1
|
Ocaña-Cabrera JS, Martin-Solano S, Saegerman C. Environmental Sources of Possible Associated Pathogens and Contaminants of Stingless Bees in the Neotropics. INSECTS 2025; 16:350. [PMID: 40332795 PMCID: PMC12027748 DOI: 10.3390/insects16040350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 03/08/2025] [Accepted: 03/24/2025] [Indexed: 05/08/2025]
Abstract
Stingless bees are crucial for pollination and support diverse ecological relationships, offering economic benefits and contributing to enhanced crop yields. Their tropical pollinator status makes them highly sensitive to environmental changes and disruptions, which could affect their survival, as well as to pathogens that threaten their health. The lack of comprehensive research and the scattering of reports make it difficult to identify pathogens and contaminants. This review aims to provide an overview of diseases in stingless bees, examine chemical contaminants in their products, and explore threatened sources. Using the PRISMA flowchart, a total of 30 articles from 2009 to 2024 concerning pathogens and contaminants in stingless bees were retrieved. A total of 15 pathogens and 26 pollutants affect life expectancy and survival rate of stingless bees (mainly the genera Melipona and Tetragonisca) were identified in five major areas of the Neotropics, including Brazil, Mexico, Costa Rica, Australia, and Asia. Studies indicated that the bacterial genera Pseudomonas, Melissococcus, and Lysinibacillus are affecting the survival of stingless bees, particularly their brood, and contributing to annual colony deaths. Heavy metals, polycyclic aromatic hydrocarbons (PAHs), and microplastics have been detected in by-products of stingless bees, especially honey. Epidemiological research is crucial, including studies on pathogens associated with diseases, the effects of contaminants on bees, and the development of quality guidelines for stingless-bee products.
Collapse
Affiliation(s)
- Joseline Sofía Ocaña-Cabrera
- Research Unit of Epidemiology and Risk Analysis Applied to Veterinary Sciences (UREAR-ULiège), Fundamental and Applied Research for Animal and Health (FARAH) Center, Faculty of Veterinary Medicine, University of Liège, Quartier Vallée 2, Avenue de Cureghem 6, B43a, Sart-Tilman, 4000 Liege, Belgium;
| | - Sarah Martin-Solano
- Grupo de Investigación en Sanidad Animal y Humana (GISAH), Carrera de Ingeniería en Biotecnología, Departamento de Ciencias de la Vida y de la Agricultura, Universidad de las Fuerzas Armadas ESPE, Av. Gral. Rumiñahui S/N, Sangolquí 171103, Ecuador;
| | - Claude Saegerman
- Research Unit of Epidemiology and Risk Analysis Applied to Veterinary Sciences (UREAR-ULiège), Fundamental and Applied Research for Animal and Health (FARAH) Center, Faculty of Veterinary Medicine, University of Liège, Quartier Vallée 2, Avenue de Cureghem 6, B43a, Sart-Tilman, 4000 Liege, Belgium;
| |
Collapse
|
2
|
Cerqueira AES, Lima HS, Silva LCF, Veloso TGR, de Paula SO, Santana WC, da Silva CC. Melipona stingless bees and honey microbiota reveal the diversity, composition, and modes of symbionts transmission. FEMS Microbiol Ecol 2024; 100:fiae063. [PMID: 38650068 PMCID: PMC11217820 DOI: 10.1093/femsec/fiae063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 12/08/2023] [Accepted: 04/19/2024] [Indexed: 04/25/2024] Open
Abstract
The Melipona gut microbiota differs from other social bees, being characterized by the absence of crucial corbiculate core gut symbionts and a high occurrence of environmental strains. We studied the microbial diversity and composition of three Melipona species and their honey to understand which strains are obtained by horizontal transmission (HT) from the pollination environment, represent symbionts with HT from the hive/food stores or social transmission (ST) between nestmates. Bees harbored higher microbial alpha diversity and a different and more species-specific bacterial composition than honey. The fungal communities of bee and honey samples are also different but less dissimilar. As expected, the eusocial corbiculate core symbionts Snodgrassella and Gilliamella were absent in bees that had a prevalence of Lactobacillaceae - including Lactobacillus (formerly known as Firm-5), Bifidobacteriaceae, Acetobacteraceae, and Streptococcaceae - mainly strains close to Floricoccus, a putative novel symbiont acquired from flowers. They might have co-evolved with these bees via ST, and along with environmental Lactobacillaceae and Pectinatus (Veillonellaceae) strains obtained by HT, and Metschnikowia and Saccharomycetales yeasts acquired by HT from honey or the pollination environment, including plants/flowers, possibly compose the Melipona core microbiota. This work contributes to the understanding of Melipona symbionts and their modes of transmission.
Collapse
Affiliation(s)
- Alan Emanuel Silva Cerqueira
- Laboratorio de Microbiologia Ambiental Aplicada, Departamento de Microbiologia, Universidade Federal de Viçosa, Av. P.H. Rolfs, s/n – Campus Universitário, Edifício Chotaro Shimoya – sala 318, Viçosa – Minas Gerais, Brazil
- Department of Integrative Biology, The University of Texas at Austin, 2506 Speedway, NMS 4.216, Austin, TX, United States
| | - Helena Santiago Lima
- Laboratorio de Microbiologia Ambiental Aplicada, Departamento de Microbiologia, Universidade Federal de Viçosa, Av. P.H. Rolfs, s/n – Campus Universitário, Edifício Chotaro Shimoya – sala 318, Viçosa – Minas Gerais, Brazil
| | - Lívia Carneiro Fidélis Silva
- Laboratorio de Microbiologia Ambiental Aplicada, Departamento de Microbiologia, Universidade Federal de Viçosa, Av. P.H. Rolfs, s/n – Campus Universitário, Edifício Chotaro Shimoya – sala 318, Viçosa – Minas Gerais, Brazil
| | - Tomás Gomes Reis Veloso
- Laboratorio de Associações Micorrízicas, Universidade Federal de Viçosa, Departamento de Microbiologia, Av. P.H. Rolfs, s/n – Campus Universitário, Bioagro – sala 313, Viçosa – Minas Gerais, Brazil
| | - Sérgio Oliveira de Paula
- Laboratório de Imunovirologia Molecular, Departamento de Biologia Geral, Universidade Federal de Viçosa, Av. P.H. Rolfs, s/n – Campus Universitário, Edifício Chotaro Shimoya – sala 241, Viçosa – Minas Gerais, Brazil
| | - Weyder Cristiano Santana
- Instituto de Ciências Biológicas e da Saúde, Universidade Federal de Viçosa, Rod. MG 230 Km 08 - Campus Universitário, Rio Paranaíba – Minas Gerais, Brazil
- Departamento de Entomologia, Universidade Federal de Viçosa,Av. P.H. Rolfs, s/n – Campus Universitário, Viçosa – Minas Gerais, Brazil
| | - Cynthia Canêdo da Silva
- Laboratorio de Microbiologia Ambiental Aplicada, Departamento de Microbiologia, Universidade Federal de Viçosa, Av. P.H. Rolfs, s/n – Campus Universitário, Edifício Chotaro Shimoya – sala 318, Viçosa – Minas Gerais, Brazil
| |
Collapse
|
3
|
Deutsch KR, Graham JR, Boncristiani HF, Bustamante T, Mortensen AN, Schmehl DR, Wedde AE, Lopez DL, Evans JD, Ellis JD. Widespread distribution of honey bee-associated pathogens in native bees and wasps: Trends in pathogen prevalence and co-occurrence. J Invertebr Pathol 2023; 200:107973. [PMID: 37479057 DOI: 10.1016/j.jip.2023.107973] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 06/29/2023] [Accepted: 07/17/2023] [Indexed: 07/23/2023]
Abstract
Pollinators have experienced significant declines in the past decade, in part due to emerging infectious diseases. Historically, studies have primarily focused on pathogens in the Western honey bee, Apis mellifera. However, recent work has demonstrated that these pathogens are shared by other pollinators and can negatively affect their health. Here, we surveyed honey bees and 15 native bee and wasp species for 13 pathogens traditionally associated with honey bees. The native bee and wasp species included 11 species not previously screened for pathogens. We found at least one honey bee-associated pathogen in 53% of native bee and wasp samples. The most widely distributed and commonly detected pathogens were the microsporidian Nosema ceranae, the bacterium Melissococcus plutonius, and the viruses deformed wing virus and black queen cell virus. The prevalence of viruses was generally higher in honey bees than in native bees and wasps. However, the prevalence of M. plutonius and the brood fungus Ascosphaera apis was significantly higher in some native bee species than in honey bees. The data also reveal novel trends in the association between co-occurring pathogens in honey bees and native bees and wasps at the pathogen community level. These results can inform the assessment of risks that native pollinator species face from pathogen stress, and indicate that many non-viral pathogens, notably M. plutonius and N. ceranae, are far more widely distributed and commonly found in native bees and wasps than previously thought.
Collapse
Affiliation(s)
| | - Jason R Graham
- Entomology and Nematology Department, University of Florida, Gainesville, FL, USA; Planet Bee Foundation, San Francisco, CA 94132, USA
| | - Humberto F Boncristiani
- Entomology and Nematology Department, University of Florida, Gainesville, FL, USA; Inside The Hive Media, Consulting Inc., Odenton, MD 21113, USA
| | - Tomas Bustamante
- Entomology and Nematology Department, University of Florida, Gainesville, FL, USA; Independent Collaborator, Dallas, TX, USA
| | - Ashley N Mortensen
- Entomology and Nematology Department, University of Florida, Gainesville, FL, USA; The New Zealand Institute for Plant and Food Research Limited, Bisley Road, Hamilton 3214, New Zealand
| | - Daniel R Schmehl
- Entomology and Nematology Department, University of Florida, Gainesville, FL, USA; Bayer CropScience LP, 700 Chesterfield Pwky. W., Chesterfield, MO 63017, USA
| | - Ashlyn E Wedde
- Entomology and Nematology Department, University of Florida, Gainesville, FL, USA; Driscoll's Global R&D, Watsonville, CA, USA
| | - Dawn L Lopez
- Agricultural Research Service, United States Department of Agriculture, Beltsville, MD, USA
| | - Jay D Evans
- Agricultural Research Service, United States Department of Agriculture, Beltsville, MD, USA
| | - James D Ellis
- Entomology and Nematology Department, University of Florida, Gainesville, FL, USA
| |
Collapse
|
4
|
Tejerina MR, Cabana MJ, Cruz NM, Enríquez PA, Benitez-Ahrendts MR, Fonseca MI. Fungal microbiota isolated from native stingless bee species inhibited pathogens of Apis mellifera. Fungal Biol 2023; 127:1267-1275. [PMID: 37821148 DOI: 10.1016/j.funbio.2023.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 07/06/2023] [Accepted: 07/10/2023] [Indexed: 10/13/2023]
Abstract
Social bees can establish interactions with microorganisms to keep their colonies free of pathogens and parasites by developing different protection strategies. We explored the fungal microbiota isolated from three species of stingless bees, Tetragonisca fiebrigi, Plebeias sp., and Scaptotrigona jujuyensis, and its potential ability to suppress pathogenic microorganisms of A. mellifera, namely Paenibacillus larvae, Ascosphaera apis and Aspergillus flavus, which were tested and evaluated. Six filamentous fungal strains, Trametes hirsuta, Alternaria alternata, Curvularia spicifera, Skeletocutis sp., Alternaria tenuissima, Monascus spp., as well as the yeast Wickerhamomyces anomalus, were selected for trials and isolated from the heads of foraging bees. The fungal strains were identified by macroscopic and microscopic taxonomic characteristics and by sequencing of the ITS1-5.8S-ITS2 region of ribosomal DNA. All fungal strains inhibited these pathogens of A. mellifera. We also evaluated the effect of the secondary metabolites extracted with and without ethanol. Both metabolites showed antimicrobial properties, and our results suggest that fungi isolated from stingless bees produce bioactive compounds with antibacterial and antifungal effects that could be used to treat Apis mellifera colony diseases and maintain colony health.
Collapse
Affiliation(s)
- Marcos Raúl Tejerina
- Cátedra de Microbiología, Sanidad apícola y Meliponícola, Facultad de Ciencias Agrarias, Universidad Nacional de Jujuy, Alberdi 47, 4600, Jujuy, Argentina; Instituto de Ecorregiones Andinas (INECOA)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Avenida Bolivia 1239, Jujuy, Argentina.
| | - María José Cabana
- Cátedra de Microbiología, Sanidad apícola y Meliponícola, Facultad de Ciencias Agrarias, Universidad Nacional de Jujuy, Alberdi 47, 4600, Jujuy, Argentina
| | - Nancy Marina Cruz
- Cátedra de Microbiología, Sanidad apícola y Meliponícola, Facultad de Ciencias Agrarias, Universidad Nacional de Jujuy, Alberdi 47, 4600, Jujuy, Argentina
| | - Pablo Adrián Enríquez
- Cátedra de Microbiología, Sanidad apícola y Meliponícola, Facultad de Ciencias Agrarias, Universidad Nacional de Jujuy, Alberdi 47, 4600, Jujuy, Argentina
| | - Marcelo Rafael Benitez-Ahrendts
- Cátedra de Microbiología, Sanidad apícola y Meliponícola, Facultad de Ciencias Agrarias, Universidad Nacional de Jujuy, Alberdi 47, 4600, Jujuy, Argentina; Instituto de Ecorregiones Andinas (INECOA)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Avenida Bolivia 1239, Jujuy, Argentina
| | - María Isabel Fonseca
- Universidad Nacional de Misiones, Facultad de Ciencias Exactas, Químicas y Naturales. Instituto de Biotecnología "Dra. María Ebe Reca" (INBIOMIS), Laboratorio de Biotecnología Molecular, Misiones, Argentina; CONICET, Buenos Aires, Argentina
| |
Collapse
|
5
|
Rosa-Fontana AS, Dorigo AS, Malaquias JB, Pachú JKS, Nocelli RCF, Tosi S, Malaspina O. Fungivorous mites enhance the survivorship and development of stingless bees even when exposed to pesticides. Sci Rep 2022; 12:20948. [PMID: 36470975 PMCID: PMC9722777 DOI: 10.1038/s41598-022-25482-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 11/30/2022] [Indexed: 12/11/2022] Open
Abstract
Stingless bees are the largest group of eusocial bees in the world. They play an essential role as crop pollinators and have been considered for inclusion in pesticide risk assessments (RAs). Beyond the mutualism involving stingless bee larvae and fungi, the fungivorous mite Proctotydaeus (Neotydeolus) alvearii proved to be interesting for studies of associations with stingless bees. Their presence is related to colony strength and health, showing a permanent-host-association level. Here, we tested whether the coexistence with P. (N.) alvearii affects stingless bee larvae survivorship and development, including when fed pesticide-dosed food. We chose dimethoate, the reference standard for toxicity tests, and thiamethoxam, widely used in neotropical crops and listed to be reassessed in RAs. Bees associated with the mites showed higher larval survivorship rates, even in the dosed ones, and revealed changes in the developmental time and body size. Our study represents the first approach to stingless bee responses to the coexistence of fungivorous mites inside brood cells, leading us to believe that these mites play a beneficial role in stingless bees, including when they are exposed to pesticides.
Collapse
Affiliation(s)
- Annelise S. Rosa-Fontana
- grid.410543.70000 0001 2188 478XState University of Sao Paulo Júlio de Mesquita Filho, Rio Claro, SP Brazil
| | - Adna Suelen Dorigo
- grid.410543.70000 0001 2188 478XState University of Sao Paulo Júlio de Mesquita Filho, Rio Claro, SP Brazil
| | - José Bruno Malaquias
- grid.11899.380000 0004 1937 0722Escola Superior de Agricultura “Luiz de Queiroz”, University of Sao Paulo, Piracicaba, SP Brazil
| | - Jéssica K. S. Pachú
- grid.11899.380000 0004 1937 0722Escola Superior de Agricultura “Luiz de Queiroz”, University of Sao Paulo, Piracicaba, SP Brazil
| | - Roberta C. F. Nocelli
- grid.411247.50000 0001 2163 588XCentre of Agrarian Science, Federal University of Sao Carlos, Araras, SP Brazil ,grid.7605.40000 0001 2336 6580Department of Agricultural, Forest, and Food Sciences, University of Torino, Grugliasco, Italy
| | - Simone Tosi
- grid.7605.40000 0001 2336 6580Department of Agricultural, Forest, and Food Sciences, University of Torino, Grugliasco, Italy
| | - Osmar Malaspina
- grid.410543.70000 0001 2188 478XState University of Sao Paulo Júlio de Mesquita Filho, Rio Claro, SP Brazil
| |
Collapse
|
6
|
Pimentel TC, Rosset M, de Sousa JMB, de Oliveira LIG, Mafaldo IM, Pintado MME, de Souza EL, Magnani M. Stingless bee honey: An overview of health benefits and main market challenges. J Food Biochem 2021; 46:e13883. [PMID: 34338341 DOI: 10.1111/jfbc.13883] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/14/2021] [Accepted: 07/14/2021] [Indexed: 11/29/2022]
Abstract
This review aimed to evaluate the nutraceutical and medicinal effects of stingless bee honey (SBH) by bringing a discussion focused on the main known in vitro/in vivo health-promoting effects. SBH has a high-water content, slight sweetness, acidic flavor, fluid texture, and slow crystallization. The type and concentration of phenolic compounds and consequent antioxidant activity were mainly associated with the floral sources, geographical location, bee species, and processing steps. SBH has anti-inflammatory, antimicrobial (against spoilage and pathogenic microorganisms), anti-diabetic, and skin aging delay activities in in vitro tests. It has also shown antioxidant and hypolipidemic effects, can protect from injuries caused by dyslipidemia, possess anti-inflammatory activity against chronic subclinical systemic inflammation and anti-diabetic properties, and can control and prevent Staphylococcus aureus infection on infected wound healings in in vivo tests (rats). However, clinical trials are crucial for the probation of the medicinal and nutraceutical properties of SBH. Despite this, there are still no general norms and/or quality standards for this type of honey. The information summarized in this review is important to add value to this little-consumed food, providing helpful information to spread knowledge about its benefits, assisting future studies, and raising perspectives for its recognition as a functional food. Furthermore, it may encourage the creation of standard quality for the production and marketing of SBH. PRACTICAL APPLICATIONS: Previous studies have already summarized the chemical profile and physicochemical properties of stingless bee honey (SBH) and its potential health properties. However, no study has performed an overview of the potential nutraceutical and medicinal effects of SBH, presenting results from in vitro and in vivo investigations. Therefore, this review is the first study to overview the potential nutraceutical and medicinal effects of SBH, showing results of in vitro/in vivo health-promoting effects. The bioactivity of SBH is related to bee species and floral sources. The SBH has anti-inflammatory, antimicrobial, anti-diabetic, and antioxidant in vitro activity. It has also shown hypolipidemic effects and protection from injuries caused by dyslipidemia in rats.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Marciane Magnani
- Department of Food Engineering, University of Paraíba, João Pessoa, Brazil
| |
Collapse
|
7
|
LeBuhn G, Vargas Luna J. Pollinator decline: what do we know about the drivers of solitary bee declines? CURRENT OPINION IN INSECT SCIENCE 2021; 46:106-111. [PMID: 34082166 DOI: 10.1016/j.cois.2021.05.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/19/2021] [Accepted: 05/20/2021] [Indexed: 05/25/2023]
Abstract
Pollinators and the environments where they live are experiencing increasing human impacts leading to changes, primarily declines, in species richness and population abundances. The drivers of pollinator decline vary. Almost every type human resource use leads to some level of loss of habitat. The effects of pollution, particularly heavy metals, pesticides and the role of disease are increasingly recognized as important drivers of pollinator declines, however, significant gaps in our knowledge exist. Of particular concern is the feedback loop between decreasing pollination service, plant inbreeding, declines in nectar quality and further pollinator decline. When viewed in the context of the abiotic and biotic shifts associated with climate change, we suggest that focusing on ensuring there is adequate habitat remaining to provide resilience should be a central strategy for preserving pollinators.
Collapse
Affiliation(s)
- Gretchen LeBuhn
- Department of Biology, San Francisco State University, 1600 Holloway Avenue, San Francisco, CA, USA.
| | - Joshua Vargas Luna
- Department of Biology, San Francisco State University, 1600 Holloway Avenue, San Francisco, CA, USA
| |
Collapse
|
8
|
Farder-Gomes CF, Fernandes KM, Bernardes RC, Bastos DSS, Martins GF, Serrão JE. Acute exposure to fipronil induces oxidative stress, apoptosis and impairs epithelial homeostasis in the midgut of the stingless bee Partamona helleri Friese (Hymenoptera: Apidae). THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 774:145679. [PMID: 33611004 DOI: 10.1016/j.scitotenv.2021.145679] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 02/02/2021] [Accepted: 02/02/2021] [Indexed: 06/12/2023]
Abstract
Partamona helleri is an important pollinator in natural and agricultural ecosystems in the neotropics. However, the foraging activity of this bee increases its risk of exposure to pesticides, which may affect both the individuals and the colony. Thus, this study aims to evaluate the side effects of LC50 of fipronil (0.28 ng a.i. μL-1) on the midgut morphology, antioxidant activity and some pathways of cell death, proliferation and differentiation in workers of P. helleri, after 24 h of oral exposure. Fipronil caused morphological alterations in the midgut of the bees. The activities of the detoxification enzymes superoxide dismutase, catalase and glutathione S-transferase increased after exposure, which suggests the occurrence of a detoxification mechanism. Furthermore, exposure to fipronil changed the number of positive cells for signaling-pathway proteins in the midgut of bees, which indicates the induction of cell death by the apoptotic pathway and impairment of the midgut epithelial regeneration. These results demonstrate that fipronil may negatively affect the morphology and physiology of the midgut of the stingless bee P. helleri and impose a threat to the survival of non-target organisms.
Collapse
Affiliation(s)
| | - Kenner Morais Fernandes
- Department of General Biology, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-900, Brazil
| | | | - Daniel Silva Sena Bastos
- Department of General Biology, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-900, Brazil
| | - Gustavo Ferreira Martins
- Department of General Biology, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-900, Brazil.
| | - José Eduardo Serrão
- Department of General Biology, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-900, Brazil.
| |
Collapse
|
9
|
de Paula GT, Menezes C, Pupo MT, Rosa CA. Stingless bees and microbial interactions. CURRENT OPINION IN INSECT SCIENCE 2021; 44:41-47. [PMID: 33271364 DOI: 10.1016/j.cois.2020.11.006] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 10/30/2020] [Accepted: 11/17/2020] [Indexed: 06/12/2023]
Abstract
Stingless bees (Meliponini) are a monophyletic group of eusocial insects inhabiting tropical and subtropical regions. These insects represent the most abundant and diversified group of corbiculate bees. Meliponini mostly rely on fermentation by symbiont microbes to preserve honey and transform pollen in stored food. Bee nests harbor diverse microbiota that includes bacteria, yeasts, filamentous fungi, and viruses. These microorganisms may interact with the bees through symbiotic relationships, or they may act as food for the insects, or produce biomolecules that aid in the biotransformation of bee products, such as honey and bee bread. Certain microbial species can also produce antimicrobial compounds that inhibit opportunistic bee pathogens.
Collapse
Affiliation(s)
- Gabriela Toninato de Paula
- Departamento de Ciências Farmacêuticas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, 14040-903 Ribeirão Preto, SP, Brazil
| | - Cristiano Menezes
- Brazilian Agricultural Research Corporation, Embrapa Meio Ambiente, Jaguariúna, SP, Brazil
| | - Mônica Tallarico Pupo
- Departamento de Ciências Farmacêuticas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, 14040-903 Ribeirão Preto, SP, Brazil
| | - Carlos Augusto Rosa
- Departamento de Microbiologia, ICB, C.P. 486, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil.
| |
Collapse
|
10
|
Menegatti C, Fukuda TTH, Pupo MT. Chemical Ecology in Insect-microbe Interactions in the Neotropics. PLANTA MEDICA 2021; 87:38-48. [PMID: 32854122 DOI: 10.1055/a-1229-9435] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Small molecules frequently mediate symbiotic interactions between microorganisms and their hosts. Brazil harbors the highest diversity of insects in the world; however, just recently, efforts have been directed to deciphering the chemical signals involved in the symbioses of microorganisms and social insects. The current scenario of natural products research guided by chemical ecology is discussed in this review. Two groups of social insects have been prioritized in the studies, fungus-farming ants and stingless bees, leading to the identification of natural products involved in defensive and nutritional symbioses. Some of the compounds also present potential pharmaceutical applications as antimicrobials, and this is likely related to their ecological roles. Microbial symbioses in termites and wasps are suggested promising sources of biologically active small molecules. Aspects related to public policies for insect biodiversity preservation are also highlighted.
Collapse
Affiliation(s)
- Carla Menegatti
- Departamento de Ciências Farmacêuticas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Taise T H Fukuda
- Departamento de Ciências Farmacêuticas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Mônica T Pupo
- Departamento de Ciências Farmacêuticas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|