolics (TPh) contents in both types of grape cells. Among the tested strains, RH34, RH49 and MDR36 had relatively stronger biochemical impacts on grape cells. More interestingly, in addition to the varietal specificity, a certain degree of fungal genus specificity was also observed during the metabolic interactions between fungal endophytes and grape cells, as fungal endophytes from the same genus tended to be clustered into the same group based on the affected biochemical traits. This work revealed the differential biochemical status effects of fungal endophytes on different varietal grape cells and raised the possibility of reshaping grape qualities by applying endophytes.
Collapse
Affiliation(s)
- Xiaoxia Pan
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission & Ministry of Education, School of Ethnic Medicine, Yunnan Minzu University, Kunming 650504, China
| | - Tong Li
- School of Ecology and Environmental Science, Yunnan University, Kunming 650504, China
| | - Changmei Liao
- School of Ecology and Environmental Science, Yunnan University, Kunming 650504, China
| | - Youyong Zhu
- Key Laboratory for Agro-biodiversity and Pest Control of Ministry of Education, Yunnan Agricultural University, Kunming 650201, China
| | - Mingzhi Yang
- School of Ecology and Environmental Science, Yunnan University, Kunming 650504, China
| |
Collapse
|
42
|
Pozebon H, Stürmer GR, Arnemann JA. Corn Stunt Pathosystem and Its Leafhopper Vector in Brazil. JOURNAL OF ECONOMIC ENTOMOLOGY 2022; 115:1817-1833. [PMID: 36130194 DOI: 10.1093/jee/toac147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Indexed: 06/15/2023]
Abstract
Direct and indirect injury caused by Dalbulus maidis (Hemiptera: Cicadellidae) in corn is an ever-increasing concern in Brazil and other corn-producing countries of the Americas. This highly efficient vector transmits corn stunting pathogens and is of economic concern in the Neotropics, including temperate regions where epidemic outbreaks are now common. Despite the progress made so far, Brazilian corn growers continue to struggle with this pest and its associated pathosystem. In this review, we gathered relevant and updated information on the bioecology, population dynamics, and damaging potential of D. maidis. Our goal was to better understand its intimate association and complex interactions with the host crop and transmitted pathogens. Based on available scientific literature, we identified factors which explain the recent increase in D. maidis occurrence in South America, including the cultivation of corn during multiple growing seasons, overlapping of susceptible crops, and widespread use of genetically modified hybrids. The reasons for the overall inefficiency of current suppression strategies aimed at this pest are also summarized. Finally, a management program for D. maidis and corn stunt disease is proposed, combining strategies such as eradicating volunteer corn, reducing the planting period, using tolerant hybrids, and applying chemical and/or fungal insecticides. Prospects regarding the pest's status are also outlined. Overall, the information presented here will serve as a decision-making guide within Brazilian and South American corn production systems, as well as paving the way for devising novel strategies aimed at suppressing D. maidis populations and limiting the spread of corn stunt disease.
Collapse
Affiliation(s)
- Henrique Pozebon
- Crop Protection Department, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | | | - Jonas André Arnemann
- Crop Protection Department, Federal University of Santa Maria, Santa Maria, RS, Brazil
| |
Collapse
|
43
|
Mascarin GM, Marinho-Prado JS, Assalin MR, Martins LG, Braga ES, Tasic L, Dita M, Lopes RB. Natural occurrence of Beauveria caledonica, pathogenicity to Cosmopolites sordidus and antifungal activity against Fusarium oxysporum f. sp. cubense. PEST MANAGEMENT SCIENCE 2022; 78:4458-4470. [PMID: 35775394 DOI: 10.1002/ps.7063] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 06/28/2022] [Accepted: 07/01/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Entomopathogenic fungi can provide a set of ecological services, such as suppressing arthropod pests and plant pathogens. In this study, novel indigenous Beauveria caledonica (Bc) strains were isolated from naturally infected banana weevils (Cosmopolites sordidus) occurring in commercial banana plantations in Brazil. RESULTS The prevalence of infection by Bc strains on field-caught C. sordidus ranged from 1.3% to 12.9%. Similar to the Beauveria bassiana strains tested, none of the Bc strains caused more than 50% weevil mortality at a concentration of 1 × 108 conidia ml-1 . Bc strain CMAA1810 caused the highest mortality in C. sordidus and had enhanced insecticidal activity when formulated with an emulsifiable oil. In paired co-culture assays, this same strain showed a significant growth-inhibitory effect on the causal agent of Fusarium banana wilt (Fusarium oxysporum f. sp. cubense, Foc) of twofold magnitude compared with the control. Cell-free crude filtrates derived from the red-pigmented culture broth of Bc (CMAA1810) strongly reduced Foc conidial viability, and this inhibitory activity was inversely related to the age of the Bc culture. Crude concentrated filtrates from 4-day-old cultures exhibited the strongest antifungal activity (13-fold) compared with untreated Foc conidia. The abundant compound identified in the crude filtrate of Bc was oosporein (1,4-dibenzoquinone) present at a concentration of 0.829 ± 0.018 mg g-1 dry matter, and the antifungal activity of the filtrate was demonstrated. CONCLUSION These results indicated that Bc strains might have the potential to manage both C. sordidus and Foc, two of the major phytosanitary problems in banana crops worldwide. Further research under field conditions using suitable formulations of virulent Bc strains in combination with the metabolite oosporein is needed to evaluate their efficacy in the management of C. sordidus and Foc in banana plantations. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
| | | | - Márcia Regina Assalin
- Brazilian Agricultural Research Corporation, Embrapa Environment, Jaguariúna, Brazil
| | - Lucas Gelain Martins
- Biological Chemistry Laboratory, Department of Organic Chemistry, Institute of Chemistry, University of Campinas (UNICAMP), Campinas, Brazil
| | - Erik Sobrinho Braga
- Biological Chemistry Laboratory, Department of Organic Chemistry, Institute of Chemistry, University of Campinas (UNICAMP), Campinas, Brazil
| | - Ljubica Tasic
- Biological Chemistry Laboratory, Department of Organic Chemistry, Institute of Chemistry, University of Campinas (UNICAMP), Campinas, Brazil
| | | | - Rogerio Biaggioni Lopes
- Brazilian Agricultural Research Corporation, Embrapa Genetic Resources and Biotechnology, Brasília, Brazil
| |
Collapse
|
44
|
Abstract
Tiankeng acts as a refugium for biodiversity amid a changing global climate, and a previous study has shown that some ancient (Alsophila spinulosa) and unique plants (cool-adapted plants) are present in Tiankeng. However, there are few reports on Ascomycota from the Tiankeng karst region. In this research, the species diversity of Cordyceps-like fungi in Monkey-Ear Tiankeng was investigated. Seven species in the genera Akanthomyces, Beauveria, Cordyceps, and Samsoniella were identified based on internal transcribed spacer sequences and morphological characteristics. Eight new species in the genera Akanthomyces, Cordyceps, and Samsoniella were established and described according to a multilocus phylogenetic analysis and morphological characteristics. Our results revealed that Cordyceps-like fungi were abundant in Monkey-Ear Tiankeng, providing new insights into the diversity of Ascomycota in this special eco-environment. IMPORTANCE Karst Tiankeng has a special eco-environment and acts as a refugium for biodiversity. However, there are few reports on Ascomycota from the Tiankeng karst region. In this research, seven known species and eight new species in the genera Akanthomyces, Beauveria, Cordyceps, and Samsoniella were reported. The results showed that Cordyceps-like fungi are abundant in Monkey-Ear Tiankeng. Interestingly, the month of the sampling was November, which is not an active period of growth and reproduction for Cordyceps-like fungi. These results revealed that unconventional time sampling should not be ignored, especially for a special eco-environment, and provided new insights into the diversity of Ascomycota in this special eco-environment.
Collapse
|
45
|
Snelders NC, Rovenich H, Thomma BPHJ. Microbiota manipulation through the secretion of effector proteins is fundamental to the wealth of lifestyles in the fungal kingdom. FEMS Microbiol Rev 2022; 46:fuac022. [PMID: 35604874 PMCID: PMC9438471 DOI: 10.1093/femsre/fuac022] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 05/19/2022] [Indexed: 11/13/2022] Open
Abstract
Fungi are well-known decomposers of organic matter that thrive in virtually any environment on Earth where they encounter wealths of other microbes. Some fungi evolved symbiotic lifestyles, including pathogens and mutualists, that have mostly been studied in binary interactions with their hosts. However, we now appreciate that such interactions are greatly influenced by the ecological context in which they take place. While establishing their symbioses, fungi not only interact with their hosts but also with the host-associated microbiota. Thus, they target the host and its associated microbiota as a single holobiont. Recent studies have shown that fungal pathogens manipulate the host microbiota by means of secreted effector proteins with selective antimicrobial activity to stimulate disease development. In this review, we discuss the ecological contexts in which such effector-mediated microbiota manipulation is relevant for the fungal lifestyle and argue that this is not only relevant for pathogens of plants and animals but also beneficial in virtually any niche where fungi occur. Moreover, we reason that effector-mediated microbiota manipulation likely evolved already in fungal ancestors that encountered microbial competition long before symbiosis with land plants and mammalian animals evolved. Thus, we claim that effector-mediated microbiota manipulation is fundamental to fungal biology.
Collapse
Affiliation(s)
- Nick C Snelders
- Institute for Plant Sciences, University of Cologne, D-50674 Cologne, Germany
- Theoretical Biology & Bioinformatics Group, Department of Biology, Utrecht University, 3584 CH Utrecht, The Netherlands
| | - Hanna Rovenich
- Institute for Plant Sciences, University of Cologne, D-50674 Cologne, Germany
| | - Bart P H J Thomma
- Institute for Plant Sciences, University of Cologne, D-50674 Cologne, Germany
- Cluster of Excellence on Plant Sciences, Institute for Plant Sciences, University of Cologne, D-50674 Cologne, Germany
| |
Collapse
|
46
|
Endophytic Beauveria bassiana can protect the rice plant from sheath blight of rice caused by Rhizoctonia solani and enhance plant growth parameters. Arch Microbiol 2022; 204:587. [PMID: 36048258 DOI: 10.1007/s00203-022-03211-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 08/18/2022] [Accepted: 08/21/2022] [Indexed: 11/02/2022]
Abstract
Beauveria bassiana, a potential entomopathogenic biocontrol agent, has recently drawn attention worldwide for its other additional beneficial roles such as plant disease antagonist, beneficial rhizosphere colonizer, plant growth promoter and an endophyte. In the present study, endophytic colonizing behaviour of five (5) B. bassiana isolates viz., Bb4, Bb16, Bb25, Bb44 and Bb53 were studied in rice following three (3) artificial inoculation techniques viz., seed treatment, root inoculation and foliar spray and the endophytic colonizing ability were determined by culture-based assay. After B. bassiana inoculation, rice plants were challenged with Rhizoctonia solani and disease incidence and plant growth promotion were assessed. Per cent colonization of rice stems, leaves and roots were influenced by inoculation technique, post-inoculation time (7th, 14th, 21st and 28th dpi) and plant growth medium (sterile soil, non-sterile soil), recorded maximum on 14th-day post-inoculation (dpi) i.e., 96% in stems, 92% in leaves and 28% in roots, whereas, lower colonization was recorded on 7th, 21st and 28th dpi. Whereas, the foliar spray was found best as compared to seed and root inoculation techniques, and maximum fungal recovery was observed in stems and leaves and least in roots. Upon colonization, the physical presence of B. bassiana in rice was localized by light microscopy-based studies. Potential B. bassiana strains with endophytic ability were re-isolated and their identity was determined based on morphometric and PCR-based techniques. Further, the present study also identified several virulent genes viz., BbChit1, Cdep1, Bbhog1 and Bbjen1 and extracellular hydrolytic enzymes viz., α-amylase, cellulase, lipase, pectinase and xylanase secreted by endophytic B. bassiana strains as determinants responsible for establishing the endophytic association in rice. On the other hand, a significant reduction in disease incidence was observed in the endophytic B. bassiana Bb4-, Bb16- and Bb44-inoculated plants as compared to the non-endophytic B. bassiana Bb25- and Bb53-inoculated plants along with enhanced plant growth promotion. This is one of the few studies investigating the colonization of B. bassiana in rice and its promising role as a plant disease antagonist and plant growth promoter in rice.
Collapse
|
47
|
Isolation and identification of two Beauveria bassiana strains from silkworm, Bombyx mori. Folia Microbiol (Praha) 2022; 67:891-898. [PMID: 35750981 DOI: 10.1007/s12223-022-00986-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 06/16/2022] [Indexed: 11/04/2022]
Abstract
Silkworm diseases caused by fungi infection occur frequently in sericulture and brought huge economic loss to sericulture. However, on the other hand, some fungi such as Beauveria bassiana, as an important entomological fungus, play an important role in biological control of insect pests. Here, two fungal pathogens causing yellow muscardine were isolated from the silkworm and named as SZY1 and SZY2. These two strains showed almost the same conidial morphology which were smooth, near-spherical, spherical, or ovoid and 2.7 ± 0.6 µm × 2.5 ± 0.9 µm in size, and the hyphal growth rate was also similar. However, the conidia production of SZY2 was almost twice as many as that of SZY1. The complete ribosomal RNA gene was sequenced and analyzed. As a result, the gene sequences of internal transcript space 1 (ITS1)-5.8S rRNA-internal transcript space 2 (ITS2) of SZY1 and SZY2 were identical in sequence and size, and for 18S rRNA, 28S rRNA, and intergenic spacer (IGS), the gene identity of SZY1 to SZY2 was 99%, 99%, and 98%, respectively. Results of phylogenetic analysis based on either ITS1-5.8S rRNA-ITS2 or 18S rRNA showed that both SZY1 and SZY2 were closely related to Beauveria bassiana. These results revealed that the pathogens of yellow muscardine SZY1 and SZY2 were identified as two different strains of Beauveria bassiana, which could provide diagnostic evidence for silkworm muscardine and was helpful for the research and development of novel Bombyx batryticatus and fungal biological insecticide.
Collapse
|
48
|
Singh D, Thapa S, Mahawar H, Kumar D, Geat N, Singh SK. Prospecting potential of endophytes for modulation of biosynthesis of therapeutic bioactive secondary metabolites and plant growth promotion of medicinal and aromatic plants. Antonie van Leeuwenhoek 2022; 115:699-730. [PMID: 35460457 DOI: 10.1007/s10482-022-01736-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 03/26/2022] [Indexed: 01/13/2023]
Abstract
Medicinal and aromatic plants possess pharmacological properties (antidiabetes, anticancer, antihypertension, anticardiovascular, antileprosy, etc.) because of their potential to synthesize a wide range of therapeutic bioactive secondary metabolites. The concentration of bioactive secondry metabolites depends on plant species, local environment, soil type and internal microbiome. The internal microbiome of medicinal plants plays the crucial role in the production of bioactive secondary metabolites, namely alkaloids, steroids, terpenoids, peptides, polyketones, flavonoids, quinols and phenols. In this review, the host specific secondry metabolites produced by endophytes, their therapeutic properties and host-endophytes interaction in relation to production of bioactive secondry metaboloites and the role of endophytes in enhancing the production of bioactive secondry metabolites is discussed. How biological nitrogen fixation, phosphorus solubilization, micronutrient uptake, phytohormone production, disease suppression, etc. can play a vital role in enhacing the plant growth and development.The role of endophytes in enhancing the plant growth and content of bioactive secondary metabolites in medicinal and aromatic plants in a sustainable mode is highlighted.
Collapse
Affiliation(s)
- Devendra Singh
- ICAR-Central Arid Zone Research Institute, Jodhpur, Rajasthan, 342003, India.
| | - Shobit Thapa
- ICAR-National Bureau of Agriculturally Important Microorganisms, Kushmaur, Mau Nath Bhanjan, Uttar Pradesh, 275103, India
| | - Himanshu Mahawar
- ICAR-Directorate of Weed Research (DWR), Maharajpur, Jabalpur, Madhya Pradesh, 482004, India
| | - Dharmendra Kumar
- ICAR- Central Potato Research Institute, Shimla, Himachal Pradesh, 171001, India
| | - Neelam Geat
- Agricultural Research Station, Agriculture University, Jodhpur, Rajasthan, 342304, India
| | - S K Singh
- ICAR-Central Arid Zone Research Institute, Jodhpur, Rajasthan, 342003, India
| |
Collapse
|
49
|
Gupta R, Keppanan R, Leibman-Markus M, Rav-David D, Elad Y, Ment D, Bar M. The Entomopathogenic Fungi Metarhizium brunneum and Beauveria bassiana Promote Systemic Immunity and Confer Resistance to a Broad Range of Pests and Pathogens in Tomato. PHYTOPATHOLOGY 2022; 112:784-793. [PMID: 34636647 DOI: 10.1094/phyto-08-21-0343-r] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Biocontrol agents can control pathogens by reenforcing systemic plant resistance through systemic acquired resistance (SAR) or induced systemic resistance (ISR). Trichoderma spp. can activate the plant immune system through ISR, priming molecular mechanisms of defense against pathogens. Entomopathogenic fungi (EPF) can infect a wide range of arthropod pests and play an important role in reducing pests' population. Here, we investigated the mechanisms by which EPF control plant diseases. We tested two well studied EPF, Metarhizium brunneum isolate Mb7 and Beauveria bassiana as the commercial product Velifer, for their ability to induce systemic immunity and disease resistance against several fungal and bacterial phytopathogens, and their ability to promote plant growth. We compared the activity of these EPF to an established biocontrol agent, Trichoderma harzianum T39, a known inducer of systemic plant immunity and broad disease resistance. The three fungal agents were effective against several fungal and bacterial plant pathogens and arthropod pests. Our results indicate that EPF induce systemic plant immunity and disease resistance by activating the plant host defense machinery, as evidenced by increases in reactive oxygen species production and defense gene expression, and that EPF promote plant growth. EPF should be considered as control means for Tuta absoluta. We demonstrate that, with some exceptions, biocontrol in tomato can be equally potent by the tested EPF and T. harzianum T39, against both insect pests and plant pathogens. Taken together, our findings suggest that EPF may find use in broad-spectrum pest and disease management and as plant growth promoting agents.
Collapse
Affiliation(s)
- Rupali Gupta
- Department of Plant Pathology and Weed Research, Plant Protection Institute, Agricultural Research Organization, Volcani Institute, Rishon LeZion, Israel
| | - Ravindran Keppanan
- Department of Plant Pathology and Weed Research, Plant Protection Institute, Agricultural Research Organization, Volcani Institute, Rishon LeZion, Israel
| | - Meirav Leibman-Markus
- Department of Plant Pathology and Weed Research, Plant Protection Institute, Agricultural Research Organization, Volcani Institute, Rishon LeZion, Israel
| | - Dalia Rav-David
- Department of Plant Pathology and Weed Research, Plant Protection Institute, Agricultural Research Organization, Volcani Institute, Rishon LeZion, Israel
| | - Yigal Elad
- Department of Plant Pathology and Weed Research, Plant Protection Institute, Agricultural Research Organization, Volcani Institute, Rishon LeZion, Israel
| | - Dana Ment
- Department of Plant Pathology and Weed Research, Plant Protection Institute, Agricultural Research Organization, Volcani Institute, Rishon LeZion, Israel
| | - Maya Bar
- Department of Plant Pathology and Weed Research, Plant Protection Institute, Agricultural Research Organization, Volcani Institute, Rishon LeZion, Israel
| |
Collapse
|
50
|
Olfactometer Responses of Convergent Lady Beetles Hippodamia convergens (Coleoptera: Coccinellidae) to Odor Cues from Aphid-Infested Cotton Plants Treated with Plant-Associated Fungi. INSECTS 2022; 13:insects13020157. [PMID: 35206730 PMCID: PMC8876858 DOI: 10.3390/insects13020157] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 01/14/2022] [Accepted: 01/25/2022] [Indexed: 12/04/2022]
Abstract
Simple Summary The cotton aphid Aphis gossypii is a serious agricultural pest. Microbes associated with plants can affect the behavior and performance of insect herbivores and their natural enemies. Phialemonium inflatum and Chaetomium globosum fungi can reduce cotton aphid reproduction when applied as a seed treatment to cotton. We evaluated whether these fungi might affect the interaction between cotton aphids and a natural enemy, the convergent lady beetle Hippodamia convergens. We used dual-choice olfactometer experiments to assess lady beetle behavioral responses to cues from fungal-treated cotton plants in the presence or absence of aphid infestations. In the absence of fungal treatments, males preferred odors from aphid-infested relative to non-infested plants, and females spent more time associated with olfactory stimuli from aphid-infested versus non-infested plants. When cues from fungal-treated plants infested with aphids were assessed, there were no differences in lady beetle responses. The only fungal treatment-related effects involved plants without aphids. In the absence of aphids, males responded slower to P. inflatum-treated plants compared to control, and females preferred P. inflatum-treated plants. Treating cotton with these potentially beneficial fungi had minor effects on lady beetle behavioral responses and would not be expected to disrupt this predator–prey–plant interaction as part of an integrated pest management strategy. Abstract Microbes have the potential to affect multitrophic plant–insect–predator interactions. We examined whether cotton plants treated with potentially beneficial fungi affect interactions between cotton aphids Aphis gossypii and predatory lady beetles Hippodamia convergens. We used Y-tube olfactometer assays to test lady beetle behavioral responses to stimuli emitted by aphid-infested and non-infested cotton plants grown from seeds treated with either Phialemonium inflatum (TAMU490) or Chaetomium globosum (TAMU520) versus untreated control plants. We tested a total of 960 lady beetles (480 males and 480 females) that had been deprived of food for approximately 24 h. In the absence of any fungal treatments, males preferred stimuli from aphid-infested plants, and females spent more time associated with stimuli from aphid-infested versus non-infested plants. When fungal treatments were added, we observed that lady beetles preferred non-aphid-infested P. inflatum plants, and males responded slower to plants treated with P. inflatum in the absence of aphids. We found some evidence to suggest that lady beetle behavioral responses to plants might vary according to the fungal treatment but not strongly impact their use as part of an insect pest management strategy.
Collapse
|