1
|
Zhao M, Bian R, Xu X, Zhang J, Zhang L, Zheng Y. Sphingolipid Metabolism and Signalling Pathways in Heart Failure: From Molecular Mechanism to Therapeutic Potential. J Inflamm Res 2025; 18:5477-5498. [PMID: 40291458 PMCID: PMC12034266 DOI: 10.2147/jir.s515757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Accepted: 04/16/2025] [Indexed: 04/30/2025] Open
Abstract
Sphingolipids are essential components of cell membranes and lipoproteins. They are synthesized de novo in the endoplasmic reticulum and subsequently undergo various enzymatic modifications in different organelles, giving rise to a diverse range of biologically active compounds. These molecules play a critical role in regulating cell growth, senescence, migration, apoptosis, and signaling. In recent years, the sphingolipid metabolic pathway has been recognized as a key factor in heart failure (HF) pathophysiology. Abnormal levels of sphingolipid metabolites, such as ceramide (Cer) and sphingomyelin (SM), contribute to oxidative stress and inflammatory responses, ultimately promoting cardiomyocyte apoptosis. Conversely, sphingosine-1-phosphate (S1P) and ceramide-1-phosphate (C1P) regulate vascular function and influence cardiac remodeling. Additionally, enzymes such as diacylglycerol acyltransferase 1 (DGAT1) and sphingosine-1-phosphate lyase 1 (SGPL1) modulate cardiac lipid metabolism. Given their role in HF progression, monitoring sphingolipid alterations offers potential as valuable biomarkers for assessing disease severity, prognosis, and diagnosis. Given the complexity of sphingolipid metabolism and its involvement in diverse regulatory biological processes, a comprehensive understanding of its roles at both the cellular and organismal levels in physiopathology remains incomplete. Therefore, this review aims to explore the physiological functions, regulatory mechanisms, and therapeutic potential of sphingolipid metabolism. It will summarize the specific molecular mechanisms driving key pathological processes in HF, including ventricular remodeling, myocardial fibrosis, vascular dysfunction, and metabolic disorders. Finally, the review will highlight targeted sphingolipid metabolites as potential therapeutic strategies, offering new insights into HF diagnosis and treatment, with the goal of advancing adjunctive clinical therapies.
Collapse
Affiliation(s)
- Meng Zhao
- The First Clinical Medical College of Henan University of Chinese Medicine, Zhengzhou, Henan Province, People’s Republic of China
- Department of Cardiology, Zhengzhou Hospital of Traditional Chinese Medicine, Zhengzhou, Henan Province, People’s Republic of China
- Joint Formula and Syndrome Research Laboratory of Guangzhou University of Chinese Medicine & Zhengzhou Hospital of Chinese Medicine, Zhengzhou, Henan Province, People’s Republic of China
| | - Rutao Bian
- Department of Cardiology, Zhengzhou Hospital of Traditional Chinese Medicine, Zhengzhou, Henan Province, People’s Republic of China
| | - Xuegong Xu
- Department of Cardiology, Zhengzhou Hospital of Traditional Chinese Medicine, Zhengzhou, Henan Province, People’s Republic of China
| | - Junpeng Zhang
- Department of Cardiology, Zhengzhou Hospital of Traditional Chinese Medicine, Zhengzhou, Henan Province, People’s Republic of China
| | - Li Zhang
- Department of Cardiology, Zhengzhou Hospital of Traditional Chinese Medicine, Zhengzhou, Henan Province, People’s Republic of China
| | - Yi Zheng
- Department of Cardiology, Zhengzhou Hospital of Traditional Chinese Medicine, Zhengzhou, Henan Province, People’s Republic of China
| |
Collapse
|
2
|
Yang Y, Liu Y, Williams TA, Gao M, Yan Y, Bao M, Tao J, Ma G, Wang M, Xia Z, Zhang Z, Yang T, Sun M. Metabolic phenotypes and fatty acid profiles associated with histopathology of primary aldosteronism. Hypertens Res 2025; 48:1363-1378. [PMID: 39939827 DOI: 10.1038/s41440-025-02143-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 12/30/2024] [Accepted: 01/24/2025] [Indexed: 02/14/2025]
Abstract
Primary aldosteronism (PA) caused by aldosterone hypersecretion is treated by adrenalectomy or medications. Histopathologic examination of resected adrenals reveals diverse histopathologic features. This study aimed to investigate the potential association of peripheral and adrenal tissue metabolic profiles with the histopathologic features of PA. The retrospective study included 105 surgically treated and 43 medically treated patients with PA. Adrenal specimens were categorized according to the HISTALDO (HISTopathology of primary ALDOsteronism) consensus. Peripheral and adrenal tissue metabolic profiles were assessed, including adiposity, adipokines and fatty acid abundances. The distinct fatty acid, arachidonic acid, was further functionally characterized. Surgically treated patients with classical histopathologic findings (n = 71) displayed lower body mass indexes, a lower prevalence of obesity, smaller waist circumference and visceral adipose tissue areas, and lower leptin concentrations compared with operated patients with the nonclassical histopathology (n = 34). No such differences were identified between the nonclassical histopathology group and medically treated group. Distinct concentrations of 18 out of 35 peripheral venous fatty acids, including arachidonic acid, were identified among the 3 groups. Further, accumulation of arachidonic acid was demonstrated in 4 aldosterone-producing adenomas compared with paired adjacent cortex possibly linked with suppressed peroxisomal beta-oxidation. Stimulation of human adrenocortical cells with arachidonic acid or peroxisomal beta-oxidation inhibitor caused 3.8-fold (P = 0.0050) and 1.7-fold (P = 0.0328) amplification of CYP11B2 expression, respectively, which were ablated by BAPTA-AM or KN93, and induced oxidative stress and apoptosis. Our findings show metabolic heterogeneity related to histopathology and support a role for arachidonic acid in PA pathophysiology.
Collapse
Affiliation(s)
- Yuhong Yang
- Department of Endocrinology, The First Affiliated Hospital With Nanjing Medical University, Nanjing, China
| | - Yuqing Liu
- Department of Endocrinology, The First Affiliated Hospital With Nanjing Medical University, Nanjing, China
| | - Tracy Ann Williams
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, LMU München, München, Germany
| | - Maoting Gao
- Department of Endocrinology, The First Affiliated Hospital With Nanjing Medical University, Nanjing, China
| | - Yutong Yan
- Department of Endocrinology, The First Affiliated Hospital With Nanjing Medical University, Nanjing, China
| | - Meiling Bao
- Department of Pathology, The First Affiliated Hospital With Nanjing Medical University, Nanjing, China
| | - Jun Tao
- Department of Urology, The First Affiliated Hospital With Nanjing Medical University, Nanjing, China
| | - Guodong Ma
- Department of Endocrinology, The First Affiliated Hospital With Nanjing Medical University, Nanjing, China
| | - Min Wang
- Department of Endocrinology, The First Affiliated Hospital With Nanjing Medical University, Nanjing, China
| | - Zhiqing Xia
- Department of Endocrinology, The First Affiliated Hospital With Nanjing Medical University, Nanjing, China
| | - Zhiheng Zhang
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China.
| | - Tao Yang
- Department of Endocrinology, The First Affiliated Hospital With Nanjing Medical University, Nanjing, China.
| | - Min Sun
- Department of Endocrinology, The First Affiliated Hospital With Nanjing Medical University, Nanjing, China.
| |
Collapse
|
3
|
Wang J, Ni J, Jia X, Sun W, Lai S. Multi-Omic Analysis of the Differences in Growth and Metabolic Mechanisms Between Chinese Domestic Cattle and Simmental Crossbred Cattle. Int J Mol Sci 2025; 26:1547. [PMID: 40004011 PMCID: PMC11855754 DOI: 10.3390/ijms26041547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 02/07/2025] [Accepted: 02/11/2025] [Indexed: 02/27/2025] Open
Abstract
In livestock production, deeply understanding the molecular mechanisms of growth and metabolic differences in different breeds of cattle is of great significance for optimizing breeding strategies, improving meat quality, and promoting sustainable development. This study aims to comprehensively reveal the molecular-level differences between Chinese domestic cattle and Simmental crossbred cattle through multi-omics analysis, and further provide a theoretical basis for the efficient development of the beef cattle industry. The domestic cattle in China are a unique genetic breed resource. They have characteristics like small size, strong adaptability, and distinctive meat quality. There are significant differences in the growth rate and meat production between these domestic cattle and Simmental hybrid cattle. However, the specific molecular-level differences between them are still unclear. This study conducted a comprehensive comparison between the domestic cattle in China and Simmental crossbred cattle, focusing on microbiology, short-chain fatty acids, blood metabolome, and transcriptome. The results revealed notable differences in the microbial Simpson index between the domestic and Simmental crossbred cattle. The differential strain Akkermansia was found to be highly negatively correlated with the differential short-chain fatty acid isocaproic acid, suggesting that Akkermansia may play a key role in the differences observed in isocaproic acid levels or phenotypes. Furthermore, the transcriptional metabolomics analysis indicated that the differentially expressed genes and metabolites were co-enriched in pathways related to insulin secretion, thyroid hormone synthesis, bile secretion, aldosterone synthesis and secretion, and Cyclic Adenosine Monophosphate (cAMP) signaling pathways. Key genes such as ADCY8 and 1-oleoyl-sn-glycero-3-phosphocholine emerged as crucial regulators of growth and metabolism in beef cattle.
Collapse
Affiliation(s)
| | | | | | | | - Songjia Lai
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (J.W.); (J.N.); (X.J.); (W.S.)
| |
Collapse
|
4
|
Li S, Yuan H, Li L, Li Q, Lin P, Li K. Oxidative Stress and Reprogramming of Lipid Metabolism in Cancers. Antioxidants (Basel) 2025; 14:201. [PMID: 40002387 PMCID: PMC11851681 DOI: 10.3390/antiox14020201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/30/2025] [Accepted: 02/06/2025] [Indexed: 02/27/2025] Open
Abstract
Oxidative stress is a common event involved in cancer pathophysiology, frequently accompanied by unique lipid metabolic reprogramming phenomena. Oxidative stress is caused mainly by an imbalance between the production of reactive oxygen species (ROS) and the antioxidant system in cancer cells. Emerging evidence has reported that oxidative stress regulates the expression and activity of lipid metabolism-related enzymes, leading to the alteration of cellular lipid metabolism; this involves a significant increase in fatty acid synthesis and a shift in the way in which lipids are taken up and utilized. The dysregulation of lipid metabolism provides abundant intermediates to synthesize biological macromolecules for the rapid proliferation of cancer cells; moreover, it contributes to the maintenance of intracellular redox homeostasis by producing a variety of reducing agents. Moreover, lipid derivatives and metabolites play critical roles in signal transduction within cancer cells and in the tumor microenvironment that evades immune destruction and facilitates tumor invasion and metastasis. These findings suggest a close relationship between oxidative stress and lipid metabolism during the malignant progression of cancers. This review focuses on the crosstalk between the redox system and lipid metabolic reprogramming, which provides an in-depth insight into the modulation of ROS on lipid metabolic reprogramming in cancers and discusses potential strategies for targeting lipid metabolism for cancer therapy.
Collapse
Affiliation(s)
| | | | | | | | - Ping Lin
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center and Lab of Experimental Oncology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China; (S.L.); (H.Y.); (L.L.); (Q.L.)
| | - Kai Li
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center and Lab of Experimental Oncology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China; (S.L.); (H.Y.); (L.L.); (Q.L.)
| |
Collapse
|
5
|
Duan M, Liu J, Cai Z, Chen L, Tian Y, Xu W, Zeng T, Gu T, Lu L. Multi-omics elucidates the kidney damage caused by aquatic Cu via the gut-kidney axis in ducks. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 291:117844. [PMID: 39914079 DOI: 10.1016/j.ecoenv.2025.117844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 02/01/2025] [Accepted: 02/01/2025] [Indexed: 03/03/2025]
Abstract
Copper (Cu) is an essential trace element for biological growth and development. Excessive intake of Cu exists harmful effects on organisms. However, whether excessive Cu intake induces kidney function damage by gut microbiota regulation remains unclear. Ducks are important species of waterfowl that are often exposed to Cu contamination in water sources. In this study, we aim to elucidate the effects of Cu exposure on renal inflammation through the gut-kidney axis in ducks. The ducks were gavaged with different doses of CuSO4 (0, 100, and 200 mg/kg body weight) for 4 weeks. Results indicate that Cu exposure causes pathological damage to the kidney, with a significant increase in the levels of TNFα, IL-6, and IL-1β in both serum and renal tissue. 16S rDNA analysis revealed that the relative abundances of Candidatus_Saccharimonas and Bacteroides were significantly reduced in the Cu-induced group. Transcriptomic analysis of kidney tissue reveals that following Cu exposure, 30 genes show significant differential expression. GO and KEGG enrichment analyses were most involved in Interleukin-1 Receptor Activity, Taurine and hypotaurine metabolism, Nitrogen metabolism, and Proximal tubule bicarbonate reclamation. Metabolomic analysis revealed that 28 metabolites are present in both kidney tissue and cecal contents. Correlation analysis revealed a strong correlation among 5 common metabolites: Aminoglutethimide, Boscalid, Dantrolene, Cer[ns] d34:1, and Stearidonic acid. In the cecum, these five metabolites are closely associated with 26 intestinal microorganisms, including Bacteroides, Candidatus_Saccharimonas, and Colidextribacter. In the kidney, apart from Stearidonic acid, the other four metabolites are closely correlated with genes such as FOS, and IL1RL1. Overall, our study indicates that excessive Cu induces significant kidney inflammation, the metabolites alteration and gut microbiota disorders. These findings shed light on the underlying mechanisms of Cu-induced kidney damage via the indirect pathway of the gut-kidney axis.
Collapse
Affiliation(s)
- Mingcai Duan
- Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs of China, Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; Hubei Hongshan Laboratory, National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Jinyu Liu
- Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs of China, Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Zhaoxia Cai
- Hubei Hongshan Laboratory, National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Li Chen
- Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs of China, Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Yong Tian
- Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs of China, Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Wenwu Xu
- Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs of China, Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Tao Zeng
- Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs of China, Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Tiantian Gu
- Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs of China, Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| | - Lizhi Lu
- Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs of China, Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| |
Collapse
|
6
|
He B, Ye F, Feng J, Zhou T. Enhanced Lipidomics Analysis of Breast Cancer Cells Using Three-phase Liquid Extraction and Ultra High-performance Liquid Chromatography Coupled With Quadrupole Time-of-Flight Tandem Mass Spectrometry. J Sep Sci 2024; 47:e70014. [PMID: 39494761 DOI: 10.1002/jssc.70014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 09/26/2024] [Accepted: 10/19/2024] [Indexed: 11/05/2024]
Abstract
Lipid extraction of complex biological samples is essential for high-quality data in liquid chromatography-mass spectrometry (LC-MS)-based lipidomics. This study introduces a three-phase liquid extraction (3PLE)-ultra-high-performance LC coupled with quadrupole time-of-flight tandem MS method. This method was successfully applied to lipidomics analysis of breast cancer cells, including highly metastatic MDA-MB-231 and slightly metastatic MCF7 cells. The 3PLE method employed an n-hexane/methyl tert-butyl ether/acetonitrile/water solvent system that formed one aqueous and two organic phases. Neutral and polar lipids were enriched in the upper and middle organic phases, respectively, and combined for detection, thereby reducing analysis time. Compared with the Bligh and Dyer method, 3PLE achieved higher sensitivity and detected more features, with over a 50% increase in the relative abundance of nearly 50% of the differential lipids. In total, 21 differential lipids were identified in the MDA-MB-231 group and 22 in the MCF7 group compared to normal breast epithelial cells (MCF10A). Pathway analysis suggested that lipid changes in breast cancer cells were associated with glycerophospholipid metabolism, arachidonic acid metabolism, sphingolipid metabolism, and linoleic acid metabolism. The study presents a highly efficient lipidomics method, providing a scientific foundation for understanding breast cancer pathogenesis and aiding in diagnosis.
Collapse
Affiliation(s)
- Binhong He
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Fengying Ye
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Jieqing Feng
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Ting Zhou
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| |
Collapse
|
7
|
Šakić Z, Atić A, Potočki S, Bašić-Jukić N. Sphingolipids and Chronic Kidney Disease. J Clin Med 2024; 13:5050. [PMID: 39274263 PMCID: PMC11396415 DOI: 10.3390/jcm13175050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/22/2024] [Accepted: 08/23/2024] [Indexed: 09/16/2024] Open
Abstract
Sphingolipids (SLs) are bioactive signaling molecules essential for various cellular processes, including cell survival, proliferation, migration, and apoptosis. Key SLs such as ceramides, sphingosine, and their phosphorylated forms play critical roles in cellular integrity. Dysregulation of SL levels is implicated in numerous diseases, notably chronic kidney disease (CKD). This review focuses on the role of SLs in CKD, highlighting their potential as biomarkers for early detection and prognosis. SLs maintain renal function by modulating the glomerular filtration barrier, primarily through the activity of podocytes. An imbalance in SLs can lead to podocyte damage, contributing to CKD progression. SL metabolism involves complex enzyme-catalyzed pathways, with ceramide serving as a central molecule in de novo and salvage pathways. Ceramides induce apoptosis and are implicated in oxidative stress and inflammation, while sphingosine-1-phosphate (S1P) promotes cell survival and vascular health. Studies have shown that SL metabolism disorders are linked to CKD progression, diabetic kidney disease, and glomerular diseases. Targeting SL pathways could offer novel therapeutic approaches for CKD. This review synthesizes recent research on SL signaling regulation in kidney diseases, emphasizing the importance of maintaining SL balance for renal health and the potential therapeutic benefits of modulating SL pathways.
Collapse
Affiliation(s)
- Zrinka Šakić
- Vuk Vrhovac University Clinic, Dugi dol 4a, 10000 Zagreb, Croatia
| | - Armin Atić
- Division of Nephrology, Arterial Hypertension, Dialysis and Transplantation, University Hospital Center Zagreb, 10000 Zagreb, Croatia
| | - Slavica Potočki
- School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Nikolina Bašić-Jukić
- Division of Nephrology, Arterial Hypertension, Dialysis and Transplantation, University Hospital Center Zagreb, 10000 Zagreb, Croatia
- School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| |
Collapse
|
8
|
Jiang Q, Yang Q, Zhang C, Hou C, Hong W, Du M, Shan X, Li X, Zhou D, Wen D, Xiong Y, Yang K, Lin Z, Song J, Mo Z, Feng H, Xing Y, Fu X, Liu C, Peng F, Wu L, Li B, Lu W, Yuan JXJ, Wang J, Chen Y. Nephrectomy and high-salt diet inducing pulmonary hypertension and kidney damage by increasing Ang II concentration in rats. Respir Res 2024; 25:288. [PMID: 39080603 PMCID: PMC11290206 DOI: 10.1186/s12931-024-02916-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 07/14/2024] [Indexed: 08/02/2024] Open
Abstract
BACKGROUND Chronic kidney disease (CKD) is a significant risk factor for pulmonary hypertension (PH), a complication that adversely affects patient prognosis. However, the mechanisms underlying this association remain poorly understood. A major obstacle to progress in this field is the lack of a reliable animal model replicating CKD-PH. METHODS This study aimed to establish a stable rat model of CKD-PH. We employed a combined approach, inducing CKD through a 5/6 nephrectomy and concurrently exposing the rats to a high-salt diet. The model's hemodynamics were evaluated dynamically, alongside a comprehensive assessment of pathological changes in multiple organs. Lung tissues and serum samples were collected from the CKD-PH rats to analyze the expression of angiotensin-converting enzyme 2 (ACE2), evaluate the activity of key vascular components within the renin-angiotensin-aldosterone system (RAAS), and characterize alterations in the serum metabolic profile. RESULTS At 14 weeks post-surgery, the CKD-PH rats displayed significant changes in hemodynamic parameters indicative of pulmonary arterial hypertension. Additionally, right ventricular hypertrophy was observed. Notably, no evidence of pulmonary vascular remodeling was found. Further analysis revealed RAAS dysregulation and downregulated ACE2 expression within the pulmonary vascular endothelium of CKD-PH rats. Moreover, the serum metabolic profile of these animals differed markedly from the sham surgery group. CONCLUSIONS Our findings suggest that the development of pulmonary arterial hypertension in CKD-PH rats is likely a consequence of a combined effect: RAAS dysregulation, decreased ACE2 expression in pulmonary vascular endothelial cells, and metabolic disturbances.
Collapse
Grants
- 82370063, 82170069, 82241012, 82120108001, 81970057, 82170065, 82000045, 82270052 National Natural Science Foundation of China
- 82370063, 82170069, 82241012, 82120108001, 81970057, 82170065, 82000045, 82270052 National Natural Science Foundation of China
- National Key Research and Development Program of China
Collapse
Affiliation(s)
- Qian Jiang
- State Key Laboratory of Respiratory Diseases, National Center for Respiratory Medicine, Guangdong Key Laboratory of Vascular Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Road, Guangzhou, 510120, Guangdong, China
| | - Qifeng Yang
- State Key Laboratory of Respiratory Diseases, National Center for Respiratory Medicine, Guangdong Key Laboratory of Vascular Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Road, Guangzhou, 510120, Guangdong, China
| | - Chenting Zhang
- State Key Laboratory of Respiratory Diseases, National Center for Respiratory Medicine, Guangdong Key Laboratory of Vascular Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Road, Guangzhou, 510120, Guangdong, China
| | - Chi Hou
- State Key Laboratory of Respiratory Diseases, National Center for Respiratory Medicine, Guangdong Key Laboratory of Vascular Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Road, Guangzhou, 510120, Guangdong, China
- Department of Neurology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, Guangdong, China
| | - Wei Hong
- State Key Laboratory of Respiratory Diseases, National Center for Respiratory Medicine, Guangdong Key Laboratory of Vascular Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Road, Guangzhou, 510120, Guangdong, China
- GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, 511436, Guangdong, China
| | - Min Du
- State Key Laboratory of Respiratory Diseases, National Center for Respiratory Medicine, Guangdong Key Laboratory of Vascular Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Road, Guangzhou, 510120, Guangdong, China
| | - Xiaoqian Shan
- State Key Laboratory of Respiratory Diseases, National Center for Respiratory Medicine, Guangdong Key Laboratory of Vascular Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Road, Guangzhou, 510120, Guangdong, China
| | - Xuanyi Li
- State Key Laboratory of Respiratory Diseases, National Center for Respiratory Medicine, Guangdong Key Laboratory of Vascular Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Road, Guangzhou, 510120, Guangdong, China
| | - Dansha Zhou
- State Key Laboratory of Respiratory Diseases, National Center for Respiratory Medicine, Guangdong Key Laboratory of Vascular Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Road, Guangzhou, 510120, Guangdong, China
| | - Dongmei Wen
- State Key Laboratory of Respiratory Diseases, National Center for Respiratory Medicine, Guangdong Key Laboratory of Vascular Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Road, Guangzhou, 510120, Guangdong, China
| | - Yuanhui Xiong
- State Key Laboratory of Respiratory Diseases, National Center for Respiratory Medicine, Guangdong Key Laboratory of Vascular Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Road, Guangzhou, 510120, Guangdong, China
| | - Kai Yang
- State Key Laboratory of Respiratory Diseases, National Center for Respiratory Medicine, Guangdong Key Laboratory of Vascular Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Road, Guangzhou, 510120, Guangdong, China
| | - Ziying Lin
- State Key Laboratory of Respiratory Diseases, National Center for Respiratory Medicine, Guangdong Key Laboratory of Vascular Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Road, Guangzhou, 510120, Guangdong, China
| | - Jingjing Song
- Department of Stomatology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510120, Guangdong, China
| | - Zhanjie Mo
- State Key Laboratory of Respiratory Diseases, National Center for Respiratory Medicine, Guangdong Key Laboratory of Vascular Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Road, Guangzhou, 510120, Guangdong, China
| | - Huazhuo Feng
- State Key Laboratory of Respiratory Diseases, National Center for Respiratory Medicine, Guangdong Key Laboratory of Vascular Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Road, Guangzhou, 510120, Guangdong, China
| | - Yue Xing
- State Key Laboratory of Respiratory Diseases, National Center for Respiratory Medicine, Guangdong Key Laboratory of Vascular Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Road, Guangzhou, 510120, Guangdong, China
| | - Xin Fu
- State Key Laboratory of Respiratory Diseases, National Center for Respiratory Medicine, Guangdong Key Laboratory of Vascular Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Road, Guangzhou, 510120, Guangdong, China
| | - Chunli Liu
- State Key Laboratory of Respiratory Diseases, National Center for Respiratory Medicine, Guangdong Key Laboratory of Vascular Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Road, Guangzhou, 510120, Guangdong, China
| | - Fang Peng
- Department of Critical Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, Guangdong, China
| | - Liling Wu
- Department of Nephrology, Shenzhen Second People's Hospital, Shenzhen, 518000, Guangdong, China
| | - Bing Li
- State Key Laboratory of Respiratory Diseases, National Center for Respiratory Medicine, Guangdong Key Laboratory of Vascular Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Road, Guangzhou, 510120, Guangdong, China
| | - Wenju Lu
- State Key Laboratory of Respiratory Diseases, National Center for Respiratory Medicine, Guangdong Key Laboratory of Vascular Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Road, Guangzhou, 510120, Guangdong, China
| | - Jason X-J Yuan
- Section of Physiology, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California San Diego, La Jolla, San Diego, CA, 92093, USA
| | - Jian Wang
- State Key Laboratory of Respiratory Diseases, National Center for Respiratory Medicine, Guangdong Key Laboratory of Vascular Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Road, Guangzhou, 510120, Guangdong, China.
- Section of Physiology, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California San Diego, La Jolla, San Diego, CA, 92093, USA.
- Guangzhou Laboratory, Guangzhou International Bio Island, Guangzhou, 510320, Guangdong, China.
| | - Yuqin Chen
- State Key Laboratory of Respiratory Diseases, National Center for Respiratory Medicine, Guangdong Key Laboratory of Vascular Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Road, Guangzhou, 510120, Guangdong, China.
- Section of Physiology, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California San Diego, La Jolla, San Diego, CA, 92093, USA.
| |
Collapse
|
9
|
Wang X, Rowan-Carroll A, Meier MJ, Yauk CL, Wade MG, Robaire B, Hales BF. House dust-derived mixtures of organophosphate esters alter the phenotype, function, transcriptome, and lipidome of KGN human ovarian granulosa cells. Toxicol Sci 2024; 200:95-113. [PMID: 38603619 PMCID: PMC11199920 DOI: 10.1093/toxsci/kfae052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2024] Open
Abstract
Organophosphate esters (OPEs), used as flame retardants and plasticizers, are present ubiquitously in the environment. Previous studies suggest that exposure to OPEs is detrimental to female fertility in humans. However, no experimental information is available on the effects of OPE mixtures on ovarian granulosa cells, which play essential roles in female reproduction. We used high-content imaging to investigate the effects of environmentally relevant OPE mixtures on KGN human granulosa cell phenotypes. Perturbations to steroidogenesis were assessed using ELISA and qRT-PCR. A high-throughput transcriptomic approach, TempO-Seq, was used to identify transcriptional changes in a targeted panel of genes. Effects on lipid homeostasis were explored using a cholesterol assay and global lipidomic profiling. OPE mixtures altered multiple phenotypic features of KGN cells, with triaryl OPEs in the mixture showing higher potencies than other mixture components. The mixtures increased basal production of steroid hormones; this was mediated by significant changes in the expression of critical transcripts involved in steroidogenesis. Further, the total-OPE mixture disrupted cholesterol homeostasis and the composition of intracellular lipid droplets. Exposure to complex mixtures of OPEs, similar to those found in house dust, may adversely affect female reproductive health by altering a multitude of phenotypic and functional endpoints in granulosa cells. This study provides novel insights into the mechanisms of actions underlying the toxicity induced by OPEs and highlights the need to examine the effects of human relevant chemical mixtures.
Collapse
Affiliation(s)
- Xiaotong Wang
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Quebec, H3G 1Y6, Canada
| | - Andrea Rowan-Carroll
- Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, Ontario, K1A 0K9, Canada
| | - Matthew J Meier
- Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, Ontario, K1A 0K9, Canada
| | - Carole L Yauk
- Department of Biology, University of Ottawa, Ottawa, Ontario, K1N 9A7, Canada
| | - Michael G Wade
- Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, Ontario, K1A 0K9, Canada
| | - Bernard Robaire
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Quebec, H3G 1Y6, Canada
- Department of Obstetrics and Gynecology, McGill University, Montréal, Quebec, H3G 1Y6, Canada
| | - Barbara F Hales
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Quebec, H3G 1Y6, Canada
| |
Collapse
|
10
|
Zhao X, Yan L, Yang Z, Zhang H, Kong L, Zhang N, He Y. A novel signature incorporating genes related to lipid metabolism and immune for prognostic and functional prediction of breast cancer. Aging (Albany NY) 2024; 16:8611-8629. [PMID: 38771140 PMCID: PMC11164511 DOI: 10.18632/aging.205828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 04/10/2024] [Indexed: 05/22/2024]
Abstract
PURPOSE Breast cancer prognosis and functioning have not been thoroughly examined in relation to immunological and lipid metabolism. However, there is a lack of prognostic and functional analyses of the relationship between lipid metabolism and immunity in breast cancer. METHODS DEGs in breast cancer were obtained from UCSC database, and lipid metabolism and immune-related genes were obtained from GSEA and Immune databases. A predictive signature was constructed using univariate Cox and LASSO regression on lipid metabolism and immune-related DEGs. The signature's prognostic significance was assessed using Kaplan-Meier, time-dependent ROC, and risk factor survival scores. Survival prognosis, therapeutic relevance, and functional enrichment were used to mine model gene biology. We selected IL18, which has never been reported in breast cancer before, in the signature to learn more about its function, potential to predict outcome, and immune system role. RT-PCR was performed to verify the true expression level of IL18. RESULTS A total of 136 DEGs associated with breast cancer responses to both immunity and lipid metabolism. Nine key genes (CALR, CCL5, CEPT, FTT3, CXCL13, FLT3, IL12B, IL18, and IL24, p < 1.6e-2) of breast cancer were identified, and a prognostic was successfully constructed with a good predictive ability. IL18 in the model also had good clinical prognostic guidance value and immune regulation and therapeutic potential. Furthermore, the expression of IL18 was higher than that in paracancerous tissue. CONCLUSIONS A unique predictive signature model could effectively predict the prognosis of breast cancer, which can not only achieve survival prediction, but also screen out key genes with important functional mechanisms to guide clinical drug experiments.
Collapse
Affiliation(s)
- Xiao Zhao
- Clinical Laboratory, People’s Hospital of Xinjin District, Chengdu 611430, China
| | - Lvjun Yan
- Tumor and Hematology Department, University-Town Hospital of Chongqing Medical University, Chongqing 401331, China
| | - Zailin Yang
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital and Chongqing Cancer Institute and Chongqing Cancer Hospital, Chongqing 400030, China
| | - Hui Zhang
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital and Chongqing Cancer Institute and Chongqing Cancer Hospital, Chongqing 400030, China
| | - Lingshuang Kong
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital and Chongqing Cancer Institute and Chongqing Cancer Hospital, Chongqing 400030, China
| | - Na Zhang
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital and Chongqing Cancer Institute and Chongqing Cancer Hospital, Chongqing 400030, China
| | - Yongpeng He
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital and Chongqing Cancer Institute and Chongqing Cancer Hospital, Chongqing 400030, China
| |
Collapse
|
11
|
Chen X, Wu H, Li P, Peng W, Wang Y, Zhang X, Zhang A, Li J, Meng F, Wang W, Su W. Unraveling the Mechanism of Xiaochaihu Granules in Alleviating Yeast-Induced Fever Based on Network Analysis and Experimental Validation. Pharmaceuticals (Basel) 2024; 17:475. [PMID: 38675434 PMCID: PMC11053540 DOI: 10.3390/ph17040475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 03/30/2024] [Accepted: 04/06/2024] [Indexed: 04/28/2024] Open
Abstract
Xiaochaihu granules (XCHG) are extensively used to treat fever. Nevertheless, the underlying mechanism remains elusive. This study aimed to explore the potential of XCHG in mitigating yeast-induced fever and the underlying metabolic pathways. The chemical composition of XCHG was ascertained using ultra-fast liquid chromatography/quadrupole-time-of-flight tandem mass spectrometry (UFLC-Q-TOF-MS/MS), followed by integrated network analysis to predict potential targets. We then conducted experimental validation using pharmacological assays and metabolomics analysis in a yeast-induced mouse fever model. The study identified 133 compounds in XCHG, resulting in the development of a comprehensive network of herb-compound-biological functional modules. Subsequently, molecular dynamic (MD) simulations confirmed the stability of the complexes, including γ-aminobutyric acid B receptor 2 (GABBR2)-saikosaponin C, prostaglandin endoperoxide synthases (PTGS2)-lobetyolin, and NF-κB inhibitor IκBα (NFKBIA)-glycyrrhizic acid. Animal experiments demonstrated that XCHG reduced yeast-induced elevation in NFKBIA's downstream regulators [interleukin (IL)-1β and IL-8], inhibited PTGS2 activity, and consequently decreased prostaglandin E2 (PGE2) levels. XCHG also downregulated the levels of 5-hydroxytryptamine (5-HT), γ-aminobutyric acid (GABA), corticotropin releasing hormone (CRH), and adrenocorticotrophin (ACTH). These corroborated the network analysis results indicating XCHG's effectiveness against fever in targeting NFKBIA, PTGS2, and GABBR2. The hypothalamus metabolomics analysis identified 14 distinct metabolites as potential antipyretic biomarkers of XCHG. In conclusion, our findings suggest that XCHG alleviates yeast-induced fever by regulating inflammation/immune responses, neuromodulation, and metabolism modules, providing a scientific basis for the anti-inflammatory and antipyretic properties of XCHG.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Weiwei Su
- Guangdong Engineering & Technology Research Center for Quality and Efficacy Reevaluation of Post-Market Traditional Chinese Medicine, Guangdong Provincial Key Laboratory of Plant Resources, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
12
|
Xu C. Extra-adrenal aldosterone: a mini review focusing on the physiology and pathophysiology of intrarenal aldosterone. Endocrine 2024; 83:285-301. [PMID: 37847370 DOI: 10.1007/s12020-023-03566-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 10/08/2023] [Indexed: 10/18/2023]
Abstract
PURPOSE Accumulating evidence has demonstrated the existence of extra-adrenal aldosterone in various tissues, including the brain, heart, vascular, adipocyte, and kidney, mainly based on the detection of the CYP11B2 (aldosterone synthase, cytochrome P450, family 11, subfamily B, polypeptide 2) expression using semi-quantitative methods including reverse transcription-polymerase chain reaction and antibody-based western blotting, as well as local tissue aldosterone levels by antibody-based immunosorbent assays. This mini-review highlights the current evidence and challenges in extra-adrenal aldosterone, focusing on intrarenal aldosterone. METHODS A narrative review. RESULTS Locally synthesized aldosterone may play a vital role in various physio-pathological processes, especially cardiovascular events. The site of local aldosterone synthesis in the kidney may include the mesangial cells, podocytes, proximal tubules, and collecting ducts. The synthesis of renal aldosterone may be regulated by (pro)renin receptor/(pro)renin, angiotensin II/Angiotensin II type 1 receptor, wnt/β-catenin, cyclooxygenase-2/prostaglandin E2, and klotho. Enhanced renal aldosterone release promotes Na+ reabsorption and K+ excretion in the distal nephron and may contribute to the progress of diabetic nephropathy and salt-related hypertension. CONCLUSIONS Inhibition of intrarenal aldosterone signaling by aldosterone synthase inhibitors or mineralocorticoid receptor antagonists may be a hopeful pharmacological technique for the therapy of diabetic nephropathy and saltrelated hypertension. Yet, current reports are often conflicting or ambiguous, leading many to question whether extra-adrenal aldosterone exists, or whether it is of any physiological and pathophysiological significance.
Collapse
Affiliation(s)
- Chuanming Xu
- Translational Medicine Centre, Jiangxi University of Chinese Medicine, Nanchang, 330002, Jiangxi, China.
| |
Collapse
|
13
|
Jiao R, Jiang W, Xu K, Luo Q, Wang L, Zhao C. Lipid metabolism analysis in esophageal cancer and associated drug discovery. J Pharm Anal 2024; 14:1-15. [PMID: 38352954 PMCID: PMC10859535 DOI: 10.1016/j.jpha.2023.08.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 07/27/2023] [Accepted: 08/29/2023] [Indexed: 02/16/2024] Open
Abstract
Esophageal cancer is an upper gastrointestinal malignancy with a bleak prognosis. It is still being explored in depth due to its complex molecular mechanisms of occurrence and development. Lipids play a crucial role in cells by participating in energy supply, biofilm formation, and signal transduction processes, and lipid metabolic reprogramming also constitutes a significant characteristic of malignant tumors. More and more studies have found esophageal cancer has obvious lipid metabolism abnormalities throughout its beginning, progress, and treatment resistance. The inhibition of tumor growth and the enhancement of antitumor therapy efficacy can be achieved through the regulation of lipid metabolism. Therefore, we reviewed and analyzed the research results and latest findings for lipid metabolism and associated analysis techniques in esophageal cancer, and comprehensively proved the value of lipid metabolic reprogramming in the evolution and treatment resistance of esophageal cancer, as well as its significance in exploring potential therapeutic targets and biomarkers.
Collapse
Affiliation(s)
- Ruidi Jiao
- Bionic Sensing and Intelligence Center, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518000, China
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, Guangdong, 518116, China
- School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, 518000, China
| | - Wei Jiang
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, Guangdong, 518116, China
| | - Kunpeng Xu
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, Guangdong, 518116, China
| | - Qian Luo
- Bionic Sensing and Intelligence Center, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518000, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Luhua Wang
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, Guangdong, 518116, China
- School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, 518000, China
| | - Chao Zhao
- Bionic Sensing and Intelligence Center, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518000, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Shenzhen Key Laboratory of Precision Diagnosis and Treatment of Depression, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518000, China
| |
Collapse
|
14
|
Li X, Kuang W, Qiu Z, Zhou Z. G protein-coupled estrogen receptor: a promising therapeutic target for aldosterone-induced hypertension. Front Endocrinol (Lausanne) 2023; 14:1226458. [PMID: 37664844 PMCID: PMC10471144 DOI: 10.3389/fendo.2023.1226458] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 07/18/2023] [Indexed: 09/05/2023] Open
Abstract
Aldosterone is one of the most essential hormones synthesized by the adrenal gland because it regulates water and electrolyte balance. G protein-coupled estrogen receptor (GPER) is a newly discovered aldosterone receptor, which is proposed to mediate the non-genomic pathways of aldosterone while the hormone simultaneously interacts with mineralocorticoid receptor. In contrast to its cardio-protective role in postmenopausal women via its interaction with estrogen, GPER seems to trigger vasoconstriction effects and can further induce water and sodium retention in the presence of aldosterone, indicating two entirely different binding sites and effects for estrogen and aldosterone. Accumulating evidence also points to a role of aldosterone in mediating hypertension and its risk factors via the interaction with GPER. Therefore, with this review, we aimed to summarize the research on these interactions to help (1) elucidate the role of GPER activated by aldosterone in the blood vessels, heart, and kidney; (2) compare the non-genomic actions between aldosterone and estrogen mediated by GPER; and (3) address the potential of GPER as a new promising therapeutic target for aldosterone-induced hypertension.
Collapse
Affiliation(s)
- Xuehan Li
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Engineering Research Center for Immunological Diagnosis and Therapy of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenlong Kuang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Engineering Research Center for Immunological Diagnosis and Therapy of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhihua Qiu
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Engineering Research Center for Immunological Diagnosis and Therapy of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zihua Zhou
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Engineering Research Center for Immunological Diagnosis and Therapy of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
15
|
Zipinotti Dos Santos D, de Souza JC, Pimenta TM, da Silva Martins B, Junior RSR, Butzene SMS, Tessarolo NG, Cilas PML, Silva IV, Rangel LBA. The impact of lipid metabolism on breast cancer: a review about its role in tumorigenesis and immune escape. Cell Commun Signal 2023; 21:161. [PMID: 37370164 PMCID: PMC10304265 DOI: 10.1186/s12964-023-01178-1] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 05/26/2023] [Indexed: 06/29/2023] Open
Abstract
BACKGROUND Breast cancer (BC) is the second most frequent type of cancer in the world and most common among women, configuring a major challenge to global health. BC is a complex and heterogeneous disease that can be subdivided into distinct tumor types based on the expression of molecular markers predicting patient outcomes and response to therapy. A growing number of studies have tried to expand the known markers by investigating the association of altered lipid metabolism with BC immune escape, progression, and metastasis. In this review, we describe the metabolic peculiarities of each BC subtype, understanding how this influences its aggressiveness and identifying whether these intrinsic vulnerabilities of each subtype can play a role in therapeutic management and may affect immune system cells in the tumor microenvironment. CONCLUSION The evidence suggests so far that when changes occur in lipid pathways, it can affect the availability of structural lipids for membrane synthesis, lipid synthesis, and degradation that contribute to energy homeostasis and cell signaling functions. These findings will guide the next steps on the path to understanding the mechanisms underlying how lipids alterations are related to disparities in chemotherapeutic response and immune escape in BC. Video Abstract.
Collapse
Affiliation(s)
- Diandra Zipinotti Dos Santos
- Biotechnology Program/RENORBIO, Health Sciences Center, Federal University of Espírito Santo, Vitoria (Espírito Santo), Brazil.
| | - Josiany Carlos de Souza
- Biotechnology Program/RENORBIO, Health Sciences Center, Federal University of Espírito Santo, Vitoria (Espírito Santo), Brazil
| | - Tatiana Massariol Pimenta
- Department of Pharmaceutical Sciences, Federal University of Espirito Santo, Marechal Campos Avenue, MaruípeEspírito Santo, Vitória, 1468, Brazil
| | - Bárbara da Silva Martins
- Department of Pharmaceutical Sciences, Federal University of Espirito Santo, Marechal Campos Avenue, MaruípeEspírito Santo, Vitória, 1468, Brazil
| | - Roberto Silva Ribeiro Junior
- Department of Pharmaceutical Sciences, Federal University of Espirito Santo, Marechal Campos Avenue, MaruípeEspírito Santo, Vitória, 1468, Brazil
| | - Solenny Maria Silva Butzene
- Department of Pharmaceutical Sciences, Federal University of Espirito Santo, Marechal Campos Avenue, MaruípeEspírito Santo, Vitória, 1468, Brazil
| | - Nayara Gusmão Tessarolo
- Viral Vector Laboratory, Center for Translational Investigation in Oncology, Cancer Institute of São Paulo/LIM24, University of São Paulo School of Medicine, São Paulo, (São Paulo), Brazil
| | | | - Ian Victor Silva
- Department of Morphology, Health Sciences Center, Federal University of Espirito Santo, Vitoria, Espirito Santo, Brazil
| | - Leticia B A Rangel
- Biotechnology Program/RENORBIO, Health Sciences Center, Federal University of Espírito Santo, Vitoria (Espírito Santo), Brazil.
- Department of Pharmaceutical Sciences, Federal University of Espirito Santo, Marechal Campos Avenue, MaruípeEspírito Santo, Vitória, 1468, Brazil.
- Biochemistry Program, Health Sciences Center, Federal University of Espirito Santo, Vitoria, Brazil.
| |
Collapse
|
16
|
Wang D, Tang Y, Wang Z. Role of sphingolipid metabolites in the homeostasis of steroid hormones and the maintenance of testicular functions. Front Endocrinol (Lausanne) 2023; 14:1170023. [PMID: 37008929 PMCID: PMC10065405 DOI: 10.3389/fendo.2023.1170023] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 03/07/2023] [Indexed: 03/19/2023] Open
Abstract
With the acceleration of life pace and the increase of work pressure, the problem of male infertility has become a social problem of general concern. Sphingolipids are important regulators of many cellular processes like cell differentiation and apoptosis, which are ubiquitously expressed in all mammalian cells. Various sphingolipid catabolic enzymes can generate multiple sphingolipids like sphingosine-1-phosphate and sphingomyelin. Present studies have already demonstrated the role of steroid hormones in the physiological processes of reproduction and development through hypothalamus-pituitary-gonad axis, while recent researches also found not only sphingolipids can modulate steroid hormone secretion, but also steroid hormones can control sphingolipid metabolites, indicating the role of sphingolipid metabolites in the homeostasis of steroid hormones. Furthermore, sphingolipid metabolites not only contribute to the regulation of gametogenesis, but also mediate damage-induced germ apoptosis, implying the role of sphingolipid metabolites in the maintenance of testicular functions. Together, sphingolipid metabolites are involved in impaired gonadal function and infertility in males, and further understanding of these bioactive sphingolipids will help us develop new therapeutics for male infertility in the future.
Collapse
Affiliation(s)
- Defan Wang
- Fujian Provincial Key Laboratory of Reproductive Health Research, School of Medicine, Xiamen University, Xiamen, China
| | - Yedong Tang
- Fujian Provincial Key Laboratory of Reproductive Health Research, School of Medicine, Xiamen University, Xiamen, China
- Fujian Provincial Key Laboratory for Developmental Biology and Neurosciences, College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Zhengchao Wang
- Fujian Provincial Key Laboratory for Developmental Biology and Neurosciences, College of Life Sciences, Fujian Normal University, Fuzhou, China
| |
Collapse
|
17
|
Fernandes-Rosa FL, Boulkroun S, Fedlaoui B, Hureaux M, Travers-Allard S, Drossart T, Favier J, Zennaro MC. New advances in endocrine hypertension: from genes to biomarkers. Kidney Int 2023; 103:485-500. [PMID: 36646167 DOI: 10.1016/j.kint.2022.12.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 12/16/2022] [Accepted: 12/19/2022] [Indexed: 01/15/2023]
Abstract
Hypertension (HT) is a major cardiovascular risk factor that affects 10% to 40% of the general population in an age-dependent manner. Detection of secondary forms of HT is particularly important because it allows the targeted management of the underlying disease. Among hypertensive patients, the prevalence of endocrine HT reaches up to 10%. Adrenal diseases are the most frequent cause of endocrine HT and are associated with excess production of mineralocorticoids (mainly primary aldosteronism), glucocorticoids (Cushing syndrome), and catecholamines (pheochromocytoma). In addition, a few rare diseases directly affecting the action of mineralocorticoids and glucocorticoids in the kidney also lead to endocrine HT. Over the past years, genomic and genetic studies have allowed improving our knowledge on the molecular mechanisms of endocrine HT. Those discoveries have opened new opportunities to transfer knowledge to clinical practice for better diagnosis and specific treatment of affected subjects. In this review, we describe the physiology of adrenal hormone biosynthesis and action, the clinical and biochemical characteristics of different forms of endocrine HT, and their underlying genetic defects. We discuss the impact of these discoveries on diagnosis and management of patients, as well as new perspectives related to the use of new biomarkers for improved patient care.
Collapse
Affiliation(s)
| | | | | | - Marguerite Hureaux
- Université Paris Cité, PARCC, Inserm, Paris, France; Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Service de Génétique, Paris, France
| | - Simon Travers-Allard
- Université Paris Cité, PARCC, Inserm, Paris, France; Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Service de Physiologie, Paris, France
| | - Tom Drossart
- Université Paris Cité, PARCC, Inserm, Paris, France; Université de Paris Cité, PARCC, Inserm, Equipe Labellisée par la Ligue contre le Cancer, Paris, France
| | - Judith Favier
- Université Paris Cité, PARCC, Inserm, Paris, France; Université de Paris Cité, PARCC, Inserm, Equipe Labellisée par la Ligue contre le Cancer, Paris, France
| | - Maria-Christina Zennaro
- Université Paris Cité, PARCC, Inserm, Paris, France; Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Service de Génétique, Paris, France.
| |
Collapse
|
18
|
Zeng K, Zhou X, Liu W, Nie C, Zhang Y. Determination of endogenous sphingolipid content in stroke rats and HT22 cells subjected to oxygen-glucose deprivation by LC‒MS/MS. Lipids Health Dis 2023; 22:13. [PMID: 36698123 PMCID: PMC9878918 DOI: 10.1186/s12944-022-01762-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 12/20/2022] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND Stroke is the leading cause of death in humans worldwide, and its incidence increases every year. It is well documented that lipids are closely related to stroke. Analyzing the changes in lipid content in the stroke model after absolute quantification and investigating whether changes in lipid content can predict stroke severity provides a basis for the combination of clinical stroke and quantitative lipid indicators. METHODS This paper establishes a rapid, sensitive, and reliable LC‒MS/MS analytical method for the detection of endogenous sphingolipids in rat serum and brain tissue and HT22 cells and quantifies the changes in sphingolipid content in the serum and brain tissue of rats from the normal and pMCAO groups and in cells from the normal and OGD/R groups. Using sphingosine (d17:1) as the internal standard, a chloroform: methanol (9:1) mixed system was used for protein precipitation and lipid extraction, followed by analysis by reversed-phase liquid chromatography coupled to triple quadrupole mass spectrometry. RESULTS Based on absolute quantitative analysis of lipids in multiple biological samples, our results show that compared with those in the normal group, the contents of sphinganine (d16:0), sphinganine (d18:0), and phytosphingosine were significantly increased in the model group, except sphingosine-1-phosphate, which was decreased in various biological samples. The levels of each sphingolipid component in serum fluctuate with time. CONCLUSION This isotope-free and derivatization-free LC‒MS/MS method can achieve absolute quantification of sphingolipids in biological samples, which may also help identify lipid biomarkers of cerebral ischemia.
Collapse
Affiliation(s)
- Keqi Zeng
- grid.411866.c0000 0000 8848 7685Department of Pharmaceutics, College of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangdong 51006 Guangzhou, China
| | - Xin Zhou
- grid.411866.c0000 0000 8848 7685Department of Pharmaceutics, College of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangdong 51006 Guangzhou, China
| | - Wanyi Liu
- grid.411866.c0000 0000 8848 7685Department of Pharmaceutics, College of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangdong 51006 Guangzhou, China
| | - Cong Nie
- grid.411866.c0000 0000 8848 7685Department of Pharmaceutics, College of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangdong 51006 Guangzhou, China
| | - Yingfeng Zhang
- grid.411866.c0000 0000 8848 7685Department of Pharmaceutics, College of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangdong 51006 Guangzhou, China
| |
Collapse
|