1
|
Rao Y, Yu S, Liang L, Wang Q, Lu J, Wang B, Gou K. Trans 10, cis 12-conjugated linoleic acid in low concentration reduces while in high concentration enhances adipocyte metabolism but effectively improves hepatic steatosis of obese mice. J Nutr Biochem 2025; 136:109801. [PMID: 39542147 DOI: 10.1016/j.jnutbio.2024.109801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 08/10/2024] [Accepted: 11/06/2024] [Indexed: 11/17/2024]
Abstract
Trans 10, cis 12-conjugated linoleic acid (t10c12-CLA)-producing mice were used to investigate the antiobesity of obese males. Compared to wild-type littermates, high concentration t10c12-CLA in biallelic Pai/Pai mice reduced fat by up-regulation lipid metabolism in white adipose tissue (WAT). In contrast, low concentration t10c12-CLA in monoallelic Pai/wt mice could not reduce fat for down-regulation lipid metabolism in WAT. Simultaneously, t10c12-CLA enhanced thermogenesis and beta-oxidation in brown adipose tissue, alleviated steatosis by declining lipid metabolism in the liver, and lowered circulating triglycerides. On the other hand, low concentration t10c12-CLA specifically resulted in decreased circulating fibroblast growth factor 21, elevated glucose and high-density lipoprotein, whereas high concentration t10c12-CLA specifically increased circulating and hepatic cholesterol levels via up-regulation of low-density lipoprotein receptor in the liver. In conclusion, high concentration t10c12-CLA enhances local lipid metabolism in WAT and leads to fat loss, whereas low concentration t10c12-CLA attenuates the enzymic activities in WAT and fails to reduce fat. T10c12-CLA can effectively and concentration independently improve steatosis by attenuating hepatic lipid metabolism. These results suggest that low concentration of t10c12-CLA is beneficial, but high concentration is unfavorable to obese male mammals.
Collapse
Affiliation(s)
- Yu Rao
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Shuai Yu
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Luwen Liang
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Qi Wang
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Jiaqi Lu
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Baozhu Wang
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Kemian Gou
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, China.
| |
Collapse
|
2
|
Zhang M, Yin YS, May KS, Wang S, Purcell H, Zhang XS, Blaser MJ, den Hartigh LJ. The role of intestinal microbiota in physiologic and body compositional changes that accompany CLA-mediated weight loss in obese mice. Mol Metab 2024; 89:102029. [PMID: 39293564 PMCID: PMC11447304 DOI: 10.1016/j.molmet.2024.102029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 09/10/2024] [Accepted: 09/11/2024] [Indexed: 09/20/2024] Open
Abstract
OBJECTIVE Obesity continues to be a major problem, despite known treatment strategies such as lifestyle modifications, pharmaceuticals, and surgical options, necessitating the development of novel weight loss approaches. The naturally occurring fatty acid, 10,12 conjugated linoleic acid (10,12 CLA), promotes weight loss by increasing fat oxidation and browning of white adipose tissue, leading to increased energy expenditure in obese mice. Coincident with weight loss, 10,12 CLA also alters the murine gut microbiota by enriching for microbes that produce short chain fatty acids (SCFAs), with concurrent elevations in fecal butyrate and plasma acetate. METHODS To determine if the observed microbiota changes are required for 10,12 CLA-mediated weight loss, adult male mice with diet-induced obesity were given broad-spectrum antibiotics (ABX) to perturb the microbiota prior to and during 10,12 CLA-mediated weight loss. Conversely, to determine whether gut microbes were sufficient to induce weight loss, conventionally-raised and germ-free mice were transplanted with cecal contents from mice that had undergone weight loss by 10,12 CLA supplementation. RESULTS While body weight was minimally modulated by ABX-mediated perturbation of gut bacterial populations, adult male mice given ABX were more resistant to the increased energy expenditure and fat loss that are induced by 10,12 CLA supplementation. Transplanting cecal contents from donor mice losing weight due to oral 10,12 CLA consumption into conventional or germ-free mice led to improved glucose metabolism with increased butyrate production. CONCLUSIONS These data suggest a critical role for the microbiota in diet-modulated changes in energy balance and glucose metabolism, and distinguish the metabolic effects of orally delivered 10,12 CLA from cecal transplantation of the resulting microbiota.
Collapse
Affiliation(s)
- Meifan Zhang
- Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, NJ, USA
| | - Yue S Yin
- Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, NJ, USA
| | - Karolline S May
- Department of Medicine: Metabolism, Endocrinology, and Nutrition, Seattle, WA, USA; Diabetes Institute, University of Washington, Seattle, WA, USA
| | - Shari Wang
- Department of Medicine: Metabolism, Endocrinology, and Nutrition, Seattle, WA, USA; Diabetes Institute, University of Washington, Seattle, WA, USA
| | - Hayley Purcell
- Mitochondria and Metabolism Center, Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA, USA
| | - Xue-Song Zhang
- Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, NJ, USA
| | - Martin J Blaser
- Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, NJ, USA
| | - Laura J den Hartigh
- Department of Medicine: Metabolism, Endocrinology, and Nutrition, Seattle, WA, USA; Diabetes Institute, University of Washington, Seattle, WA, USA.
| |
Collapse
|
3
|
Rao Y, Liang LW, Li MJ, Wang YY, Wang BZ, Gou KM. Transgenic female mice producing trans 10, cis 12-conjugated linoleic acid present excessive prostaglandin E2, adrenaline, corticosterone, glucagon, and FGF21. Sci Rep 2024; 14:12430. [PMID: 38816541 PMCID: PMC11139873 DOI: 10.1038/s41598-024-63282-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 05/27/2024] [Indexed: 06/01/2024] Open
Abstract
Dietary trans 10, cis 12-conjugated linoleic acid (t10c12-CLA) is a potential candidate in anti-obesity trials. A transgenic mouse was previously successfully established to determine the anti-obesity properties of t10c12-CLA in male mice that could produce endogenous t10c12-CLA. To test whether there is a different impact of t10c12-CLA on lipid metabolism in both sexes, this study investigated the adiposity and metabolic profiles of female Pai mice that exhibited a dose-dependent expression of foreign Pai gene and a shift of t10c12-CLA content in tested tissues. Compared to their gender-match wild-type littermates, Pai mice had no fat reduction but exhibited enhanced lipolysis and thermogenesis by phosphorylated hormone-sensitive lipase and up-regulating uncoupling proteins in brown adipose tissue. Simultaneously, Pai mice showed hepatic steatosis and hypertriglyceridemia by decreasing gene expression involved in lipid and glucose metabolism. Further investigations revealed that t10c10-CLA induced excessive prostaglandin E2, adrenaline, corticosterone, glucagon and inflammatory factors in a dose-dependent manner, resulting in less heat release and oxygen consumption in Pai mice. Moreover, fibroblast growth factor 21 overproduction only in monoallelic Pai/wt mice indicates that it was sensitive to low doses of t10c12-CLA. These results suggest that chronic t10c12-CLA has system-wide effects on female health via synergistic actions of various hormones.
Collapse
Affiliation(s)
- Yu Rao
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Department of Experimental Zoology, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China
| | - Lu-Wen Liang
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China
| | - Mei-Juan Li
- Institute of Animal Husbandry and Veterinary Science, Guizhou Academy of Agricultural Sciences, Guiyang, 550005, China
| | - Yang-Yang Wang
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China
| | - Bao-Zhu Wang
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China
| | - Ke-Mian Gou
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China.
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Department of Experimental Zoology, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
4
|
Hsu CY, Liao CC, Lin ZC, Alalaiwe A, Hwang E, Lin TW, Fang JY. Facile adipocyte uptake and liver/adipose tissue delivery of conjugated linoleic acid-loaded tocol nanocarriers for a synergistic anti-adipogenesis effect. J Nanobiotechnology 2024; 22:50. [PMID: 38317220 PMCID: PMC10845550 DOI: 10.1186/s12951-024-02316-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 01/26/2024] [Indexed: 02/07/2024] Open
Abstract
Obesity is a major risk to human health. Adipogenesis is blocked by α-tocopherol and conjugated linoleic acid (CLA). However, their effect at preventing obesity is uncertain. The effectiveness of the bioactive agents is associated with their delivery method. Herein, we designed CLA-loaded tocol nanostructured lipid carriers (NLCs) for enhancing the anti-adipogenic activity of α-tocopherol and CLA. Adipogenesis inhibition by the nanocarriers was examined using an in vitro adipocyte model and an in vivo rat model fed a high fat diet (HFD). The targeting of the tocol NLCs into adipocytes and adipose tissues were also investigated. A synergistic anti-adipogenesis effect was observed for the combination of free α-tocopherol and CLA. Nanoparticles with different amounts of solid lipid were developed with an average size of 121‒151 nm. The NLCs with the smallest size (121 nm) showed greater adipocyte internalization and differentiation prevention than the larger size. The small-sized NLCs promoted CLA delivery into adipocytes by 5.5-fold as compared to free control. The nanocarriers reduced fat accumulation in adipocytes by counteracting the expression of the adipogenic transcription factors peroxisome proliferator activated receptor (PPAR)γ and CCAAT/enhancer-binding protein (C/EBP)α, and lipogenic enzymes acetyl-CoA carboxylase (ACC) and fatty acid synthase (FAS). Localized administration of CLA-loaded tocol NLCs significantly reduced body weight, total cholesterol, and liver damage indicators in obese rats. The biodistribution study demonstrated that the nanoparticles mainly accumulated in liver and adipose tissues. The NLCs decreased adipocyte hypertrophy and cytokine overexpression in the groin and epididymis to a greater degree than the combination of free α-tocopherol and CLA. In conclusion, the lipid-based nanocarriers were verified to inhibit adipogenesis in an efficient and safe way.
Collapse
Affiliation(s)
- Ching-Yun Hsu
- Department of Nutrition and Health Sciences, Chang Gung University of Science and Technology, Kweishan, Taoyuan, Taiwan
- Research Center for Food and Cosmetic Safety and Research Center for Chinese Herbal Medicine, Chang Gung University of Science and Technology, Kweishan, Taoyuan, Taiwan
| | - Chia-Chih Liao
- Department of Anesthesiology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
- School of Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Zih-Chan Lin
- Chronic Diseases and Health Promotion Research Center, Chang Gung University of Science and Technology, Puzi, Chiayi, Taiwan
| | - Ahmed Alalaiwe
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj, Saudi Arabia
| | - Erica Hwang
- Department of Dermatology, Yale School of Medicine, Yale University, New Haven, CT, USA
| | - Tzu-Wei Lin
- Pharmaceutics Laboratory, Graduate Institute of Natural Products, Chang Gung University, 259 Wen-Hwa 1st Road, Kweishan, Taoyuan, 333, Taiwan
| | - Jia-You Fang
- Research Center for Food and Cosmetic Safety and Research Center for Chinese Herbal Medicine, Chang Gung University of Science and Technology, Kweishan, Taoyuan, Taiwan.
- Department of Anesthesiology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan.
- Pharmaceutics Laboratory, Graduate Institute of Natural Products, Chang Gung University, 259 Wen-Hwa 1st Road, Kweishan, Taoyuan, 333, Taiwan.
| |
Collapse
|
5
|
Wang Z, Yang T, Brenna JT, Wang DH. Fatty acid isomerism: analysis and selected biological functions. Food Funct 2024; 15:1071-1088. [PMID: 38197562 DOI: 10.1039/d3fo03716a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
The biological functions of fatty acids and the lipids in which they are esterified are determined by their chain length, double bond position and geometry and other structural motifs such as the presence of methyl branches. Unusual isomeric features in fatty acids of human foods such as conjugated double bonds or chain branching found in dairy products, some seeds and nuts, and marine foods potentially have important effects on human health. Recent advancements in identifying fatty acids with unusual double bond positions and pinpointing the position of methyl branches have empowered the study of their biological functions. We present recent advances in fatty acid structural elucidation by mass spectrometry in comparison with the more traditional methods. The double bond position can be determined by purely instrumental methods, specifically solvent-mediated covalent adduct chemical ionization (SM-CACI) and ozone induced dissociation (OzID), with charge inversion methods showing promise. Prior derivatization using the Paternò-Büchi (PB) reaction to yield stable structures that, upon collisional activation, yield the double bond position has emerged. The chemical ionization (CI) based three ion monitoring (MRM) method has been developed to simultaneously identify and quantify low-level branched chain fatty acids (BCFAs), unattainable by electron ionization (EI) based methods. Accurate identification and quantification of unusual fatty acid isomers has led to research progress in the discovery of biomarkers for cancer, diabetes, nonalcoholic fatty liver disease (NAFLD) and atherosclerosis. Modulation of eicosanoids, weight loss and the health significance of BCFAs are also presented. This review clearly shows that the improvement of analytical capacity is critical in the study of fatty acid biological functions, and stronger coupling of the methods discussed here with fatty acid mechanistic research is promising in generating more refined outcomes.
Collapse
Affiliation(s)
- Zhen Wang
- School of Agriculture, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China.
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Tingxiang Yang
- School of Agriculture, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China.
| | - J Thomas Brenna
- Dell Pediatric Research Institute, Depts of Pediatrics, of Chemistry, and of Nutrition, University of Texas at Austin, 1400 Barbara Jordan Blvd, Austin, TX, USA.
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, USA
| | - Dong Hao Wang
- School of Agriculture, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China.
| |
Collapse
|
6
|
Atsakou AE, Remonatto D, Júnior RHM, Paz-Cedeno FR, Masarin F, Andrade GSS, de Lucca Gattas EA, de Paula AV. Synthesis of dietary lipids from pumpkin ( Cucurbita pepo. L) oil obtained by enzymatic extraction: a sustainable approach. 3 Biotech 2023; 13:358. [PMID: 37822549 PMCID: PMC10562325 DOI: 10.1007/s13205-023-03781-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 09/20/2023] [Indexed: 10/13/2023] Open
Abstract
This study aimed to assess the nutritional properties of dietary lipids obtained through the modification of aqueous enzymatically extracted pumpkin seed (Cucurbita pepo. L) oil. The optimal growth conditions for producing pectinase using strain Aspergillus sp. 391 were determined, and partial characterization of pectinase and commercial cellulase was conducted. The enzymatic extraction was performed at pH 4.0, 50 °C, for 24 h, using a combination of pectinase and cellulase for optimum effectiveness. The crude oil obtained was analyzed for acid, peroxide, and fatty acid composition. The study found a high amount of unsaturated fatty acids, mainly linoleic acid (C18:2), and a 59% oil recovery rate. Subsequently, this oil was subjected to enzymatic acidolysis with capric acid in solvent-free media, catalyzed by lipase Lipozyme RM IM®, resulting in a product with a higher incorporation degree (48.39 ± 0.5 mol%), observed after 24 h at 60 °C using molar ratio oil:acid capric of 1:9 (run 4). The nutritional properties of this oil were improved.
Collapse
Affiliation(s)
- Abra Eli Atsakou
- School of Pharmaceutical Sciences (FCF), São Paulo State University (UNESP), Araraquara, SP CEP 14800-903 Brazil
| | - Daniela Remonatto
- School of Pharmaceutical Sciences (FCF), São Paulo State University (UNESP), Araraquara, SP CEP 14800-903 Brazil
| | - Rodney Helder Miotti Júnior
- School of Pharmaceutical Sciences (FCF), São Paulo State University (UNESP), Araraquara, SP CEP 14800-903 Brazil
| | - Fernando Roberto Paz-Cedeno
- School of Pharmaceutical Sciences (FCF), São Paulo State University (UNESP), Araraquara, SP CEP 14800-903 Brazil
| | - Fernando Masarin
- School of Pharmaceutical Sciences (FCF), São Paulo State University (UNESP), Araraquara, SP CEP 14800-903 Brazil
| | | | | | - Ariela Veloso de Paula
- School of Pharmaceutical Sciences (FCF), São Paulo State University (UNESP), Araraquara, SP CEP 14800-903 Brazil
| |
Collapse
|
7
|
de Freitas DS, Lopes GADG, Nascimento BR, Madureira AP, Campos-Junior PHA. C is-9, trans-11 and trans-10, cis-12 conjugated linoleic acid gastric administration during the pregestational and gestational periods does not influence the follicular endowment of the progeny. Anim Reprod 2023; 20:e20220124. [PMID: 37795199 PMCID: PMC10546913 DOI: 10.1590/1984-3143-ar2022-0124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 06/29/2023] [Indexed: 10/06/2023] Open
Abstract
Fetal programming suggests that maternal stimulation and nutrition during the period of fetal development can program the progeny. Conjugated linoleic acid (CLA), an isomer of linoleic acid, has been characterized in several aspects, but few studies have been performed on its involvement in reproduction and fetal programming. The aim of this study was to evaluate the F1, F2 and F3 progeny of female mice supplemented with CLA during the pregestational and gestational periods with respect to biometric and reproductive parameters, as well as ovarian morphophysiology. The F1 progeny of mothers supplemented with CLA exhibited stable weight gain, while the F2 progeny showed no effects (P=0.0187 and P=0.0245, respectively). A reduction in Lee's Index was observed in both generations at the second post-weaning evaluation week in the animals treated with CLA (P=0.0100 and P=0.0078, respectively). The F2 generation showed an increase in the anogenital index in both sexes of the animals treated with CLA (P= 0.0114 and P<0.0001, female and male respectively). CLA administration to mothers did not affect any of the following in their progeny: ovarian follicle mobilization (P>0.05), follicle number (P>0.05) and the integrated density of the lipid content of oocytes included in antral follicles (P>0.05). This study evaluated the use of CLA in mothers and found that it did not affect the progeny regarding murine reproductive performance, suggesting that this supplement can be used safely.
Collapse
Affiliation(s)
- Danielle Storino de Freitas
- Laboratório de Pesquisa em Reprodução e Desenvolvimento, Universidade Federal de São João del Rei, São João del-Rei, MG, Brasil
| | | | - Barbara Rodrigues Nascimento
- Laboratório de Pesquisa em Reprodução e Desenvolvimento, Universidade Federal de São João del Rei, São João del-Rei, MG, Brasil
| | - Ana Paula Madureira
- Laboratório de Pesquisa em Reprodução e Desenvolvimento, Universidade Federal de São João del Rei, São João del-Rei, MG, Brasil
| | | |
Collapse
|
8
|
Abstract
PURPOSE OF REVIEW Obesity is accompanied by atherogenic dyslipidemia, a specific lipid disorder characterized by both quantitative and qualitative changes of plasma lipoproteins. The main alterations in the lipid profile include hypertriglyceridemia, reduced high-density lipoprotein (HDL) cholesterol level, and elevated small dense low-density lipoprotein (LDL) particles. Epidemiological data show that obesity is more common in women and is a frequent risk factor for reproductive disorders, metabolic complications in pregnancy, and cardiometabolic disease later in life. The aim of this narrative review is to discuss recent advances in the research of dyslipidemia in obesity, with an emphasis on female-specific disorders and cardiometabolic risk. RECENT FINDINGS The focus of current research on dyslipidemia in obesity is moving toward structurally and functionally modified plasma lipoproteins. Special attention is paid to the pro-atherogenic role of triglyceride-rich lipoproteins and their remnants. Introduction of advanced analytical techniques enabled identification of novel lipid biomarkers with potential clinical applications. In particular, proteomic and lipidomic studies have provided significant progress in the comprehensive research of HDL's alterations in obesity. Obesity-related dyslipidemia is a widespread metabolic disturbance in polycystic ovary syndrome patients and high-risk pregnancies, but is seldom evaluated with respect to its impact on future cardiometabolic health. Obesity and associated cardiometabolic diseases require a more depth insight into the quality of lipoprotein particles. Further application of omics-based techniques would enable a more comprehensive evaluation of dyslipidemia in order to reduce an excessive cardiovascular risk attributable to increased body weight. However, more studies on obesity-related female reproductive disorders are needed for this approach to be adopted in daily clinical practice.
Collapse
Affiliation(s)
- Jelena Vekic
- Department of Medical Biochemistry, University of Belgrade-Faculty of Pharmacy, Vojvode Stepe 450, P. Box 146, 11000, Belgrade, Serbia.
| | - Aleksandra Stefanovic
- Department of Medical Biochemistry, University of Belgrade-Faculty of Pharmacy, Vojvode Stepe 450, P. Box 146, 11000, Belgrade, Serbia
| | - Aleksandra Zeljkovic
- Department of Medical Biochemistry, University of Belgrade-Faculty of Pharmacy, Vojvode Stepe 450, P. Box 146, 11000, Belgrade, Serbia
| |
Collapse
|
9
|
Cheung B, Sikand G, Dineen EH, Malik S, Barseghian El-Farra A. Lipid-Lowering Nutraceuticals for an Integrative Approach to Dyslipidemia. J Clin Med 2023; 12:jcm12103414. [PMID: 37240523 DOI: 10.3390/jcm12103414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/07/2023] [Accepted: 02/10/2023] [Indexed: 05/28/2023] Open
Abstract
Dyslipidemia is a treatable risk factor for atherosclerotic cardiovascular disease that can be addressed through lifestyle changes and/or lipid-lowering therapies. Adherence to statins can be a clinical challenge in some patients due to statin-associated muscle symptoms and other side effects. There is a growing interest in integrative cardiology and nutraceuticals in the management of dyslipidemia, as some patients desire or are actively seeking a more natural approach. These agents have been used in patients with and without established atherosclerotic cardiovascular disease. We provide an updated review of the evidence on many new and emerging nutraceuticals. We describe the mechanism of action, lipid-lowering effects, and side effects of many nutraceuticals, including red yeast rice, bergamot and others.
Collapse
Affiliation(s)
- Brian Cheung
- Susan Samueli Integrative Health Institute, 856 Health Sciences Road, Irvine, CA 92617, USA
- Division of Cardiology, University of California, Irvine, CA 92521, USA
| | - Geeta Sikand
- Division of Cardiology, University of California, Irvine, CA 92521, USA
| | - Elizabeth H Dineen
- Susan Samueli Integrative Health Institute, 856 Health Sciences Road, Irvine, CA 92617, USA
- Division of Cardiology, University of California, Irvine, CA 92521, USA
| | - Shaista Malik
- Susan Samueli Integrative Health Institute, 856 Health Sciences Road, Irvine, CA 92617, USA
- Division of Cardiology, University of California, Irvine, CA 92521, USA
| | - Ailin Barseghian El-Farra
- Susan Samueli Integrative Health Institute, 856 Health Sciences Road, Irvine, CA 92617, USA
- Division of Cardiology, University of California, Irvine, CA 92521, USA
| |
Collapse
|