1
|
Deng X, Yang Y, Li Z, Luo L, Wang S, Zhang R, Guo K, Zhao Z. Effects of re-enter water on antioxidant, immune, intestinal flora and metabolome of Chinese mitten crab (Eriocheir sinensis) after high temperature air exposure. Comp Biochem Physiol C Toxicol Pharmacol 2025; 296:110232. [PMID: 40436293 DOI: 10.1016/j.cbpc.2025.110232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 05/16/2025] [Accepted: 05/24/2025] [Indexed: 06/01/2025]
Abstract
Both air exposure stress and heat stress can cause stress responses of Eriocheir sinensis and affect its normal life activities. The objective of this research was to investigate the impact of re-enter water treatment on immunoenzyme activity, immune-related gene expression, hemolymph parameters, intestinal microbiota composition, and metabolomic profiles in Eriocheir sinensis after being subjected to high-temperature air exposure. The findings indicated that the re-enter water effectively mitigated the negative impacts of high-temperature air exposure on both antioxidant and immune capacities. Following treatment with high-temperature air, levels of acid phosphatase (ACP), alkaline phosphatase (AKP), aspartate aminotransferase (AST), and alanine aminotransferase (ALT) were significantly elevated compared to their baseline values (P < 0.05), followed by a decline as re-enter water started with recovery to baseline levels detected at 24 h after re-enter water. Additionally, the levels of heat shock proteins HSP90 and HSP70 exhibited a notable rise after being subjected to high-temperature air. Nevertheless, after 24 h of soaking treatment, these levels reverted to values similar to those recorded initially. However, after re-enter water treatment, the changes in intestinal microbial composition and metabolic level caused by high temperature air exposure were not effectively improved. The analysis of intestinal microbiota revealed that the relative abundance of Bacteroidetes in the recovery group was significantly lower compared to the initial group, whereas the relative abundances of Proteobacteria and Firmicutes were found to be higher than those in the initial group. Concurrently, metabolomics analysis indicated a significant increase in palmitic acid metabolism levels within the high-temperature air group (P < 0.05), while glycine content showed a notable decrease (P < 0.05), and the metabolic changes caused by high temperature air exposure was still not fully recovered after re-enter water.
Collapse
Affiliation(s)
- Xiangyi Deng
- Key Open Laboratory of Cold Water Fish Germplasm Resources and Breeding of Heilongjiang Province, Engineering Technology Research Center of Saline-alkaline Water Fisheries (Harbin), Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, People's Republic of China; College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Yuhong Yang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, People's Republic of China.
| | - Zhiqiang Li
- Key Open Laboratory of Cold Water Fish Germplasm Resources and Breeding of Heilongjiang Province, Engineering Technology Research Center of Saline-alkaline Water Fisheries (Harbin), Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, People's Republic of China; College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Liang Luo
- Key Open Laboratory of Cold Water Fish Germplasm Resources and Breeding of Heilongjiang Province, Engineering Technology Research Center of Saline-alkaline Water Fisheries (Harbin), Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, People's Republic of China
| | - Shihui Wang
- Key Open Laboratory of Cold Water Fish Germplasm Resources and Breeding of Heilongjiang Province, Engineering Technology Research Center of Saline-alkaline Water Fisheries (Harbin), Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, People's Republic of China
| | - Rui Zhang
- Key Open Laboratory of Cold Water Fish Germplasm Resources and Breeding of Heilongjiang Province, Engineering Technology Research Center of Saline-alkaline Water Fisheries (Harbin), Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, People's Republic of China
| | - Kun Guo
- Key Open Laboratory of Cold Water Fish Germplasm Resources and Breeding of Heilongjiang Province, Engineering Technology Research Center of Saline-alkaline Water Fisheries (Harbin), Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, People's Republic of China
| | - Zhigang Zhao
- Key Open Laboratory of Cold Water Fish Germplasm Resources and Breeding of Heilongjiang Province, Engineering Technology Research Center of Saline-alkaline Water Fisheries (Harbin), Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, People's Republic of China.
| |
Collapse
|
2
|
Conneely EA, Coates CJ. Haematological deterioration of Hematodinium-infected decapod crustaceans. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2025; 163:105307. [PMID: 39730108 DOI: 10.1016/j.dci.2024.105307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 12/20/2024] [Accepted: 12/22/2024] [Indexed: 12/29/2024]
Abstract
Parasitic dinoflagellates, namely Hematodinium spp., infect a growing number of decapod crustacean species worldwide. These parasites represent a longstanding concern for fisheries in Europe and North America, and an emerging concern for aqua/polyculture systems in Asia. Known as bitter/pink/milky crab disease or post-moult syndrome, Hematodinium spp. infection can be fatal, yet there are no treatments or disease management strategies. We interrogated the available literature to enhance knowledge of Hematodinium-crustacean pathosystems, specifically haemolymph condition during parasitaemia. In this context, we sought to determine if there were invariant biomarkers (biochemical, cellular) in the haemolymph. Using meta-analytic approaches, we scrutinised published data and gathered 191 effect sizes from 17 original studies (out of >1790) that met strict inclusion criteria covering established haematological properties like phenoloxidase activity, and ran a series of generalised linear mixed models. Additional models were constructed to consider the putative links between environmental variables (water temperature, salinity), host traits (sex, size), and parasite burden. Overall, depleted haemocyte numbers (e.g., hyaline cells) and protein levels (e.g., haemocyanin) coincided with patent Hematodinium presence in crabs and langoustine. Crustaceans were more likely to have severe burdens of Hematodinium when external salinity levels exceeded 30 psu, and potentially immune-compromised ≥20°C. Hematodinium-driven hypoproteinemia and hematocytopenia were more pronounced in wild-caught animals than those infected in laboratory trials, thereby emphasizing the need to secure data in natural settings. This is the first meta-analytic study to present clear evidence in support of broad haematological deterioration in crustaceans parasitised by Hematodinium spp., and environmental factors linked to immunopathology.
Collapse
Affiliation(s)
- Ellie-Ann Conneely
- Zoology and Ryan Institute, School of Natural Sciences, University of Galway, Galway, H91 TK33, Ireland.
| | - Christopher J Coates
- Zoology and Ryan Institute, School of Natural Sciences, University of Galway, Galway, H91 TK33, Ireland.
| |
Collapse
|
3
|
Deng X, Li Z, Luo L, Wang S, Zhang R, Guo K, Qiao G, Yang Y, Zhao Z. Effects of water immersion on immune, intestinal flora and metabolome of Chinese mitten crab (Eriocheir sinensis) after air exposure. Comp Biochem Physiol C Toxicol Pharmacol 2025; 287:110060. [PMID: 39447852 DOI: 10.1016/j.cbpc.2024.110060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 09/28/2024] [Accepted: 10/17/2024] [Indexed: 10/26/2024]
Abstract
Air exposure stress can induce stress response of Eriocheir sinensis and affect its normal life activities. The goal of this study was to investigate the effects of water immersion on the recovery of hepatopancreas immune-related enzyme activity, intestinal microbial diversity and metabolic level of Chinese mitten crabs after exposure to air. The results show that immersion can effectively alleviate the adverse effects of air exposure on the antioxidant capacity and immune capacity of Chinese mitten crabs, and the longer the time of immersion, the more obvious the recovery effect. Among them, the levels of aspartate aminotransferase, alanine aminotransferase, alkaline phosphatase and acid phosphatase significantly increased after exposure to air (P < 0.05), reached a peak at 3 h, began to decline after immersion, and returned to a level close to the initial value at 24 h (P < 0.05). In addition, after exposure to air, the glucose and total cholesterol in haemolymph of Eriocheir sinensis were significantly different from the initial values (P < 0.05), gradually recovered to the initial level after re-immersion. However, changes in intestinal flora and hepatopancreas metabolism caused by air exposure did not fully recover after water exposure, and its negative effects did not completely disappear. The sequencing results showed that the species composition and diversity of intestinal microorganisms of Chinese mitten crab changed after air exposure and immersion treatment. The relative abundance of Actinomycetes increased significantly, while that of Proteobacteria and Firmicutes decreased significantly. Metabolomics analysis showed that air exposure and immersion destroyed the metabolic balance of amino acids and carnitine, reduced the level of carnitine metabolism, hindered the absorption of nutrients, and led to the accumulation of harmful substances.
Collapse
Affiliation(s)
- Xiangyi Deng
- Key Open Laboratory of Cold Water Fish Germplasm Resources and Breeding of Heilongjiang Province, Engineering Technology Research Center of Saline-alkaline Water Fisheries (Harbin), Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, People's Republic of China; College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Zhiqiang Li
- Key Open Laboratory of Cold Water Fish Germplasm Resources and Breeding of Heilongjiang Province, Engineering Technology Research Center of Saline-alkaline Water Fisheries (Harbin), Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, People's Republic of China; College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, People's Republic of China; Huludao Ecological Environment Protection Service Centre, Huludao 125099, People's Republic of China
| | - Liang Luo
- Key Open Laboratory of Cold Water Fish Germplasm Resources and Breeding of Heilongjiang Province, Engineering Technology Research Center of Saline-alkaline Water Fisheries (Harbin), Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, People's Republic of China
| | - Shihui Wang
- Key Open Laboratory of Cold Water Fish Germplasm Resources and Breeding of Heilongjiang Province, Engineering Technology Research Center of Saline-alkaline Water Fisheries (Harbin), Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, People's Republic of China
| | - Rui Zhang
- Key Open Laboratory of Cold Water Fish Germplasm Resources and Breeding of Heilongjiang Province, Engineering Technology Research Center of Saline-alkaline Water Fisheries (Harbin), Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, People's Republic of China
| | - Kun Guo
- Key Open Laboratory of Cold Water Fish Germplasm Resources and Breeding of Heilongjiang Province, Engineering Technology Research Center of Saline-alkaline Water Fisheries (Harbin), Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, People's Republic of China
| | - Guo Qiao
- Research Centre of Aquatic Animal Immunity and Disease Control, Yancheng Institute of Technology, Yancheng 224007, People's Republic of China
| | - Yuhong Yang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, People's Republic of China.
| | - Zhigang Zhao
- Key Open Laboratory of Cold Water Fish Germplasm Resources and Breeding of Heilongjiang Province, Engineering Technology Research Center of Saline-alkaline Water Fisheries (Harbin), Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, People's Republic of China.
| |
Collapse
|
4
|
Betancourt JL, Rodríguez-Ramos T, Dixon B. Pattern recognition receptors in Crustacea: immunological roles under environmental stress. Front Immunol 2024; 15:1474512. [PMID: 39611155 PMCID: PMC11602452 DOI: 10.3389/fimmu.2024.1474512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 10/28/2024] [Indexed: 11/30/2024] Open
Abstract
Innate immunity is the first line of defense against infections and the only known available strategy for invertebrates. Crustaceans, being mostly aquatic invertebrates, are constantly exposed to potential pathogens in the surrounding water. Their immune system abolishes most microbes that enter and are recognized as a threat. However, the stress produced by high population densities and abiotic changes, in aquaculture, disrupts the host-pathogen balance, leading to severe economic losses in this industry. Consequently, crustacean immunology has become a prime area of research where significant progress has been made. This review provides our current understanding of the key pattern recognition receptors in crustaceans, with special focus on Decapoda, and their roles in triggering an immune response. We discuss recent developments in the field of signal transduction pathways such as Toll-like receptors (TLRs) and the immune deficiency (IMD) pathway, and examine the role of antimicrobial peptides (AMPs) in pathogen defense. Additionally, we analyze how environmental stressors-such as temperature fluctuations, ammonia levels, and pollution-impact immune responses and increase susceptibility to diseases. Finally, we highlight future research directions, emphasizing the need to explore the interactions between environmental stressors and immune signaling pathways and to develop strategies to enhance immune responses in crustaceans within aquaculture settings. Altogether, these advancements deepen our understanding of pathogen recognition in invertebrates and the specific defense mechanisms employed by crustaceans, particularly in response to infections triggered by pathogens under abiotic stressors.
Collapse
Affiliation(s)
| | | | - Brian Dixon
- Department of Biology, University of Waterloo, Waterloo, ON, Canada
| |
Collapse
|
5
|
Men JL, Xue YJ, Fu Y, Bai X, Wang XB, Zhou HL. Decoding the role of HIF-1α in immunoregulation in Litopenaeus vannamei under hypoxic stress. FISH & SHELLFISH IMMUNOLOGY 2024; 154:109962. [PMID: 39396558 DOI: 10.1016/j.fsi.2024.109962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 09/10/2024] [Accepted: 10/09/2024] [Indexed: 10/15/2024]
Abstract
Hypoxia poses a significant challenge to aquatic organisms, especially Litopenaeus vannamei (L. vannamei), which play a vital role in the global aquaculture industry. Hypoxia-inducible factor 1α (HIF-1α) is a pivotal regulator of the organism's adaptation to hypoxic conditions. To understand of how HIF-1α affects the immunity of L. vannamei under hypoxic conditions, we conducted a thorough study involving various approaches. These included observing tissue morphology, analyzing the expression of immune-related genes, assessing the activities of immune-related enzymes, and exploring immune-related pathways. Our study revealed that RNA interference (RNAi)-mediated knockdown of HIF-1α markedly reduced HIF-1α expression in the gill (75-95 %), whereas the reduction ranged from 2 to 43 % in the hepatopancreas. Knockdown of HIF-1α resulted in increased damage to both gill and hepatopancreatic tissues in hypoxic conditions. Additionally, immune-related genes, including Astakine (AST), Hemocyanin (HC), and Ferritin (FT), as well as immune-related enzymes such as Acid Phosphatase (ACP), Alkaline Phosphatase (AKP), and Phenoloxidase (PO), exhibited intricate regulatory patterns in response to hypoxia stress following the knockdown of HIF-1α. Transcriptome analysis revealed that HIF-1α knockdown significantly impacts multiple signaling pathways, including the JAK-STAT signaling pathway, Th17 cell differentiation pathways, PI3K-Akt signaling pathway, ErbB signaling pathway, MAPK signaling pathway, chemokine signaling pathway, ribosomal pathways, apoptosis, lysosomes and arachidonic acid metabolism. These alterations disrupt the organism's immune balance and interfere with normal metabolic processes, potentially leading to various immune-related diseases. We speculate that the weakened immune response resulting from HIF-1 inhibition is due to the reduced metabolic capacity, and the existence of a direct regulatory relationship between them requires further exploration. This study greatly advances our understanding of the vital role that HIF-1α plays in regulating immune responses in shrimp under hypoxic conditions, thereby deepening our comprehension of this critical biological mechanism.
Collapse
Affiliation(s)
- Jia L Men
- School of Life and Health Sciences, Hainan University, Haikou, 570228, China
| | - Yi J Xue
- School of Life and Health Sciences, Hainan University, Haikou, 570228, China
| | - Ying Fu
- School of Life and Health Sciences, Hainan University, Haikou, 570228, China
| | - Xue Bai
- School of Life and Health Sciences, Hainan University, Haikou, 570228, China
| | - Xiao B Wang
- School of Life and Health Sciences, Hainan University, Haikou, 570228, China
| | - Hai L Zhou
- School of Life and Health Sciences, Hainan University, Haikou, 570228, China; One Health Institute, Hainan University, Haikou, Hainan, 570228, China; State Key Laboratory of South China Sea Marine Resource Utilization, Hainan University, Haikou, 570228, China.
| |
Collapse
|
6
|
Elshopakey GE, Abdelwarith AA, Younis EM, Davies SJ, Elbahnaswy S. Alleviating effects of Gracilaria verrucosa supplement on non-specific immunity, antioxidant capacity and immune-related genes of pacific white shrimp (Litopenaeus vannamei) provoked with white spot syndrome virus. BMC Vet Res 2024; 20:487. [PMID: 39455973 PMCID: PMC11515225 DOI: 10.1186/s12917-024-04304-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 09/26/2024] [Indexed: 10/28/2024] Open
Abstract
Our work evaluated the possible underlying roles of dietary dried seaweed (Gracilaria verrucosa; GV) on the inherent immune response, antioxidant capacity, immune-related gene expression, and protection of whiteleg shrimp (Litopenaeus vannamei) contra white spot syndrome virus (WSSV). Three hundred and sixty healthy L. vannamei (15.26 g ± 1.29 g) were graded into four supplemental groups ( Triplicate/group) and fed with diets including 0 (control), 2, 4, and 8 g GV (kg diet) -1 for 21 days. Following the feeding period, each group of shrimp received an intramuscular WSSV injection (1.4 × 106 copies/ml). Hemolymph and gills samples were collected before and after the challenge with WSSV. Notably, the administration of dietary GV significantly enhanced the innate immune parameters of pacific white shrimp including total hemocyte count (THC), phagocytosis, phenoloxidase activity, reactive oxygen species (ROS) production, and lysozyme activity before and after challenge with WSSV. Additionally, dietary supplementation of 4, and 8 g of GV (kg diet)-1 remarkably elevated ACP, AKP, SOD, GPx, and catalase activities along with a decrease in the MDA level in gills of shrimp before and post-WSSV challenge. In response to the GV supplement, significant upregulation of expression of ALF1, CRU1, PEN4, and CTL with downregulation of TRAF6, STAT, TLR1, and NOS genes was recorded in the gills tissue before and post-challenge with WSSV, especially at a dose of 8.0 GV g kg - 1. Dietary inoculated shrimp with GV revealed notably higher survival percentages after being challenged with WSSV. Conclusively, these data indicate that Gracilaria verrucosa can be recommended as a valuable supplemented seaweed to stimulate the innate immunity and enhance the health of Litopenaeus vannamei against viral infection.
Collapse
Affiliation(s)
- Gehad E Elshopakey
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Mansoura University, 35516, Mansoura, Egypt.
| | - Abdelwahab A Abdelwarith
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Elsayed M Younis
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Simon J Davies
- Aquaculture Nutrition Research Unit ANRU, Ryan Institute, College of Science and Engineering, Carna Research Station, University of Galway, Galway, H91V8Y1, Ireland
| | - Samia Elbahnaswy
- Department of Aquatic Animal Medicine, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt
| |
Collapse
|
7
|
Omar HM, Salaah SM, Saad AEHA, Azzam AM, Khalil MT, El-Sayed WM. Zinc oxide-Ulva lactuca nanocomposite is a robust dietary immunostimulant in the red swamp crayfish (Procambarus clarkii). FISH & SHELLFISH IMMUNOLOGY 2024; 153:109831. [PMID: 39142372 DOI: 10.1016/j.fsi.2024.109831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 06/21/2024] [Accepted: 08/12/2024] [Indexed: 08/16/2024]
Abstract
Aquaculture industry suffers significant limitations such as low resistance to diseases and expensive feed. This study investigated the antibacterial and immunostimulatory activities of ZnO-Ulva lactuca nanocomposite (ZnO-Ul NC) in the Procambarus clarkii. Zinc oxide nanoparticles (ZnO NPs) and ZnO-Ul NC were synthetized and characterized by electron microscopies as well as Fourier transform infrared spectroscopy. ZnO NPs and ZnO-Ul NC inhibited the growth of the isolated species Citrobacter freundii and Enterobacter hormaechei. For immunostimulatory evaluation, six crayfish groups (control, U. lactuca, ZnO L, ZnO H, ZnO-Ul L, and ZnO-Ul H) were fed on commercial diet, Ulva lactuca powder, and low or high dose of ZnO NPs or ZnO-Ul NCs, respectively for 90 days. The highest levels of total hemocyte count, granular cells%, phenoloxidase (PO) activity in hemolymph, and NO, superoxide dismutase (SOD), and GSH in hepatopancreas were all reported in the ZnO-Ul groups. The expression of proPO, SOD, and lysozyme exhibited the highest upregulation in the ZnO-Ul H group. Taken together, dietary ZnO-Ul NC significantly improved the non-specific immunity and antioxidant milieu of the crayfish at the genomic and proteomic levels. ZnO-Ul NC is cost effective, easily synthesized, and a promising immunostimulant for Procambarus clarkii that could be used in the aquaculture.
Collapse
Affiliation(s)
- Hadeel M Omar
- Department of Zoology, Faculty of Science, Ain Shams University, Abbassia, 11566, Cairo, Egypt
| | - Sally M Salaah
- National Institute of Oceanography and Fisheries (NIOF), Giza, Egypt
| | - Abd El-Halim A Saad
- Department of Zoology, Faculty of Science, Ain Shams University, Abbassia, 11566, Cairo, Egypt
| | - Ahmed M Azzam
- Environmental Research Department, Theodor Bilharz Research Institute, Giza, Egypt
| | - Magdy T Khalil
- Department of Zoology, Faculty of Science, Ain Shams University, Abbassia, 11566, Cairo, Egypt
| | - Wael M El-Sayed
- Department of Zoology, Faculty of Science, Ain Shams University, Abbassia, 11566, Cairo, Egypt.
| |
Collapse
|
8
|
Wang A, Xu J, Zhang X, Liu X, Li M, Dong X, Miao S. Effects of dietary supplementation with medicinal plant mixtures and immunostimulants on the immune response, antioxidant capacity, and hepatopancreatic health of Chinese mitten crab ( Eriocheir sinensis). Front Immunol 2024; 15:1347736. [PMID: 39286241 PMCID: PMC11403256 DOI: 10.3389/fimmu.2024.1347736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 07/30/2024] [Indexed: 09/19/2024] Open
Abstract
Introduction This study aimed to evaluate the efficiency of tea polyphenols (TP) and medicinal plant mixtures (Astragalus membranaceus + Lonicera japonica, Rheum officinale Bail + Scutellaria baicalensis + Platycladus orientalis) combined with astaxanthin (AST), benzoic acid (BA), and yeast complex on the health status of Eriocheir sinensis. Method A total of 630 crabs (male crabs: 41.51 ± 1.63 g; female crabs: 47.27 ± 0.79 g) were randomly distributed into seven groups with three replicates (male: female, 1:1). These crabs were fed as follows for 8 weeks: basal diet (M1), M2 (M1 + 100 mg/kg TP), M3 (M1 + 2.0 g/kg A. membranaceus + 20 g/kg L. japonica), M4 (M1 + 2.5 g/kg R. officinale Bail + 1.5 g/kg S. baicalensis + 1.0 g/kg P. orientalis), and M5, M6, M7 (M2, M3 and M4 with 600 mg/kg AST +1.0 g/kg BA + 20 mg/kg yeast complex added, respectively). Results and discussion The results showed that the activities of acid phosphatase (ACP), alkaline phosphatase (AKP), and lysosome (LZM) in the hemolymph were significantly increased in M5, M6, and M7 (P < 0.05), and the highest phagocytosis index (PI) and LZM activity were observed in M7 of female crabs. Moreover, the antioxidant indicators superoxide dismutase (SOD), glutathione (GSH), glutathione peroxidase (GPx), and catalase (CAT) of hepatopancreas were also significantly improved in M5, M6, and M7 (P < 0.05), while the malondialdehyde (MDA) contents showed an opposite trend. Furthermore, a morphological examination also showed the improved histological structure of hepatopancreas in M7, especially as seen in the clear lumens, no vacuolation, and integrity of the basal membrane of the hepatopancreatic tubule. Taken together, these results suggested that 2.5 g/kg R. officinale Bail, 1.5 g/kg S. baicalensis, and 1.0 g/kg P. orientalis in combination with 600 mg/kg AST, 1.0 g/kg BA, and 20 mg/kg yeast complex could improve the non-specific immunity, antioxidant capacity, and hepatopancreatic health of E. sinensis.
Collapse
Affiliation(s)
- Anran Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Jie Xu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Xin Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Xuran Liu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Mengge Li
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Xiaojing Dong
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Shuyan Miao
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| |
Collapse
|
9
|
Abdelsamad AEM, Said REM, Assas M, Gaafar AY, Hamouda AH, Mahdy A. Effects of dietary supplementation with Bacillus velezensis on the growth performance, body composition, antioxidant, immune-related gene expression, and histology of Pacific white shrimp, Litopenaeus vannamei. BMC Vet Res 2024; 20:368. [PMID: 39152418 PMCID: PMC11328396 DOI: 10.1186/s12917-024-04207-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 07/24/2024] [Indexed: 08/19/2024] Open
Abstract
In recent decades, probiotics have become an acceptable aquaculture strategy for shrimp growth promotion and immune modulation. This study aimed to evaluate the effect of Bacillus velezensis on Litopenaeus vannamei following a 60-day trial. L. vannamei (3 ± 0.4 g) were distributed into four groups with three replicates per group and fed an isonitrogenous diet supplemented with B. velezensis at 0, 1 × 107, 1 × 108, and 1 × 109 CFU/g, which were defined as the control, G1, G2, and G3 groups, respectively. B. velezensis significantly improved the growth, survival rate, and proximate body composition of L. vannamei (P < 0.05). All groups fed the B. velezensis diet showed significant increases in digestive enzymes (lipase, amylase, and protease), superoxide dismutase (SOD; G3), catalase (CAT; G3, G2, and G1), lysozyme activity (G3 and G2), immunoglobulin M (IgM), bactericidal activity BA%, alkaline phosphatase (AKP), and acid phosphatase (ACP) compared with the control group (P < 0.05). Malondialdehyde (MDA), triglycerides, cholesterol, high-density lipoprotein (HDL), low-density lipoprotein (LDL), aspartate aminotransferase (AST), and alanine aminotransferase (ALT) levels were significantly decreased in all groups fed B. velezensis diet compared with the control group (P < 0.05). The expression levels of SOD (G3), LZM, and serine proteinase genes were significantly higher in L. vannamei fed diets containing B. velezensis than in the control group (P < 0.05). This is the first study to address the effects of B. velezensis on the expression of the LZM and serine proteinase genes in L. vannamei. L. vannamei fed diet containing B. velezensis had more B and R cells in its hepatopancreas than did the control group. In conclusion, B. velezensis is a promising probiotic that can be safely added to the diet of L. vannamei with 1 × 109 CFU/g. Its application had a positive influence on the health status, survival rate, nutritional value, and immunity of L. vannamei.
Collapse
Affiliation(s)
- Arwa E M Abdelsamad
- Zoology Department, Faulty of Science, Al-Azhar University, Assiut Branch, Assiut, 71524, Egypt
| | - Rashad E M Said
- Zoology Department, Faulty of Science, Al-Azhar University, Assiut Branch, Assiut, 71524, Egypt
| | - Mona Assas
- Fish Processing and Biotechnology Department, Faculty of Aquatic and Fisheries Sciences, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt
| | - Alkhateib Y Gaafar
- Hydrobiology Department, Veterinary Research Division, National Research Centre, El Buhouth St, Dokki, Cairo, 12311, Egypt
| | - Awatef H Hamouda
- Fish Health and Diseases Department, Faculty of Fish and Fisheries Technology, Aswan University, Aswan, 81528, Egypt.
| | - Aldoushy Mahdy
- Fish Processing and Biotechnology Department, Faculty of Aquatic and Fisheries Sciences, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt
| |
Collapse
|
10
|
Wang X, Zhu L, Zhao T, Li H, Hou L, Li C, Jiang X, Zhang J, Pei C, Li L, Kong X. The molecular characterization of Rab11 and its immune roles in red swamp crayfish (Procambarus clarkii). Int J Biol Macromol 2024; 274:133299. [PMID: 38909733 DOI: 10.1016/j.ijbiomac.2024.133299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/21/2024] [Accepted: 06/08/2024] [Indexed: 06/25/2024]
Abstract
The Rab proteins primarily regulate vesicular transport between membrane-bound organelles and are important for innate immune. However, there is currently a lack of studies on crustaceans regarding Rab proteins, particularly core Rabs. We identified a Rab11 gene from Procambarus clarkii (PcRab11) and evaluated its potential involvement in immune response. The results showed PcRab11 was 1789 bp long, with an open reading frame of 645 bp encoding 211 amino acids and an estimated molecular weight of 23.8 kDa. Sequence analysis revealed its remarkable evolutionary conservation. The PcRab11 was widely expressed in various tissues, with highest levels in hepatopancreas, and localized within the cell cytoplasm. Upon infection with white spot syndrome virus (WSSV) or Aeromonas veronii, the expression of PcRab11 in immune organs was significantly induced. Furthermore, silencing PcRab11 reduced phagocytosis-related genes expression and haemocytes' phagocytic activity to FITC-labeled A. veronii, as well as decreased mortality and death time in WSSV or A. veronii infected P. clarkii. Additionally, the potential protein interaction between PcRab11 and 14-3-3ε was identified in haemocytes. Overall, our findings provided evidence for the involvement of Rab11 in P. clarkii's immune response, establishing a foundation to explore the immune role of core Rab proteins in crustaceans' innate immune system.
Collapse
Affiliation(s)
- Xinru Wang
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Xinxiang 453007, China
| | - Lei Zhu
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Xinxiang 453007, China; Observation and Research Station on Water Ecosystem in Danjiangkou Reservoir of Henan Province, Nanyang 474450, China.
| | - Tong Zhao
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Xinxiang 453007, China
| | - Hao Li
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Xinxiang 453007, China
| | - Libo Hou
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Xinxiang 453007, China
| | - Chen Li
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Xinxiang 453007, China
| | - Xinyu Jiang
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Xinxiang 453007, China
| | - Jie Zhang
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Xinxiang 453007, China
| | - Chao Pei
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Xinxiang 453007, China
| | - Li Li
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Xinxiang 453007, China
| | - Xianghui Kong
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Xinxiang 453007, China.
| |
Collapse
|
11
|
Zhu K, Cheng CH, Ma HL, Liu GX, Fan SG, Deng YQ, Jiang JJ, Feng J, Guo ZX. Identification and functional characterization of laminin receptor in the mud crab, Scylla paramamosain, in response to MCDV-1 challenge. FISH & SHELLFISH IMMUNOLOGY 2024; 150:109648. [PMID: 38777253 DOI: 10.1016/j.fsi.2024.109648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 05/05/2024] [Accepted: 05/20/2024] [Indexed: 05/25/2024]
Abstract
Laminin receptor (LR), which mediating cell adhesion to the extracellular matrix, plays a crucial role in cell signaling and regulatory functions. In the present study, a laminin receptor gene (SpLR) was cloned and characterized from the mud crab (Scylla paramamosain). The full length of SpLR contained an open reading frame (ORF) of 960 bp encoding 319 amino acids, a 5' untranslated region (UTR) of 66 bp and a 3' UTR of 49 bp. The predicted protein comprised two Ribosomal-S2 domains and a 40S-SA-C domain. The mRNA of SpLR was highly expressed in the gill, followed by the hepatopancreas. The expression of SpLR was up-regulated after mud crab dicistrovirus-1(MCDV-1) infection. Knocking down SpLR in vivo by RNA interference significantly down-regulated the expression of the immune genes SpJAK, SpSTAT, SpToll1, SpALF1 and SpALF5. This study shown that the expression level of SpToll1 and SpCAM in SpLR-interfered group significantly increased after MCDV-1 infection. Moreover, silencing of SpLR in vivo decreased the MCDV-1 replication and increased the survival rate of mud crabs after MCDV-1 infection. These findings collectively suggest a pivotal role for SpLR in the mud crab's response to MCDV-1 infection. By influencing the expression of critical innate immune factors and impacting viral replication dynamics, SpLR emerges as a key player in the intricate host-pathogen interaction, providing valuable insights into the molecular mechanisms underlying MCDV-1 pathogenesis in mud crabs.
Collapse
Affiliation(s)
- Ke Zhu
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, 510300, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, 201306, China
| | - Chang-Hong Cheng
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, 510300, China
| | - Hong-Ling Ma
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, 510300, China
| | - Guang-Xin Liu
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, 510300, China
| | - Si-Gang Fan
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, 510300, China
| | - Yi-Qin Deng
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, 510300, China
| | - Jian-Jun Jiang
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, 510300, China
| | - Juan Feng
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, 510300, China
| | - Zhi-Xun Guo
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, 510300, China.
| |
Collapse
|
12
|
Zhou B, Zhang Y, Ni M, Bai Y, Shi Q, Zheng J, Cui Z. The involvement of VEGF and VEGFR in bacterial recognition and regulation of antimicrobial peptides in Eriocheir sinensis. Int J Biol Macromol 2024; 270:132242. [PMID: 38729487 DOI: 10.1016/j.ijbiomac.2024.132242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/08/2024] [Accepted: 05/07/2024] [Indexed: 05/12/2024]
Abstract
Vascular endothelial growth factor (VEGF) and VEGF reporter (VEGFR) are essential molecules in VEGF signalling pathway. Although the functions of VEGF and VEGFR have been well reported in vertebrates, their functions are still poorly understood in invertebrates. In this study, the open reading frame sequences of EsVEGF1 and EsVEGFR4 were cloned from Eriocheir sinensis, and their corresponding proteins shared typical structure characteristics with their counterparts in other species. EsVEGF1 were predominantly expressed in hepatopancreas and muscle while EsVEGFR4 mainly expressed in hemocytes and intestine. The expression levels of EsVEGF1 in hemocytes were rapidly induced by Staphylococcus aureus and Vibrio parahaemolyticus, and it also increased rapidly in hepatopancreas after being challenged with V. parahaemolyticus. The expression levels of EsVEGFR4 only increased in hepatopancreas of crabs injected with S. aureus. The extracellular immunoglobulin domain of EsVEGFR4 could bind with Gram-negative and Gram-positive bacteria as well as lipopolysaccharide and peptidoglycan. EsVEGF1 could act as the ligand for EsVEGFR4 and Toll-like receptor and regulate the expression of crustins and lysozyme with a tissue-specific manner, while have no regulatory function on that of anti-lipopolysaccharide factors. This study will provide new insights into the immune defense mechanisms mediated by VEGF and VEGFR in crustaceans.
Collapse
Affiliation(s)
- Bin Zhou
- School of Marine Sciences, Ningbo University, Ningbo 315020, China
| | - Yi Zhang
- School of Marine Sciences, Ningbo University, Ningbo 315020, China
| | - Mengqi Ni
- School of Marine Sciences, Ningbo University, Ningbo 315020, China
| | - Yunhui Bai
- School of Marine Sciences, Ningbo University, Ningbo 315020, China
| | - Qiao Shi
- School of Marine Sciences, Ningbo University, Ningbo 315020, China
| | - Jinbin Zheng
- School of Marine Sciences, Ningbo University, Ningbo 315020, China
| | - Zhaoxia Cui
- School of Marine Sciences, Ningbo University, Ningbo 315020, China; Laboratory for Marine Biology and Biotechnology, Pilot Qingdao National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266071, China.
| |
Collapse
|
13
|
Pei Q, He M, Tang P, Zhang X, Huang X, Zhang X, Yang J, Li Z, Li L, Chen D. Salvia miltiorrhiza polysaccharide promotes the health of crayfish (Procambarus clarkii) by promoting hemocyte phagocytosis, protecting hepatopancreas and enhancing intestinal barrier function. FISH & SHELLFISH IMMUNOLOGY 2024; 146:109405. [PMID: 38278337 DOI: 10.1016/j.fsi.2024.109405] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 01/14/2024] [Accepted: 01/23/2024] [Indexed: 01/28/2024]
Abstract
Plant polysaccharides as immunomodulators are considered one of the effective measures to reduce antibiotic therapy in aquaculture. The immunomodulatory function of Salvia miltiorrhiza polysaccharides (SMP) has been demonstrated and begun to be applied in vertebrates, but its potential effect on crustaceans is unclear. In this study, crayfish (Procambarus clarkii) was fed with 0 %, 0.3 %, 0.7 %, 1.1 %, and 1.5 % SMP for 4 weeks to investigate the effects of SMP on hemocytes phagocytosis, hepatopancreatic function, and intestinal barrier function. The results revealed that hemocyte phagocytic activity was increased in all SMP groups. During the process of hemocytes phagocytic recognition and formation of phagosomes and phagolysosomes, the mRNA expression levels of mas, hem, rab3, ctsb, and lamp-1 were up-regulated mainly in the 0.3 % SMP group. During the clearance phase of phagocytosis, respiratory burst activity, ROS level, T-SOD, CAT, GST, and LZM activities were mainly increased in the 1.5 % SMP group. Hepatopancreas AKP and GOT activity were no significant change in all SMP groups. ACP activity was significantly enhanced in the 1.1 % SMP group. The GPT activity of 0.3-0.7 % SMP group was significantly decreased. The 0.7 % SMP group had the highest intestinal fold height. The highest index values of OTUs, Ace, Chao, and Shannon were in the 0.3 % SMP group. The dietary addition of 0.3 % SMP led to a tendency of increased relative abundance of Firmicutes and Bacteroidota at the phylum level, while the relative abundance of Proteobacteria at the phylum level decreased. In conclusion, dietary SMP could promote crayfish health by enhancing phagocytosis, protecting hepatopancreas and enhancing intestinal barrier function. This study contributes to the theoretical foundation for exploring the potential application of plant polysaccharides in crustaceans.
Collapse
Affiliation(s)
- Qiaolin Pei
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Mengxuan He
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Peng Tang
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xin Zhang
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xiaoli Huang
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xiaoli Zhang
- Institute of Fisheries Research, Chengdu Academy of Agricultural and Forestry Sciences, Chengdu, 611130, China
| | - Jiangyong Yang
- Chengdu Belorkon Bio-Tech Co., Ltd., Chengdu, 611130, China
| | - Zhiqiong Li
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Liangyu Li
- Institute of Fisheries Research, Chengdu Academy of Agricultural and Forestry Sciences, Chengdu, 611130, China.
| | - Defang Chen
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
14
|
Rickward RA, Santostefano F, Wilson AJ. Among-individual behavioural variation in the ornamental red cherry shrimp, Neocaridina heteropoda. Ecol Evol 2024; 14:e11049. [PMID: 38389999 PMCID: PMC10883255 DOI: 10.1002/ece3.11049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 02/02/2024] [Accepted: 02/05/2024] [Indexed: 02/24/2024] Open
Abstract
Personality variation, defined as among-individual differences in behaviour that are repeatable across time and context, is widely reported across animal taxa. From an evolutionary perspective, characterising the amount and structure of this variation is useful since differences among individuals are the raw material for adaptive behavioural evolution. However, behavioural variation among individuals also has implications for more applied areas of evolution and ecology-from invasion biology to ecotoxicology and selective breeding in captive systems. Here, we investigate the structure of personality variation in the red cherry shrimp, Neocaridina heteropoda, a popular ornamental species that is readily kept and bred under laboratory conditions and is emerging as a decapod crustacean model across these fields, but for which basic biological, ecological and behavioural data are limited. Using two assays and a repeated measures approach, we quantify behaviours putatively indicative of shy-bold variation and test for sexual dimorphism and/or size-dependent behaviours (as predicted by some state-dependent models of personality). We find moderate-to-high behavioural repeatabilities in most traits. Although strong individual-level correlations across behaviours are consistent with a major personality axis underlying these observed traits, the multivariate structure of personality variation does not fully match a priori expectations of a shy-bold axis. This may reflect our ecological naivety with respect to what really constitutes bolder, more risk-prone, behaviour in this species. We find no evidence for sexual dimorphism and only weak support for size-dependent behaviour. Our study contributes to the growing literature describing behavioural variation in aquatic invertebrates. Furthermore, it lays a foundation for further studies harnessing the potential of this emerging model system. In particular, this existing behavioural variation could be functionally linked to life-history traits and invasive success and serve as a target of artificial selection or bioassays. It thus holds significant promise in applied research across ecotoxicology, aquaculture and invasion biology.
Collapse
Affiliation(s)
| | - Francesca Santostefano
- Centre for Ecology and ConservationUniversity of ExeterCornwallUK
- Département des Sciences BiologiquesUniversité du Québec à MontréalMontréalQuebecCanada
| | | |
Collapse
|
15
|
Li Y, Yang Y, Li S, Ye Y, Du X, Liu X, Jiang Q, Che X. Effects of dietary melatonin on antioxidant and immune function of the Pacific white shrimp (Litopenaeus vannamei), as determined by transcriptomic analysis. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2023; 48:101146. [PMID: 37804799 DOI: 10.1016/j.cbd.2023.101146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/10/2023] [Accepted: 09/22/2023] [Indexed: 10/09/2023]
Abstract
Melatonin (MT) is regarded as an antioxidant and immunostimulant that can efficiently scavenge free radicals and activate antioxidant enzymes. The aim of this study was to investigate the effects of dietary MT on the growth performance and immune function of the Pacific white shrimp (Litopenaeus vannamei). Six groups of L. vannamei were supplemented with dietary MT at 0, 22.5, 41.2, 82.7, 165.1, and 329.2 mg/kg levels for 2 months. RNA-Seq analysis was performed to obtain transcriptome data of the control group and the group supplemented with dietary MT at 82.7 mg/kg BW. In total, 1220 DEGs (799 up-regulated and 421 down-regulated) were identified. Pathways and genes related to growth performance and immune function were verified by real-time quantitative polymerase chain reaction. The total hemocyte count, phagocytosis rate, and respiratory burst were significantly increased in the MT (82.7 mg/kg BW) group as compared to the control group. Analysis of antioxidant-related enzymes in the hepatopancreas showed that dietary MT (82.7 mg/kg BW) significantly increased activities of superoxide dismutase (SOD), glutathione peroxidase (GPx), and catalase, while dietary MT at 41.2 mg/kg BW significantly increased activities of glutathione S-transferase, lysozyme (LZM), and phenoloxidase (PO). At the transcriptional level, dietary MT up-regulated expression levels of genes associated with antioxidant immunity and growth, which included PO, SOD, LZM, GPx, chitin synthase, ecdysone receptor, calcium-calmodulin dependent protein kinase I, and retinoid X receptor. In conclusion, dietary MT may improve the growth performance and immune function of L. vannamei to some extent.
Collapse
Affiliation(s)
- Yiming Li
- Fishery Machinery and Instrument Research Institute, Chinese Academy of Fisheries Sciences, Shanghai 200092, China
| | - Ying Yang
- School of Life Science, East China Normal University, Shanghai 200241, China
| | - Siwen Li
- School of Life Science, East China Normal University, Shanghai 200241, China
| | - Yucong Ye
- School of Life Science, East China Normal University, Shanghai 200241, China
| | - Xinglin Du
- School of Life Science, East China Normal University, Shanghai 200241, China
| | - Xingguo Liu
- Fishery Machinery and Instrument Research Institute, Chinese Academy of Fisheries Sciences, Shanghai 200092, China
| | - Qichen Jiang
- Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing 210017, China.
| | - Xuan Che
- Fishery Machinery and Instrument Research Institute, Chinese Academy of Fisheries Sciences, Shanghai 200092, China.
| |
Collapse
|
16
|
Chandran A, Priya PS, Meenatchi R, Vaishnavi S, Pavithra V, Ajith Kumar TT, Arockiaraj J. Insights into molecular aspects of pathogenesis and disease management in acute hepatopancreatic necrosis disease (AHPND): An updated review. FISH & SHELLFISH IMMUNOLOGY 2023; 142:109138. [PMID: 37802265 DOI: 10.1016/j.fsi.2023.109138] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 09/29/2023] [Accepted: 10/02/2023] [Indexed: 10/08/2023]
Abstract
Shrimp aquaculture is a rapidly growing sector that makes a significant economic contribution. However, the aquaculture industry is confronted with significant challenges, and infectious diseases, notably Acute Hepatopancreatic Necrosis Disease (AHPND), have emerged as severe threat. AHPND is caused by pathogens carrying the pVA-1 plasmid, which expresses the PirAB toxin, and it has wreaked havoc in shrimp aquaculture, imposing substantial economic burdens. To address this issue, it is crucial to delve into shrimp's immune responses. Therefore, this comprehensive review offers an in-depth examination of AHPND outbreaks, encompassing various facets such as environmental factors, host susceptibility, and the mechanisms employed by the pathogens. Traditional approaches to combat AHPND, primarily relying on chemicals and antibiotics, have raised concerns related to antibiotic resistance and have demonstrated limited success in disease control. Hence this review spotlights recent advancements in molecular diagnostics, therapeutic agents, and research related to shrimp immunity. Understanding these developments is crucial in the ongoing battle against AHPND. In conclusion, this review underscores the pressing need to comprehend the underlying mechanisms of AHPND pathogenesis and emphasizes the importance of developing comprehensive and effective solutions to combat this devastating disease, which continues to threaten the sustainability of shrimp farming.
Collapse
Affiliation(s)
- Abhirami Chandran
- Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulatur, 603203, Chengalpattu District, Tamil Nadu, India
| | - P Snega Priya
- Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulatur, 603203, Chengalpattu District, Tamil Nadu, India
| | - Ramu Meenatchi
- Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulatur, 603203, Chengalpattu District, Tamil Nadu, India
| | - S Vaishnavi
- Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulatur, 603203, Chengalpattu District, Tamil Nadu, India
| | - V Pavithra
- Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulatur, 603203, Chengalpattu District, Tamil Nadu, India
| | | | - Jesu Arockiaraj
- Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulatur, 603203, Chengalpattu District, Tamil Nadu, India.
| |
Collapse
|
17
|
Ishaq SL, Turner SM, Lee G, Tudor MS, MacRae JD, Hamlin H, Bouchard D. Water temperature and disease alters bacterial diversity and cultivability from American lobster ( Homarus americanus) shells. iScience 2023; 26:106606. [PMID: 37128602 PMCID: PMC10148122 DOI: 10.1016/j.isci.2023.106606] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 02/15/2023] [Accepted: 03/31/2023] [Indexed: 05/03/2023] Open
Abstract
The American lobster, Homarus americanus, is an economically valuable and ecologically important crustacean along the North Atlantic coast of North America. Populations in southern locations have declined in recent decades due to increasing ocean temperatures and disease, and these circumstances are progressing northward. We monitored 57 adult female lobsters, healthy and shell diseased, under three seasonal temperature cycles for a year, to track shell bacterial communities using culturing and 16S rRNA gene sequencing, progression of epizootic shell disease using visual assessment, and antimicrobial activity of hemolymph. The richness of bacterial taxa present, evenness of abundance, and community similarity between lobsters was affected by water temperature at the time of sampling, water temperature over time based on seasonal temperature regimes, shell disease severity, and molt stage. Several bacteria were prevalent on healthy lobster shells but missing or less abundant on diseased shells, although some bacteria were found on all shells regardless of health status.
Collapse
Affiliation(s)
- Suzanne L. Ishaq
- School of Food and Agriculture, University of Maine, Orono, Maine 04469, USA
- Aquaculture Research Institute, University of Maine, Orono, Maine 04469, USA
- Corresponding author
| | - Sarah M. Turner
- Aquaculture Research Institute, University of Maine, Orono, Maine 04469, USA
- Cooperative Extension, University of Maine, Orono, Maine 04469, USA
| | - Grace Lee
- Department of Neuroscience, Bowdoin College, Brunswick, ME 04011, USA
- Boston Children’s Hospital, Boston, MA 02115, USA
| | - M. Scarlett Tudor
- Aquaculture Research Institute, University of Maine, Orono, Maine 04469, USA
- Cooperative Extension, University of Maine, Orono, Maine 04469, USA
| | - Jean D. MacRae
- Department of Civil and Environmental Engineering, University of Maine, Orono, Maine 04469, USA
| | - Heather Hamlin
- Aquaculture Research Institute, University of Maine, Orono, Maine 04469, USA
- School of Marine Sciences, University of Maine, Orono, Maine 04469, USA
| | - Deborah Bouchard
- Aquaculture Research Institute, University of Maine, Orono, Maine 04469, USA
- Cooperative Extension, University of Maine, Orono, Maine 04469, USA
| |
Collapse
|
18
|
Tseng KC, Huang HT, Huang SN, Yang FY, Li WH, Nan FH, Lin YJ. Lactobacillus plantarum isolated from kefir enhances immune responses and survival of white shrimp (Penaeus vannamei) challenged with Vibrio alginolyticus. FISH & SHELLFISH IMMUNOLOGY 2023; 135:108661. [PMID: 36906049 DOI: 10.1016/j.fsi.2023.108661] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 03/01/2023] [Accepted: 03/03/2023] [Indexed: 06/18/2023]
Abstract
Lactobacillus plantarum is known for its probiotics benefit to host, although the effects vary among strains. This study conducted a feeding experiment of three Lactobacillus strains, MRS8, MRS18 and MRS20, which were isolated from kefir and incorporated into the diets of shrimp to evaluate the effects of non-specific immunity, immune-related gene expression, and disease resistance of white shrimp (Penaeus vannamei) against Vibrio alginolyticus. To prepare the experimental feed groups, the basic feed was mixed with different concentrations of L. plantarum strains MRS8, MRS18, and MRS 20, which were incorporated at 0 CFU (control), 1 × 106 CFU (groups 8-6, 18-6, and 20-6), and 1 × 109 CFU (groups 8-9, 18-9, and 20-9) per gram of diet for an in vivo assay. During the rearing period for 28 days of feeding each group, immune responses, namely the total hemocyte count (THC), phagocytic rate (PR), phenoloxidase activity, and respiratory burst were examined on days 0, 1, 4, 7, 14, and 28. The results showed that groups 20-6, 18-9 and 20-9 improved THC, and groups 18-9 and 20-9 improved phenoloxidase activity and respiratory burst as well. The expression of immunity-related genes was also examined. Group 8-9 increased the expression of LGBP, penaeidin 2 (PEN2) and CP, group 18-9 increased the expression of proPO1, ALF, Lysozyme, penaeidin 3 (PEN3) and SOD, and group 20-9 increased the expression of LGBP, ALF, crustin, PEN2, PEN3, penaeidin 4 (PEN4) and CP (p < 0.05). Groups 18-6, 18-9, 2-6, and 20-9 were further used in the challenge test. After feeding for 7 days and 14 days, Vibrio alginolyticus was injected into white shrimp and observed the shrimp survival for 168 h. The results showed that compared to the control, all groups improved the survival rate. Especially, feeding group 18-9 for 14 days improved the survival rate of white shrimp (p < 0.05). After the challenge test for 14 days, the midgut DNA of survival white shrimps was extracted to analyze the colonization of L. plantarum. Among the groups, (6.61 ± 3.58) × 105 CFU/pre shrimp of L. plantarum in feeding group 18-9 and (5.86 ± 2.27) × 105 CFU/pre shrimp in group 20-9 were evaluated by qPCR. Taken together, group 18-9 had the best effects on the non-specific immunity, the immune-related gene expression, and the disease resistance, which might be due to the benefit of the probiotic colonization.
Collapse
Affiliation(s)
- Kuo-Chun Tseng
- Department of Life Sciences, National Chung Hsing University, No.145, Xing-Da Road, South District, Taichung City, 40227, Taiwan
| | - Huai-Ting Huang
- Department of Aquaculture, National Taiwan Ocean University, No. 2, Pei-Ning Road, Keelung, 20224, Taiwan
| | - Shu-Ning Huang
- Department of Aquaculture, National Taiwan Ocean University, No. 2, Pei-Ning Road, Keelung, 20224, Taiwan
| | - Fang-Yi Yang
- Biodiversity Research Center, Academia Sinica, No. 128 Academia Road, Sec. 2, Nan-kang, Taipei, 11529, Taiwan
| | - Wen-Hsiung Li
- Biodiversity Research Center, Academia Sinica, No. 128 Academia Road, Sec. 2, Nan-kang, Taipei, 11529, Taiwan; Department of Ecology and Evolution, University of Chicago, Chicago, IL, 60637, USA
| | - Fan-Hua Nan
- Department of Aquaculture, National Taiwan Ocean University, No. 2, Pei-Ning Road, Keelung, 20224, Taiwan.
| | - Yu-Ju Lin
- Department of Life Sciences, National Chung Hsing University, No.145, Xing-Da Road, South District, Taichung City, 40227, Taiwan.
| |
Collapse
|
19
|
Zhu L, Gu Y, Zhao C, Wang X, Hou L, Jiang X, Zhao X, Pei C, Kong X. Induction and potential molecular mechanism of the enhanced immune response in Procambarus clarkii after secondary encountered with Aeromonas veronii. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 140:104599. [PMID: 36511345 DOI: 10.1016/j.dci.2022.104599] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 11/21/2022] [Accepted: 11/25/2022] [Indexed: 06/17/2023]
Abstract
For a long time, it was believed that invertebrates do not possess acquired immunity and mainly rely on innate immunity for protection against pathogens infection. However, an increasing number of studies have suggested that some form of "immune memory" can be initiated in invertebrates after primary exposure to the pathogen, which was defined as "specific immune priming". In the present study, two experiments were carried out to determine whether specific immune priming can be induced in crayfish (Procambarus clarkii) by Aeromonas veronii, if so, to identify the underlying mechanism. Once being "preimmunization" by formalin-killed A. veronii, the survival rate, in vitro antibacterial activity and haemocyte phagocytosis rate of crayfish were enhanced, which indicated that better immune protection was obtained. Furthermore, at some time points, the expression of antimicrobial peptide (AMP) and Down syndrome cell adhesion molecule (Dscam) genes was significantly higher in P. clarkii individuals that underwent stimulation twice than in those that were only stimulated once. Taken together, the results suggest that enhanced specific immune protection can be obtained in primed crayfish and that the Dscam molecule, haemocyte phagocytosis function, and AMPs may be involved in this immune priming. The present study provides a better understanding of the molecular mechanism of immune priming in invertebrates.
Collapse
Affiliation(s)
- Lei Zhu
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Xinxiang, 453007, PR China
| | - Yanlong Gu
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Xinxiang, 453007, PR China
| | - Chenfan Zhao
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Xinxiang, 453007, PR China
| | - Xinru Wang
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Xinxiang, 453007, PR China
| | - Libo Hou
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Xinxiang, 453007, PR China
| | - Xinyu Jiang
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Xinxiang, 453007, PR China
| | - Xianliang Zhao
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Xinxiang, 453007, PR China
| | - Chao Pei
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Xinxiang, 453007, PR China
| | - Xianghui Kong
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Xinxiang, 453007, PR China.
| |
Collapse
|
20
|
Mengal K, Kor G, Kozák P, Niksirat H. Effects of environmental factors on the cellular and molecular parameters of the immune system in decapods. Comp Biochem Physiol A Mol Integr Physiol 2023; 276:111332. [PMID: 36241042 DOI: 10.1016/j.cbpa.2022.111332] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 10/04/2022] [Accepted: 10/04/2022] [Indexed: 12/28/2022]
Abstract
Crustaceans and in particular decapods (i.e. shrimp, crabs and lobsters) are a diverse, commercially and ecologically important group of organisms. They are exposed to a range of environmental factors whose abiotic and biotic components are prone to fluctuate beyond their optimum ranges and, in doing so, affect crustaceans' immune system and health. Changes in key environmental factors such as temperature, pH, salinity, dissolved oxygen, ammonia concentrations and pathogens can provoke stress and immune responses due to alterations in immune parameters. The mechanisms through which stressors mediate effects on immune parameters are not fully understood in decapods. Improved knowledge of the environmental factors - above all, their abiotic components - that influence the immune parameters of decapods could help mitigate or constrain their harmful effects that adversely affect the production of decapod crustaceans. The first part of this overview examines current knowledge and information gaps regarding the basic components and functions of the innate immune system of decapods. In the second part, we discuss various mechanisms provoked by environmental factors and categorize cellular and molecular immune responses to each environmental factor with special reference to decapods.
Collapse
Affiliation(s)
- Kifayatullah Mengal
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Vodňany, Czech Republic
| | - Golara Kor
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Vodňany, Czech Republic
| | - Pavel Kozák
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Vodňany, Czech Republic
| | - Hamid Niksirat
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Vodňany, Czech Republic.
| |
Collapse
|
21
|
Yang M, Guo X, Chen T, Li P, Xiao T, Dai Z, Hu Y. Effect of dietary replacement of fish meal by poultry by-product meal on the growth performance, immunity, and intestinal health of juvenile red swamp crayfish, procambarus clarkia. FISH & SHELLFISH IMMUNOLOGY 2022; 131:381-390. [PMID: 36257552 DOI: 10.1016/j.fsi.2022.10.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 10/05/2022] [Accepted: 10/12/2022] [Indexed: 06/16/2023]
Abstract
The present study was conducted to investigate the dietary replacement of fish meal with poultry by-product meal (PBM) on the growth performance, immunity, antioxidant properties, and intestinal health of red swamp crayfish (Procambarus clarkia). A diet containing 20% fish meal (FM) and complex plant ingredients as the main protein resources was set as the FM group (crude protein 32%, crude lipid 6%). Four diets replacing 25%, 50%, 75%, and 100% fish meal of the FM diet with PBM were set as the PBM25, PBM50, PBM75, and PBM100 groups, respectively. Compared to the FM group, the PBM100 diet significantly decreased growth performance and feed utilization of crayfish, while markedly increasing the activity of serum aspartate aminotransferase. The immune response was depressed in crayfish fed the PBM100 diet as the activities of serum lysozyme and phenoloxidase, gene expression of anti-lipopolysaccharide factors (alf), cyclophilin A (cypa), crustin, and hemocyanin-1 (hep-1) in hepatopancreas were remarkably decreased. The activities of antioxidases and expression of antioxidant-relevant genes in the hepatopancreas were not influenced by PBM inclusion. Crayfish fed different diets exhibited no obvious symptoms of enteritis, but the PBM100 diet destructed intestinal morphology by significantly decreasing the average length of longitudinal ridges. The α-diversity and overall community structure were not significantly influenced but variations were found in the relative abundance of some genera by PBM inclusion. In summary, CAP could successfully replace 75% dietary FM in a basal diet containing 20% fish meal, while higher CAP level compromised growth performance, immunity, and intestinal histology of crayfish.
Collapse
Affiliation(s)
- Mengxi Yang
- Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization, College of Animal Science and Technology, Hunan Agricultural University, 1 Nongda Road, Changsha, 410128, Hunan, China
| | - Xiaorui Guo
- Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization, College of Animal Science and Technology, Hunan Agricultural University, 1 Nongda Road, Changsha, 410128, Hunan, China
| | - Tuo Chen
- Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization, College of Animal Science and Technology, Hunan Agricultural University, 1 Nongda Road, Changsha, 410128, Hunan, China
| | - Peng Li
- North American Renderers Association, Alexandria, VA, 22314, USA
| | - Tiaoyi Xiao
- Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization, College of Animal Science and Technology, Hunan Agricultural University, 1 Nongda Road, Changsha, 410128, Hunan, China
| | - Zhenyan Dai
- Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization, College of Animal Science and Technology, Hunan Agricultural University, 1 Nongda Road, Changsha, 410128, Hunan, China
| | - Yi Hu
- Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization, College of Animal Science and Technology, Hunan Agricultural University, 1 Nongda Road, Changsha, 410128, Hunan, China.
| |
Collapse
|
22
|
Viana JT, Rocha RDS, Maggioni R. Structural and functional diversity of lectins associated with immunity in the marine shrimp Litopenaeusvannamei. FISH & SHELLFISH IMMUNOLOGY 2022; 129:152-160. [PMID: 36058435 DOI: 10.1016/j.fsi.2022.08.051] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 08/18/2022] [Accepted: 08/19/2022] [Indexed: 06/15/2023]
Abstract
Lectins are important pattern recognition receptors (PRRs) and their immunological action is related to the recognition of glycans present in the pathogen cells surface. The lectins described for Litopenaeus vannamei are divided into C-type, L-type and galectin, which are mainly expressed in hepatopancreas and hemocytes. They are involved in several immune response pathways, such as phagocytosis, hemocytes recruitment, prophenoloxidase activation, and gene regulation. Although lectins have multiple immune functions, most experimental challenges focus only on WSSV and Vibrio sp. This article is a detailed review on the role of lectins in L. vannamei immune system, bringing together information on molecular structure, temporal and special expression and immune function, highlighting the wide participation of these molecules in shrimp innate immune system.
Collapse
Affiliation(s)
- Jhonatas Teixeira Viana
- Center for the Diagnosis of Diseases of Aquatic Organisms, Marine Sciences Institute, Federal University of Ceará, 60165-081, Fortaleza, CE, Brazil.
| | - Rafael Dos Santos Rocha
- Center for the Diagnosis of Diseases of Aquatic Organisms, Marine Sciences Institute, Federal University of Ceará, 60165-081, Fortaleza, CE, Brazil.
| | - Rodrigo Maggioni
- Center for the Diagnosis of Diseases of Aquatic Organisms, Marine Sciences Institute, Federal University of Ceará, 60165-081, Fortaleza, CE, Brazil.
| |
Collapse
|
23
|
Zhang Y, Ni M, Zhang P, Bai Y, Zhou B, Zheng J, Cui Z. Identification and functional characterization of C-type lectins and crustins provide new insights into the immune response of Portunus trituberculatus. FISH & SHELLFISH IMMUNOLOGY 2022; 129:170-181. [PMID: 36057429 DOI: 10.1016/j.fsi.2022.08.070] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/24/2022] [Accepted: 08/24/2022] [Indexed: 06/15/2023]
Abstract
A meticulous understanding of the immune characteristics of aquaculture animals is the basis for developing precise disease prevention and control strategies. In this study, four novel C-type lectins (PtCTL-5, PtCTL-6, PtCTL-7 and PtCTL-8) including a single carbohydrate-recognition domain (CRD), and four novel crustins (Ptcrustin-1, Ptcrustin-2, Ptcrustin-3 and Ptcrustin-4) with a single whey acidic protein (WAP) domain were identified from the swimming crab Portunus trituberculatus. Tissue distribution analysis indicated that most of the target genes were predominantly expressed in the hepatopancreas in all examined tissues, except for Ptcrustin-1 which were mainly expressed in the gills. Our results showed that the eight genes displayed various transcriptional profiles across different tissues. In hemocytes, the PtCTL-7 responded quickly to Vibrio alginolyticus and exhibited much more strongly up-regulation than other three PtCTLs. The Ptcrustin-1 rapidly responded to V. alginolyticus within 3 h in all the three tested tissues. Furthermore, recombinant proteins of PtCTL-5 and PtCTL-8 were successfully obtained, and both of them displayed bacterial binding activities toward V. alginolyticus, V. harveyi and Staphylococcus aureus, and only showed antibacterial activity against V. harveyi. These findings provided new insights into the diverse immune response of P. trituberculatus and laid theoretical foundations for the development of precise disease prevention and control strategies in P. trituberculatus farming. Moreover, the specific anti-V. harveyi activities exhibited by rPtCTL-5 and rPtCTL-8 suggested their promising application prospects for controlling diseases caused by V. harveyi.
Collapse
Affiliation(s)
- Yi Zhang
- School of Marine Sciences, Ningbo University, Ningbo, 315832, China
| | - Mengqi Ni
- School of Marine Sciences, Ningbo University, Ningbo, 315832, China
| | - Peng Zhang
- School of Marine Sciences, Ningbo University, Ningbo, 315832, China
| | - Yunhui Bai
- School of Marine Sciences, Ningbo University, Ningbo, 315832, China
| | - Bin Zhou
- School of Marine Sciences, Ningbo University, Ningbo, 315832, China
| | - Jinbin Zheng
- School of Marine Sciences, Ningbo University, Ningbo, 315832, China.
| | - Zhaoxia Cui
- School of Marine Sciences, Ningbo University, Ningbo, 315832, China; Laboratory for Marine Biology and Biotechnology, Pilot Qingdao National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266071, China
| |
Collapse
|
24
|
Alhoshy M, Shehata AI, Habib YJ, Abdel-Latif HMR, Wang Y, Zhang Z. Nutrigenomics in crustaceans: Current status and future prospects. FISH & SHELLFISH IMMUNOLOGY 2022; 129:1-12. [PMID: 36031039 DOI: 10.1016/j.fsi.2022.08.056] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 07/23/2022] [Accepted: 08/21/2022] [Indexed: 06/15/2023]
Abstract
In aquaculture, nutrigenomics or "nutritional genomics" is concerned with studying the impacts of nutrients and food ingredients on gene expressions and understanding the interactions that may occur between nutrients and dietary bioactive ingredients with the genome and cellular molecules of the treated aquatic animals at the molecular levels that will, in turn, mediate gene expression. This concept will throw light on or provide important information to recognize better how specific nutrients may influence the overall health status of aquatic organisms. In crustaceans, it is well known that the nutritional requirements vary among different species. Thus, studying the nutrigenomics in different crustacean species is of significant importance. Of interest, recognition of the actual mechanisms that may be associated with the effects of the nutrients on the immune responses of crustaceans will provide clear outstanding protection, build a solid immune system, and also decrease the possibilities of the emergence of infectious diseases in the culture systems. Similarly, the growth, molting, lipid metabolism, antioxidant capacity, and reproduction could be effectively enhanced by using specific nutrients. In the area of crustacean research, nutrigenomics has been rapidly grown for addressing several aspects related to the influences of nutrients on crustacean development. Several researchers have studied the relationships between several functional genes and their expression profile with several physiological functions of crustaceans. They found a close association between the effects of optimal feeding with efficient production, growth, reproduction development, and health status of several crustacean species. Moreover, they illustrated that regulation of the gene expression in individual cells by different nutrients and formulated feeds could improve the growth development and immunity-boosting of several crustacean species. The present review will spotlight on such relationships between the dietary nutrients and expression of genes linked with growth, metabolism, molting, antioxidant, reproduction, and immunity of several crustacean species. The literature included in this review article will provide references and future outlooks for the upcoming research plans. This will contribute positively for maintaining the sustainability of the sector of the crustacean industry.
Collapse
Affiliation(s)
- Mayada Alhoshy
- College of Marine Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China; College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China
| | - Akram Ismael Shehata
- College of Marine Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China; College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China; Department of Animal and Fish Production, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria, 21531, Egypt
| | - Yusuf Jibril Habib
- Department of Medical Analysis, Faculty of Applied Science, Tishk International University, Erbil, Kurdistan Region, Iraq
| | - Hany M R Abdel-Latif
- Department of Poultry and Fish Diseases, Faculty of Veterinary Medicine, Alexandria University, Alexandria, 22758, Egypt
| | - Yilei Wang
- College of Fisheries, Jimei University, Xiamen, 361021, PR China
| | - Ziping Zhang
- College of Marine Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China; Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China.
| |
Collapse
|
25
|
Boštjančić LL, Francesconi C, Rutz C, Hoffbeck L, Poidevin L, Kress A, Jussila J, Makkonen J, Feldmeyer B, Bálint M, Schwenk K, Lecompte O, Theissinger K. Host-pathogen coevolution drives innate immune response to Aphanomyces astaci infection in freshwater crayfish: transcriptomic evidence. BMC Genomics 2022; 23:600. [PMID: 35989333 PMCID: PMC9394032 DOI: 10.1186/s12864-022-08571-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 04/20/2022] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND For over a century, scientists have studied host-pathogen interactions between the crayfish plague disease agent Aphanomyces astaci and freshwater crayfish. It has been hypothesised that North American crayfish hosts are disease-resistant due to the long-lasting coevolution with the pathogen. Similarly, the increasing number of latent infections reported in the historically sensitive European crayfish hosts seems to indicate that similar coevolutionary processes are occurring between European crayfish and A. astaci. Our current understanding of these host-pathogen interactions is largely focused on the innate immunity processes in the crayfish haemolymph and cuticle, but the molecular basis of the observed disease-resistance and susceptibility remain unclear. To understand how coevolution is shaping the host's molecular response to the pathogen, susceptible native European noble crayfish and invasive disease-resistant marbled crayfish were challenged with two A. astaci strains of different origin: a haplogroup A strain (introduced to Europe at least 50 years ago, low virulence) and a haplogroup B strain (signal crayfish in lake Tahoe, USA, high virulence). Here, we compare the gene expression profiles of the hepatopancreas, an integrated organ of crayfish immunity and metabolism. RESULTS We characterised several novel innate immune-related gene groups in both crayfish species. Across all challenge groups, we detected 412 differentially expressed genes (DEGs) in the noble crayfish, and 257 DEGs in the marbled crayfish. In the noble crayfish, a clear immune response was detected to the haplogroup B strain, but not to the haplogroup A strain. In contrast, in the marbled crayfish we detected an immune response to the haplogroup A strain, but not to the haplogroup B strain. CONCLUSIONS We highlight the hepatopancreas as an important hub for the synthesis of immune molecules in the response to A. astaci. A clear distinction between the innate immune response in the marbled crayfish and the noble crayfish is the capability of the marbled crayfish to mobilise a higher variety of innate immune response effectors. With this study we outline that the type and strength of the host immune response to the pathogen is strongly influenced by the coevolutionary history of the crayfish with specific A. astaci strains.
Collapse
Affiliation(s)
- Ljudevit Luka Boštjančić
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Senckenberg Biodiversity and Climate Research Centre, Georg-Voigt-Str. 14-16, 60325, Frankfurt am Main, Germany
| | - Caterina Francesconi
- Institute for Environmental Sciences, University of Koblenz-Landau, Fortstrasse 7, 76829, Landau, Germany.
| | - Christelle Rutz
- Department of Computer Science, ICube, UMR 7357, University of Strasbourg, CNRS, Centre de Recherche en Biomédecine de Strasbourg, Rue Eugène Boeckel 1, 67000, Strasbourg, France
| | - Lucien Hoffbeck
- Department of Computer Science, ICube, UMR 7357, University of Strasbourg, CNRS, Centre de Recherche en Biomédecine de Strasbourg, Rue Eugène Boeckel 1, 67000, Strasbourg, France
| | - Laetitia Poidevin
- Department of Computer Science, ICube, UMR 7357, University of Strasbourg, CNRS, Centre de Recherche en Biomédecine de Strasbourg, Rue Eugène Boeckel 1, 67000, Strasbourg, France
| | - Arnaud Kress
- Department of Computer Science, ICube, UMR 7357, University of Strasbourg, CNRS, Centre de Recherche en Biomédecine de Strasbourg, Rue Eugène Boeckel 1, 67000, Strasbourg, France
| | - Japo Jussila
- Department of Environmental and Biological Sciences, University of Eastern Finland, P.O. Box 1627, 70210, Kuopio, Finland
| | - Jenny Makkonen
- Department of Environmental and Biological Sciences, University of Eastern Finland, P.O. Box 1627, 70210, Kuopio, Finland
- Present address: BioSafe - Biological Safety Solutions, Microkatu 1, 70210, Kuopio, Finland
| | - Barbara Feldmeyer
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Senckenberg Biodiversity and Climate Research Centre, Georg-Voigt-Str. 14-16, 60325, Frankfurt am Main, Germany
| | - Miklós Bálint
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Senckenberg Biodiversity and Climate Research Centre, Georg-Voigt-Str. 14-16, 60325, Frankfurt am Main, Germany
| | - Klaus Schwenk
- Institute for Environmental Sciences, University of Koblenz-Landau, Fortstrasse 7, 76829, Landau, Germany
| | - Odile Lecompte
- Department of Computer Science, ICube, UMR 7357, University of Strasbourg, CNRS, Centre de Recherche en Biomédecine de Strasbourg, Rue Eugène Boeckel 1, 67000, Strasbourg, France
| | - Kathrin Theissinger
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Senckenberg Biodiversity and Climate Research Centre, Georg-Voigt-Str. 14-16, 60325, Frankfurt am Main, Germany
- Institute for Environmental Sciences, University of Koblenz-Landau, Fortstrasse 7, 76829, Landau, Germany
| |
Collapse
|
26
|
Saucedo-Vázquez JP, Gushque F, Vispo NS, Rodriguez J, Gudiño-Gomezjurado ME, Albericio F, Tellkamp MP, Alexis F. Marine Arthropods as a Source of Antimicrobial Peptides. Mar Drugs 2022; 20:501. [PMID: 36005504 PMCID: PMC9409781 DOI: 10.3390/md20080501] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/25/2022] [Accepted: 07/25/2022] [Indexed: 11/30/2022] Open
Abstract
Peptide therapeutics play a key role in the development of new medical treatments. The traditional focus on endogenous peptides has shifted from first discovering other natural sources of these molecules, to later synthesizing those with unique bioactivities. This review provides concise information concerning antimicrobial peptides derived from marine crustaceans for the development of new therapeutics. Marine arthropods do not have an adaptive immune system, and therefore, they depend on the innate immune system to eliminate pathogens. In this context, antimicrobial peptides (AMPs) with unique characteristics are a pivotal part of the defense systems of these organisms. This review covers topics such as the diversity and distribution of peptides in marine arthropods (crustacea and chelicerata), with a focus on penaeid shrimps. The following aspects are covered: the defense system; classes of AMPs; molecular characteristics of AMPs; AMP synthesis; the role of penaeidins, anti-lipopolysaccharide factors, crustins, and stylicins against microorganisms; and the use of AMPs as therapeutic drugs. This review seeks to provide a useful compilation of the most recent information regarding AMPs from marine crustaceans, and describes the future potential applications of these molecules.
Collapse
Affiliation(s)
- Juan Pablo Saucedo-Vázquez
- CATS Research Group, School of Chemical Sciences & Engineering, Yachay Tech University, Hda. San José s/n y Proyecto Yachay, Urcuquí 100119, Ecuador;
| | - Fernando Gushque
- School of Biological Sciences & Engineering, Yachay Tech University, Hda. San José s/n y Proyecto Yachay, Urcuquí 100119, Ecuador; (F.G.); (N.S.V.)
| | - Nelson Santiago Vispo
- School of Biological Sciences & Engineering, Yachay Tech University, Hda. San José s/n y Proyecto Yachay, Urcuquí 100119, Ecuador; (F.G.); (N.S.V.)
| | - Jenny Rodriguez
- Escuela Superior Politécnica del Litoral (ESPOL), Centro Nacional de Acuicultura e Investigaciones Marinas (CENAIM), Campus Gustavo Galindo Km 30.5 Vía Perimetral, Guayaquil 090211, Ecuador;
- Facultad de Ciencias de la Vida (FCV), Escuela Superior Politécnica del Litoral, ESPOL, Guayaquil 090708, Ecuador
| | - Marco Esteban Gudiño-Gomezjurado
- School of Biological Sciences & Engineering, Yachay Tech University, Hda. San José s/n y Proyecto Yachay, Urcuquí 100119, Ecuador; (F.G.); (N.S.V.)
| | - Fernando Albericio
- School of Chemistry and Physics, University of KwaZulu-Natal, Durban 4001, South Africa;
- Networking Centre on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Department of Organic Chemistry, University of Barcelona, 08028 Barcelona, Spain
- Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), 08034 Barcelona, Spain
| | - Markus P. Tellkamp
- School of Biological Sciences & Engineering, Yachay Tech University, Hda. San José s/n y Proyecto Yachay, Urcuquí 100119, Ecuador; (F.G.); (N.S.V.)
| | - Frank Alexis
- Politecnico, Universidad San Francisco de Quito USFQ, Quito 170901, Ecuador
| |
Collapse
|
27
|
Pascual C, Rodríguez-Canul R, Huchin-Mian JP, Mascaró M, Briones-Fourzán P, Lozano-Álvarez E, Sánchez A, Escalante K. Immune Response to Natural and Experimental Infection of Panulirus argus Virus 1 (PaV1) in Juveniles of Caribbean Spiny Lobster. Animals (Basel) 2022; 12:ani12151951. [PMID: 35953940 PMCID: PMC9367466 DOI: 10.3390/ani12151951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/31/2022] [Accepted: 06/10/2022] [Indexed: 12/04/2022] Open
Abstract
Simple Summary Experimental immunological challenges are widely used to corroborate the success of breeding programs for lines resistant to specific pathogens, to test the efficiency of new vaccines, and to improve immunity of cultured animals. The validation of experimental infection protocols is complex because it requires comparison with naturally infected organisms at different stages of the infection. The present study compares the immune response of lobsters under a natural process of viral infection (PaV1), versus the defense response of experimentally infected organisms. Innate immunity for infected lobsters was measured through cellular and plasmatic components. The results indicate that the immune response of organisms naturally or experimentally infected by PaV1 was similar, and provides the bases to corroborate that the immunological challenge was not exacerbated. Appropriate infection protocols can be useful for research aimed at increasing resistance to infectious diseases and reducing the use of antibiotics in aquaculture. Abstract Experimental infections have been used to better comprehend the immune system of organisms, and to probe for additives that generate greater resistance and help reduce antibiotic use in aquaculture. We compared the immune response of juveniles of the Caribbean spiny lobster, Panulirus argus, infected naturally with Panulirus argus virus 1 (PaV1) versus organisms infected experimentally, to determine the analogy between both infectious processes. The immunological response was measured by hemagglutination activity, hemocyte count, and total phenoloxidase activity in plasma and hemocytes in 211 individuals that were either naturally infected (110), or had been injected with viral inoculum and followed for six months (101). The samples were classified into the following four groups according to the severity of the infection: 0, uninfected; 1, lightly; 2, moderately; and 3, severely infected), which was determined on the basis of PCR and histological criteria. A permutational MANOVA showed that both the origin (natural and experimental), and the severity of the infection contributed significantly to explain the variation in the immune response of lobsters. The lack of significance of the interaction term indicated that the immunological response changed with the severity of the infection in a similar way, regardless of its origin. The results of the present study suggest that the experimental viral infection of PaV1 produces a defense response similar to the natural pathways of contagion, and provides the bases to validate an immunological challenge protocol for the first time in crustaceans. The discussion includes the perspective of the conceptual models of immune response within an ecological context.
Collapse
Affiliation(s)
- Cristina Pascual
- Unidad Multidisciplinaria de Docencia e Investigación, Facultad de Ciencias, Universidad Nacional Autónoma de México, Puerto de Abrigo s/n, Sisal, Hunucmá 97356, Mexico; (M.M.); (A.S.); (K.E.)
- Correspondence:
| | - Rossanna Rodríguez-Canul
- Laboratorio de Inmunología y Biología Molecular, Departamento de Recursos del Mar, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional-Unidad Mérida, Puerto de Abrigo s/n, Sisal, Hunucmá 97356, Mexico;
| | - Juan Pablo Huchin-Mian
- Departamento de Biología, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Guanajuato 36000, Mexico;
| | - Maite Mascaró
- Unidad Multidisciplinaria de Docencia e Investigación, Facultad de Ciencias, Universidad Nacional Autónoma de México, Puerto de Abrigo s/n, Sisal, Hunucmá 97356, Mexico; (M.M.); (A.S.); (K.E.)
| | - Patricia Briones-Fourzán
- Unidad Académica de Sistemas Arrecifales, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Puerto Morelos 77580, Mexico; (P.B.-F.); (E.L.-Á.)
| | - Enrique Lozano-Álvarez
- Unidad Académica de Sistemas Arrecifales, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Puerto Morelos 77580, Mexico; (P.B.-F.); (E.L.-Á.)
| | - Ariadna Sánchez
- Unidad Multidisciplinaria de Docencia e Investigación, Facultad de Ciencias, Universidad Nacional Autónoma de México, Puerto de Abrigo s/n, Sisal, Hunucmá 97356, Mexico; (M.M.); (A.S.); (K.E.)
| | - Karla Escalante
- Unidad Multidisciplinaria de Docencia e Investigación, Facultad de Ciencias, Universidad Nacional Autónoma de México, Puerto de Abrigo s/n, Sisal, Hunucmá 97356, Mexico; (M.M.); (A.S.); (K.E.)
| |
Collapse
|
28
|
Gastrointestinal Microbiota of Spiny Lobster: A Review. FISHES 2022. [DOI: 10.3390/fishes7030108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The gastrointestinal (GI) microbiota is a group of complex and dynamic microorganisms present in the GI tract of an organism that live in symbiosis with the host and benefit the host with various biological functions. The communities of GI microbiota are formed by various aerobic, anaerobic, and facultatively anaerobic bacteria in aquatic species. In spiny lobsters, common GI microorganisms found in the GI tract are Vibrio, Pseudomonas, Bacillus, Micrococcus, and Flavobacterium, where the structure and abundance of these microbes are varied depending on the environment. GI microbiotas hold an important role and significantly affect the overall condition of spiny lobsters, such as secreting digestive enzymes (lipase, protease, and cellulase), helping in digesting food intake, providing nutrition and synthesising vitamins needed by the host system, and protecting the host against infection from pathogens and diseases by activating an immune mechanism in the GI tract. The microorganisms in the water column, sediment, and diet are primarily responsible for altering, manipulating, and shaping GI microbial structures and communities. This review also highlights the possibilities of isolating the indigenous GI microbiota as a potential probiotic strain and introducing it to spiny lobster juveniles and larvae for better health management.
Collapse
|
29
|
Abstract
Introduction Neutrophilic granulocytes are short‐lived cells continuously circulating in the vascular system of vertebrates. They play a basic and decisive role in the innate immune defence of the hosts against all types of pathogenic microorganisms. Methods Based on a literature study, the functions of neutrophils and cells with similar functions are described. The study places special emphasis on organisms in the aquatic environment and the pathogens occurring in that particular environment. Results The evolutionary origin of this specific cell type is not clear, but its most basic traits (recognition of foreign elements, extracellular trap release, phagocytosis and elimination of ingested material) are found in phagocytes in members of evolutionary ancient invertebrate groups spanning from amoebae, sponges, sea‐anemones, mollusks (snails and mussels), arthropods (crustaceans and insects) to echinoderms (sea stars and sea urchins). Their functions as innate immune sentinels and effector cells in these groups are well described. Neutrophilic granulocytes with elongated and lobed nuclei (possibly allowing cell movements through narrow extracellular spaces and leaving space for phagosomes) occur in vertebrates including fish, amphibians, reptiles, birds and mammals although the morphology of the nucleus, stainability of cytoplasmic granula, and the antimicrobial armament vary among groups. Following the pathogen invasion of a fish host, the neutrophils migrates from the vascular system into the infection focus. They apply their PRRs (including TLRs) to recognize the invader as non‐self, produce netosis by casting extracellular chromatin containing traps in the microenvironment. These nets assist the immobilization of invading microbes and prevents their further spread. The cells attach to and engulf the microbes by phagocytosis, whereafter they eliminate the pathogen in phagolysosomes equipped with a range of killing mechanisms and attract, by release of chemokines, additional immune cells (monocytes, macrophages and lymphocytes) to the site of invasion. Their role in innate immunity of fish hosts towards aquatic pathogens has been elucidated by in vivo and in vitro studies. Neutrophils interact with virus (e.g. IPNV and VHSV), bacteria (e.g. Aeromonas, Vibrio, Edwardsiella, Mycobacterium and Renibacterium) and parasites, including monogeneans (Gyrodactylus), cestodes (Diphyllobothrium), trematodes (Diplostomum) and ciliates (Ichthyophthirius and Philasterides). Despite the decisive function of neutrophils in innate immunity and early protection, the excessive production of ROS, RNS and NETs may lead to pathological disturbances in the host, which are exacerbated if the pathogens evolve immune evasion mechanisms. Conclusion Neutrophils in aquatic organisms play a central role in innate immunity but may serve as a toll and a support in acquired protection. The strong impact of the cellular reactions not only on pathogen but also on host tissues emphasizes that an optimal immune reaction is balanced, involves targeted and specific effector mechanisms, which leaves a minimum of collateral damage in host organs.
Collapse
Affiliation(s)
- Kurt Buchmann
- Laboratory of Aquatic Pathobiology, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| |
Collapse
|
30
|
Zhou SM, Zhao JJ, Wang Y, Jin S, Zhou QC, Yin F. Identification and function analysis of an immune deficiency homolog in swimming crab, Portunus trituberculatus. FISH & SHELLFISH IMMUNOLOGY 2022; 121:245-253. [PMID: 35031475 DOI: 10.1016/j.fsi.2022.01.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/05/2022] [Accepted: 01/08/2022] [Indexed: 06/14/2023]
Abstract
The immune deficiency (IMD) pathway is involved in both antiviral and antibacterial immune responses in Drosophila. IMD protein is the key adaptor to link the extracellular signal and the intracellular reaction to initiate the signal transduction in IMD pathway. In present study, the cDNA of the IMD (Pt-IMD) was identified from a marine crab, Portunus trituberculatus. The Pt-IMD is predicted to encode 170 amino acids with a death domain. Real-Time quantitative PCR analysis showed that Pt-IMD was constitutively expressed in hemocytes, intestine, gill, heart, muscle and hepatopancreas in normal crab. Moreover, the transcript of Pt-IMD in large-granule hemocytes is approximately 6-fold higher than semi-granular cells and agranular cells. Intracellular localization showed Pt-IMD was distributed mainly in the cytoplasm when it was over-expressed in Drosophila Schneider 2 (S2) cell. Functionally, over-expression of Pt-IMD could activate the promoters of Drosophila antimicrobial peptide genes (AMPs) in S2 cell. Furthermore, Pt-IMD expression was also knock-down by RNAi to determine the function of Pt-IMD on regulation of the expression of different antimicrobial peptides (AMPs) in crab. In the primary cultured hemocytes challenged with or without Vibrio alginolyticus, after Pt-IMD was knocked-down by specific long double strand RNA, the expression of anti-lipopolysaccharide factor1 (ALF1), ALF3, crustin1, crustin3, arasin2, hyastatin1and hyastatin3 have been significantly inhibited in normal cell or bacterial infected cell, while the expression of lysozyme was normal in non-infected cells and was significantly induced in bacterial infected cells, which compared to the non-specific dsRNA treated cells.
Collapse
Affiliation(s)
- Su-Ming Zhou
- Key Laboratory of the Ministry of Education for Applied Marine Biotechnology, School of Marine Science, Ningbo University, Ningbo, 315211, China
| | - Jiao-Jiao Zhao
- Key Laboratory of the Ministry of Education for Applied Marine Biotechnology, School of Marine Science, Ningbo University, Ningbo, 315211, China
| | - Yan Wang
- Key Laboratory of the Ministry of Education for Applied Marine Biotechnology, School of Marine Science, Ningbo University, Ningbo, 315211, China
| | - Shan Jin
- Key Laboratory of the Ministry of Education for Applied Marine Biotechnology, School of Marine Science, Ningbo University, Ningbo, 315211, China
| | - Qi-Cun Zhou
- Key Laboratory of the Ministry of Education for Applied Marine Biotechnology, School of Marine Science, Ningbo University, Ningbo, 315211, China
| | - Fei Yin
- Key Laboratory of the Ministry of Education for Applied Marine Biotechnology, School of Marine Science, Ningbo University, Ningbo, 315211, China.
| |
Collapse
|
31
|
Thaimuangphol W, Sanoamuang L, Wangkahart E. The immune response of fairy shrimp Streptocephalus sirindhornae against bacterial black disease by de novo transcriptome analysis. FISH & SHELLFISH IMMUNOLOGY 2022; 121:108-115. [PMID: 34983002 DOI: 10.1016/j.fsi.2021.12.053] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 12/22/2021] [Accepted: 12/29/2021] [Indexed: 06/14/2023]
Abstract
To enhance genomic resources and to understand the molecular immune mechanisms underlying the response of fairy shrimp (Streptocephalus sirindhornae) to pathogens, we first performed a comparative gene transcription analysis from Aeromonas hydrophila-immunized shrimp and from a control group through RNA sequencing. Meanwhile, the differentially expressed genes (DEGs) were investigated, and a total of 46,958,894 clean reads were obtained and then assembled into 73,297 unigenes with an average length of 993 bp and an N50 of 1,458 bp. Unigenes were annotated by comparison with the NR/NT/KO/SwissProt/PFAM/GO and KOG databases, and 28,198 unigenes (38.47%) were annotated in at least one database. After a bacterial challenge, 143 and 287 genes were identified as markedly up- or downregulated, respectively, and 345 were associated with 142 pathways, including the classic immune-related apoptosis, toll-like receptor and MAPK signaling pathways. Moreover, ten differently expressed immune-related genes were confirmed by using quantitative real-time PCR. This study characterized a gene expression pattern for normal and Aeromonas hydrophila-immunized S. sirindhornae for the first time and shed new light on its molecular mechanisms, thus enabling the future efforts of disease control programs for this valuable aquaculture species.
Collapse
Affiliation(s)
- Wipavee Thaimuangphol
- Laboratory of Fish Immunology and Nutrigenomics, Applied Animal and Aquatic Sciences Research Unit, Division of Fisheries, Faculty of Technology, Mahasarakham University, Khamriang Sub-District, Kantarawichai, Mahasarakham, 44150, Thailand
| | - Laorsri Sanoamuang
- Applied Taxonomic Research Center, Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand; Laboratory of Biodiversity and Environmental Management, International College, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Eakapol Wangkahart
- Laboratory of Fish Immunology and Nutrigenomics, Applied Animal and Aquatic Sciences Research Unit, Division of Fisheries, Faculty of Technology, Mahasarakham University, Khamriang Sub-District, Kantarawichai, Mahasarakham, 44150, Thailand.
| |
Collapse
|
32
|
Francesconi C, Makkonen J, Schrimpf A, Jussila J, Kokko H, Theissinger K. Controlled Infection Experiment With Aphanomyces astaci Provides Additional Evidence for Latent Infections and Resistance in Freshwater Crayfish. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.647037] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
For 150 years the crayfish plague disease agent Aphanomyces astaci has been the cause of mass mortalities among native European crayfish populations. However, recently several studies have highlighted the great variability of A. astaci virulence and crayfish resistance toward the disease. The main aim of this study was to compare the response of two crayfish species, the European native noble crayfish (Astacus astacus) and the invasive alien marbled crayfish (Procambarus virginalis), to an A. astaci challenge with a highly virulent strain from haplogroup B and a lowly virulent strain from haplogroup A. In a controlled infection experiment we showed a high resistance of marbled crayfish against an A. astaci infection, with zoospores from the highly virulent haplogroup B strain being able to infect the crayfish, but unable to cause signs of disease. Furthermore, we demonstrated a reduced virulence in the A. astaci strain belonging to haplogroup A, as shown by the light symptoms and the lack of mortality in the generally susceptible noble crayfish. Interestingly, in both marbled crayfish and noble crayfish challenged with this strain, we observed a significant decrease of the detected amount of pathogen’s DNA during the experiment, suggesting that this A. astaci haplogroup A strain has a decreased ability of penetrating into the cuticle of the crayfish. Our results provide additional evidence of how drastically strains belonging to A. astaci haplogroup B and haplogroup A differ in their virulence. This study confirmed the adaptation of one specific A. astaci haplogroup A strain to their novel European hosts, supposedly due to reduced virulence. This feature might be the consequence of A. astaci’s reduced ability to penetrate into the crayfish. Finally, we experimentally showed that marbled crayfish are remarkably resistant against the crayfish plague disease and could potentially be latently infected, acting as carriers of highly virulent A. astaci strains.
Collapse
|
33
|
Ballarin L, Karahan A, Salvetti A, Rossi L, Manni L, Rinkevich B, Rosner A, Voskoboynik A, Rosental B, Canesi L, Anselmi C, Pinsino A, Tohumcu BE, Jemec Kokalj A, Dolar A, Novak S, Sugni M, Corsi I, Drobne D. Stem Cells and Innate Immunity in Aquatic Invertebrates: Bridging Two Seemingly Disparate Disciplines for New Discoveries in Biology. Front Immunol 2021; 12:688106. [PMID: 34276677 PMCID: PMC8278520 DOI: 10.3389/fimmu.2021.688106] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 05/31/2021] [Indexed: 12/12/2022] Open
Abstract
The scopes related to the interplay between stem cells and the immune system are broad and range from the basic understanding of organism's physiology and ecology to translational studies, further contributing to (eco)toxicology, biotechnology, and medicine as well as regulatory and ethical aspects. Stem cells originate immune cells through hematopoiesis, and the interplay between the two cell types is required in processes like regeneration. In addition, stem and immune cell anomalies directly affect the organism's functions, its ability to cope with environmental changes and, indirectly, its role in ecosystem services. However, stem cells and immune cells continue to be considered parts of two branches of biological research with few interconnections between them. This review aims to bridge these two seemingly disparate disciplines towards much more integrative and transformative approaches with examples deriving mainly from aquatic invertebrates. We discuss the current understanding of cross-disciplinary collaborative and emerging issues, raising novel hypotheses and comments. We also discuss the problems and perspectives of the two disciplines and how to integrate their conceptual frameworks to address basic equations in biology in a new, innovative way.
Collapse
Affiliation(s)
| | - Arzu Karahan
- Middle East Technical University, Institute of Marine Sciences, Erdemli, Mersin, Turkey
| | - Alessandra Salvetti
- Department of Clinical and Experimental Medicine, Unit of Experimental Biology and Genetics, University of Pisa, Pisa, Italy
| | - Leonardo Rossi
- Department of Clinical and Experimental Medicine, Unit of Experimental Biology and Genetics, University of Pisa, Pisa, Italy
| | - Lucia Manni
- Department of Biology, University of Padua, Padua, Italy
| | - Baruch Rinkevich
- Department of Biology, Israel Oceanographic and Limnological Research, National Institute of Oceanography, Haifa, Israel
| | - Amalia Rosner
- Department of Biology, Israel Oceanographic and Limnological Research, National Institute of Oceanography, Haifa, Israel
| | - Ayelet Voskoboynik
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, United States
- Department of Biology, Stanford University, Hopkins Marine Station, Pacific Grove, CA, United States
- Department of Biology, Chan Zuckerberg Biohub, San Francisco, CA, United States
| | - Benyamin Rosental
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Center for Regenerative Medicine and Stem Cells, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Laura Canesi
- Department of Earth Environment and Life Sciences (DISTAV), University of Genoa, Genoa, Italy
| | - Chiara Anselmi
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, United States
- Department of Biology, Stanford University, Hopkins Marine Station, Pacific Grove, CA, United States
| | - Annalisa Pinsino
- Institute for Biomedical Research and Innovation, National Research Council, Palermo, Italy
| | - Begüm Ece Tohumcu
- Middle East Technical University, Institute of Marine Sciences, Erdemli, Mersin, Turkey
| | - Anita Jemec Kokalj
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Andraž Dolar
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Sara Novak
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Michela Sugni
- Department of Environmental Science and Policy, University of Milan, Milan, Italy
| | - Ilaria Corsi
- Department of Physical, Earth and Environmental Sciences, University of Siena, Siena, Italy
| | - Damjana Drobne
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
34
|
Mai HN, Caro LFA, Cruz-Flores R, White BN, Dhar AK. Differentially Expressed Genes in Hepatopancreas of Acute Hepatopancreatic Necrosis Disease Tolerant and Susceptible Shrimp ( Penaeus vannamei). Front Immunol 2021; 12:634152. [PMID: 34054803 PMCID: PMC8155527 DOI: 10.3389/fimmu.2021.634152] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 04/15/2021] [Indexed: 11/13/2022] Open
Abstract
Acute hepatopancreatic necrosis disease (AHPND) is a lethal disease in marine shrimp that has caused large-scale mortalities in shrimp aquaculture in Asia and the Americas. The etiologic agent is a pathogenic Vibrio sp. carrying binary toxin genes, pirA and pirB in plasmid DNA. Developing AHPND tolerant shrimp lines is one of the prophylactic approaches to combat this disease. A selected genetic line of Penaeus vannamei was found to be tolerant to AHPND during screening for disease resistance. The mRNA expression of twelve immune and metabolic genes known to be involved in bacterial pathogenesis were measured by quantitative RT-PCR in two populations of shrimp, namely P1 that showed susceptibility to AHPND, and P2 that showed tolerance to AHPND. Among these genes, the mRNA expression of chymotrypsin A (ChyA) and serine protease (SP), genes that are involved in metabolism, and crustin-P (CRSTP) and prophenol oxidase activation system 2 (PPAE2), genes involved in bacterial pathogenesis in shrimp, showed differential expression between the two populations. The differential expression of these genes shed light on the mechanism of tolerance against AHPND and these genes can potentially serve as candidate markers for tolerance/susceptibility to AHPND in P. vannamei. This is the first report of a comparison of the mRNA expression profiles of AHPND tolerant and susceptible lines of P. vannamei.
Collapse
Affiliation(s)
- Hung N Mai
- Aquaculture Pathology Laboratory, School of Animal & Comparative Biomedical Sciences, The University of Arizona, Tucson, AZ, United States
| | - Luis Fernando Aranguren Caro
- Aquaculture Pathology Laboratory, School of Animal & Comparative Biomedical Sciences, The University of Arizona, Tucson, AZ, United States
| | - Roberto Cruz-Flores
- Aquaculture Pathology Laboratory, School of Animal & Comparative Biomedical Sciences, The University of Arizona, Tucson, AZ, United States
| | - Brenda Noble White
- Aquaculture Pathology Laboratory, School of Animal & Comparative Biomedical Sciences, The University of Arizona, Tucson, AZ, United States
| | - Arun K Dhar
- Aquaculture Pathology Laboratory, School of Animal & Comparative Biomedical Sciences, The University of Arizona, Tucson, AZ, United States
| |
Collapse
|
35
|
Passantino A, Elwood RW, Coluccio P. Why Protect Decapod Crustaceans Used as Models in Biomedical Research and in Ecotoxicology? Ethical and Legislative Considerations. Animals (Basel) 2021; 11:ani11010073. [PMID: 33401555 PMCID: PMC7823715 DOI: 10.3390/ani11010073] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/23/2020] [Accepted: 12/29/2020] [Indexed: 12/26/2022] Open
Abstract
Simple Summary Current European legislation that protects animals used for scientific purposes excludes decapod crustaceans (for example, lobster, crab and crayfish) on the grounds that they are non-sentient and, therefore, incapable of suffering. However, recent work suggests that this view requires substantial revision. Our current understanding of the nervous systems and behavior of decapods suggests an urgent need to amend and update all relevant legislation. This paper examines recent experiments that suggest sentience and how that work has changed current opinion. It reflects on the use of decapods as models in biomedical research and in ecotoxicology, and it recommends that these animals should be included in the European protection legislation. Abstract Decapod crustaceans are widely used as experimental models, due to their biology, their sensitivity to pollutants and/or their convenience of collection and use. Decapods have been viewed as being non-sentient, and are not covered by current legislation from the European Parliament. However, recent studies suggest it is likely that they experience pain and may have the capacity to suffer. Accordingly, there is ethical concern regarding their continued use in research in the absence of protective measures. We argue that their welfare should be taken into account and included in ethical review processes that include the assessment of welfare and the minimization or alleviation of potential pain. We review the current use of these animals in research and the recent experiments that suggest sentience in this group. We also review recent changes in the views of scientists, veterinary scientists and animal charity groups, and their conclusion that these animals are likely to be sentient, and that changes in legislation are needed to protect them. A precautionary approach should be adopted to safeguard these animals from possible pain and suffering. Finally, we recommend that decapods be included in the European legislation concerning the welfare of animals used in experimentation.
Collapse
Affiliation(s)
- Annamaria Passantino
- Department of Veterinary Sciences, University of Messina-Polo Universitario Annunziata, 98168 Messina, Italy
- Correspondence:
| | - Robert William Elwood
- School of Biological Sciences, Queen’s University, Belfast BT9 5DL, Northern Ireland, UK;
| | - Paolo Coluccio
- Department of Neurosciences, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Viale Pieraccini 6, 50139 Firenze, Italy;
| |
Collapse
|
36
|
Huang Z, Aweya JJ, Zhu C, Tran NT, Hong Y, Li S, Yao D, Zhang Y. Modulation of Crustacean Innate Immune Response by Amino Acids and Their Metabolites: Inferences From Other Species. Front Immunol 2020; 11:574721. [PMID: 33224140 PMCID: PMC7674553 DOI: 10.3389/fimmu.2020.574721] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Accepted: 10/08/2020] [Indexed: 12/21/2022] Open
Abstract
Aquaculture production of crustaceans (mainly shrimp and crabs) has expanded globally, but disease outbreaks and pathogenic infections have hampered production in the last two decades. As invertebrates, crustaceans lack an adaptive immune system and mainly defend and protect themselves using their innate immune system. The immune system derives energy and metabolites from nutrients, with amino acids constituting one such source. A growing number of studies have shown that amino acids and their metabolites are involved in the activation, synthesis, proliferation, and differentiation of immune cells, as well as in the activation of immune related signaling pathways, reduction of inflammatory response and regulation of oxidative stress. Key enzymes in amino acid metabolism have also been implicated in the regulation of the immune system. Here, we reviewed the role played by amino acids and their metabolites in immune-modulation in crustaceans. Information is inferred from mammals and fish where none exists for crustaceans. Research themes are identified and the relevant research gaps highlighted for further studies.
Collapse
Affiliation(s)
- Zishu Huang
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, China.,Shantou University-Universiti Malaysia Terengganu (STU-UMT) Joint Shellfish Research Laboratory, Shantou University, Shantou, China
| | - Jude Juventus Aweya
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, China.,Shantou University-Universiti Malaysia Terengganu (STU-UMT) Joint Shellfish Research Laboratory, Shantou University, Shantou, China
| | - Chunhua Zhu
- College of Fisheries, Guangdong Ocean University, Zhanjiang, China
| | - Ngoc Tuan Tran
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, China.,Shantou University-Universiti Malaysia Terengganu (STU-UMT) Joint Shellfish Research Laboratory, Shantou University, Shantou, China
| | - Yujian Hong
- Guangdong Yuequn Marine Biological Research and Development Co., Ltd., Jieyang, China
| | - Shengkang Li
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, China.,Shantou University-Universiti Malaysia Terengganu (STU-UMT) Joint Shellfish Research Laboratory, Shantou University, Shantou, China
| | - Defu Yao
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, China.,Shantou University-Universiti Malaysia Terengganu (STU-UMT) Joint Shellfish Research Laboratory, Shantou University, Shantou, China
| | - Yueling Zhang
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, China.,Shantou University-Universiti Malaysia Terengganu (STU-UMT) Joint Shellfish Research Laboratory, Shantou University, Shantou, China
| |
Collapse
|
37
|
Han F, Xu C, Qi C, Lin Z, Li E, Wang C, Wang X, Qin JG, Chen L. Sodium butyrate can improve intestinal integrity and immunity in juvenile Chinese mitten crab (Eriocheir sinensis) fed glycinin. FISH & SHELLFISH IMMUNOLOGY 2020; 102:400-411. [PMID: 32371256 DOI: 10.1016/j.fsi.2020.04.058] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 04/25/2020] [Accepted: 04/27/2020] [Indexed: 06/11/2023]
Abstract
Butyrate is a fermentation byproduct of gut microbiota and is susceptible to chronic oxidative stress. This study investigates the mitigative effects of sodium butyrate (SBT) on growth inhibition and intestinal damage induced by glycinin in juvenile Chinese mitten crab (Eriocheir sinensis). All four experimental diets containing 80 g/kg glycinin were formulated with 0, 10, 20 and 40 g/kg SBT respectively. There was no glycinin or SBT in the control diet. Juvenile crabs (0.33 ± 0.01g) were respectively fed with these five diets for eight weeks. The diets with 10 and 20 g/kg SBT significantly improved the survival and weight gain of the crabs compared with those in the 0 g/kg SBT group, and showed no difference with the control group. The crabs fed diets containing glycinin without SBT had lower glutathione and glutathione peroxidase activities but higher malondialdehyde in the intestine than those in the control group. Moreover, dietary glycinin decreased the lysozyme and phenoloxidase activities and improved the level of histamine in the intestine compared with the control group, while the supplementation of SBT counteracted these negative effects. The addition of SBT could also restore the impaired immunity and morphological structure of the intestine. Dietary SBT could increase the mRNA expression of antimicrobial peptides genes (anti-lipopolysaccharide factor 1 and 2) and decrease the content of pro-inflammatory factor TNF-α. The SBT could restore the intestinal microbial community disorganized by glycinin. The abundance of pathogenic bacteria (Aeromonas, Vibrio and Pseudomonas) decreased significantly and the potential probiotic bacteria (Bacillus, Lactobacillus, Chitinibacter and Dysgonomonas) increased significantly in the 10 g/kg SBT group. This study suggests that sodium butyrate supplementation can mitigate the negative effects induced by glycinin such as growth inhibition, intestinal inflammation and reduction of beneficial flora in the gut.
Collapse
Affiliation(s)
- Fenglu Han
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, 500 Dongchuan Rd, Shanghai, 200241, China
| | - Chang Xu
- Department of Aquaculture College of Marine Sciences, Hainan University, Haikou, Hainan, 570228, China
| | - Changle Qi
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, 500 Dongchuan Rd, Shanghai, 200241, China
| | - Zhideng Lin
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, 500 Dongchuan Rd, Shanghai, 200241, China
| | - Erchao Li
- Department of Aquaculture College of Marine Sciences, Hainan University, Haikou, Hainan, 570228, China
| | - Chunling Wang
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, 500 Dongchuan Rd, Shanghai, 200241, China
| | - Xiaodan Wang
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, 500 Dongchuan Rd, Shanghai, 200241, China.
| | - Jian G Qin
- College of Science and Engineering, Flinders University, Adelaide, SA, 5001, Australia
| | - Liqiao Chen
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, 500 Dongchuan Rd, Shanghai, 200241, China.
| |
Collapse
|
38
|
Munaeni W, Yuhana M, Setiawati M, Wahyudi AT. Effect in white shrimp Litopenaeus vannamei of Eleutherine bulbosa (Mill.) Urb. Powder on immune genes expression and resistance against Vibrio parahaemolyticus infection. FISH & SHELLFISH IMMUNOLOGY 2020; 102:218-227. [PMID: 32268178 DOI: 10.1016/j.fsi.2020.03.066] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 03/26/2020] [Accepted: 03/30/2020] [Indexed: 06/11/2023]
Abstract
This study investigated the influence of Eleutherine bulbosa (Mill.) Urb. on the immune responses, bacterial population in the intestines, and resistance of white shrimp, Litopenaeus vannamei, against infection with Vibrio parahaemolyticus. Shrimp were fed with three dosages of powder, at 6.25 g kg-1 (P6.25), 12.5 g kg-1 (P12.5), and 25 g kg-1 (P25). One dosage of the crude extract was provided, 1.25 g kg-1 (E1.25), and the controls without administration of E. bulbosa consisted of a positive control (PC) and a negative control (NC). Feed supplementation was carried out for 30 days; then shrimp from all treatments were challenged by intramuscular injection with V. parahaemolyticus (106 cfu/mL), except for the NC. The results showed that supplementation with the powder and extract of E. bulbosa for 30 days resulted in significantly higher (P < 0.05) immune responses (total hemocyte count (THC), phenoloxidase activity (PO), respiratory bursts (RBs)), gene expression (prophenoloxidase (proPO), lipopolysaccharide- and β-1,3-glucan-binding protein (LGBP)), and total bacterial count (TBC) compared to PC/NC. In post challenge testing, there were significantly higher levels for THC, PO, RBs, proPO, LGBP, and PE (peroxinetin), and the treatments were able to suppress V. parahaemolyticus in the intestines, hepatopancreas, and muscles and to reduce damage to the muscles and hepatopancreas. The survival rate with P12.5 was significantly higher compared to the other treatments. It was concluded that the shrimp receiving supplementation with the powder and extract of E. bulbosa had increased immunity and resistance against V. parahaemolyticus infection, with the best dosage being the P12.5 treatment.
Collapse
Affiliation(s)
- Waode Munaeni
- Department of Aquaculture, Faculty of Fisheries and Marine Science, IPB University (Bogor Agricultural University), Bogor, 16680, Indonesia; Department of Aquaculture, Faculty of Fisheries and Marine Science, Halu Oleo University, Kendari, 93232, Indonesia.
| | - Munti Yuhana
- Department of Aquaculture, Faculty of Fisheries and Marine Science, IPB University (Bogor Agricultural University), Bogor, 16680, Indonesia
| | - Mia Setiawati
- Department of Aquaculture, Faculty of Fisheries and Marine Science, IPB University (Bogor Agricultural University), Bogor, 16680, Indonesia
| | - Aris Tri Wahyudi
- Department of Biology, Faculty of Mathematics and Natural Science, IPB University (Bogor Agricultural University), Bogor, 16680, Indonesia
| |
Collapse
|
39
|
Qyli M, Aliko V, Faggio C. Physiological and biochemical responses of Mediterranean green crab, Carcinus aestuarii, to different environmental stressors: Evaluation of hemocyte toxicity and its possible effects on immune response. Comp Biochem Physiol C Toxicol Pharmacol 2020; 231:108739. [PMID: 32165350 DOI: 10.1016/j.cbpc.2020.108739] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 02/27/2020] [Accepted: 03/06/2020] [Indexed: 12/25/2022]
Abstract
Effects of natural stressors such as copper (Cu2+), temperature, hypoxia, chloroform and adrenaline on physiological and biochemical responses were investigated in the Mediterranean green crab Carcinus aestuarii from tidal shallow waters of Narta Lagoon, Albania. For this purpose, hemolymph glucose levels, total and differential hemocyte count, in normal and eye-stalked individuals, exposed to above mentioned stressors like, were assessed. In addition, lysosomal membrane stability was evaluated as biomarker of hemocyte toxicity, with possible implications on crab immune response. Hemolymph glucose levels were significantly increased in all treatment groups with 1.25-to 3.5-fold above baseline levels of 37.8 ± 2.7 mgdL-1. Response times were being manifested within 30-120 min following exposure and recovery happened within 2 h of restoration of pretreatment conditions. Total hemocyte count (THC) and differential hemocyte count (DCH) showed a significant decrease for all stressors, except for copper, were an increase of semi-granular hemocyte fraction were recorded. Meanwhile, significant reduction of neutral red retention time (NRRT), in both eyestalk-ablated and exposed animals, were recorded, indicated the loss of hemocyte lysosomal membrane integrity. The responsiveness of hemolymph blood levels to all stressors, the decrease in total hemocyte count, as well as the loss of lysosomal membrane integrity demonstrated that exposure to environmentally realistic stressors placed a heavy metabolic load on C. aestuarii, modulating their immune competence and overall physiological wellness. Overall, results suggest that monitoring cellular and biochemical parameters like hemolymph glucose titres, TCH, DHC and NRRT, may be useful and sensitive means of evaluating the crustacean's ability to cope with the wide variety of environmental stressors through modulation of the immune parameters.
Collapse
Affiliation(s)
- Marsilda Qyli
- Department of Biology, Faculty of Natural Sciences, University of Tirana, Boulv. "Zogu I', 25/1, Tirana, Albania
| | - Valbona Aliko
- Department of Biology, Faculty of Natural Sciences, University of Tirana, Boulv. "Zogu I', 25/1, Tirana, Albania.
| | - Caterina Faggio
- University of Messina, Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, Messina, Italy.
| |
Collapse
|
40
|
Alvarez-Lee A, Martínez-Díaz SF, Gutiérrez-Rivera JN, Lanz-Mendoza H. Induction of innate immune response in whiteleg shrimp (Litopenaeus vannamei) embryos. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 105:103577. [PMID: 31852626 DOI: 10.1016/j.dci.2019.103577] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 12/12/2019] [Accepted: 12/14/2019] [Indexed: 06/10/2023]
Abstract
The immune response of commercially relevant marine invertebrates has been extensively studied, in search of new disease-control strategies. Immune training is considered a novel approach that could help improve resistance to different pathogens. Here, we stimulated the white shrimp (Litopenaeus vannamei) during embryo development by exposure to heat-killed bacteria and evaluated their effect on hatching, larval development, and the expression of immune-related genes. In addition, we evaluated its impact on the response of shrimp nauplii during a challenge with Vibrio parahaemolyticus. We observed that the percentage of hatching and the resistance to bacterial infection increased due to the treatment of embryos with heat-killed cells of Vibrio and Bacillus. Apparently different stimuli could generate a differential pattern of gene expression, e.g., Vibrio induced a strong effector immune response whereas Bacillus elicited a protective immune profile. In addition, each response was triggered by molecular patterns detected in the environment. The results obtained in this study provide new insights for immune training to improve shrimp farming.
Collapse
Affiliation(s)
- Angélica Alvarez-Lee
- Instituto Politécnico Nacional-Centro Interdisciplinario de Ciencias Marinas, Av. Instituto Politecnico Nacional SN, Playa Palo de Santa Rita, 23096, La Paz, B.C.S, Mexico
| | - Sergio F Martínez-Díaz
- Instituto Politécnico Nacional-Centro Interdisciplinario de Ciencias Marinas, Av. Instituto Politecnico Nacional SN, Playa Palo de Santa Rita, 23096, La Paz, B.C.S, Mexico.
| | - Jesus Neftalí Gutiérrez-Rivera
- Centro de Investigaciones Biológicas del Noroeste, Mar Bermejo 195, Colonia Playa Palo de Santa Rita, 23090, La Paz, BCS, Mexico
| | - Humberto Lanz-Mendoza
- Instituto Nacional de Salud Pública, Avenida Universidad No. 655 Colonia Santa María Ahuacatitlán, Cerrada Los Pinos y Caminera, 62100, Cuernavaca, MOR, Mexico.
| |
Collapse
|
41
|
Zhu F, Ma X. Molecular characterization of troponin T in Scylla paramamosain and its role in Vibrio alginolyticus and white spot syndrome virus (WSSV) infection. FISH & SHELLFISH IMMUNOLOGY 2020; 99:392-402. [PMID: 32087277 DOI: 10.1016/j.fsi.2020.02.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 02/10/2020] [Accepted: 02/18/2020] [Indexed: 06/10/2023]
Abstract
This study investigated the function of Troponin T (TnT) in the mud crab, Scylla paramamosain. The 1952 bp cDNA sequence of TnT was cloned from S. paramamosain using rapid amplification of cDNA ends (RACE) PCR. The quantitative real-time PCR analysis showed that TnT was highly expressed in the muscle and heart of S. paramamosain. Challenging with white spot syndrome virus (WSSV) or Vibrio alginolyticus (VA), two common pathogens that infect mud crabs, enhanced the expression of TnT in S. paramamosain. Knockdown of TnT using TnT-dsRNA led to up-regulating the expression of immune-related genes, such as c-type-lectin, toll-like-receptor, crustin antimicrobial peptide and prophenoloxidase. The cumulative mortality of WSSV- and VA-infected crabs was significantly increased following TnT knockdown. After WSSV or VA infection, TnT knockdown caused a significant reduction in phenoloxidase (PO) activity, superoxide dismutase (SOD) activity and total hemocyte count (THC), indicating a regulatory role of TnT in the innate immune response of S. paramamosain to pathogens. Apoptosis of hemocytes was higher in crabs treated with TnT-dsRNA compared with control crabs treated with phosphate-buffered saline. Knockdown of TnT increased apoptosis of hemocytes following VA infection, but reduced hemocyte apoptosis following WSSV infection. In summary, TnT may enhance the immune response of S. paramamosain to WSSV infection by regulating apoptosis, THC, PO activity and SOD activity. And TnT may play a positive role in the immune response against VA infection by regulating apoptosis, THC, SOD activity and PO activity.
Collapse
Affiliation(s)
- Fei Zhu
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang Agriculture and Forestry University, Hangzhou, 311300, China.
| | - Xiongchao Ma
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang Agriculture and Forestry University, Hangzhou, 311300, China
| |
Collapse
|
42
|
Pan L, Zhang X, Yang L, Pan S. Effects of Vibro harveyi and Staphyloccocus aureus infection on hemocyanin synthesis and innate immune responses in white shrimp Litopenaeus vannamei. FISH & SHELLFISH IMMUNOLOGY 2019; 93:659-668. [PMID: 31419533 DOI: 10.1016/j.fsi.2019.08.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 08/03/2019] [Accepted: 08/08/2019] [Indexed: 06/10/2023]
Abstract
Hemocyanin, a multifunctional oxygen-carrying protein, has critical effects on immune defense in crustaceans. To explore the role of hemocyanin in anti-pathogen mechanism, effects of Vibrio harveyi (V. harvey) and Staphyloccocus aureus (S. aureus) on hemocyanin synthesis and innate immune responses were investigated in Litopenaeus vannamei (L. vannamei) during infection in vivo. Results showed that 105 and 106 cells mL-1V. harveyi and 106 cells mL-1S. aureus significantly affected plasma hemocyanin concentration, hepatopancreas hemocyanin mRNA and subunits expressions, plasma phenol oxidase (PO), hemocyanin-derived PO (Hd-PO), antibacterial, and bacteriolytic activities during the experiment under bacterial stress, while these parameters did not change remarkably in control group. The concentration of hemocyanin in plasma fluctuated, with a minimum at 12 h and a maximum at 24 h. Moreover, the expression of hemocyanin mRNA peaked at 12 h, while the level of hemocyanin p75 and p77 subunits reached maximum at 24 h. Besides, plasma PO and Hd-PO activities peaked at 24 h, and antimicrobial and bacteriolytic activities peaked at 12 h and 24 h, respectively. In addition, 105 cells mL-1S. aureus had no significant effect on the synthesis of hemocyanin and prophenoloxidase activating (pro-PO) system, but significantly increased antimicrobial activity at 12 h and bacteriolytic activity at 24 h. Therefore, these results suggest that the hemocyanin synthesis was initiated after invasion of pathogen, and the newly synthesized hemocyanin, acted as an immune molecule, can exerts PO activity to regulate the immune defense in L. vannamei in vivo.
Collapse
Affiliation(s)
- Luqing Pan
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, PR China.
| | - Xin Zhang
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, PR China
| | - Liubing Yang
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, PR China
| | - Shanshan Pan
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, PR China
| |
Collapse
|
43
|
Qin F, Shen T, Yang H, Qian J, Zou D, Li J, Liu H, Zhang Y, Song X. Dietary nano cerium oxide promotes growth, relieves ammonia nitrogen stress, and improves immunity in crab (Eriocheir sinensis). FISH & SHELLFISH IMMUNOLOGY 2019; 92:367-376. [PMID: 31200070 DOI: 10.1016/j.fsi.2019.06.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 06/06/2019] [Accepted: 06/10/2019] [Indexed: 06/09/2023]
Abstract
Oxidative stress plays a crucial role in ammonia nitrogen toxicity. In this study, the beneficial effects of dietary nano cerium oxide (nano CeO2) as a potent antioxidant were examined in the Chinese mitten crab (Eriocheir sinensis). Crabs were fed a diet supplemented with 0, 0.2, 0.4, 0.8, 1.6, 3.2, 6.4, or 12.8 mg/kg nano CeO2 for 60 d. The optimum supplementation level of nano CeO2 that significantly increased weight gain rate and decreased feed coefficient was 0.8 mg/kg. This level also offered immune protection when crabs were kept under ammonia nitrogen stress and/or exposed to pathogen infection (Aeromonas hydrophila). Supplementation with 0.8 mg/kg of CeO2 (i) relieved pathological damage to the hepatopancreas; (ii) increased hemocyte counts, including total number of hemocytes, granulocytes, and hyalinocytes; (iii) decreased malondialdehyde content and increased antioxidant enzyme activities of superoxide dismutase and catalase in the hemolymph; (iv) increased the activities of lysozyme, acid phosphatase, and alkaline phosphatase in the hemolymph; and (v) increased gene and protein expression of cathepsin L in the hepatopancreas. Mortality increased when crabs were injected with bacteria under ammonia nitrogen stress, but dietary supplementation with 0.8 mg/kg nano CeO2 decreased the mortality rate. Thus, the results of this study suggested that dietary supplementation with nano CeO2 in crabs promoted growth and up-regulated immunity to bacterial infection under ammonia nitrogen stress.
Collapse
Affiliation(s)
- Fenju Qin
- Department of Biotechnology and Bioengineering, Suzhou University of Science and Technology, Suzhou, 215009, China.
| | - Tao Shen
- Department of Biotechnology and Bioengineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Huixing Yang
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou, 215123, China
| | - Junchao Qian
- Jiangsu Key Laboratory for Environment Functional Materials, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Dan Zou
- Department of Biotechnology and Bioengineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Jinlin Li
- Department of Biotechnology and Bioengineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Hui Liu
- Department of Biotechnology and Bioengineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Yunyi Zhang
- Department of Biotechnology and Bioengineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Xuehong Song
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou, 215123, China.
| |
Collapse
|
44
|
A histological atlas for the Palinuridae (Crustacea: Decapoda: Achelata): A guide to parasite discovery and spotting the abnormal in spiny lobsters. J Invertebr Pathol 2019; 163:21-33. [DOI: 10.1016/j.jip.2019.03.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 02/13/2019] [Accepted: 03/01/2019] [Indexed: 12/28/2022]
|
45
|
Comparative transcriptome analysis explores maternal to zygotic transition during Eriocheir sinensis early embryogenesis. Gene 2019; 685:12-20. [PMID: 30321661 DOI: 10.1016/j.gene.2018.10.036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Revised: 09/27/2018] [Accepted: 10/11/2018] [Indexed: 11/21/2022]
Abstract
The maternal genome directs almost all aspects of early animal development. As development proceeds, the elimination of maternal gene products and zygotic genome activation (ZGA) occur during the maternal to zygotic transition (MZT). To study the molecular mechanisms regulating this developmental event in Eriocheir sinensis, RNA-Seq technology was applied to generate comprehensive information on transcriptome dynamics during early embryonic stages. In total, 32,088 annotated unigenes were obtained from the transcriptomes of fertilized eggs and embryos at the cleavage (2-4 cell) and blastula stage. A total of 566 maternal genes and 1165 zygotic genes were isolated, among which 103 and 266 genes were predicted conserved maternal transcripts (COMATs) and conserved zygotic transcripts (COZYTs), respectively. The COMATs performed housekeeping gene functions and may be essential for initiating early embryogenesis of the Bilateria. Furthermore, 87, 76 and 117 differentially expressed genes associated with the MZT, morphogenesis and immunity were identified when compared the three transcriptomic datasets. We also unmask that the MZT takes place around the cleavage stage, when the genes involved in the clearance of maternal gene products and the ZGA were significantly up-regulated. Taken together, these datasets provide a valuable resource for understanding the mechanisms of early developmental events in E. sinensis, and facilitate further studies on molecular mechanisms of asynchronous development in crabs.
Collapse
|
46
|
Wu CC, Lin CL, Huang CY, Hsieh S, Liu CH, Hsieh SL. α-Phellandrene enhances the immune response and resistance against Vibrio alginolyticus in white shrimp (Litopenaeus vannamei). FISH & SHELLFISH IMMUNOLOGY 2019; 84:1108-1114. [PMID: 30414490 DOI: 10.1016/j.fsi.2018.11.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 11/02/2018] [Accepted: 11/05/2018] [Indexed: 06/08/2023]
Abstract
Innate immunity and resistance against Vibrio alginolyticus in white shrimp, Litopenaeus vannamei, that received α-phellandrene were examined. The results indicated that the percent survival of shrimp receiving 4, 8, and 12 μg g-1 α-phellandrene was significantly higher than that of control shrimp after 72 h (p < 0.05). In a separate experiment, the phenoloxidase (PO), respiratory bursts, superoxide dismutase (SOD), and phagocytic and lysozyme activity of L. vannamei receiving 8 and 12 μg g-1 α-phellandrene were significantly higher than those of the other groups upon challenge with V. alginolyticus at 24-60, 36-60, 12-60, 12-72 and 48-72 h, respectively. However, no significant differences in the total haemocyte counts (THC) of L. vannamei receiving any dose of α-phellandrene and of control shrimp were observed at 12-72 h. The expression (mRNA transcripts) of the immune genes prophenoloxidase (proPO), LPS- and β-1,3-glucan-binding protein (LGBP) and peroxinectin (PE) of shrimp receiving α-phellandrene at 8 and 12 μg g-1 significantly increased after challenge with V. alginolyticus for 72 h (p < 0.05). We conclude that the immune ability and resistance against V. alginolyticus infection increased in L. vannamei receiving >4 μg g-1 α-phellandrene. These results indicated that α-phellandrene plays an important role in the innate immunity of white shrimp.
Collapse
Affiliation(s)
- Chih-Chung Wu
- Department of Food and Nutrition, Providence University, Taichung, 43301, Taiwan
| | - Chia-Ling Lin
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung, 81157, Taiwan
| | - Chun-Yung Huang
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung, 81157, Taiwan
| | - Shuchen Hsieh
- Department of Chemistry, National Sun Yat-sen University, Kaohsiung, 80424, Taiwan
| | - Chun-Hung Liu
- Department of Aquaculture, National Pingtung University of Science and Technology, Pingtung, 91201, Taiwan
| | - Shu-Ling Hsieh
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung, 81157, Taiwan.
| |
Collapse
|
47
|
Elbahnaswy S, Koiwai K, Zaki VH, Shaheen AA, Kondo H, Hirono I. A novel viral responsive protein (MjVRP) from Marsupenaeus japonicus haemocytes is involved in white spot syndrome virus infection. FISH & SHELLFISH IMMUNOLOGY 2017; 70:638-647. [PMID: 28935599 DOI: 10.1016/j.fsi.2017.09.045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Revised: 09/11/2017] [Accepted: 09/15/2017] [Indexed: 06/07/2023]
Abstract
A viral responsive protein (MjVRP) was characterized from Marsupenaeus japonicus haemocytes. In amino acid homology and phylogenetic tree analyses, MjVRP clustered in the same group with the viral responsive protein of Penaeus monodon (PmVRP15), showing 34% identity. MjVRP transcripts were mainly expressed in haemocytes and the lymphoid organ. Western blotting likewise showed that MjVRP was strongly expressed in haemocytes and the lymphoid organ. Immunostaining detected MjVRP within the cytosol next to the perinuclear region in some haemocytes. Experimental challenge with white spot syndrome virus (WSSV) significantly up-regulated the mRNA level of MjVRP in the M. japonicus haemocytes at 6 and 48 h. Flow cytometry and indirect immunofluorescence assays revealed that the ratio of MjVRP+ haemocytes significantly increased 24 and 48 h post-WSSV infection. These results suggest that MjVRP+ haemocytes have a supporting role in the pathogenesis of WSSV.
Collapse
Affiliation(s)
- Samia Elbahnaswy
- Laboratory of Genome Science, Tokyo University of Marine Science and Technology, Konan 4-5-7, Minato-ku, Tokyo 108-8477, Japan; Department of Internal Medicine, Infectious and Fish Diseases, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Keiichiro Koiwai
- Laboratory of Genome Science, Tokyo University of Marine Science and Technology, Konan 4-5-7, Minato-ku, Tokyo 108-8477, Japan
| | - Viola H Zaki
- Department of Internal Medicine, Infectious and Fish Diseases, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Adel A Shaheen
- Department of Fish Diseases and Management, Faculty of Veterinary Medicine, Benha University, Benha 13518, Egypt
| | - Hidehiro Kondo
- Laboratory of Genome Science, Tokyo University of Marine Science and Technology, Konan 4-5-7, Minato-ku, Tokyo 108-8477, Japan
| | - Ikuo Hirono
- Laboratory of Genome Science, Tokyo University of Marine Science and Technology, Konan 4-5-7, Minato-ku, Tokyo 108-8477, Japan.
| |
Collapse
|
48
|
Zhao C, Fu H, Sun S, Qiao H, Zhang W, Jin S, Jiang S, Xiong Y, Gong Y. Experimental inoculation of oriental river prawn Macrobrachium nipponense with white spot syndrome virus (WSSV). DISEASES OF AQUATIC ORGANISMS 2017; 126:125-134. [PMID: 29044042 DOI: 10.3354/dao03165] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The oriental river prawn Macrobrachium nipponense is an economically important species that is widely farmed in China. White spot syndrome virus (WSSV) is one of the most devastating pathogens of the cultured shrimp Litopenaeus vannamei, responsible for massive loss of its commercial products worldwide. We investigated the infectivity and pathogenicity of WSSV in adult M. nipponense using standardized conditions for L. vannamei. The median lethal dose of WSSV in adult M. nipponense was 103.84±0.06 copies g-1, which was about 1000-fold higher than in L. vannamei (100.59±0.22 copies g-1). WSSV was detected by 2-step PCR in the gills, hepatopancreas, muscle, stomach, heart, gut, nerve, integument, pereopod, eyestalk, testis, and ovary of experimentally infected dead M. nipponense. Lesions were observed histologically following WSSV injection, showing basophilic intranuclear inclusion bodies in the hepatopancreas and subsequently in the gills. The clearance of WSSV was observed in hepatopancreas and gills at 48 and 96 h post-inoculation, respectively. No histological lesions were detected in muscle from 0-96 h post-injection. The results show that the oriental river prawn M. nipponense can be infected by WSSV and the infections are self limiting over time; therefore, M. nipponense may serve as a useful model for studying resistance to WSSV.
Collapse
Affiliation(s)
- Caiyuan Zhao
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Giarma E, Amanetidou E, Toufexi A, Touraki M. Defense systems in developing Artemia franciscana nauplii and their modulation by probiotic bacteria offer protection against a Vibrio anguillarum challenge. FISH & SHELLFISH IMMUNOLOGY 2017; 66:163-172. [PMID: 28478257 DOI: 10.1016/j.fsi.2017.05.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 04/25/2017] [Accepted: 05/01/2017] [Indexed: 06/07/2023]
Abstract
The alterations of immune responses of Artemia franciscana nauplii as a function of culture time and after a challenge with the pathogen Vibrio anguillarum were studied. The effect of the administration of the probiotic bacteria Bacillus subtilis, Lactobacillus plantarum and Lactococcus lactis either alone or in combination with the pathogen was evaluated. The activity of the antioxidant enzymes superoxide dismutase (SOD), Glutathione reductase (GRed), Glutathione transferase (GST) and Phenoloxidase (PO) presented a significant increase as a function of culture time, appeared elevated following probiotic administration and were depleted 48 h following the experimental challenge. Lipid peroxidation reached peak levels at 48 h of culture, when nauplii start feeding and returned to lower values at 144 h, remaining however significantly higher than control (P < 0.05). The three probiotics significantly reduced lipid peroxidation in comparison with the corresponding control, while challenge with the pathogen resulted in its threefold increase. Survival of nauplii remained high throughout culture and was either increased or remained at control levels following the administration of the probiotics. The challenge with the pathogen resulted in a significantly decreased survival of 15.3% for the positive control, while in the probiotic treated series survival values were not significantly different from the negative control (P > 0.05). Following a combined administration of each probiotic and the pathogen the activities of all enzymes tested were significantly lower (P < 0.001) than the negative control (no treatment), but higher than the positive control (challenge, no probiotic). Lipid peroxidation was significantly lower in the probiotic treated series in comparison to the positive control (P < 0.001). The results of the present study provide evidence that major alterations take place as a function of culture time of Artemia nauplii. In addition the pathogen induces an oxidative stress response. The probiotics B. subtilis, L. plantarum and L. lactis protect Artemia against a V. anguillarum challenge by enhancing its immune responses thus contributing to reduced oxidative damage and increased survival.
Collapse
Affiliation(s)
- Eleni Giarma
- Laboratory of General Biology, Division of Genetics, Development and Molecular Biology, Department of Biology, School of Sciences, Aristotle University of Thessaloniki (A.U.TH.), 54 124 Thessaloniki, Greece
| | - Eleni Amanetidou
- Laboratory of General Biology, Division of Genetics, Development and Molecular Biology, Department of Biology, School of Sciences, Aristotle University of Thessaloniki (A.U.TH.), 54 124 Thessaloniki, Greece
| | - Alexia Toufexi
- Laboratory of General Biology, Division of Genetics, Development and Molecular Biology, Department of Biology, School of Sciences, Aristotle University of Thessaloniki (A.U.TH.), 54 124 Thessaloniki, Greece
| | - Maria Touraki
- Laboratory of General Biology, Division of Genetics, Development and Molecular Biology, Department of Biology, School of Sciences, Aristotle University of Thessaloniki (A.U.TH.), 54 124 Thessaloniki, Greece.
| |
Collapse
|
50
|
Hauton C. Recent progress toward the identification of anti-viral immune mechanisms in decapod crustaceans. J Invertebr Pathol 2017; 147:111-117. [DOI: 10.1016/j.jip.2017.01.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 11/28/2016] [Accepted: 01/03/2017] [Indexed: 01/08/2023]
|