1
|
Erausquin E, Rodríguez-Fernández A, Rodríguez-Lumbreras LÁ, Fernández-Recio J, Dichiara-Rodríguez MG, López-Sagaseta J. Structural vulnerability in EPCR suggests functional modulation. Sci Rep 2024; 14:2591. [PMID: 38297105 PMCID: PMC10830566 DOI: 10.1038/s41598-024-53160-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 01/29/2024] [Indexed: 02/02/2024] Open
Abstract
The endothelial protein C receptor (EPCR) is a fundamental component of the vascular system in mammals due to its contribution in maintaining blood in a non-prothrombotic state, which is crucial for overall life development. It accomplishes this by enhancing the conversion of protein C (PC) into the anticoagulant activated protein C (APC), with this property being dependent on a known EPCR conformation that enables direct interaction with PC/APC. In this study, we report a previously unidentified conformation of EPCR whereby Tyr154, critical for PC/APC binding, shows a striking non-canonical configuration. This unconventional form is incompatible with PC/APC binding, and reveals, for the first time, a region of structural vulnerability and potential modulation in EPCR. The identification of this malleability enhances our understanding of this receptor, prompting inquiries into the interplay between its plasticity and function, as well as its significance within the broader framework of EPCR's biology, which extends to immune conditions.
Collapse
Affiliation(s)
- Elena Erausquin
- Unit of Protein Crystallography and Structural Immunology, Navarrabiomed, 31008, Navarra, Spain
- Public University of Navarra (UPNA), Pamplona, 31008, Navarra, Spain
- Navarra University Hospital, 31008, Navarra, Spain
| | - Adela Rodríguez-Fernández
- Unit of Protein Crystallography and Structural Immunology, Navarrabiomed, 31008, Navarra, Spain
- Public University of Navarra (UPNA), Pamplona, 31008, Navarra, Spain
- Navarra University Hospital, 31008, Navarra, Spain
| | | | - Juan Fernández-Recio
- Instituto de Ciencias de La Vid y del Vino (ICVV), CSIC-UR-Gobierno de La Rioja, 26007, Logroño, Spain
| | - María Gilda Dichiara-Rodríguez
- Unit of Protein Crystallography and Structural Immunology, Navarrabiomed, 31008, Navarra, Spain
- Public University of Navarra (UPNA), Pamplona, 31008, Navarra, Spain
- Navarra University Hospital, 31008, Navarra, Spain
| | - Jacinto López-Sagaseta
- Unit of Protein Crystallography and Structural Immunology, Navarrabiomed, 31008, Navarra, Spain.
- Public University of Navarra (UPNA), Pamplona, 31008, Navarra, Spain.
- Navarra University Hospital, 31008, Navarra, Spain.
| |
Collapse
|
2
|
Mirzakhanian A, Khoury M, Trujillo DE, Kim B, Ca D, Minehan T. DNA major versus minor groove occupancy of monomeric and dimeric crystal violet derivatives. Toward structural correlations. Bioorg Med Chem 2023; 94:117438. [PMID: 37757605 DOI: 10.1016/j.bmc.2023.117438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 08/05/2023] [Accepted: 08/07/2023] [Indexed: 09/29/2023]
Abstract
Six monomeric (1a-1f) and five dimeric (2a-2e) derivatives of the triphenylmethane dye crystal violet (CV) have been prepared. Evaluation of the binding of these compounds to CT DNA by competitive fluorescent intercalator displacement (FID) assays, viscosity experiments, and UV and CD spectroscopy suggest that monomeric derivative 1a and dimeric derivative 2d likely associate with the major groove of DNA, while dimeric derivatives 2a and 2e likely associate with the minor groove of DNA. Additional evidence for the groove occupancy assignments of these derivatives was obtained from ITC experiments and from differential inhibition of DNA cleavage by the major groove binding restriction enzyme BamHI, as revealed by agarose gel electrophoresis. The data indicate that major groove ligands may be optimally constructed from dye units containing a sterically bulky 3,5-dimethyl-N,N-dimethylaniline group; furthermore, the groove-selectivity of olefin-tethered dimer 2d suggests that stereoelectronic interactions (n → π*) between the ligand and DNA are also an important design consideration in the crafting of major-groove binding ligands.
Collapse
Affiliation(s)
- Aren Mirzakhanian
- Department of Chemistry and Biochemistry, California State University, Northridge, 18111 Nordhoff Street, Northridge, CA 91330, USA
| | - Michael Khoury
- Department of Chemistry and Biochemistry, California State University, Northridge, 18111 Nordhoff Street, Northridge, CA 91330, USA
| | - Donald E Trujillo
- Department of Chemistry and Biochemistry, California State University, Northridge, 18111 Nordhoff Street, Northridge, CA 91330, USA
| | - Byoula Kim
- Department of Chemistry and Biochemistry, California State University, Northridge, 18111 Nordhoff Street, Northridge, CA 91330, USA
| | - Donnie Ca
- Department of Chemistry and Biochemistry, California State University, Northridge, 18111 Nordhoff Street, Northridge, CA 91330, USA
| | - Thomas Minehan
- Department of Chemistry and Biochemistry, California State University, Northridge, 18111 Nordhoff Street, Northridge, CA 91330, USA.
| |
Collapse
|
3
|
Ray S, Tillo D, Durell SR, Khund-Sayeed S, Vinson C. REL Domain of NFATc2 Binding to Five Types of DNA Using Protein Binding Microarrays. ACS OMEGA 2021; 6:4147-4154. [PMID: 33644537 PMCID: PMC7906578 DOI: 10.1021/acsomega.0c04069] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Accepted: 12/25/2020] [Indexed: 06/12/2023]
Abstract
NFATc2 is a DNA binding protein in the Rel family transcription factors, which binds a CGGAA motif better when both cytosines in the CG dinucleotide are methylated. Using protein binding microarrays (PBMs), we examined the DNA binding of NFATc2 to three additional types of DNA: single-stranded DNA (ssDNA) and double-stranded DNA (dsDNA) with either 5-methylcytosine (5mC, M) or 5-hydroxymethylcytosine (5hmC, H) in one strand and a cytosine in the second strand. ATTTCCAC, the complement of the core GGAA motif, is better bound as ssDNA compared to dsDNA. dsDNA containing the 5-mer CGGAA with either 5mC or 5hmC in one DNA strand is bound stronger than CGGAA. In contrast, the reverse complement TTCCG is bound weaker when it contains 5mC. Analysis of the available NFATc2:dsDNA complexes rationalizes these PBM data.
Collapse
Affiliation(s)
- Sreejana Ray
- Laboratory
of Metabolism, National Cancer Institute,
National Institutes of Health, 37 Convent Drive, Building 37, Room 5000, Bethesda, Maryland 20892, United States
| | - Desiree Tillo
- Laboratory
of Metabolism, National Cancer Institute,
National Institutes of Health, 37 Convent Drive, Building 37, Room 5000, Bethesda, Maryland 20892, United States
| | - Stewart R. Durell
- Laboratory
of Cell Biology, National Cancer Institute,
National Institutes of Health, 37 Convent Drive, Building 37, Room 5000, Bethesda, Maryland 20892, United States
| | - Syed Khund-Sayeed
- Laboratory
of Metabolism, National Cancer Institute,
National Institutes of Health, 37 Convent Drive, Building 37, Room 5000, Bethesda, Maryland 20892, United States
| | - Charles Vinson
- Laboratory
of Metabolism, National Cancer Institute,
National Institutes of Health, 37 Convent Drive, Building 37, Room 5000, Bethesda, Maryland 20892, United States
| |
Collapse
|
4
|
Timucin AC. Structure based peptide design, molecular dynamics and MM-PBSA studies for targeting C terminal dimerization of NFAT5 DNA binding domain. J Mol Graph Model 2020; 103:107804. [PMID: 33248341 DOI: 10.1016/j.jmgm.2020.107804] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 11/10/2020] [Accepted: 11/10/2020] [Indexed: 11/27/2022]
Abstract
NFAT5 as a transcription factor with an established role in osmotic stress response, has also been revealed to be active under numerous settings, including pathological conditions such as diabetic microvascular complications, chronic arthritis and cancer. Despite these links, current strategies for downregulating NFAT5 activity only relies on indirect modulators, not directly targeting NFAT5, itself. With this study, through using a computational approach, an original peptide was explored to directly target C terminal dimerization of NFAT5 RHR, located in its DNA binding domain. At first, homodimeric NFAT5 RHR bound to its consensus DNA was used for prediction of a preliminary peptide sequence. Possible amino acid replacements for this preliminary peptide were predicted for optimization, which was followed by addition of a cell penetrating peptide sequence. These attempts yielded a small peptide library, which was further investigated for peptide affinities towards C terminal of NFAT5 RHR through molecular docking, 50 ns and 250 ns molecular dynamics simulations, followed by estimation of MM-PBSA based relative binding free energies. Results indicated that after receiving mutations on the preliminary peptide sequence for optimization, a unique peptide could target C terminal dimerization region of NFAT5 RHR through using its cell penetrating peptide sequence. In conclusion, this is the first study presenting computational evidence on identification of a novel peptide capable of directly targeting NFAT5 dimerization. Besides, future implications of these observations were also discussed in terms of methodology and possible applications.
Collapse
Affiliation(s)
- Ahmet Can Timucin
- Department of Chemical Engineering, Faculty of Natural Sciences and Engineering, Üsküdar University, Turkey; Neuropsychopharmacology Application and Research Center (NPARC), Üsküdar University, Turkey.
| |
Collapse
|
5
|
Kim C, Beilina A, Smith N, Li Y, Kim M, Kumaran R, Kaganovich A, Mamais A, Adame A, Iba M, Kwon S, Lee WJ, Shin SJ, Rissman RA, You S, Lee SJ, Singleton AB, Cookson MR, Masliah E. LRRK2 mediates microglial neurotoxicity via NFATc2 in rodent models of synucleinopathies. Sci Transl Med 2020; 12:eaay0399. [PMID: 33055242 PMCID: PMC8100991 DOI: 10.1126/scitranslmed.aay0399] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 09/04/2019] [Accepted: 03/31/2020] [Indexed: 12/15/2022]
Abstract
Synucleinopathies are neurodegenerative disorders characterized by abnormal α-synuclein deposition that include Parkinson's disease, dementia with Lewy bodies, and multiple system atrophy. The pathology of these conditions also includes neuronal loss and neuroinflammation. Neuron-released α-synuclein has been shown to induce neurotoxic, proinflammatory microglial responses through Toll-like receptor 2, but the molecular mechanisms involved are poorly understood. Here, we show that leucine-rich repeat kinase 2 (LRRK2) plays a critical role in the activation of microglia by extracellular α-synuclein. Exposure to α-synuclein was found to enhance LRRK2 phosphorylation and activity in mouse primary microglia. Furthermore, genetic and pharmacological inhibition of LRRK2 markedly diminished α-synuclein-mediated microglial neurotoxicity via lowering of tumor necrosis factor-α and interleukin-6 expression in mouse cultures. We determined that LRRK2 promoted a neuroinflammatory cascade by selectively phosphorylating and inducing nuclear translocation of the immune transcription factor nuclear factor of activated T cells, cytoplasmic 2 (NFATc2). NFATc2 activation was seen in patients with synucleinopathies and in a mouse model of synucleinopathy, where administration of an LRRK2 pharmacological inhibitor restored motor behavioral deficits. Our results suggest that modulation of LRRK2 and its downstream signaling mediator NFATc2 might be therapeutic targets for treating synucleinopathies.
Collapse
Affiliation(s)
- Changyoun Kim
- Molecular Neuropathology Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Alexandria Beilina
- Cell Biology and Gene Expression Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA
| | - Nathan Smith
- Cell Biology and Gene Expression Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA
- Department of Biochemistry and Redox Biology Center, University of Nebraska, Lincoln, NE 68588, USA
| | - Yan Li
- Protein/Peptide Sequencing Facility, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Minhyung Kim
- Departments of Surgery and Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Ravindran Kumaran
- Cell Biology and Gene Expression Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA
| | - Alice Kaganovich
- Cell Biology and Gene Expression Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA
| | - Adamantios Mamais
- Cell Biology and Gene Expression Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA
| | - Anthony Adame
- Department of Neurosciences, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Michiyo Iba
- Molecular Neuropathology Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA
| | - Somin Kwon
- Molecular Neuropathology Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA
| | - Won-Jae Lee
- Department of Biomedical Sciences, Neuroscience Research Institute, and Department of Medicine, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Soo-Jean Shin
- Department of Biomedical Sciences, Neuroscience Research Institute, and Department of Medicine, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Robert A Rissman
- Department of Neurosciences, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Sungyong You
- Departments of Surgery and Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Seung-Jae Lee
- Department of Biomedical Sciences, Neuroscience Research Institute, and Department of Medicine, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Andrew B Singleton
- Molecular Genetics Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mark R Cookson
- Cell Biology and Gene Expression Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA
| | - Eliezer Masliah
- Molecular Neuropathology Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
6
|
Abstract
The diversified NF-κB transcription factor family has been extensively characterized in organisms ranging from flies to humans. However, homologs of NF-κB and many upstream signaling components have recently been characterized in basal phyla, including Cnidaria (sea anemones, corals, hydras, and jellyfish), Porifera (sponges), and single-celled protists, including Capsaspora owczarzaki and some choanoflagellates. Herein, we review what is known about basal NF-κBs and how that knowledge informs on the evolution and conservation of key sequences and domains in NF-κB, as well as the regulation of NF-κB activity. The structures and DNA-binding activities of basal NF-κB proteins resemble those of mammalian NF-κB p100 proteins, and their posttranslational activation appears to have aspects of both canonical and noncanonical pathways in mammals. Several studies suggest that the single NF-κB proteins found in some basal organisms have dual roles in development and immunity. Further research on NF-κB in invertebrates will reveal information about the evolutionary roots of this major signaling pathway, will shed light on the origins of regulated innate immunity, and may have relevance to our understanding of the responses of ecologically important organisms to changing environmental conditions and emerging pathogen-based diseases.
Collapse
Affiliation(s)
- Leah M Williams
- Department of Biology, Boston University, Boston, Massachusetts, USA
| | - Thomas D Gilmore
- Department of Biology, Boston University, Boston, Massachusetts, USA
| |
Collapse
|
7
|
Gabriel CH, Gross F, Karl M, Stephanowitz H, Hennig AF, Weber M, Gryzik S, Bachmann I, Hecklau K, Wienands J, Schuchhardt J, Herzel H, Radbruch A, Krause E, Baumgrass R. Identification of Novel Nuclear Factor of Activated T Cell (NFAT)-associated Proteins in T Cells. J Biol Chem 2016; 291:24172-24187. [PMID: 27637333 DOI: 10.1074/jbc.m116.739326] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 09/13/2016] [Indexed: 12/12/2022] Open
Abstract
Transcription factors of the nuclear factor of activated T cell (NFAT) family are essential for antigen-specific T cell activation and differentiation. Their cooperative DNA binding with other transcription factors, such as AP1 proteins (FOS, JUN, and JUNB), FOXP3, IRFs, and EGR1, dictates the gene regulatory action of NFATs. To identify as yet unknown interaction partners of NFAT, we purified biotin-tagged NFATc1/αA, NFATc1/βC, and NFATc2/C protein complexes and analyzed their components by stable isotope labeling by amino acids in cell culture-based mass spectrometry. We revealed more than 170 NFAT-associated proteins, half of which are involved in transcriptional regulation. Among them are many hitherto unknown interaction partners of NFATc1 and NFATc2 in T cells, such as Raptor, CHEK1, CREB1, RUNX1, SATB1, Ikaros, and Helios. The association of NFATc2 with several other transcription factors is DNA-dependent, indicating cooperative DNA binding. Moreover, our computational analysis discovered that binding motifs for RUNX and CREB1 are found preferentially in the direct vicinity of NFAT-binding motifs and in a distinct orientation to them. Furthermore, we provide evidence that mTOR and CHEK1 kinase activity influence NFAT's transcriptional potency. Finally, our dataset of NFAT-associated proteins provides a good basis to further study NFAT's diverse functions and how these are modulated due to the interplay of multiple interaction partners.
Collapse
Affiliation(s)
- Christian H Gabriel
- From the German Rheumatism Research Center (DRFZ), Leibniz Institute, 10117 Berlin
| | - Fridolin Gross
- the Institute for Theoretical Biology, Charité and Humboldt University Berlin, 10015 Berlin
| | - Martin Karl
- From the German Rheumatism Research Center (DRFZ), Leibniz Institute, 10117 Berlin
| | | | - Anna Floriane Hennig
- From the German Rheumatism Research Center (DRFZ), Leibniz Institute, 10117 Berlin
| | - Melanie Weber
- From the German Rheumatism Research Center (DRFZ), Leibniz Institute, 10117 Berlin
| | - Stefanie Gryzik
- From the German Rheumatism Research Center (DRFZ), Leibniz Institute, 10117 Berlin
| | | | - Katharina Hecklau
- From the German Rheumatism Research Center (DRFZ), Leibniz Institute, 10117 Berlin
| | - Jürgen Wienands
- the Institute of Cellular and Molecular Immunology, Georg-August-University of Göttingen, 37073 Göttingen, Germany
| | | | - Hanspeter Herzel
- the Institute for Theoretical Biology, Charité and Humboldt University Berlin, 10015 Berlin
| | - Andreas Radbruch
- From the German Rheumatism Research Center (DRFZ), Leibniz Institute, 10117 Berlin
| | - Eberhard Krause
- the Leibniz-Institut für Molekulare Pharmakologie, 13125 Berlin
| | - Ria Baumgrass
- From the German Rheumatism Research Center (DRFZ), Leibniz Institute, 10117 Berlin,
| |
Collapse
|
8
|
A Novel Allosteric Mechanism of NF-κB Dimerization and DNA Binding Targeted by an Anti-Inflammatory Drug. Mol Cell Biol 2016; 36:1237-47. [PMID: 26830231 DOI: 10.1128/mcb.00895-15] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 01/25/2016] [Indexed: 11/20/2022] Open
Abstract
The NF-κB family plays key roles in immune and stress responses, and its deregulation contributes to several diseases. Therefore its modulation has become an important therapeutic target. Here, we used a high-throughput screen for small molecules that directly inhibit dimerization of the NF-κB protein p65. One of the identified inhibitors is withaferin A (WFA), a documented anticancer and anti-inflammatory compound. Computational modeling suggests that WFA contacts the dimerization interface on one subunit and surface residues E285 and Q287 on the other. Despite their locations far from the dimerization site, E285 and Q287 substitutions diminished both dimerization and the WFA effect. Further investigation revealed that their effects on dimerization are associated with their proximity to a conserved hydrophobic core domain (HCD) that is crucial for dimerization and DNA binding. Our findings established NF-κB dimerization as a drug target and uncovered an allosteric domain as a target of WFA action.
Collapse
|
9
|
Galat A. Functional diversity and pharmacological profiles of the FKBPs and their complexes with small natural ligands. Cell Mol Life Sci 2013; 70:3243-75. [PMID: 23224428 PMCID: PMC11113493 DOI: 10.1007/s00018-012-1206-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Revised: 10/24/2012] [Accepted: 10/25/2012] [Indexed: 12/25/2022]
Abstract
From 5 to 12 FK506-binding proteins (FKBPs) are encoded in the genomes of disparate marine organisms, which appeared at the dawn of evolutionary events giving rise to primordial multicellular organisms with elaborated internal body plan. Fifteen FKBPs, several FKBP-like proteins and some splicing variants of them are expressed in humans. Human FKBP12 and some of its paralogues bind to different macrocyclic antibiotics such as FK506 or rapamycin and their derivatives. FKBP12/(macrocyclic antibiotic) complexes induce diverse pharmacological activities such as immunosuppression in humans, anticancerous actions and as sustainers of quiescence in certain organisms. Since the FKBPs bind to various assemblies of proteins and other intracellular components, their complexes with the immunosuppressive drugs may differentially perturb miscellaneous cellular functions. Sequence-structure relationships and pharmacological profiles of diverse FKBPs and their involvement in crucial intracellular signalization pathways and modulation of cryptic intercellular communication networks were discussed.
Collapse
Affiliation(s)
- Andrzej Galat
- Commissariat à l'Energie Atomique, Direction des Sciences du Vivant, Institut de Biologie et de Technologies de Saclay, Service d'Ingénierie Moléculaire des Protéines, Bat. 152, 91191, Gif-sur-Yvette Cedex, France.
| |
Collapse
|
10
|
Chen Y, Bates DL, Dey R, Chen PH, Machado ACD, Laird-Offringa IA, Rohs R, Chen L. DNA binding by GATA transcription factor suggests mechanisms of DNA looping and long-range gene regulation. Cell Rep 2012; 2:1197-206. [PMID: 23142663 DOI: 10.1016/j.celrep.2012.10.012] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2012] [Revised: 08/13/2012] [Accepted: 10/01/2012] [Indexed: 12/17/2022] Open
Abstract
GATA transcription factors regulate transcription during development and differentiation by recognizing distinct GATA sites with a tandem of two conserved zinc fingers, and by mediating long-range DNA looping. However, the molecular basis of these processes is not well understood. Here, we determined three crystal structures of the full DNA-binding domain (DBD) of human GATA3 protein, which contains both zinc fingers, in complex with different DNA sites. In one structure, both zinc fingers wrap around a palindromic GATA site, cooperatively enhancing the binding affinity and kinetic stability. Strikingly, in the other two structures, the two fingers of GATA DBD bind GATA sites on different DNA molecules, thereby bridging two separate DNA fragments. This was confirmed in solution by an in-gel fluorescence resonance energy transfer analysis. These findings not only provide insights into the structure and function of GATA proteins but also shed light on the molecular basis of long-range gene regulation.
Collapse
Affiliation(s)
- Yongheng Chen
- Molecular and Computational Biology Program, Departments of Biological Sciences and Chemistry, University of Southern California, Los Angeles, CA 90089, USA
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Mbonye U, Karn J. Control of HIV latency by epigenetic and non-epigenetic mechanisms. Curr HIV Res 2011; 9:554-67. [PMID: 22211660 PMCID: PMC3319922 DOI: 10.2174/157016211798998736] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2011] [Revised: 10/10/2011] [Accepted: 10/21/2011] [Indexed: 12/17/2022]
Abstract
Intensive antiretroviral therapy successfully suppresses viral replication but is unable to eradicate the virus. HIV persists in a small number of resting memory T cells where HIV has been transcriptionally silenced. This review will focus on recent insights into the HIV transcriptional control mechanisms that provide the biochemical basis for understanding latency. There are no specific repressors of HIV transcription encoded by the virus, instead latency arises when the regulatory feedback mechanism driven by HIV Tat expression is disrupted. Small changes in transcriptional initiation, induced by epigenetic silencing, lead to profound restrictions in Tat levels and force the entry of proviruses into latency. In resting memory T cells, which carry the bulk of the latent viral pool, additional restrictions, especially the limiting cellular levels of the essential Tat cofactor P-TEFb and the transcription initiation factors NF-κB and NFAT ensure that the provirus remains silenced unless the host cell is activated. The detailed understanding of HIV transcription is providing a framework for devising new therapeutic strategies designed to purge the latent viral pool. Importantly, the recognition that there are multiple restrictions imposed on latent proviruses suggest that proviral reactivation will not be achieved when only a single reactivation step is targeted and that any optimal activation strategy will require both removal of epigenetic blocks and the activation of P-TEFb.
Collapse
Affiliation(s)
| | - Jonathan Karn
- Department of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, OH 44106, USA
| |
Collapse
|
12
|
Bandukwala HS, Wu Y, Feurer M, Chen Y, Barbosa B, Ghosh S, Stroud JC, Benoist C, Mathis D, Rao A, Chen L. Structure of a domain-swapped FOXP3 dimer on DNA and its function in regulatory T cells. Immunity 2011; 34:479-91. [PMID: 21458306 PMCID: PMC3085397 DOI: 10.1016/j.immuni.2011.02.017] [Citation(s) in RCA: 130] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2010] [Revised: 12/24/2010] [Accepted: 02/23/2011] [Indexed: 12/18/2022]
Abstract
The transcription factor FOXP3 is essential for the suppressive function of regulatory T cells that are required for maintaining self-tolerance. We have solved the crystal structure of the FOXP3 forkhead domain as a ternary complex with the DNA-binding domain of the transcription factor NFAT1 and a DNA oligonucleotide from the interleukin-2 promoter. A striking feature of this structure is that FOXP3 forms a domain-swapped dimer that bridges two molecules of DNA. Structure-guided or autoimmune disease (IPEX)-associated mutations in the domain-swap interface diminished dimer formation by the FOXP3 forkhead domain without compromising FOXP3 DNA binding. These mutations also eliminated T cell-suppressive activity conferred by FOXP3, both in vitro and in a murine model of autoimmune diabetes in vivo. We conclude that FOXP3-mediated suppressor function requires dimerization through the forkhead domain and that mutations in the dimer interface can lead to the systemic autoimmunity observed in IPEX patients.
Collapse
Affiliation(s)
- Hozefa S. Bandukwala
- Immune Disease Institute and Program in Cellular and Molecular Medicine, Children’s Hospital, Boston, MA 02115
- Department of Pathology, Harvard Medical School, Boston, MA 02115
- Department of Pediatrics, Children’s Hospital Boston and Harvard Medical School, Boston, MA 02115
| | - Yongqing Wu
- Department of Biological Sciences, Department of Chemistry, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90089
| | - Markus Feurer
- Department of Pathology, Harvard Medical School, Boston, MA 02115
| | - Yongheng Chen
- Department of Biological Sciences, Department of Chemistry, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90089
| | - Bianca Barbosa
- Immune Disease Institute and Program in Cellular and Molecular Medicine, Children’s Hospital, Boston, MA 02115
| | - Srimoyee Ghosh
- Immune Disease Institute and Program in Cellular and Molecular Medicine, Children’s Hospital, Boston, MA 02115
- Department of Pathology, Harvard Medical School, Boston, MA 02115
| | - James C. Stroud
- Department of Biological Sciences, Department of Chemistry, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90089
| | | | - Diane Mathis
- Department of Pathology, Harvard Medical School, Boston, MA 02115
| | - Anjana Rao
- Immune Disease Institute and Program in Cellular and Molecular Medicine, Children’s Hospital, Boston, MA 02115
- Department of Pathology, Harvard Medical School, Boston, MA 02115
| | - Lin Chen
- Department of Biological Sciences, Department of Chemistry, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90089
| |
Collapse
|
13
|
Bandhu A, Ganguly T, Jana B, Mondal R, Sau S. Regions and residues of an asymmetric operator DNA interacting with the monomeric repressor of temperate mycobacteriophage L1. Biochemistry 2010; 49:4235-43. [PMID: 20377203 DOI: 10.1021/bi9020956] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Previously, the repressor protein of mycobacteriophage L1 bound to two operator DNAs with dissimilar affinity. Surprisingly, the putative operator consensus sequence, 5'GGTGGa/cTGTCAAG, lacks the dyad symmetry reported for the repressor binding operators of lambda and related phages. To gain insight into the structure of the L1 repressor-asymmetric operator DNA complex, we have performed various in vitro experiments. A dimethyl sulfate protection assay revealed that five guanine bases, mostly distributed in the two adjacent major grooves of the 13 bp operator DNA helix, participate in repressor binding. Hydroxyl radical footprinting demonstrated that interaction between the repressor and operator DNA is asymmetric in nature and occurs primarily through one face of the DNA helix. Genetic studies not only confirmed the results of the dimethyl sulfate protection assay but also indicated that other bases in the 13 bp operator DNA are critical for repressor binding. Interestingly, repressor that weakly induced bending in the asymmetric operator DNA interacted with this operator as a monomer. The tertiary structure of the L1 repressor-operator DNA complex therefore appears to be distinct from those of the lambdoid phages even though the number of repressor molecules per operator site closely matched that of the lambda phage system.
Collapse
Affiliation(s)
- Amitava Bandhu
- Department of Biochemistry, Bose Institute, P1/12-CIT Scheme VII M, Kolkata, WB 700 054, India
| | | | | | | | | |
Collapse
|
14
|
Baine I, Abe BT, Macian F. Regulation of T-cell tolerance by calcium/NFAT signaling. Immunol Rev 2009; 231:225-40. [PMID: 19754900 DOI: 10.1111/j.1600-065x.2009.00817.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Cells that escape negative selection in the thymus must be inactivated or eliminated in the periphery through a series of mechanisms that include the induction of anergy, dominant suppression by regulatory T cells, and peripheral deletion of self-reactive T cells. Calcium signaling plays a central role in the induction of anergy in T cells, which become functionally inactivated and incapable of proliferating and expressing cytokines following antigen re-encounter. Suboptimal stimulation of T cells results in the activation of a calcium/calcineurin/nuclear factor of activated T cells-dependent cell-intrinsic program of self-inactivation. The proteins encoded by those genes are required to impose a state of functional unresponsiveness through different mechanisms that include downregulation of T-cell receptor signaling and inhibition of cytokine transcription.
Collapse
Affiliation(s)
- Ian Baine
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | | |
Collapse
|
15
|
Soto-Nieves N, Puga I, Abe BT, Bandyopadhyay S, Baine I, Rao A, Macian F. Transcriptional complexes formed by NFAT dimers regulate the induction of T cell tolerance. J Exp Med 2009; 206:867-76. [PMID: 19307325 PMCID: PMC2715123 DOI: 10.1084/jem.20082731] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2008] [Accepted: 02/27/2009] [Indexed: 01/27/2023] Open
Abstract
In T cells, anergy can be induced after T cell receptor engagement in the absence of costimulation. Under these conditions, the expression of a specific set of anergy-associated genes is activated. Several lines of evidence suggest that nuclear factor of activated T cells (NFAT) proteins may regulate the expression of many of those genes; however, the nature of the complexes responsible for the induction of this new program of gene expression is unknown. Here, we show that transcriptional complexes formed by NFAT homodimers are directly responsible for the activation of at least two anergy-inducing genes, Grail and Caspase3. Our data shows that Grail expression is activated by direct binding of NFAT dimers to the Grail promoter at two different sites. Consequently, a mutant NFAT protein with impaired ability to dimerize is not able to induce an unresponsive state in T cells. Our results not only identify a new biological function for NFAT dimers but also reveal the different nature of NFAT-containing complexes that induce anergy versus those that are activated during a productive immune response. These data also establish a basis for the design of immunomodulatory strategies that specifically target each type of complex.
Collapse
Affiliation(s)
- Noemi Soto-Nieves
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY 10461
| | - Irene Puga
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY 10461
| | - Brian T. Abe
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY 10461
| | | | - Ian Baine
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY 10461
| | - Anjana Rao
- Immune Disease Institute and the Department of Pathology, Harvard Medical School, Boston, MA 02115
| | - Fernando Macian
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY 10461
| |
Collapse
|
16
|
Abstract
The transcription factor NFATp integrates multiple signal transduction pathways through coordinate binding with basic-region leucine zipper (bZIP) proteins and other transcription factors. The NFATp monomer, even in the absence of its activation domains, recruits bZIP proteins to canonical NFAT-bZIP composite DNA elements. By contrast, the NFATp dimer and its bZIP partner bind noncooperatively to the NFAT-bZIP element of the tumor necrosis factor (TNF) gene promoter. This observation raises the possibility that the function of the activation domains of NFATp is dimer-specific. Here, we determine the consensus DNA binding site of the NFATp dimer, describe monomer- and dimer-specific NFATp-DNA contact patterns, and demonstrate that NFATp dimerization and dimer-specific activation subdomains are required for transcriptional activation from the TNF NFAT-bZIP element. We also show that these NFATp subdomains interact with the coactivator CBP (CREB-binding protein), which is required for NFATp-dependent TNF gene transcription. Thus, the context-specific function of the activation domains of NFAT can be potentiated by DNA-directed dimerization.
Collapse
|
17
|
Klein-Hessling S, Bopp T, Jha MK, Schmidt A, Miyatake S, Schmitt E, Serfling E. Cyclic AMP-induced chromatin changes support the NFATc-mediated recruitment of GATA-3 to the interleukin 5 promoter. J Biol Chem 2008; 283:31030-7. [PMID: 18772129 DOI: 10.1074/jbc.m805929200] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Elevated intracellular cyclic AMP levels, which suppress the proliferation of naive T cells and type 1 T helper (Th1) cells are a property of T helper 2 (Th2) cells and regulatory T cells. While cyclic AMP signals interfere with the IL-2 promoter induction, they support the induction of Th2-type genes, in particular of il-5 gene. We show here that cyclic AMP signals support the generation of three inducible DNase I hypersensitive chromatin sites over the il-5 locus, including its promoter region. In addition, cyclic AMP signals enhance histone H3 acetylation at the IL-5 promoter and the concerted binding of GATA-3 and NFATc to the promoter. This is facilitated by direct protein-protein interactions involving the C-terminal Zn(2+)-finger of GATA-3 and the C-terminal region of the NFATc1 DNA binding domain. Because inhibition of NFATc binding to the IL-5 promoter in vivo also affects the binding of GATA-3, one may conclude that upon induction of Th2 effector cells NFATc recruits GATA-3 to Th2-type genes. These data demonstrate the functional importance of cyclic AMP signals for the interplay between GATA-3 and NFATc factors in the transcriptional control of lymphokine expression in Th2 effector cells.
Collapse
Affiliation(s)
- Stefan Klein-Hessling
- Department of Molecular Pathology, University of Würzburg, Josef-Schneider-Strasse 2, D-97080 Würzburg, Germany.
| | | | | | | | | | | | | |
Collapse
|
18
|
Bates DL, Barthel KKB, Wu Y, Kalhor R, Stroud JC, Giffin MJ, Chen L. Crystal structure of NFAT bound to the HIV-1 LTR tandem kappaB enhancer element. Structure 2008; 16:684-94. [PMID: 18462673 PMCID: PMC2697820 DOI: 10.1016/j.str.2008.01.020] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2007] [Revised: 01/24/2008] [Accepted: 01/24/2008] [Indexed: 10/22/2022]
Abstract
The host factor, nuclear factor of activated T-cells (NFAT), regulates the transcription and replication of HIV-1. Here, we have determined the crystal structure of the DNA binding domain of NFAT bound to the HIV-1 long terminal repeat (LTR) tandem kappaB enhancer element at 3.05 A resolution. NFAT binds as a dimer to the upstream kappaB site (Core II), but as a monomer to the 3' end of the downstream kappaB site (Core I). The DNA shows a significant bend near the 5' end of Core I, where a lysine residue from NFAT bound to the 3' end of Core II inserts into the minor groove and seems to cause DNA bases to flip out. Consistent with this structural feature, the 5' end of Core I become hypersensitive to dimethylsulfate in the in vivo footprinting upon transcriptional activation of the HIV-1 LTR. Our studies provide a basis for further investigating the functional mechanisms of NFAT in HIV-1 transcription and replication.
Collapse
Affiliation(s)
- Darren L. Bates
- Department of Chemistry and Biochemistry, University of Colorado at Boulder, Boulder, CO 80309-0215
| | - Kristen K. B. Barthel
- Department of Chemistry and Biochemistry, University of Colorado at Boulder, Boulder, CO 80309-0215
| | - Yongqing Wu
- Molecular and Computational Biology, Department of Chemistry, Norris Cancer Center, University of Southern California, Los Angeles, CA 90089-2910
| | - Reza Kalhor
- Molecular and Computational Biology, Department of Chemistry, Norris Cancer Center, University of Southern California, Los Angeles, CA 90089-2910
| | - James C. Stroud
- Department of Chemistry and Biochemistry, University of Colorado at Boulder, Boulder, CO 80309-0215
| | - Michael J. Giffin
- Department of Chemistry and Biochemistry, University of Colorado at Boulder, Boulder, CO 80309-0215
| | - Lin Chen
- Molecular and Computational Biology, Department of Chemistry, Norris Cancer Center, University of Southern California, Los Angeles, CA 90089-2910
| |
Collapse
|
19
|
Bandyopadhyay S, Soto-Nieves N, Macián F. Transcriptional regulation of T cell tolerance. Semin Immunol 2007; 19:180-7. [PMID: 17387022 PMCID: PMC1978193 DOI: 10.1016/j.smim.2007.02.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2007] [Accepted: 02/16/2007] [Indexed: 01/16/2023]
Abstract
Self-reactive T cells that escape negative selection in the thymus must be kept under control in the periphery. Mechanisms of peripheral tolerance include deletion or functional inactivation of self-reactive T cells and mechanisms of dominant tolerance mediated by regulatory T cells. In the absence of costimulation, T cell receptor (TCR) engagement results in unopposed calcium signaling that leads to the activation of a cell-intrinsic program of inactivation, which makes T cells hyporesponsive to subsequent stimulations. The activation of this program in anergic T cells is a consequence of the induction of a nuclear factor of activated T cells (NFAT)-dependent program of gene expression. Recent studies have offered new insights into the mechanisms responsible for the implementation and maintenance of T cell anergy and have provided evidence that the proteins encoded by the genes upregulated in anergic T cells are responsible for the implementation of anergy by interfering with TCR signaling or directly inhibiting cytokine gene transcription.
Collapse
Affiliation(s)
- Sanmay Bandyopadhyay
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | | |
Collapse
|
20
|
Wu H, Peisley A, Graef IA, Crabtree GR. NFAT signaling and the invention of vertebrates. Trends Cell Biol 2007; 17:251-60. [PMID: 17493814 DOI: 10.1016/j.tcb.2007.04.006] [Citation(s) in RCA: 146] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2007] [Revised: 03/27/2007] [Accepted: 04/25/2007] [Indexed: 01/08/2023]
Abstract
The calcium/calcineurin-dependent NFATc family is thought to have arisen following the recombination of an ancient precursor with a Rel domain about 500 million years ago, producing a new group of signaling and transcription factors (the NFATc genes) found only in the genomes of vertebrates. Cell biological, genetic and biochemical evidence indicates that the circuitry of this pathway is well suited for intercalation with older pathways. We propose that this recombination enabled Ca(2+) signals to be redirected to a new transcriptional program, which provided part of the groundwork for vertebrate morphogenesis and organogenesis. This notion predicts that calcineurin-NFAT signaling would be essential for much of vertebrate development. We review recent evidence supporting this prediction and propose a systematic approach to explore aspects of vertebrate morphogenesis.
Collapse
Affiliation(s)
- Hai Wu
- Stanford University and the Howard Hughes Medical Institute, Department of Pathology, Beckman Center, Stanford, CA 94305, USA
| | | | | | | |
Collapse
|
21
|
Serfling E, Klein-Hessling S, Palmetshofer A, Bopp T, Stassen M, Schmitt E. NFAT transcription factors in control of peripheral T cell tolerance. Eur J Immunol 2007; 36:2837-43. [PMID: 17039563 DOI: 10.1002/eji.200536618] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The Ca++-regulated calcineurin/NFAT cascade is one of the crucial signalling pathways that controls adaptive immunity. However, a number of novel experimental data suggest that, in addition to their role in T cell activation, NFATc transcription factors play also a decisive role in the generation of peripheral tolerance against self-antigens. This function of NFATc factors is mediated by controlling activation-induced cell death and clonal anergy of T helper cells and the activity of regulatory T cells. The multi-functional role of NFATc proteins characterize these transcription factors as key regulators of immunological tolerance and, if dysregulated, of development of autoimmune diseases.
Collapse
Affiliation(s)
- Edgar Serfling
- Department of Molecular Pathology, Institute of Pathology, University of Würzburg, Würzburg, Germany.
| | | | | | | | | | | |
Collapse
|
22
|
Wu Y, Borde M, Heissmeyer V, Feuerer M, Lapan AD, Stroud JC, Bates DL, Guo L, Han A, Ziegler SF, Mathis D, Benoist C, Chen L, Rao A. FOXP3 controls regulatory T cell function through cooperation with NFAT. Cell 2006; 126:375-87. [PMID: 16873067 DOI: 10.1016/j.cell.2006.05.042] [Citation(s) in RCA: 927] [Impact Index Per Article: 48.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2005] [Revised: 04/12/2006] [Accepted: 05/22/2006] [Indexed: 02/08/2023]
Abstract
Antigen stimulation of immune cells activates the transcription factor NFAT, a key regulator of T cell activation and anergy. NFAT forms cooperative complexes with the AP-1 family of transcription factors and regulates T cell activation-associated genes. Here we show that regulatory T cell (Treg) function is mediated by an analogous cooperative complex of NFAT with the forkhead transcription factor FOXP3, a lineage specification factor for Tregs. The crystal structure of an NFAT:FOXP2:DNA complex reveals an extensive protein-protein interaction interface between NFAT and FOXP2. Structure-guided mutations of FOXP3, predicted to progressively disrupt its interaction with NFAT, interfere in a graded manner with the ability of FOXP3 to repress expression of the cytokine IL2, upregulate expression of the Treg markers CTLA4 and CD25, and confer suppressor function in a murine model of autoimmune diabetes. Thus by switching transcriptional partners, NFAT converts the acute T cell activation program into the suppressor program of Tregs.
Collapse
MESH Headings
- Amino Acid Sequence
- Amino Acid Substitution
- Animals
- Binding Sites
- Biomarkers/metabolism
- Cells, Cultured
- Crystallography, X-Ray
- Dimerization
- Forkhead Transcription Factors/chemistry
- Forkhead Transcription Factors/genetics
- Forkhead Transcription Factors/metabolism
- Genes, Reporter
- Humans
- Interleukin-2/genetics
- Interleukin-2/metabolism
- Jurkat Cells
- Luciferases/metabolism
- Mice
- Mice, Inbred NOD
- Models, Molecular
- Molecular Sequence Data
- NFATC Transcription Factors/chemistry
- NFATC Transcription Factors/genetics
- NFATC Transcription Factors/metabolism
- Protein Binding
- Protein Structure, Tertiary
- Receptors, Interleukin-2/genetics
- Receptors, Interleukin-2/metabolism
- Recombinant Proteins/chemistry
- Recombinant Proteins/metabolism
- Repressor Proteins/genetics
- Repressor Proteins/metabolism
- Retroviridae/genetics
- Sequence Homology, Amino Acid
- T-Lymphocytes, Regulatory/immunology
- Up-Regulation
Collapse
Affiliation(s)
- Yongqing Wu
- Department of Chemistry and Biochemistry, University of Colorado at Boulder, Boulder, CO 80309, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Abstract
Since the discovery of the first nuclear factor of activated T cells (NFAT) protein more than a decade ago, the NFAT family of transcription factors has grown to include five members. It has also become clear that NFAT proteins have crucial roles in the development and function of the immune system. In T cells, NFAT proteins not only regulate activation but also are involved in the control of thymocyte development, T-cell differentiation and self-tolerance. The functional versatility of NFAT proteins can be explained by their complex mechanism of regulation and their ability to integrate calcium signalling with other signalling pathways. This Review focuses on the recent advances in our understanding of the regulation, mechanism of action and functions of NFAT proteins in T cells.
Collapse
Affiliation(s)
- Fernando Macian
- Albert Einstein College of Medicine, Department of Pathology, 1300 Morris Park Avenue, Bronx, New York 10461, USA.
| |
Collapse
|
24
|
de Lumley M, Hart DJ, Cooper MA, Symeonides S, Blackburn JM. A biophysical characterisation of factors controlling dimerisation and selectivity in the NF-kappaB and NFAT families. J Mol Biol 2004; 339:1059-75. [PMID: 15178248 DOI: 10.1016/j.jmb.2004.03.083] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2003] [Revised: 02/11/2004] [Accepted: 03/31/2004] [Indexed: 10/26/2022]
Abstract
The Rel/NF-kappaB family of eukaryotic transcription factors bind DNA with high specificity and affinity as homo- or heterodimers to mediate a diverse range of biological processes. By comparison, the nuclear factor of activated T-cells (NFAT) family has been recognised as Rel homologues due to structural similarities between the DNA-binding domains, yet they bind DNA as lower-affinity monomers. The structural and functional overlap between the NF-kappaB and NFAT families suggests that they may be evolutionarily divergent from a common, monomeric ancestor but have evolved different mechanisms to achieve high-affinity binding to their target DNA sequences. In order to understand the origin of these mechanistic differences, we constructed two chimeric proteins, based on molecular modelling, comprising the DNA-binding domain of NFAT and the dimerisation domain of NF-kappaB p50, differing only in the position of the splice site. Biophysical characterisation of the wild-type and chimeric proteins revealed that one of the chimeras bound DNA as a high-affinity, NF-kappaB-like cooperative dimer, whilst the other bound as a lower-affinity, NFAT-like monomer, demonstrating the importance of the interdomain linker in controlling the intrinsic ability of NFATc to form dimers. In addition, we have studied the rate of exchange of monomers between preformed NF-kappaB dimers and have determined, for the first time, the intrinsic homodimerisation constant for NF-kappaB p50. These data support a model in which NF-kappaB proteins bind DNA both in vitro and in vivo as high-affinity preformed homo- or heterodimers, which in an unbound form can still exchange monomer units on a physiologically relevant timescale in vivo.
Collapse
Affiliation(s)
- Marie de Lumley
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1GA, UK
| | | | | | | | | |
Collapse
|
25
|
Monticelli S, Solymar DC, Rao A. Role of NFAT proteins in IL13 gene transcription in mast cells. J Biol Chem 2004; 279:36210-8. [PMID: 15229217 DOI: 10.1074/jbc.m406354200] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Th2 and mast cells are participants in the asthmatic response to allergens, and both cell types produce the cytokines interleukin (IL)-4 and IL-13. IL-13 in particular is both necessary and sufficient for experimental models of asthma. The transcription factor NFAT plays a central role in cytokine transcriptional regulation in both cell types. Here, we analyze the molecular basis of IL13 gene transcription in Th2 and mast cells. We show that NFAT1 is the major NFAT protein involved in regulating IL13 transcription in mast cells. Although NFAT2 is correctly expressed and regulated in mast cells, it does not contribute to IL13 gene transcription as shown by analysis of cells lacking NFAT2 and cells expressing a constitutively active version of NFAT2. The difference between NFAT1 and NFAT2 appears to be due to a preferential synergistic interaction of NFAT1 with GATA proteins at the IL13 promoter. We suggest that mast cells lack a co-activator protein that stabilizes the binding of NFAT2 to the IL13 promoter by interacting either with NFAT2 itself or with a DNA-bound complex of NFAT2 and GATA proteins.
Collapse
Affiliation(s)
- Silvia Monticelli
- Department of Pathology, Harvard Medical School, and CBR Institute for Biomedical Research, Boston, MA 02115, USA
| | | | | |
Collapse
|
26
|
Matsuo K, Galson DL, Zhao C, Peng L, Laplace C, Wang KZQ, Bachler MA, Amano H, Aburatani H, Ishikawa H, Wagner EF. Nuclear factor of activated T-cells (NFAT) rescues osteoclastogenesis in precursors lacking c-Fos. J Biol Chem 2004; 279:26475-80. [PMID: 15073183 DOI: 10.1074/jbc.m313973200] [Citation(s) in RCA: 445] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Osteoclasts are specialized macrophages that resorb bone. Mice lacking the AP-1 component c-Fos are osteopetrotic because of a lack of osteoclast differentiation and show an increased number of macrophages. The nature of the critical function of c-Fos in osteoclast differentiation is not known. Microarray analysis revealed that Nfatc1, another key regulator of osteoclastogenesis, was down-regulated in Fos(-/-) osteoclast precursors. Chromatin immunoprecipitation assay showed that c-Fos bound to the Nfatc1 and Acp5 promoters in osteoclasts. In vitro promoter analyses identified nuclear factor of activated T-cells (NFAT)/AP-1 sites in the osteoclast-specific Acp5 and Calcr promoters. Moreover, in Fos(-/-) precursors gene transfer of an active form of NFAT restored transcription of osteoclast-specific genes in the presence of receptor activator of the NF-kappaB ligand (RANKL), rescuing bone resorption. In the absence of RANKL, however, Fos(-/-) precursors were insensitive to NFAT-induced osteoclastogenesis unlike wild-type precursors. These data indicate that lack of Nfatc1 expression is the cause of the differentiation block in Fos(-/-) osteoclast precursors and that transcriptional induction of Nfatc1 is a major function of c-Fos in osteoclast differentiation.
Collapse
Affiliation(s)
- Koichi Matsuo
- Department of Microbiology and Immunology, School of Medicine, Keio University, Tokyo 160-8582, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|