1
|
Keskek Turk Y, Ergunay K, Kohl A, Hughes J, McKimmie CS. Toscana virus - an emerging Mediterranean arbovirus transmitted by sand flies. J Gen Virol 2024; 105:002045. [PMID: 39508743 PMCID: PMC11542635 DOI: 10.1099/jgv.0.002045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 10/15/2024] [Indexed: 11/15/2024] Open
Abstract
Toscana virus (TOSV) is an emerging arthropod-borne virus (arbovirus) of medical importance that is increasing its range across much of the Mediterranean Basin, Europe and the Middle East. Transmitted by Phlebotomus spp. sand flies, it is the most clinically relevant sand fly-borne phlebovirus. Initially isolated in the Tuscany region of Central Italy, it has now been detected in multiple countries that surround this geographical area. Infection of the vertebrate host can cause fever and neurological disease, following the dissemination of the virus to the brain. The prevalence is high in some regions, with a notable percentage of individuals showing seroconversion. TOSV can be a leading cause of acute meningitis and encephalitis (AME) during the summer months. In this comprehensive review, we will focus on several key topics. We discuss how TOSV has spread to establish outbreaks of infection in both humans and animals around the Mediterranean and the wider region. Clinical aspects of TOSV infection in humans are described, along with the best standards in diagnosis. Finally, we focus our discussion on the role of the sand fly vector, describing their biology, vector competency, implications for putative vertebrate reservoirs, the effect of the climate emergency on sand fly distribution and the putative role that sand fly-derived salivary factors may have on modulating host susceptibility to TOSV infection.
Collapse
Affiliation(s)
| | - Koray Ergunay
- Walter Reed Biosystematics Unit (WRBU), Smithsonian Institution, Museum Support Center, Suitland, MD, USA
- One Health Branch, Walter Reed Army Institute of Research (WRAIR), Silver Spring, MD, USA
- Department of Entomology, Smithsonian Institution–National Museum of Natural History (NMNH), Washington, DC, USA
- Department of Medical Microbiology, Virology Unit, Faculty of Medicine, Hacettepe University, Ankara, Türkiye
| | - Alain Kohl
- Centre for Neglected Tropical Diseases, Departments of Tropical Disease Biology and Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, UK
| | - Joseph Hughes
- MRC-University of Glasgow Centre for Virus Research, Glasgow G61 1QH, Scotland, UK
| | - Clive S. McKimmie
- Skin Research Centre, York Biomedical Research Institute, Hull York Medical School, University of York, York, UK
| |
Collapse
|
2
|
Paquette SJ, Simon AY, XIII A, Kobinger GP, Shahhosseini N. Medically Significant Vector-Borne Viral Diseases in Iran. Microorganisms 2023; 11:3006. [PMID: 38138150 PMCID: PMC10745727 DOI: 10.3390/microorganisms11123006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/06/2023] [Accepted: 12/13/2023] [Indexed: 12/24/2023] Open
Abstract
Vector-borne viral diseases (VBVDs) continue to pose a considerable public health risk to animals and humans globally. Vectors have integral roles in autochthonous circulation and dissemination of VBVDs worldwide. The interplay of agricultural activities, population expansion, urbanization, host/pathogen evolution, and climate change, all contribute to the continual flux in shaping the epidemiology of VBVDs. In recent decades, VBVDs, once endemic to particular countries, have expanded into new regions such as Iran and its neighbors, increasing the risk of outbreaks and other public health concerns. Both Iran and its neighboring countries are known to host a number of VBVDs that are endemic to these countries or newly circulating. The proximity of Iran to countries hosting regional diseases, along with increased global socioeconomic activities, e.g., international trade and travel, potentially increases the risk for introduction of new VBVDs into Iran. In this review, we examined the epidemiology of numerous VBVDs circulating in Iran, such as Chikungunya virus, Dengue virus, Sindbis virus, West Nile virus, Crimean-Congo hemorrhagic fever virus, Sandfly-borne phleboviruses, and Hantavirus, in relation to their vectors, specifically mosquitoes, ticks, sandflies, and rodents. In addition, we discussed the interplay of factors, e.g., urbanization and climate change on VBVD dissemination patterns and the consequent public health risks in Iran, highlighting the importance of a One Health approach to further surveil and to evolve mitigation strategies.
Collapse
Affiliation(s)
- Sarah-Jo Paquette
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada;
| | - Ayo Yila Simon
- Department of Pathology and Laboratory Medicine, Faculty of Medicine, University of British Columbia, Vancouver, BC V6T 1Z4, Canada;
| | - Ara XIII
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX 77555, USA; (A.X.); (G.P.K.)
| | - Gary P. Kobinger
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX 77555, USA; (A.X.); (G.P.K.)
| | - Nariman Shahhosseini
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada;
| |
Collapse
|
3
|
Shahhosseini N, Paquette SJ, Kayedi MH, Abaei MR, Sedaghat MM. Genetic Characterization of Sandfly-Borne Viruses in Phlebotomine Sandflies in Iran. Microorganisms 2023; 11:2754. [PMID: 38004764 PMCID: PMC10673459 DOI: 10.3390/microorganisms11112754] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/25/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023] Open
Abstract
Phleboviruses are classified into two main groups: the sandfly fever group (transmitted by sandflies and mosquitoes) and the Uukuniemi group (transmitted by ticks). Old World sandfly-borne viruses (SBVs) are classified into four main serocomplexes; sandfly fever Naples viruses (SFNVs), sandfly fever Sicilian viruses (SFSVs), Karimabad viruses (KARVs), and Salehabad viruses (SALVs). This study addresses current knowledge gaps on SBVs in Iran by focusing on identification and molecular epidemiology. We used PCR to examine DNA/RNA extracts to identify sandfly species and evaluate for SBV presence. We identified five specimens positive for phleboviruses: one Ph. sergenti for Tehran virus (TEHV), one Ph. papatasi for SFSV, and two Ph. papatasi and one Ph. perfiliewi for KARV. A phylogenetic tree indicated that the TEHV isolate from this study formed a cluster with previous isolates of TEHV, Zerdali virus, and Fermo virus. Meanwhile, the identified SFSV isolate fell in lineage I and was grouped with previous isolates of SFSVs and Dashli virus in Iran. Finally, the KARV isolates from this study formed a monophyletic clade in a sister relationship with other viruses in KARV lineages I and II. This comprehensive study on SBVs in Iran provided new insights into the molecular epidemiology of TEHV, SFSVs and KARVs in this country.
Collapse
Affiliation(s)
- Nariman Shahhosseini
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada;
| | - Sarah-Jo Paquette
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada;
| | - Mohammad Hassan Kayedi
- Razi Herbal Medicines Research Center, Department of Parasitology and Mycology, School of Medicine, Lorestan University of Medical Sciences, Khorramabad 6814993165, Iran;
| | - Mohammad Reza Abaei
- Department of Medical Entomology and Vector Control, School of Public Health, Tehran University of Medical Sciences, Tehran 141556446, Iran;
| | - Mohammad Mehdi Sedaghat
- Department of Medical Entomology and Vector Control, School of Public Health, Tehran University of Medical Sciences, Tehran 141556446, Iran;
| |
Collapse
|
4
|
Sandfly-Borne Phleboviruses in Portugal: Four and Still Counting. Viruses 2022; 14:v14081768. [PMID: 36016390 PMCID: PMC9413822 DOI: 10.3390/v14081768] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/09/2022] [Accepted: 08/11/2022] [Indexed: 11/17/2022] Open
Abstract
According to ICTV, there are currently 66 known phlebovirus species. More than 40 of these viruses were isolated or detected in phlebotomine sandflies and some of them are known pathogens. In Portugal, information about sandfly-borne phleboviruses is scarce and scattered sandfly-borne diseases are neglected and often not considered in differential diagnoses. The main objective of this work was to gather the existing information and to raise awareness about the circulating phleboviruses in this country. To date, Massilia and Alcube phleboviruses have been isolated from sandflies in southern Portugal. Human infections with Toscana and Sicilian phleboviruses have been reported, as well as seroprevalence in cats and dogs. More studies are needed in order to understand if the viruses isolated during the entomological surveys have an impact on human health and to fully understand the real importance of the already recognized pathogens in our country.
Collapse
|
5
|
Mostafavi E, Ghasemian A, Abdinasir A, Nematollahi Mahani SA, Rawaf S, Salehi Vaziri M, Gouya MM, Minh Nhu Nguyen T, Al Awaidy S, Al Ariqi L, Islam MM, Abu Baker Abd Farag E, Obtel M, Omondi Mala P, Matar GM, Asghar RJ, Barakat A, Sahak MN, Abdulmonem Mansouri M, Swaka A. Emerging and Re-emerging Infectious Diseases in the WHO Eastern Mediterranean Region, 2001-2018. Int J Health Policy Manag 2022; 11:1286-1300. [PMID: 33904695 PMCID: PMC9808364 DOI: 10.34172/ijhpm.2021.13] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 02/08/2021] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Countries in the World Health Organization (WHO) Eastern Mediterranean Region (EMR) are predisposed to highly contagious, severe and fatal, emerging infectious diseases (EIDs), and re-emerging infectious diseases (RIDs). This paper reviews the epidemiological situation of EIDs and RIDs of global concern in the EMR between 2001 and 2018. METHODS To do a narrative review, a complete list of studies in the field was we prepared following a systematic search approach. Studies that were purposively reviewed were identified to summarize the epidemiological situation of each targeted disease. A comprehensive search of all published studies on EIDs and RIDs between 2001 and 2018 was carried out through search engines including Medline, Web of Science, Scopus, Google Scholar, and ScienceDirect. RESULTS Leishmaniasis, hepatitis A virus (HAV) and hepatitis E virus (HEV) are reported from all countries in the region. Chikungunya, Crimean Congo hemorrhagic fever (CCHF), dengue fever, and H5N1 have been increasing in number, frequency, and expanding in their geographic distribution. Middle East respiratory syndrome (MERS), which was reported in this region in 2012 is still a public health concern. There are challenges to control cholera, diphtheria, leishmaniasis, measles, and poliomyelitis in some of the countries. Moreover, Alkhurma hemorrhagic fever (AHF), and Rift Valley fever (RVF) are limited to some countries in the region. Also, there is little information about the real situation of the plague, Q fever, and tularemia. CONCLUSION EIDs and RIDs are prevalent in most countries in the region and could further spread within the region. It is crucial to improve regional capacities and capabilities in preventing and responding to disease outbreaks with adequate resources and expertise.
Collapse
Affiliation(s)
- Ehsan Mostafavi
- Department of Epidemiology and Biostatistics, Research Centre for Emerging and Re-emerging Infectious Diseases, Pasteur Institute of Iran, Tehran, Iran
| | - Abdolmajid Ghasemian
- Department of Epidemiology and Biostatistics, Research Centre for Emerging and Re-emerging Infectious Diseases, Pasteur Institute of Iran, Tehran, Iran
| | - Abubakar Abdinasir
- Infectious Hazards Management, World Health Organization, Eastern Mediterranean Regional Office, Cairo, Egypt
| | - Seyed Alireza Nematollahi Mahani
- Department of Epidemiology and Biostatistics, Research Centre for Emerging and Re-emerging Infectious Diseases, Pasteur Institute of Iran, Tehran, Iran
| | - Salman Rawaf
- Department of Primary Care and Public Health, School of Public Health, Faculty of Medicine, Imperial College, London, UK
| | - Mostafa Salehi Vaziri
- Department of Arboviruses and Viral Hemorrhagic Fevers, Research Centre for Emerging and Re-emerging Infectious Diseases, Pasteur Institute of Iran, Tehran, Iran
| | - Mohammad Mahdi Gouya
- Centre for Communicable Disease Control, Ministry of Health and Medical Education, Tehran, Iran
| | - Tran Minh Nhu Nguyen
- Infectious Hazards Management, World Health Organization, Eastern Mediterranean Regional Office, Cairo, Egypt
| | | | - Lubna Al Ariqi
- Infectious Hazards Management, World Health Organization, Eastern Mediterranean Regional Office, Cairo, Egypt
| | - Md. Mazharul Islam
- Department of Animal Resources, Ministry of Municipality and Environment, Doha, Qatar
- School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu Natal, Durban, South Africa
| | | | - Majdouline Obtel
- Laboratory of Community Medicine, Preventive Medicine and Hygiene, Public Health Department, Faculty of Medicine and Pharmacy, Mohammed V University, Rabat, Morocco
- Laboratory of Epidemiology, Biostatistics and Clinical Research, Public Health Department, Faculty of Medicine and Pharmacy, Mohammed V University, Rabat, Morocco
| | - Peter Omondi Mala
- Infectious Hazards Management, World Health Organization, Eastern Mediterranean Regional Office, Cairo, Egypt
| | - Ghassan M. Matar
- Department of Experimental Pathology, Immunology and Microbiology Center for Infectious Diseases Research, American University of Beirut & Medical Center, Beirut, Lebanon
| | - Rana Jawad Asghar
- University of Nebraska Medical Center, Omaha, NE, USA
- Global Health Strategists & Implementers (GHSI), Islamabad, Pakistan
| | - Amal Barakat
- Infectious Hazards Management, World Health Organization, Eastern Mediterranean Regional Office, Cairo, Egypt
| | - Mohammad Nadir Sahak
- Infectious Hazard Management Department, World Health Organization, Kabul, Afghanistan
| | - Mariam Abdulmonem Mansouri
- Communicable Diseases Control Department, Public Health Directorate Unit, Ministry of Health, Kuwait City, Kuwait
- Centre for Public Health, Queen’s University Belfast, Belfast, UK
| | - Alexandra Swaka
- Department of Primary Care and Public Health, School of Public Health, Faculty of Medicine, Imperial College, London, UK
| |
Collapse
|
6
|
Wuerth JD, Weber F. NSs of the mildly virulent sandfly fever Sicilian virus is unable to inhibit interferon signaling and upregulation of interferon-stimulated genes. J Gen Virol 2021; 102. [PMID: 34726591 PMCID: PMC8742993 DOI: 10.1099/jgv.0.001676] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Phleboviruses (order Bunyavirales, family Phenuiviridae) are globally emerging arboviruses with a wide spectrum of virulence. Sandfly fever Sicilian virus (SFSV) is one of the most ubiquitous members of the genus Phlebovirus and associated with a self-limited, incapacitating febrile disease in travellers and military troops. The phleboviral NSs protein is an established virulence factor, acting as antagonist of the antiviral interferon (IFN) system. Consistently, we previously reported that SFSV NSs targets the induction of IFN mRNA synthesis by specifically binding to the DNA-binding domain of the IFN transcription factor IRF3. Here, we further characterized the effect of SFSV and its NSs towards IFN induction, and evaluated its potential to affect the downstream IFN-stimulated signalling and the subsequent transactivation of antiviral interferon-stimulated genes (ISGs). We found that SFSV dampened, but did not entirely abolish type I and type III IFN induction. Furthermore, SFSV NSs did not affect IFN signalling, resulting in substantial ISG expression in infected cells. Hence, although SFSV targets IRF3 to reduce IFN induction, it is not capable of entirely disarming the IFN system in the presence of high basal IRF3 and/or IRF7 levels, and we speculate that this significantly contributes to its low level of virulence.
Collapse
Affiliation(s)
- Jennifer Deborah Wuerth
- Institute for Virology, FB10-Veterinary Medicine, Justus-Liebig University, Giessen, Germany.,Institute of Innate Immunity, University of Bonn, Bonn, Germany
| | - Friedemann Weber
- Institute for Virology, FB10-Veterinary Medicine, Justus-Liebig University, Giessen, Germany
| |
Collapse
|
7
|
Soltan-Alinejad P, Soltani A. Vector-borne diseases and tourism in Iran: Current issues and recommendations. Travel Med Infect Dis 2021; 43:102108. [PMID: 34111565 DOI: 10.1016/j.tmaid.2021.102108] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Revised: 04/14/2021] [Accepted: 06/04/2021] [Indexed: 12/24/2022]
Abstract
Iran is one of the largest countries in the Middle East with lots of historical and natural attractions. This country has always been considered to be one of the most important tourist destinations in the world. Several important vector-borne diseases have been reported from different parts of the country. Thus, having comprehensive and adequate knowledge about the main vector-borne diseases in Iran and their high-risk areas are really important. In this review, different provinces of Iran have been studied in terms of arthropod-borne diseases reported in the last decades. Reports indicated that some vector-borne diseases such as Leishmaniasis and CCHF had the highest incidence rate and they need serious attention. However, some diseases reported from Iran are not endemic, and all cases were imported such as Dengue fever. A group of arthropod-borne diseases was reported only from animals, and the health of travelers is not threatened such as Eyeworm infection.
Collapse
Affiliation(s)
- Parisa Soltan-Alinejad
- Department of Medical Entomology and Vector Control, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Aboozar Soltani
- Research Center for Health Sciences, Institute of Health, Department of Medical Entomology and Vector Control, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
8
|
Minakshi P, Ghosh M, Kumar R, Brar B, Lambe UP, Banerjee S, Ranjan K, Kumar B, Goel P, Malik YS, Prasad G. An Insight into Nanomedicinal Approaches to Combat Viral Zoonoses. Curr Top Med Chem 2021; 20:915-962. [PMID: 32209041 DOI: 10.2174/1568026620666200325114400] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 12/31/2019] [Accepted: 12/31/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND Emerging viral zoonotic diseases are one of the major obstacles to secure the "One Health" concept under the current scenario. Current prophylactic, diagnostic and therapeutic approaches often associated with certain limitations and thus proved to be insufficient for customizing rapid and efficient combating strategy against the highly transmissible pathogenic infectious agents leading to the disastrous socio-economic outcome. Moreover, most of the viral zoonoses originate from the wildlife and poor knowledge about the global virome database renders it difficult to predict future outbreaks. Thus, alternative management strategy in terms of improved prophylactic vaccines and their delivery systems; rapid and efficient diagnostics and effective targeted therapeutics are the need of the hour. METHODS Structured literature search has been performed with specific keywords in bibliographic databases for the accumulation of information regarding current nanomedicine interventions along with standard books for basic virology inputs. RESULTS Multi-arrayed applications of nanomedicine have proved to be an effective alternative in all the aspects regarding the prevention, diagnosis, and control of zoonotic viral diseases. The current review is focused to outline the applications of nanomaterials as anti-viral vaccines or vaccine/drug delivery systems, diagnostics and directly acting therapeutic agents in combating the important zoonotic viral diseases in the recent scenario along with their potential benefits, challenges and prospects to design successful control strategies. CONCLUSION This review provides significant introspection towards the multi-arrayed applications of nanomedicine to combat several important zoonotic viral diseases.
Collapse
Affiliation(s)
- Prasad Minakshi
- Department of Animal Biotechnology, LLR University of Veterinary and Animal Sciences, Hisar-125001, Haryana, 125004, India
| | - Mayukh Ghosh
- Department of Veterinary Physiology and Biochemistry, RGSC, Banaras Hindu University, Mirzapur (UP) - 231001, India
| | - Rajesh Kumar
- Department of Veterinary Physiology and Biochemistry, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar-125001, Haryana, 125004, India
| | - Basanti Brar
- Department of Animal Biotechnology, LLR University of Veterinary and Animal Sciences, Hisar-125001, Haryana, 125004, India
| | - Upendra P Lambe
- Department of Animal Biotechnology, LLR University of Veterinary and Animal Sciences, Hisar-125001, Haryana, 125004, India
| | - Somesh Banerjee
- Department of Veterinary Microbiology, Immunology Section, LUVAS, Hisar-125004, India
| | - Koushlesh Ranjan
- Department of Veterinary Physiology and Biochemistry, Sardar Vallabhbhai Patel University of Agriculture and Technology, Meerut, 250110, India
| | | | - Parveen Goel
- Department of Veterinary Medicine, LLR University of Veterinary and Animal Sciences, Hisar, Haryana, 125004, India
| | - Yashpal S Malik
- Division of Standardisation, Indian Veterinary Research Institute Izatnagar - Bareilly (UP) - 243122, India
| | - Gaya Prasad
- Sardar Vallabhbhai Patel University of Agriculture and Technology, Meerut, UP, 250110, India
| |
Collapse
|
9
|
Parhizgari N, Piazak N, Mostafavi E. Vector-borne diseases in Iran: epidemiology and key challenges. Future Microbiol 2021; 16:51-69. [PMID: 33438476 DOI: 10.2217/fmb-2019-0306] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Vector-borne diseases have become a global health concern in recent decades as a result of global warming, globalization, growth in international trade and travel, use of insecticide and drug resistance. This review study addressed the key vector-borne diseases and their current status in Iran to emphasize the requirements for further research on vector-borne diseases. The dispersion patterns of these diseases differ in various regions. Some of them such as Crimean-Congo hemorrhagic fever, and Q fever are distributed all across Iran, whereas some others such as plague, leishmaniasis, tularemia, and malaria are restricted to specific areas. The high prevalence of vectors throughout the country necessitates enhancing the monitoring and surveillance of emerging and reemerging vector-borne diseases and their potential vectors.
Collapse
Affiliation(s)
- Najmeh Parhizgari
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.,Department of Epidemiology and Biostatistics, Research Centre for Emerging & Reemerging infectious diseases, Pasteur Institute of Iran, Tehran, Iran
| | - Norair Piazak
- Department of Parasitology, Pasteur Institute of Iran, Tehran, Iran
| | - Ehsan Mostafavi
- Department of Epidemiology and Biostatistics, Research Centre for Emerging & Reemerging infectious diseases, Pasteur Institute of Iran, Tehran, Iran.,National Reference Laboratory for Plague, Tularemia & Q fever, Research Centre for Emerging & Reemerging Infectious Diseases, Pasteur Institute of Iran, Akanlu, Kabudar Ahang, Hamadan, Iran
| |
Collapse
|
10
|
Kassiri H, Dehghani R, Khodkar I, Karami S. A comprehensive overview on sandfly fever. JOURNAL OF ACUTE DISEASE 2021. [DOI: 10.4103/2221-6189.316673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
11
|
Bakhshi H, Beck C, Lecollinet S, Monier M, Mousson L, Zakeri S, Raz A, Arzamani K, Nourani L, Dinparast-Djadid N, Failloux AB. Serological evidence of West Nile virus infection among birds and horses in some geographical locations of Iran. Vet Med Sci 2020; 7:204-209. [PMID: 32858762 PMCID: PMC7840194 DOI: 10.1002/vms3.342] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 06/25/2020] [Accepted: 08/05/2020] [Indexed: 12/31/2022] Open
Abstract
Recent expansion of arboviruses such as West Nile (WNV), Usutu (USUV), and tick‐borne encephalitis (TBEV) over their natural range of distribution needs strengthening their surveillance. As common viral vertebrate hosts, birds and horses deserve special attention with routine serological surveillance. Here, we estimated the seroprevalence of WNV, USUV and TBEV in 160 migrating/resident birds and 60 horses sampled in Mazandaran, Golestan, North Khorasan, Kordestan provinces and Golestan province of Iran respectively. ELISA results showed that of 220 collected samples, 32 samples (14.54%), including 22 birds and 10 horses, were positive. Microsphere immunoassay results showed that 16.7% (10/60) of horse blood samples collected in Golestan province were seropositive against WNV (7; 11.7%), Flavivirus (2; 3.3%) and seropositive for USUV or WNV (1; 1.7%). Furthermore, micro virus neutralization tests revealed that four of seven ELISA‐positive bird blood samples were seropositive against WNV: two Egyptian vultures, and one long‐legged buzzard collected in Golestan province as well as a golden eagle collected in North Khorasan province. No evidence of seropositivity with TBEV was observed in collected samples. We showed that WNV, responsible for neuroinvasive infection in vertebrates, is circulating among birds and horses in Iran, recommending a sustained surveillance of viral infections in animals, and anticipating future infections in humans.
Collapse
Affiliation(s)
- Hasan Bakhshi
- Malaria and Vector Research Group, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Cécile Beck
- EURL on Equine Diseases, ANSES, Animal Health Laboratory, UMR 1161 Virology, ANSES, INRAE, ENVA, Maisons-Alfort, France
| | - Sylvie Lecollinet
- EURL on Equine Diseases, ANSES, Animal Health Laboratory, UMR 1161 Virology, ANSES, INRAE, ENVA, Maisons-Alfort, France
| | - Maëlle Monier
- EURL on Equine Diseases, ANSES, Animal Health Laboratory, UMR 1161 Virology, ANSES, INRAE, ENVA, Maisons-Alfort, France
| | - Laurence Mousson
- Department of virology, Arboviruses and Insect Vectors, Institut Pasteur, Paris, France
| | - Sedigheh Zakeri
- Malaria and Vector Research Group, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Abbasali Raz
- Malaria and Vector Research Group, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Kourosh Arzamani
- Vector-borne Diseases Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Leila Nourani
- Malaria and Vector Research Group, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Navid Dinparast-Djadid
- Malaria and Vector Research Group, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Anna-Bella Failloux
- Department of virology, Arboviruses and Insect Vectors, Institut Pasteur, Paris, France
| |
Collapse
|
12
|
Abstract
RNA-activated protein kinase (PKR) is one of the most powerful antiviral defense factors of the mammalian host. PKR acts by phosphorylating mRNA translation initiation factor eIF2α, thereby converting it from a cofactor to an inhibitor of mRNA translation that strongly binds to initiation factor eIF2B. To sustain synthesis of their proteins, viruses are known to counteract this on the level of PKR or eIF2α or by circumventing initiation factor-dependent translation altogether. Here, we report a different PKR escape strategy executed by sandfly fever Sicilian virus (SFSV), a member of the increasingly important group of phleboviruses. We found that the nonstructural protein NSs of SFSV binds to eIF2B and protects it from inactivation by PKR-generated phospho-eIF2α. Protein synthesis is hence maintained and the virus can replicate despite ongoing full-fledged PKR signaling in the infected cells. Thus, SFSV has evolved a unique strategy to escape the powerful antiviral PKR. RNA-activated protein kinase (PKR) is a major innate immune factor that senses viral double-stranded RNA (dsRNA) and phosphorylates eukaryotic initiation factor (eIF) 2α. Phosphorylation of the α subunit converts the eIF2αβγ complex into a stoichiometric inhibitor of eukaryotic initiation factor eIF2B, thus halting mRNA translation. To escape this protein synthesis shutoff, viruses have evolved countermechanisms such as dsRNA sequestration, eIF-independent translation by an internal ribosome binding site, degradation of PKR, or dephosphorylation of PKR or of phospho-eIF2α. Here, we report that sandfly fever Sicilian phlebovirus (SFSV) confers such a resistance without interfering with PKR activation or eIF2α phosphorylation. Rather, SFSV expresses a nonstructural protein termed NSs that strongly binds to eIF2B. Although NSs still allows phospho-eIF2α binding to eIF2B, protein synthesis and virus replication are unhindered. Hence, SFSV encodes a unique PKR antagonist that acts by rendering eIF2B resistant to the inhibitory action of bound phospho-eIF2α.
Collapse
|
13
|
Kniha E, Obwaller AG, Dobler G, Poeppl W, Mooseder G, Walochnik J. Phlebovirus seroprevalence in Austrian Army personnel returning from missions abroad. Parasit Vectors 2019; 12:416. [PMID: 31445517 PMCID: PMC6708154 DOI: 10.1186/s13071-019-3674-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 08/17/2019] [Indexed: 01/03/2023] Open
Abstract
Background Phleboviruses are mainly transmitted by sand flies and infections can result in various symptoms, including meningitis and meningoencephalitis. In endemic regions, seroprevalences in humans and animals are high. Military personnel on missions in endemic areas are at increased risk of infection, however, for soldiers from central European countries, data are scarce. The aims of this study were to determine the exposure to phleboviruses of Austrian soldiers returning from missions abroad and to assess potential risk factors. A retrospective serological study was performed with sera of 753 healthy Austrian soldiers returning from missions in Bosnia and Herzegovina (BIH, n = 61), Kosovo (n = 261), Syria (n = 101) and Lebanon (n = 63) and of soldiers prior to their missions (n = 267). Results Altogether, 119 sera (15.8%, 119/753) were positive for anti-Phlebovirus IgG antibodies, with highest seroprevalences found in soldiers returning from Kosovo (20.69%, 54/261), followed by Syria (17.82%, 18/101), Lebanon (14.29%, 9/63) and BIH (11.48%, 7/61). Of the soldiers tested prior to their missions 11.61% (31/267) were positive. Of the 119 seropositive individuals, 30 (25.2%, 30/119) also had anti-Phlebovirus IgM antibodies. Phlebovirus seropositivity significantly correlated with symptoms of febrile illness during the respective mission (OR: 1.9, 95% CI: 1.1–3.4, P = 0.03) and with Leishmania seropositivity (OR: 2.7, 95% CI: 1.2–5.8, P = 0.009). Also, the outdoor activity “running” during the mission showed a strong trend towards an association with Phlebovirus seropositivity (OR: 1.9, 95% CI: 0.9–4.4, P = 0.08), and seropositivity generally increased with the duration of a mission (OR: 2.5, 95% CI: 0.9–7.5, P = 0.07). Conclusions This study indicates that soldiers are exposed to sand flies and at significant risk for Phlebovirus infection during missions in the Mediterranean area and the Middle East. Adequate prevention measures should be applied particularly during vespertine outdoor activities.
Collapse
Affiliation(s)
- Edwin Kniha
- Institute of Specific Prophylaxis and Tropical Medicine, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Adelheid G Obwaller
- Institute of Specific Prophylaxis and Tropical Medicine, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria.,Federal Ministry of Defence, Division of Science, Research and Development, Vienna, Austria
| | - Gerhard Dobler
- Bundeswehr Institute of Microbiology (BwIM), Munich, Germany
| | - Wolfgang Poeppl
- Department of Infectious Diseases and Tropical Medicine, Medical University of Vienna, Vienna, Austria.,Department of Dermatology and Tropical Medicine, Military Medical Cluster East, Austrian Armed Forces, Vienna, Austria
| | - Gerhard Mooseder
- Department of Dermatology and Tropical Medicine, Military Medical Cluster East, Austrian Armed Forces, Vienna, Austria
| | - Julia Walochnik
- Institute of Specific Prophylaxis and Tropical Medicine, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
14
|
Badakhshan M, Yaghoobi-Ershadi MR, Moin-Vaziri V, Charrel R, Hanafi-Bojd AA, Rezaei F, Akhavan AA, Rassi Y, Oshaghi MA. Spatial Distribution of Phlebotomine Sand Flies (Diptera: Psychodidae) as Phlebovirus Vectors in Different Areas of Iran. JOURNAL OF MEDICAL ENTOMOLOGY 2018; 55:846-854. [PMID: 29554299 DOI: 10.1093/jme/tjy033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Indexed: 06/08/2023]
Abstract
Sand fly fever is caused by Naples (SFNV) and Sicilian viruses (SFSV) and the closely related Toscana virus of the Phlebovirus genus in the family Bunyaviridae, and transmitted by Phlebotomine sand flies. Phlebotomus papatasi Scopoli, 1786 is known as the main vector of the disease. This study aimed to investigate the distribution of Phlebotomine sand flies as vector of sand fly fever viruses, and the effects of some environmental variables on their potential dispersion to new areas in some provinces of Iran. Sand flies were collected during their active season in the region using CDC light traps. Ecological parameters were recorded for each collection site. Arc GIS 10.3 software was used for data analysis and mapping the distribution of sand flies. Sampling in the study areas was carried out in six different climatic zones. Seventeen sand fly species were collected including eight species of genus Phlebotomus and nine species of genus Sergentomyia. The Medium Semi-Arid climatic zone had the highest species diversity. Fourteen species of sand flies were collected at altitude between 2 and 325 m, and seven species were collected between 326 and 1380 m above sea level. There was significant correlation between sand fly density and all tested environmental variables. Phlebotominae sand flies have wide distribution in Iran and have a major public health concern in the country. P. papatasi and Sergentomyia sintoni Pringle, 1933 prefers hot summers and rainfall. This poses a threat of transmission of sand fly fever caused by SFSV and SFNV across the country.
Collapse
Affiliation(s)
- Mehdi Badakhshan
- Department of Medical Entomology & Vector Control, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Yaghoobi-Ershadi
- Department of Medical Entomology & Vector Control, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Vahideh Moin-Vaziri
- Department of Parasitology and Mycology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Remi Charrel
- UMR 'Emergence des Pathologies Virales' (EPV: Aix-Marseille Univ. - IRD 190 - INSERM 1207 - EHESP), Marseille, France
| | - Ahmad Ali Hanafi-Bojd
- Department of Medical Entomology & Vector Control, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Farhad Rezaei
- Department of Medical Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Ahmad Akhavan
- Department of Medical Entomology & Vector Control, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Yavar Rassi
- Department of Medical Entomology & Vector Control, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad-Ali Oshaghi
- Department of Medical Entomology & Vector Control, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|