1
|
Asharaf S, Chakraborty K, Paulose SK, Dhara S, Chakraborty RD, Varghese C. A sulfated exopolysaccharide from Bacillus altitudinis MTCC13046 accelerates cutaneous wound healing via dermal fibroblast migration: Insights into an in vivo wound re-epithelialization. Int J Biol Macromol 2025; 305:141001. [PMID: 39952499 DOI: 10.1016/j.ijbiomac.2025.141001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 01/23/2025] [Accepted: 02/11/2025] [Indexed: 02/17/2025]
Abstract
Bacterial exopolysaccharides with (1 → 3) linked β-glucans and β-galactans have been identified as potent candidates for wound healing. In this study, a sulfated exopolysaccharide (BAP-2), characterized by its major repeating units as [→3)-β-GlcAp-(1 → 3)-(2,6-di-O-SO3)-β-Galp-(1→], was isolated from seaweed-associated Bacillus altitudinis MTCC13046. Whole-genome analysis of B. altitudinis MTCC13046 revealed the presence of biosynthetic gene clusters coding for saccharin. BAP-2 demonstrated anti-inflammatory activity by downregulating the expressions of inflammatory cytokines, such as interferon (IFN)-γ (1.77-fold), interleukins (IL-2/1β/6/12), and tumor necrosis factor (TNF)-α (~87 %) along with nitric oxide (~45 %), while upregulating transforming growth factor-β (3.88-fold) in comparison with lipopolysaccharide-induced RAW 264.7 macrophage and human monocytic THP-1 cells. BAP-2 exhibited biocompatibility with dermal fibroblasts, promoting cell adhesion and proliferation by upregulating Ki-67 (fibroblast proliferation marker) (12.66-fold), epidermal growth factor (5.6-fold), and epithelial-cadherin expressions level (~6-fold), after 48 h. Cell cycle progression and cellular interaction studies showed that administration of BAP-2 promotes conversion of human dermal fibroblast cells into the S phase, highlighting its effect on cell proliferation. In vivo experiments demonstrated approximately 98 % wound closure in BAP-2 administered experimental rats along with re-epithelialization of injured tissue. The pharmaceutical characteristics of the (1 → 3)-linked sulfated exopolysaccharide (BAP-2) suggests it could be an effective candidate for the treatment of cutaneous wound.
Collapse
Affiliation(s)
- Sumayya Asharaf
- Marine Biotechnology, Fish Nutrition and Health Division, ICAR-Central Marine Fisheries Research Institute, Ernakulam North, P.B. No. 1603, Cochin 682018, Kerala State, India; Faculty of Marine Sciences, Lakeside Campus, Cochin University of Science and Technology, Cochin, Kerala, India
| | - Kajal Chakraborty
- Marine Biotechnology, Fish Nutrition and Health Division, ICAR-Central Marine Fisheries Research Institute, Ernakulam North, P.B. No. 1603, Cochin 682018, Kerala State, India.
| | - Silpa Kunnappilly Paulose
- Marine Biotechnology, Fish Nutrition and Health Division, ICAR-Central Marine Fisheries Research Institute, Ernakulam North, P.B. No. 1603, Cochin 682018, Kerala State, India; Department of Chemistry, Mangalore University, Mangalagangothri- 574199, Karnataka State, India
| | - Shubhajit Dhara
- Marine Biotechnology, Fish Nutrition and Health Division, ICAR-Central Marine Fisheries Research Institute, Ernakulam North, P.B. No. 1603, Cochin 682018, Kerala State, India; Department of Chemistry, Mangalore University, Mangalagangothri- 574199, Karnataka State, India
| | - Rekha Devi Chakraborty
- Shellfish Fisheries Division, Central Marine Fisheries Research Institute, Ernakulam North, P.B. No. 1603, Cochin 682018, Kerala State, India
| | - Chesvin Varghese
- Marine Biotechnology, Fish Nutrition and Health Division, ICAR-Central Marine Fisheries Research Institute, Ernakulam North, P.B. No. 1603, Cochin 682018, Kerala State, India
| |
Collapse
|
2
|
Lu KP, Zhou XZ. Pin1-catalyzed conformational regulation after phosphorylation: A distinct checkpoint in cell signaling and drug discovery. Sci Signal 2024; 17:eadi8743. [PMID: 38889227 PMCID: PMC11409840 DOI: 10.1126/scisignal.adi8743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 05/30/2024] [Indexed: 06/20/2024]
Abstract
Protein phosphorylation is one of the most common mechanisms regulating cellular signaling pathways, and many kinases and phosphatases are proven drug targets. Upon phosphorylation, protein functions can be further regulated by the distinct isomerase Pin1 through cis-trans isomerization. Numerous protein targets and many important roles have now been elucidated for Pin1. However, no tools are available to detect or target cis and trans conformation events in cells. The development of Pin1 inhibitors and stereo- and phospho-specific antibodies has revealed that cis and trans conformations have distinct and often opposing cellular functions. Aberrant conformational changes due to the dysregulation of Pin1 can drive pathogenesis but can be effectively targeted in age-related diseases, including cancers and neurodegenerative disorders. Here, we review advances in understanding the roles of Pin1 signaling in health and disease and highlight conformational regulation as a distinct signal transduction checkpoint in disease development and treatment.
Collapse
Affiliation(s)
- Kun Ping Lu
- Departments of Biochemistry and Oncology, Schulich School of Medicine & Dentistry
- Robarts Research Institute, Schulich School of Medicine & Dentistry
| | - Xiao Zhen Zhou
- Departments of Biochemistry and Oncology, Schulich School of Medicine & Dentistry
- Department of Pathology and Laboratory Medicine, Schulich School of Medicine & Dentistry
- Lawson Health Research Institute, Western University, London, ON N6G 2V4, Canada
| |
Collapse
|
3
|
Avila-Bonilla R, Velazquez-Guzman J, Reyes-Zepeda E, Gutierrez-Avila J, Reyes-López C, Cisneros-Sarabia A, Saavedra E, Lopéz-Sandoval A, Ramírez-Moreno E, López-Camarillo C, Marchat L. Comparative genomics and interactomics of polyadenylation factors for the prediction of new parasite targets: Entamoeba histolytica as a working model. Biosci Rep 2023; 43:BSR20221911. [PMID: 36651565 PMCID: PMC9912109 DOI: 10.1042/bsr20221911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 01/05/2023] [Accepted: 01/13/2023] [Indexed: 01/19/2023] Open
Abstract
Protein-protein interactions (PPI) play a key role in predicting the function of a target protein and drug ability to affect an entire biological system. Prediction of PPI networks greatly contributes to determine a target protein and signal pathways related to its function. Polyadenylation of mRNA 3'-end is essential for gene expression regulation and several polyadenylation factors have been shown as valuable targets for controlling protozoan parasites that affect human health. Here, by using a computational strategy based on sequence-based prediction approaches, phylogenetic analyses, and computational prediction of PPI networks, we compared interactomes of polyadenylation factors in relevant protozoan parasites and the human host, to identify key proteins and define potential targets for pathogen control. Then, we used Entamoeba histolytica as a working model to validate our computational results. RT-qPCR assays confirmed the coordinated modulation of connected proteins in the PPI network and evidenced that silencing of the bottleneck protein EhCFIm25 affects the expression of interacting proteins. In addition, molecular dynamics simulations and docking approaches allowed to characterize the relationships between EhCFIm25 and Ehnopp34, two connected bottleneck proteins. Interestingly, the experimental identification of EhCFIm25 interactome confirmed the close relationships among proteins involved in gene expression regulation and evidenced new links with moonlight proteins in E. histolytica, suggesting a connection between RNA biology and metabolism as described in other organisms. Altogether, our results strengthened the relevance of comparative genomics and interactomics of polyadenylation factors for the prediction of new targets for the control of these human pathogens.
Collapse
Affiliation(s)
| | - Jorge Antonio Velazquez-Guzman
- Facultad de Ciencias, Universidad Autónoma del Estado de México. Carretera Toluca-Ixtlahuaca km 15.5 Cerrillo Piedras Blancas 50200 Toluca, Estado de México, Mexico
| | - Eimy Itzel Reyes-Zepeda
- Facultad de Ciencias, Universidad Autónoma del Estado de México. Carretera Toluca-Ixtlahuaca km 15.5 Cerrillo Piedras Blancas 50200 Toluca, Estado de México, Mexico
| | - Jorge Luis Gutierrez-Avila
- Posgrado en Ciencias Químico-Biológicas; Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional. Mexico City, Mexico
| | - César A Reyes-López
- Laboratorio de Bioquímica Estructural, Instituto Politécnico Nacional, Escuela Nacional de Medicina y Homeopatía, Mexico City 07320, Mexico
| | - Alondra Cisneros-Sarabia
- Laboratorio de Biomedicina Molecular II, ENMH, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Emma Saavedra
- Departamento de Bioquímica, Instituto Nacional de Cardiología, Mexico City 14080, Mexico
| | - Angel Lopéz-Sandoval
- Laboratorio de Biomedicina Molecular II, ENMH, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Esther Ramírez-Moreno
- Laboratorio de Biomedicina Molecular II, ENMH, Instituto Politécnico Nacional, Mexico City, Mexico
| | - César López-Camarillo
- Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de México (UACM), Mexico City, Mexico
| | - Laurence A. Marchat
- Laboratorio de Biomedicina Molecular II, ENMH, Instituto Politécnico Nacional, Mexico City, Mexico
| |
Collapse
|
4
|
Ramezani M, Mirzaeian L, Ghezelayagh Z, Ghezelayagh Z, Ghorbanian MT. Comparing the mesenchymal stem cells proliferation rate with different labeling assessments. THE NUCLEUS 2023. [DOI: 10.1007/s13237-022-00415-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
|
5
|
Andrés-Sánchez N, Fisher D, Krasinska L. Physiological functions and roles in cancer of the proliferation marker Ki-67. J Cell Sci 2022; 135:275629. [PMID: 35674256 DOI: 10.1242/jcs.258932] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
What do we know about Ki-67, apart from its usefulness as a cell proliferation biomarker in histopathology? Discovered in 1983, the protein and its regulation of expression and localisation throughout the cell cycle have been well characterised. However, its function and molecular mechanisms have received little attention and few answers. Although Ki-67 has long been thought to be required for cell proliferation, recent genetic studies have conclusively demonstrated that this is not the case, as loss of Ki-67 has little or no impact on cell proliferation. In contrast, Ki-67 is important for localising nucleolar material to the mitotic chromosome periphery and for structuring perinucleolar heterochromatin, and emerging data indicate that it also has critical roles in cancer development. However, its mechanisms of action have not yet been fully identified. Here, we review recent findings and propose the hypothesis that Ki-67 is involved in structuring cellular sub-compartments that assemble by liquid-liquid phase separation. At the heterochromatin boundary, this may control access of chromatin regulators, with knock-on effects on gene expression programmes. These changes allow adaptation of the cell to its environment, which, for cancer cells, is a hostile one. We discuss unresolved questions and possible avenues for future exploration.
Collapse
Affiliation(s)
- Nuria Andrés-Sánchez
- Institute of Molecular Genetics of Montpellier (IGMM), University of Montpellier, CNRS, INSERM, 34293 Montpellier, France.,Equipe Labellisée LIGUE 2018, Ligue Nationale Contre le Cancer, 75013 Paris, France
| | - Daniel Fisher
- Institute of Molecular Genetics of Montpellier (IGMM), University of Montpellier, CNRS, INSERM, 34293 Montpellier, France.,Equipe Labellisée LIGUE 2018, Ligue Nationale Contre le Cancer, 75013 Paris, France
| | - Liliana Krasinska
- Institute of Molecular Genetics of Montpellier (IGMM), University of Montpellier, CNRS, INSERM, 34293 Montpellier, France.,Equipe Labellisée LIGUE 2018, Ligue Nationale Contre le Cancer, 75013 Paris, France
| |
Collapse
|
6
|
Remnant L, Kochanova NY, Reid C, Cisneros-Soberanis F, Earnshaw WC. The intrinsically disorderly story of Ki-67. Open Biol 2021; 11:210120. [PMID: 34375547 PMCID: PMC8354752 DOI: 10.1098/rsob.210120] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 07/13/2021] [Indexed: 01/14/2023] Open
Abstract
Ki-67 is one of the most famous marker proteins used by histologists to identify proliferating cells. Indeed, over 30 000 articles referring to Ki-67 are listed on PubMed. Here, we review some of the current literature regarding the protein. Despite its clinical importance, our knowledge of the molecular biology and biochemistry of Ki-67 is far from complete, and its exact molecular function(s) remain enigmatic. Furthermore, reports describing Ki-67 function are often contradictory, and it has only recently become clear that this proliferation marker is itself dispensable for cell proliferation. We discuss the unusual organization of the protein and its mRNA and how they relate to various models for its function. In particular, we focus on ways in which the intrinsically disordered structure of Ki-67 might aid in the assembly of the still-mysterious mitotic chromosome periphery compartment by controlling liquid-liquid phase separation of nucleolar proteins and RNAs.
Collapse
Affiliation(s)
- Lucy Remnant
- Wellcome Centre for Cell Biology, University of Edinburgh, ICB, Michael Swann Building, King's Buildings, Max Born Crescent, Edinburgh EH9 3BF, UK
| | - Natalia Y. Kochanova
- Wellcome Centre for Cell Biology, University of Edinburgh, ICB, Michael Swann Building, King's Buildings, Max Born Crescent, Edinburgh EH9 3BF, UK
| | - Caitlin Reid
- Wellcome Centre for Cell Biology, University of Edinburgh, ICB, Michael Swann Building, King's Buildings, Max Born Crescent, Edinburgh EH9 3BF, UK
| | - Fernanda Cisneros-Soberanis
- Wellcome Centre for Cell Biology, University of Edinburgh, ICB, Michael Swann Building, King's Buildings, Max Born Crescent, Edinburgh EH9 3BF, UK
| | - William C. Earnshaw
- Wellcome Centre for Cell Biology, University of Edinburgh, ICB, Michael Swann Building, King's Buildings, Max Born Crescent, Edinburgh EH9 3BF, UK
| |
Collapse
|
7
|
Hernández JE, González-Montiel A, Allos-Villalva JCC, Cantú D, Barquet S, Olivares-Mundo A, Herrera LA, Prada D. Prognostic molecular biomarkers in endometrial cancer: A review. ACTA ACUST UNITED AC 2019; 7:17-28. [PMID: 34322276 PMCID: PMC8315102 DOI: 10.14312/2052-4994.2019-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Background: Endometrial cancer (EC) is the fourth most common malignancy in women worldwide and the most common gynecological cancer in developed countries. The endometrioid subtype has an excellent prognosis with conventional treatment; however, recurrence reduces overall survival. Objective: Describe the most relevant evidence regarding selected potential molecular biomarkers that may predict overall survival (OS), relapse-free survival (RFS), and cancer-specific survival (CSS) in EC. Methods: An exhaustive search was performed in PUBMED with the search terms endometrial cancer, molecular biomarker, and survival. We selected original articles written in English about endometrial cancer, molecular biomarkers, and that included survival analysis published between January 2000 and December 2016. Results: Several molecular prognostic biomarkers have been studied in terms of survival and therapeutic response in women with endometrial cancer; hormone receptors, microRNAs, and other molecules have emerged as potentially useful biomarkers, including HER2, p21, HE4, PTEN, p27, ANCCA, and ANXA2. Conclusions: The use of biomarkers in the assessment of OS, RFS, and CSS requires large trials to expand our understanding of endometrial carcinogenesis. Several molecular markers are significantly associated with a high tumor grade and advanced clinical stage in EC and, therefore, could have additive effects when combined.
Collapse
Affiliation(s)
- J Edgardo Hernández
- Unit of Biomedical Research, National Cancer Institute- Biomedical Research Institute, National Autonomous University of Mexico. San Fernando 22, Colonia Sección XVI, Delegatión Tlalpan, Mexico City, Mexico, 14080
| | - Ailyn González-Montiel
- Unit of Biomedical Research, National Cancer Institute- Biomedical Research Institute, National Autonomous University of Mexico. San Fernando 22, Colonia Sección XVI, Delegatión Tlalpan, Mexico City, Mexico, 14080
| | - Jesús C Ceb Allos-Villalva
- Department of Biomedical Informatics, Faculty of Medicine, National Autonomous University of Mexico, C.U., Av. Universidad 3000, Mexico City, Mexico, 04510
| | - David Cantú
- Unit of Biomedical Research, National Cancer Institute- Biomedical Research Institute, National Autonomous University of Mexico. San Fernando 22, Colonia Sección XVI, Delegatión Tlalpan, Mexico City, Mexico, 14080
| | - Salim Barquet
- Unit of Biomedical Research, National Cancer Institute- Biomedical Research Institute, National Autonomous University of Mexico. San Fernando 22, Colonia Sección XVI, Delegatión Tlalpan, Mexico City, Mexico, 14080
| | - Anny Olivares-Mundo
- Unit of Biomedical Research, National Cancer Institute- Biomedical Research Institute, National Autonomous University of Mexico. San Fernando 22, Colonia Sección XVI, Delegatión Tlalpan, Mexico City, Mexico, 14080
| | - Luis A Herrera
- Unit of Biomedical Research, National Cancer Institute- Biomedical Research Institute, National Autonomous University of Mexico. San Fernando 22, Colonia Sección XVI, Delegatión Tlalpan, Mexico City, Mexico, 14080
| | - Diddier Prada
- Unit of Biomedical Research, National Cancer Institute- Biomedical Research Institute, National Autonomous University of Mexico. San Fernando 22, Colonia Sección XVI, Delegatión Tlalpan, Mexico City, Mexico, 14080.,Department of Biomedical Informatics, Faculty of Medicine, National Autonomous University of Mexico, C.U., Av. Universidad 3000, Mexico City, Mexico, 04510
| |
Collapse
|
8
|
Menon SS, Guruvayoorappan C, Sakthivel KM, Rasmi RR. Ki-67 protein as a tumour proliferation marker. Clin Chim Acta 2019; 491:39-45. [PMID: 30653951 DOI: 10.1016/j.cca.2019.01.011] [Citation(s) in RCA: 272] [Impact Index Per Article: 45.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 01/11/2019] [Accepted: 01/11/2019] [Indexed: 12/21/2022]
Abstract
Newer treatment strategy based on proliferative nuclear marker Ki-67 targeted therapy holds promise for prioritized/personalized treatment options with regard to improved survival and outcome in patients with renal cancer. Over the past decade, the importance of Ki-67 in prognosis of breast cancer has been widely studied, however very few studies and literatures are available in the context of renal cancer which has an increasing incidence internationally. The focus of this present review is to fill the gaps pertaining to its prognosis and management with newly understood mechanisms of targeted interventions. Recent breakthrough discoveries have highlighted the correlation of Ki-67 expression to stage and metastatic potential in renal tumours. A better understanding of molecular structure and different protein domains along with its regulation will provide evidence for precise target thereby controlling the proliferation rate correlated with decrease in the Ki-67 protein levels. Therapies targeting Ki-67 is still in the preclinical stage, besides its diagnostic and/or prognostic significance, a better understanding of targeted strategical studies is required for extrapolation to the clinical use. Current understanding of the associated molecular pathways and the precise role of Ki-67 could streamline the basis for predicting renal cancer outcome.
Collapse
Affiliation(s)
- Sunil Sankunny Menon
- Department of Pediatric Surgery, SAT, Medical College, Thiruvananthapuram 695 011, Kerala, India
| | - Chandrasekharan Guruvayoorappan
- Laboratory of Immunopharmacology and Experimental Therapeutics, Division of Cancer Research, Regional Cancer Centre, Thiruvananthapuram 695 011, Kerala, India
| | - Kunnathur Murugesan Sakthivel
- Department of Biochemistry, PSG College of Arts and Science, Civil Aerodrome Post, Coimbatore 641 014, Tamil Nadu, India
| | - Rajan Radha Rasmi
- Department of Biotechnology, PSG College of Arts and Science, Civil Aerodrome Post, Coimbatore 641 014, Tamil Nadu, India.
| |
Collapse
|
9
|
Xie C, He C, Jiang Y, Yu H, Cheng L, Nshogoza G, Ala MS, Tian C, Wu J, Shi Y, Li F. Structural insights into the recognition of phosphorylated Hop1 by Mek1. ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY 2018; 74:1027-1038. [PMID: 30289413 DOI: 10.1107/s2059798318011993] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 08/24/2018] [Indexed: 11/10/2022]
Abstract
The FHA domain-containing protein Mek1 is a meiosis-specific kinase that is involved in the regulation of interhomolog recombination in meiosis in Saccharomyces cerevisiae. The recruitment and activation of Mek1 require the phosphorylation of the chromosome axis protein Hop1 at Thr318 (pT318), which is necessary for recognition by the Mek1 FHA domain. Here, crystal structures of the Mek1 FHA domain in the apo state and in complex with the Hop1 pT318 peptide are presented, demonstrating that the hydrophobic residues Phe320 and Val321 at the pT+2 and pT+3 positions in the ligand contribute to the preferential recognition. It was further found that in Schizosaccharomyces pombe Mek1 FHA binds both pT15 in its N-terminal SQ/TQ cluster domain (SCD) and pT270 in the Hop1 SCD. The results revealed the structural basis for the preferential recognition of phosphorylated Hop1 by Mek1 in S. cerevisiae and facilitate the understanding of the interaction between the S. pombe Mek1 FHA domain and its binding targets.
Collapse
Affiliation(s)
- Changlin Xie
- High Magnetic Field Laboratory, Chinese Academy of Sciences, 50 Shushanhu Road, Hefei, Anhui 230031, People's Republic of China
| | - Chao He
- Anhui Key Laboratory of Modern Biomanufacturing and School of Life Sciences, Anhui University, Hefei, Anhui 230601, People's Republic of China
| | - Yiyang Jiang
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, People's Republic of China
| | - Hailong Yu
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, People's Republic of China
| | - Lin Cheng
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, People's Republic of China
| | - Gilbert Nshogoza
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, People's Republic of China
| | - Moududee Sayed Ala
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, People's Republic of China
| | - Changlin Tian
- High Magnetic Field Laboratory, Chinese Academy of Sciences, 50 Shushanhu Road, Hefei, Anhui 230031, People's Republic of China
| | - Jihui Wu
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, People's Republic of China
| | - Yunyu Shi
- High Magnetic Field Laboratory, Chinese Academy of Sciences, 50 Shushanhu Road, Hefei, Anhui 230031, People's Republic of China
| | - Fudong Li
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, People's Republic of China
| |
Collapse
|
10
|
Biophysical Characterization of the Tandem FHA Domain Regulatory Module from the Mycobacterium tuberculosis ABC Transporter Rv1747. Structure 2018; 26:972-986.e6. [PMID: 29861345 DOI: 10.1016/j.str.2018.04.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 04/13/2018] [Accepted: 04/27/2018] [Indexed: 11/23/2022]
Abstract
The Mycobacterium tuberculosis ATP-binding cassette transporter Rv1747 is a putative exporter of cell wall biosynthesis intermediates. Rv1747 has a cytoplasmic regulatory module consisting of two pThr-interacting Forkhead-associated (FHA) domains connected by a conformationally disordered linker with two phospho-acceptor threonines (pThr). The structures of FHA-1 and FHA-2 were determined by X-ray crystallography and nuclear magnetic resonance (NMR) spectroscopy, respectively. Relative to the canonical 11-strand β-sandwich FHA domain fold of FHA-1, FHA-2 is circularly permuted and lacking one β-strand. Nevertheless, the two share a conserved pThr-binding cleft. FHA-2 is less stable and more dynamic than FHA-1, yet binds model pThr peptides with moderately higher affinity (∼50 μM versus 500 μM equilibrium dissociation constants). Based on NMR relaxation and chemical shift perturbation measurements, when joined within a polypeptide chain, either FHA domain can bind either linker pThr to form intra- and intermolecular complexes. We hypothesize that this enables tunable phosphorylation-dependent multimerization to regulate Rv1747 transporter activity.
Collapse
|
11
|
Lin TC, Su CY, Wu PY, Lai TC, Pan WA, Jan YH, Chang YC, Yeh CT, Chen CL, Ger LP, Chang HT, Yang CJ, Huang MS, Liu YP, Lin YF, Shyy JYJ, Tsai MD, Hsiao M. The nucleolar protein NIFK promotes cancer progression via CK1α/β-catenin in metastasis and Ki-67-dependent cell proliferation. eLife 2016; 5. [PMID: 26984280 PMCID: PMC4811767 DOI: 10.7554/elife.11288] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 02/11/2016] [Indexed: 12/22/2022] Open
Abstract
Nucleolar protein interacting with the FHA domain of pKi-67 (NIFK) is a Ki-67-interacting protein. However, its precise function in cancer remains largely uninvestigated. Here we show the clinical significance and metastatic mechanism of NIFK in lung cancer. NIFK expression is clinically associated with poor prognosis and metastasis. Furthermore, NIFK enhances Ki-67-dependent proliferation, and promotes migration, invasion in vitro and metastasis in vivo via downregulation of casein kinase 1α (CK1α), a suppressor of pro-metastatic TCF4/β-catenin signaling. Inversely, CK1α is upregulated upon NIFK knockdown. The silencing of CK1α expression in NIFK-silenced cells restores TCF4/β-catenin transcriptional activity, cell migration, and metastasis. Furthermore, RUNX1 is identified as a transcription factor of CSNK1A1 (CK1α) that is negatively regulated by NIFK. Our results demonstrate the prognostic value of NIFK, and suggest that NIFK is required for lung cancer progression via the RUNX1-dependent CK1α repression, which activates TCF4/β-catenin signaling in metastasis and the Ki-67-dependent regulation in cell proliferation. DOI:http://dx.doi.org/10.7554/eLife.11288.001 Cancer cells can rapidly divide to form a tumor. Small groups of cells can leave the tumor to migrate to other sites in the body, and it is these “secondary” tumors that are often responsible for the death of cancer patients. Many proteins influence how and when cells divide and migrate. One such protein called Ki67 is only produced when cells are dividing and it is often used in the clinic as a marker to indicate whether cells have become cancerous. However, it is not clear how Ki67 regulates the progression of cancer. Ki67 interacts with another protein called NIFK, and Lin, Su et al. have now investigated the role of NIFK in cancer. First, publicly available data on the levels of proteins in tumor samples from cancer patients were analyzed. This revealed that, in several different types of cancer, tumors that produced more NIFK were more likely to spread to other parts of the body than tumors that produced smaller amounts of NIFK. Next, Lin, Su et al carried out experiments using human lung cancer cells. This revealed that cells that produced larger amounts of NIFK were more likely to migrate, while cells with lower levels of NIFK divided and migrated less often. Further experiments showed that NIFK increases the activity of genes that are involved in cell migration. NIFK achieves this by reducing the production of a protein that inhibits the activity of another protein called β-catenin. Lin, Su et al.’s findings reveal a new role for NIFK in promoting the development of cancer. A future challenge is to find out whether chemicals that inhibit NIFK could be used in the treatment of lung cancer. DOI:http://dx.doi.org/10.7554/eLife.11288.002
Collapse
Affiliation(s)
| | - Chia-Yi Su
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Pei-Yu Wu
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | | | - Wen-An Pan
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan.,Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan
| | - Yi-Hua Jan
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Yu-Chang Chang
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Chi-Tai Yeh
- Department of Medical Research and Education, Taipei Medical University-Shuang Ho Hospital, New Taipei City, Taiwan
| | - Chi-Long Chen
- Department of Pathology, Taipei Medical University Hospital, Taipei Medical University, Taipei, Taiwan.,Department of Pathology, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Luo-Ping Ger
- Department of Medical Education and Research, Kaohsiung Veterans General, Kaohsiung, Taiwan
| | - Hong-Tai Chang
- Department of Surgery, Kaohsiung Veterans General, Kaohsiung, Taiwan.,Department of Emergency Medicine, Kaohsiung Veterans General, Kaohsiung, Taiwan
| | - Chih-Jen Yang
- Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Ming-Shyan Huang
- Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Yu-Peng Liu
- Graduate Institute of Clinical Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Center for Infectious Disease and Cancer Research, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yuan-Feng Lin
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - John Y-J Shyy
- Department of Medicine, University of California, San Diego, San Diego, United States
| | - Ming-Daw Tsai
- Genomics Research Center, Academia Sinica, Taipei, Taiwan.,Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Michael Hsiao
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
12
|
Weng JH, Hsieh YC, Huang CCF, Wei TYW, Lim LH, Chen YH, Ho MR, Wang I, Huang KF, Chen CJ, Tsai MD. Uncovering the Mechanism of Forkhead-Associated Domain-Mediated TIFA Oligomerization That Plays a Central Role in Immune Responses. Biochemistry 2015; 54:6219-29. [PMID: 26389808 DOI: 10.1021/acs.biochem.5b00500] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Forkhead-associated (FHA) domain is the only signaling domain that recognizes phosphothreonine (pThr) specifically. TRAF-interacting protein with an FHA domain (TIFA) was shown to be involved in immune responses by binding with TRAF2 and TRAF6. We recently reported that TIFA is a dimer in solution and that, upon stimulation by TNF-α, TIFA is phosphorylated at Thr9, which triggers TIFA oligomerization via pThr9-FHA domain binding and activates nuclear factor κB (NF-κB). However, the structural mechanism for the functionally important TIFA oligomerization remains to be established. While FHA domain-pThr binding is known to mediate protein dimerization, its role in oligomerization has not been demonstrated at the structural level. Here we report the crystal structures of TIFA (residues 1-150, with the unstructured C-terminal tail truncated) and its complex with the N-terminal pThr9 peptide (residues 1-15), which show unique features in the FHA structure (intrinsic dimer and extra β-strand) and in its interaction with the pThr peptide (with residues preceding rather than following pThr). These structural features support previous and additional functional analyses. Furthermore, the structure of the complex suggests that the pThr9-FHA domain interaction can occur only between different sets of dimers rather than between the two protomers within a dimer, providing the structural mechanism for TIFA oligomerization. Our results uncover the mechanism of FHA domain-mediated oligomerization in a key step of immune responses and expand the paradigm of FHA domain structure and function.
Collapse
Affiliation(s)
- Jui-Hung Weng
- Institute of Biological Chemistry, Academia Sinica , Taipei, Taiwan.,Taiwan International Graduate Program, Academia Sinica , Taipei, Taiwan.,Institute of Biochemical Sciences, Department of Chemistry, National Tsing Hua University , Hsinchu, Taiwan
| | - Yin-Cheng Hsieh
- Life Science Group, Scientific Research Division, National Synchrotron Radiation Research Center , Hsinchu, Taiwan
| | - Chia-Chi Flora Huang
- Institute of Biological Chemistry, Academia Sinica , Taipei, Taiwan.,Taiwan International Graduate Program, Academia Sinica , Taipei, Taiwan.,Institute of Biochemical Sciences, National Taiwan University , Taipei, Taiwan
| | - Tong-You Wade Wei
- Institute of Biological Chemistry, Academia Sinica , Taipei, Taiwan.,Institute of Biochemical Sciences, National Taiwan University , Taipei, Taiwan
| | - Liang-Hin Lim
- Institute of Biological Chemistry, Academia Sinica , Taipei, Taiwan.,Institute of Biochemical Sciences, National Taiwan University , Taipei, Taiwan
| | - Yu-Hou Chen
- Institute of Biological Chemistry, Academia Sinica , Taipei, Taiwan
| | - Meng-Ru Ho
- Institute of Biological Chemistry, Academia Sinica , Taipei, Taiwan
| | - Iren Wang
- Institute of Biological Chemistry, Academia Sinica , Taipei, Taiwan
| | - Kai-Fa Huang
- Institute of Biological Chemistry, Academia Sinica , Taipei, Taiwan
| | - Chun-Jung Chen
- Life Science Group, Scientific Research Division, National Synchrotron Radiation Research Center , Hsinchu, Taiwan
| | - Ming-Daw Tsai
- Institute of Biological Chemistry, Academia Sinica , Taipei, Taiwan.,Taiwan International Graduate Program, Academia Sinica , Taipei, Taiwan.,Institute of Biochemical Sciences, National Taiwan University , Taipei, Taiwan
| |
Collapse
|
13
|
Huang YMM, Chang CEA. Achieving peptide binding specificity and promiscuity by loops: case of the forkhead-associated domain. PLoS One 2014; 9:e98291. [PMID: 24870410 PMCID: PMC4037201 DOI: 10.1371/journal.pone.0098291] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Accepted: 04/30/2014] [Indexed: 11/18/2022] Open
Abstract
The regulation of a series of cellular events requires specific protein–protein interactions, which are usually mediated by modular domains to precisely select a particular sequence from diverse partners. However, most signaling domains can bind to more than one peptide sequence. How do proteins create promiscuity from precision? Moreover, these complex interactions typically occur at the interface of a well-defined secondary structure, α helix and β sheet. However, the molecular recognition primarily controlled by loop architecture is not fully understood. To gain a deep understanding of binding selectivity and promiscuity by the conformation of loops, we chose the forkhead-associated (FHA) domain as our model system. The domain can bind to diverse peptides via various loops but only interact with sequences containing phosphothreonine (pThr). We applied molecular dynamics (MD) simulations for multiple free and bound FHA domains to study the changes in conformations and dynamics. Generally, FHA domains share a similar folding structure whereby the backbone holds the overall geometry and the variety of sidechain atoms of multiple loops creates a binding surface to target a specific partner. FHA domains determine the specificity of pThr by well-organized binding loops, which are rigid to define a phospho recognition site. The broad range of peptide recognition can be attributed to different arrangements of the loop interaction network. The moderate flexibility of the loop conformation can help access or exclude binding partners. Our work provides insights into molecular recognition in terms of binding specificity and promiscuity and helpful clues for further peptide design.
Collapse
Affiliation(s)
- Yu-ming M. Huang
- Department of Chemistry, University of California Riverside, Riverside, California, United States of America
- * E-mail: (YMH); (CAC)
| | - Chia-en A. Chang
- Department of Chemistry, University of California Riverside, Riverside, California, United States of America
- * E-mail: (YMH); (CAC)
| |
Collapse
|
14
|
Matthews LA, Guarné A. Dbf4: the whole is greater than the sum of its parts. Cell Cycle 2013; 12:1180-8. [PMID: 23549174 PMCID: PMC3674083 DOI: 10.4161/cc.24416] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Accepted: 03/22/2013] [Indexed: 12/29/2022] Open
Abstract
Together with cyclin-dependent kinases, the Dbf4-dependent kinase (DDK) is essential to activate the Mcm2-7 helicase and, hence, initiate DNA replication in eukaryotes. Beyond its role as the regulatory subunit of the DDK complex, the Dbf4 protein also regulates the activity of other cell cycle kinases to mediate the checkpoint response and prevent premature mitotic exit under stress. Two features that are unusual in DNA replication proteins characterize Dbf4. The first is its evolutionary divergence; the second is how its conserved motifs are combined to form distinct functional units. This structural plasticity appears to be at odds with the conserved functions of Dbf4. In this review, we summarize recent genetic, biochemical and structural work delineating the multiple interactions mediated by Dbf4 and its various functions during the cell cycle. We also discuss how the limited sequence conservation of Dbf4 may be an advantage to regulate the activities of multiple cell cycle kinases.
Collapse
Affiliation(s)
- Lindsay A Matthews
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
| | | |
Collapse
|
15
|
Pershad K, Wypisniak K, Kay BK. Directed evolution of the forkhead-associated domain to generate anti-phosphospecific reagents by phage display. J Mol Biol 2012; 424:88-103. [PMID: 22985966 DOI: 10.1016/j.jmb.2012.09.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2012] [Revised: 08/10/2012] [Accepted: 09/05/2012] [Indexed: 10/27/2022]
Abstract
While affinity reagents are valuable tools for monitoring protein phosphorylation and studying signaling events in cells, generating them through immunization of animals with phosphopeptides is expensive, laborious, and time-consuming. An attractive alternative is to use protein evolution techniques and isolate new anti-phosphopeptide binding specificities from a library of variants of a phosphopeptide-binding domain. To explore this strategy, we attempted to display on the surface of bacteriophage M13 the N-terminal Forkhead-associated (FHA1) domain of yeast Rad53p, which is a naturally occurring phosphothreonine (pT)-binding domain, and found it to be nonfunctional due to misfolding in the bacterial periplasm. To overcome this limitation, we constructed a library of FHA1 variants by mutagenic PCR and isolated functional variants after three rounds of affinity selection with its pT peptide ligand. A hydrophobic residue at position 34 in the β1 strand was discovered to be essential for phage display of a functional FHA1 domain. Additionally, by heating the phage library to 50°C prior to affinity selection with its cognate pT peptide, we identified a variant (G2) that was ~8°C more thermally stable than the wild-type domain. Using G2 as a scaffold, we constructed phage-displayed libraries of FHA1 variants and affinity selected for variants that bound selectively to five pT peptides. These reagents are renewable and have high protein yields (~20-25mg/L), when expressed in Escherichia coli. Thus, we have changed the specificity of the FHA1 domain and demonstrated that engineering phosphopeptide-binding domains is an attractive avenue for generating new anti-phosphopeptide binding specificities in vitro by phage display.
Collapse
Affiliation(s)
- Kritika Pershad
- Department of Biological Sciences, Laboratory for Molecular Biology (M/C 567), University of Illinois at Chicago, Molecular Biology Research Building, Chicago, IL 60607, USA.
| | | | | |
Collapse
|
16
|
Gerloff DL, Woods NT, Farago AA, Monteiro ANA. BRCT domains: A little more than kin, and less than kind. FEBS Lett 2012; 586:2711-6. [PMID: 22584059 DOI: 10.1016/j.febslet.2012.05.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2012] [Accepted: 05/01/2012] [Indexed: 01/08/2023]
Abstract
BRCT domains are versatile protein modular domains found as single units or as multiple copies in more than 20 different proteins in the human genome. Interestingly, most BRCT-containing proteins function in the same biological process, the DNA damage response network, but show specificity in their molecular interactions. BRCT domains have been found to bind a wide array of ligands from proteins, phosphorylated linear motifs, and DNA. Here we discuss the biology of BRCT domains and how a domain-centric analysis can aid in the understanding of signal transduction events in the DNA damage response network.
Collapse
Affiliation(s)
- Dietlind L Gerloff
- Department of Biomolecular Engineering, University of California, Santa Cruz, CA 95064, USA
| | | | | | | |
Collapse
|
17
|
Identification of an atypical peptidyl-prolyl cis/trans isomerase from trypanosomatids. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2010; 1803:1028-37. [DOI: 10.1016/j.bbamcr.2010.05.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2009] [Revised: 04/30/2010] [Accepted: 05/17/2010] [Indexed: 11/24/2022]
|
18
|
Matsumura Y, Shinjo M, Mahajan A, Tsai MD, Kihara H. alpha-Helical burst on the folding pathway of FHA domains from Rad53 and Ki67. Biochimie 2010; 92:1031-9. [PMID: 20466033 DOI: 10.1016/j.biochi.2010.05.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2010] [Accepted: 05/05/2010] [Indexed: 11/15/2022]
Abstract
We investigated refolding processes of beta-sheeted protein FHA domains (FHA1 domain of Rad53 and Ki67 FHA domain) by cryo-stopped-flow (SF) method combined with far-ultraviolet (far-UV) circular dichroism (CD, the average secondary structure content) and small angle X-ray scattering (SAXS, measuring the radius of gyration). In case of FHA1 domain of Rad53, no detectable time course was observed except the initial burst on its refolding process at 4 degrees C, suggesting that the FHA1 domain of Rad53 was already refolded to its native state within the dead time of the SF apparatus and the rate of the refolding is too fast to be observed at this temperature. In contrast, there was an observable alpha-helical burst at -15 degrees C and -20 degrees C in the presence of 45% ethylene glycol (EGOH) by CD-SF. Besides, the radius of gyration (Rg) of the burst phase intermediate at -20 degrees C shows the intermediate is already compact, and the compaction process was accompanied with the decrease of alpha-helical content at the same temperature. In case of Ki67 FHA domain, ellipticity change at 222 nm was observed on its refolding pathway at -28 degrees C in the presence of 45% EGOH and 2 mM DTT, indicating that Ki67 FHA domain also takes non-native alpha-helix-rich intermediate on its folding pathway. Time-resolved SAXS experiment was done. As the signal/noise ratio is low, we could not observe the time-dependent signal change through the time course. However, the initial Rg value was obtained as 18.2 +/- 0.5 A, which is much smaller than the unfolded Rg value (26.5 +/- 1.2 A), and is slightly larger than the native one (15.9 +/- 1.8 A). These results suggest that Ki67 FHA domain also forms compact non-native alpha-helix-rich intermediate before refolding to its native beta-structure on the refolding pathway. These results are in good agreement with other beta-proteins, such as bovine beta-lactoglobulin (BLG), src SH3 domain proteins. It seems the alpha-helical burst phases appear on the folding pathway of beta-sandwiched proteins.
Collapse
|
19
|
Zhou P, Wagner G. Overcoming the solubility limit with solubility-enhancement tags: successful applications in biomolecular NMR studies. JOURNAL OF BIOMOLECULAR NMR 2010; 46:23-31. [PMID: 19731047 PMCID: PMC2879018 DOI: 10.1007/s10858-009-9371-6] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2009] [Accepted: 08/18/2009] [Indexed: 05/20/2023]
Abstract
Although the rapid progress of NMR technology has significantly expanded the range of NMR-trackable systems, preparation of NMR-suitable samples that are highly soluble and stable remains a bottleneck for studies of many biological systems. The application of solubility-enhancement tags (SETs) has been highly effective in overcoming solubility and sample stability issues and has enabled structural studies of important biological systems previously deemed unapproachable by solution NMR techniques. In this review, we provide a brief survey of the development and successful applications of the SET strategy in biomolecular NMR.We also comment on the criteria for choosing optimal SETs, such as for differently charged target proteins, and recent new developments on NMR-invisible SETs.
Collapse
Affiliation(s)
- Pei Zhou
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA
| | | |
Collapse
|
20
|
Gupta M, Sajid A, Arora G, Tandon V, Singh Y. Forkhead-associated domain-containing protein Rv0019c and polyketide-associated protein PapA5, from substrates of serine/threonine protein kinase PknB to interacting proteins of Mycobacterium tuberculosis. J Biol Chem 2009; 284:34723-34. [PMID: 19826007 DOI: 10.1074/jbc.m109.058834] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mycobacterium tuberculosis profoundly exploits protein phosphorylation events carried out by serine/threonine protein kinases (STPKs) for its survival and pathogenicity. Forkhead-associated domains (FHA), the phosphorylation-responsive modules, have emerged as prominent players in STPK mediated signaling. In this study, we demonstrate the association of the previously uncharacterized FHA domain-containing protein Rv0019c with cognate STPK PknB. The consequent phosphorylation of Rv0019c is shown to be dependent on the conserved residues in the Rv0019c FHA domain and activation loop of PknB. Furthermore, by creating deletion mutants we identify Thr(36) as the primary phosphorylation site in Rv0019c. During purification of Rv0019c from Escherichia coli, the E. coli protein chloramphenicol acetyltransferase (CAT) specifically and reproducibly copurifies with Rv0019c in a FHA domain-dependent manner. On the basis of structural similarity of E. coli CAT with M. tuberculosis PapA5, a protein involved in phthiocerol dimycocerosate biosynthesis, PapA5 is identified as an interaction partner of Rv0019c. The interaction studies on PapA5, purified as an unphosphorylated protein from E. coli, with Rv0019c deletion mutants reveal that the residues N-terminal to the functional FHA domain of Rv0019c are critical for formation of the Rv0019c-PapA5 complex and thus constitute a previously unidentified phosphoindependent binding motif. Finally, PapA5 is shown to be phosphorylated on threonine residue(s) by PknB, whereas serine/threonine phosphatase Mstp completely reverses the phosphorylation. Thus, our data provides initial clues for a possible regulation of PapA5 and hence the phthiocerol dimycocerosate biosynthesis by PknB, either by direct phosphorylation of PapA5 or indirectly through Rv0019c.
Collapse
Affiliation(s)
- Meetu Gupta
- Institute of Genomics and Integrative Biology, Council of Scientific and Industrial Research, Delhi 110007, India
| | | | | | | | | |
Collapse
|
21
|
Barthe P, Roumestand C, Canova MJ, Kremer L, Hurard C, Molle V, Cohen-Gonsaud M. Dynamic and structural characterization of a bacterial FHA protein reveals a new autoinhibition mechanism. Structure 2009; 17:568-78. [PMID: 19368890 DOI: 10.1016/j.str.2009.02.012] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2008] [Revised: 02/04/2009] [Accepted: 02/07/2009] [Indexed: 11/26/2022]
Abstract
The OdhI protein is key regulator of the TCA cycle in Corynebacterium glutamicum. This highly conserved protein is found in GC rich Gram-positive bacteria (e.g., the pathogenic Mycobacterium tuberculosis). The unphosphorylated form of OdhI inhibits the OdhA protein, a key enzyme of the TCA cycle, whereas the phosphorylated form is inactive. OdhI is predicted to be mainly a single FHA domain, a module that mediates protein-protein interaction through binding of phosphothreonine peptides, with a disordered N-terminal extension substrate of the serine/threonine protein kinases. In this study, we solved the solution structure of the unphosphorylated and phosphorylated isoforms of the protein. We observed a major conformational change between the two forms characterized by the binding of the phosphorylated N-terminal part of the protein to its own FHA domain, consequently inhibiting it. This structural observation corresponds to a new autoinhibition mechanism described for a FHA domain protein.
Collapse
Affiliation(s)
- Philippe Barthe
- Centre National de la Recherche Scientifique Unité Mixte de Recherche, Montpellier, France
| | | | | | | | | | | | | |
Collapse
|
22
|
Mahajan A, Yuan C, Lee H, Chen ESW, Wu PY, Tsai MD. Structure and function of the phosphothreonine-specific FHA domain. Sci Signal 2008; 1:re12. [PMID: 19109241 DOI: 10.1126/scisignal.151re12] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The forkhead-associated (FHA) domain is the only known phosphoprotein-binding domain that specifically recognizes phosphothreonine (pThr) residues, distinguishing them from phosphoserine (pSer) residues. In contrast to its very strict specificity toward pThr, the FHA domain recognizes very diverse patterns in the residues surrounding the pThr residue. For example, the FHA domain of Ki67, a protein associated with cellular proliferation, binds to an extended target surface involving residues remote from the pThr, whereas the FHA domain of Dun1, a DNA damage-response kinase, specifically recognizes a doubly phosphorylated Thr-Gln (TQ) cluster by virtue of its possessing two pThr-binding sites. The FHA domain exists in various proteins with diverse functions and is particularly prevalent among proteins involved in the DNA damage response. Despite a very short history, a number of unique structural and functional properties of the FHA domain have been uncovered. This review highlights the diversity of biological functions of the FHA domain-containing proteins and the structural bases for the novel binding specificities and multiple binding modes of FHA domains.
Collapse
Affiliation(s)
- Anjali Mahajan
- Biophysics Program, Ohio State University, Columbus, OH 43210, USA
| | | | | | | | | | | |
Collapse
|
23
|
Brooks MA, Dziembowski A, Quevillon-Cheruel S, Henriot V, Faux C, van Tilbeurgh H, Séraphin B. Structure of the yeast Pml1 splicing factor and its integration into the RES complex. Nucleic Acids Res 2008; 37:129-43. [PMID: 19033360 PMCID: PMC2615620 DOI: 10.1093/nar/gkn894] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The RES complex was previously identified in yeast as a splicing factor affecting nuclear pre-mRNA retention. This complex was shown to contain three subunits, namely Snu17, Bud13 and Pml1, but its mode of action remains ill-defined. To obtain insights into its function, we have performed a structural investigation of this factor. Production of a short N-terminal truncation of residues that are apparently disordered allowed us to determine the X-ray crystallographic structure of Pml1. This demonstrated that it consists mainly of a FHA domain, a fold which has been shown to mediate interactions with phosphothreonine-containing peptides. Using a new sensitive assay based on alternative splice-site choice, we show, however, that mutation of the putative phosphothreonine-binding pocket of Pml1 does not affect pre-mRNA splicing. We have also investigated how Pml1 integrates into the RES complex. Production of recombinant complexes, combined with serial truncation and mutagenesis of their subunits, indicated that Pml1 binds to Snu17, which itself contacts Bud13. This analysis allowed us to demarcate the binding sites involved in the formation of this assembly. We propose a model of the organization of the RES complex based on these results, and discuss the functional consequences of this architecture.
Collapse
Affiliation(s)
- Mark A. Brooks
- IBBMC-CNRS UMR8619, IFR 115, Bât. 430, Université Paris-Sud, 91405 Orsay, Equipe Labelisée La Ligue, CGM, CNRS UPR2167, Avenue de la Terrasse, 91198 Gif-sur-Yvette Cedex, Univ Paris-Sud, Orsay, F-91405 and Université Pierre et Marie Curie- Paris 6, Paris, F-75005, France
| | - Andrzej Dziembowski
- IBBMC-CNRS UMR8619, IFR 115, Bât. 430, Université Paris-Sud, 91405 Orsay, Equipe Labelisée La Ligue, CGM, CNRS UPR2167, Avenue de la Terrasse, 91198 Gif-sur-Yvette Cedex, Univ Paris-Sud, Orsay, F-91405 and Université Pierre et Marie Curie- Paris 6, Paris, F-75005, France
| | - Sophie Quevillon-Cheruel
- IBBMC-CNRS UMR8619, IFR 115, Bât. 430, Université Paris-Sud, 91405 Orsay, Equipe Labelisée La Ligue, CGM, CNRS UPR2167, Avenue de la Terrasse, 91198 Gif-sur-Yvette Cedex, Univ Paris-Sud, Orsay, F-91405 and Université Pierre et Marie Curie- Paris 6, Paris, F-75005, France
| | - Véronique Henriot
- IBBMC-CNRS UMR8619, IFR 115, Bât. 430, Université Paris-Sud, 91405 Orsay, Equipe Labelisée La Ligue, CGM, CNRS UPR2167, Avenue de la Terrasse, 91198 Gif-sur-Yvette Cedex, Univ Paris-Sud, Orsay, F-91405 and Université Pierre et Marie Curie- Paris 6, Paris, F-75005, France
| | - Céline Faux
- IBBMC-CNRS UMR8619, IFR 115, Bât. 430, Université Paris-Sud, 91405 Orsay, Equipe Labelisée La Ligue, CGM, CNRS UPR2167, Avenue de la Terrasse, 91198 Gif-sur-Yvette Cedex, Univ Paris-Sud, Orsay, F-91405 and Université Pierre et Marie Curie- Paris 6, Paris, F-75005, France
| | - Herman van Tilbeurgh
- IBBMC-CNRS UMR8619, IFR 115, Bât. 430, Université Paris-Sud, 91405 Orsay, Equipe Labelisée La Ligue, CGM, CNRS UPR2167, Avenue de la Terrasse, 91198 Gif-sur-Yvette Cedex, Univ Paris-Sud, Orsay, F-91405 and Université Pierre et Marie Curie- Paris 6, Paris, F-75005, France
| | - Bertrand Séraphin
- IBBMC-CNRS UMR8619, IFR 115, Bât. 430, Université Paris-Sud, 91405 Orsay, Equipe Labelisée La Ligue, CGM, CNRS UPR2167, Avenue de la Terrasse, 91198 Gif-sur-Yvette Cedex, Univ Paris-Sud, Orsay, F-91405 and Université Pierre et Marie Curie- Paris 6, Paris, F-75005, France
- *To whom correspondence should be addressed. Tel: + 33 1 69 82 38 84; Fax: + 33 1 69 82 38 77;
| |
Collapse
|
24
|
Genomewide screen for negative regulators of sirtuin activity in Saccharomyces cerevisiae reveals 40 loci and links to metabolism. Genetics 2008; 179:1933-44. [PMID: 18689887 DOI: 10.1534/genetics.108.088443] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Sirtuins are conserved proteins implicated in myriad key processes including gene control, aging, cell survival, metabolism, and DNA repair. In Saccharomyces cerevisiae, the sirtuin Silent information regulator 2 (Sir2) promotes silent chromatin formation, suppresses recombination between repeats, and inhibits senescence. We performed a genomewide screen for factors that negatively regulate Sir activity at a reporter gene placed immediately outside a silenced region. After linkage analysis, assessment of Sir dependency, and knockout tag verification, 40 loci were identified, including 20 that have not been previously described to regulate Sir. In addition to chromatin-associated factors known to prevent ectopic silencing (Bdf1, SAS-I complex, Rpd3L complex, Ku), we identified the Rtt109 DNA repair-associated histone H3 lysine 56 acetyltransferase as an anti-silencing factor. Our findings indicate that Rtt109 functions independently of its proposed effectors, the Rtt101 cullin, Mms1, and Mms22, and demonstrate unexpected interplay between H3K56 and H4K16 acetylation. The screen also identified subunits of mediator (Soh1, Srb2, and Srb5) and mRNA metabolism factors (Kem1, Ssd1), thus raising the possibility that weak silencing affects some aspect of mRNA structure. Finally, several factors connected to metabolism were identified. These include the PAS-domain metabolic sensor kinase Psk2, the mitochondrial homocysteine detoxification enzyme Lap3, and the Fe-S cluster protein maturase Isa2. We speculate that PAS kinase may integrate metabolic signals to control sirtuin activity.
Collapse
|
25
|
Diphosphothreonine-specific interaction between an SQ/TQ cluster and an FHA domain in the Rad53-Dun1 kinase cascade. Mol Cell 2008; 30:767-78. [PMID: 18570878 DOI: 10.1016/j.molcel.2008.05.013] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2008] [Revised: 03/21/2008] [Accepted: 05/13/2008] [Indexed: 01/22/2023]
Abstract
Forkhead-associated (FHA) domains recognize phosphothreonines, and SQ/TQ cluster domains (SCDs) contain concentrated phosphorylation sites for ATM/ATR-like DNA-damage-response kinases. The Rad53-SCD1 has dual functions in regulating the activation of the Rad53-Dun1 checkpoint kinase cascade but with unknown molecular mechanisms. Here we present structural, biochemical, and genetic evidence that Dun1-FHA possesses an unprecedented diphosphothreonine-binding specificity. The Dun1-FHA has >100-fold increased affinity for diphosphorylated relative to monophosphorylated Rad53-SCD1 due to the presence of two separate phosphothreonine-binding pockets. In vivo, any single threonine of Rad53-SCD1 is sufficient for Rad53 activation and RAD53-dependent survival of DNA damage, but two adjacent phosphothreonines in the Rad53-SCD1 and two phosphothreonine-binding sites in the Dun1-FHA are necessary for Dun1 activation and DUN1-dependent transcriptional responses to DNA damage. The results uncover a phospho-counting mechanism that regulates the specificity of SCD, and provide mechanistic insight into a role of multisite phosphorylation in DNA-damage signaling.
Collapse
|
26
|
Abstract
[Structure: see text]. FHA domains are protein modules that switch signals in diverse biological pathways by monitoring the phosphorylation of threonine residues of target proteins. As part of the effort to gain insight into cellular avoidance of cancer, FHA domains involved in the cellular response to DNA damage have been especially well-characterized. The complete protein where the FHA domain resides and the interaction partners determine the nature of the signaling. Thus, a key biochemical question is how do FHA domains pick out their partners from among thousands of alternatives in the cell? This Account discusses the structure, affinity, and specificity of FHA domains and the formation of their functional structure. Although FHA domains share sequence identity at only five loop residues, they all fold into a beta-sandwich of two beta-sheets. The conserved arginine and serine of the recognition loops recognize the phosphorylation of the threonine targeted. Side chains emanating from loops that join beta-strand 4 with 5, 6 with 7, or 10 with 11 make specific contacts with amino acids of the ligand that tailor sequence preferences. Many FHA domains choose a partner in extended conformation, somewhat according to the residue three after the phosphothreonine in sequence (pT + 3 position). One group of FHA domains chooses a short carboxylate-containing side chain at pT + 3. Another group chooses a long, branched aliphatic side chain. A third group prefers other hydrophobic or uncharged polar side chains at pT + 3. However, another FHA domain instead chooses on the basis of pT - 2, pT - 3, and pT + 1 positions. An FHA domain from a marker of human cancer instead chooses a much longer protein fragment that adds a beta-strand to its beta-sheet and that presents hydrophobic residues from a novel helix to the usual recognition surface. This novel recognition site and more remote sites for the binding of other types of protein partners were predicted for the entire family of FHA domains by a bioinformatics approach. The phosphopeptide-dependent dynamics of an FHA domain, SH2 domain, and PTB domain suggest a common theme: rigid, preformed binding surfaces support van der Waals contacts that provide favorable binding enthalpy. Despite the lack of pronounced conformational changes in FHA domains linked to binding events, more subtle adjustments may be possible. In the one FHA domain tested, phosphothreonine peptide binding is accompanied by increased flexibility just outside the binding site and increased rigidity across the beta-sandwich. The folding of the same FHA domain progresses through near-native intermediates that stabilize the recognition loops in the center of the phosphoprotein-binding surface; this may promote rigidity in the interface and affinity for targets phosphorylated on threonine.
Collapse
Affiliation(s)
- XIANGYANG LIANG
- Department of Biochemistry, 105 Schweitzer Hall, University of Missouri, Columbia, Missouri 65211
| | - STEVEN R. VAN DOREN
- Department of Biochemistry, 105 Schweitzer Hall, University of Missouri, Columbia, Missouri 65211
| |
Collapse
|
27
|
Tanaka Y, Kuroda M, Yasutake Y, Yao M, Tsumoto K, Watanabe N, Ohta T, Tanaka I. Crystal structure analysis reveals a novel forkhead-associated domain of ESAT-6 secretion system C protein in Staphylococcus aureus. Proteins 2007; 69:659-64. [PMID: 17680693 DOI: 10.1002/prot.21302] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Yoshikazu Tanaka
- Faculty of Advanced Life Sciences, Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Henderson MJ, Munoz MA, Saunders DN, Clancy JL, Russell AJ, Williams B, Pappin D, Khanna KK, Jackson SP, Sutherland RL, Watts CKW. EDD mediates DNA damage-induced activation of CHK2. J Biol Chem 2006; 281:39990-40000. [PMID: 17074762 DOI: 10.1074/jbc.m602818200] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
EDD, the human orthologue of Drosophila melanogaster "hyperplastic discs," is overexpressed or mutated in a number of common human cancers. Although EDD has been implicated in DNA damage signaling, a definitive role has yet to be demonstrated. Here we report a novel interaction between EDD and the DNA damage checkpoint kinase CHK2. EDD and CHK2 associate through a phospho-dependent interaction involving the CHK2 Forkhead-associated domain and a region of EDD spanning a number of putative Forkhead-associated domain-binding threonines. Using RNA interference, we demonstrate a critical role for EDD upstream of CHK2 in the DNA damage signaling pathway. EDD is necessary for the efficient activating phosphorylation of CHK2 in response to DNA damage following exposure to ionizing radiation or the radiomimetic, phleomycin. Cells depleted of EDD display impaired CHK2 kinase activity and an inability to respond to DNA damage. These results identify EDD as a novel mediator in DNA damage signal transduction via CHK2 and emphasize the potential importance of EDD in cancer.
Collapse
Affiliation(s)
- Michelle J Henderson
- Cancer Research Program, Garvan Institute of Medical Research, 384 Victoria St., Darlinghurst, New South Wales 2010, Australia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Morris ER, Chevalier D, Walker JC. DAWDLE, a forkhead-associated domain gene, regulates multiple aspects of plant development. PLANT PHYSIOLOGY 2006; 141:932-41. [PMID: 16679419 PMCID: PMC1489914 DOI: 10.1104/pp.106.076893] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Phosphoprotein-binding domains are found in many different proteins and specify protein-protein interactions critical for signal transduction pathways. Forkhead-associated (FHA) domains bind phosphothreonine and control many aspects of cell proliferation in yeast (Saccharomyces cerevisiae) and animal cells. The Arabidopsis (Arabidopsis thaliana) protein kinase-associated protein phosphatase includes a FHA domain that mediates interactions with receptor-like kinases, which in turn regulate a variety of signaling pathways involved in plant growth and pathogen responses. Screens for insertional mutations in other Arabidopsis FHA domain-containing genes identified a mutant with pleiotropic defects. dawdle (ddl) plants are developmentally delayed, produce defective roots, shoots, and flowers, and have reduced seed set. DDL is expressed in the root and shoot meristems and the reduced size of the root apical meristem in ddl plants suggests a role early in organ development.
Collapse
Affiliation(s)
- Erin R Morris
- Division of Biological Sciences, University of Missouri, Columbia, Missouri 65211, USA
| | | | | |
Collapse
|
30
|
Byeon IJL, Li H, Song H, Gronenborn AM, Tsai MD. Sequential phosphorylation and multisite interactions characterize specific target recognition by the FHA domain of Ki67. Nat Struct Mol Biol 2006; 12:987-93. [PMID: 16244663 DOI: 10.1038/nsmb1008] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2005] [Accepted: 09/22/2005] [Indexed: 11/09/2022]
Abstract
The forkhead-associated (FHA) domain of human Ki67 interacts with the human nucleolar protein hNIFK, recognizing a 44-residue fragment, hNIFK226-269, phosphorylated at Thr234. Here we show that high-affinity binding requires sequential phosphorylation by two kinases, CDK1 and GSK3, yielding pThr238, pThr234 and pSer230. We have determined the solution structure of Ki67FHA in complex with the triply phosphorylated peptide hNIFK226-269(3P), revealing not only local recognition of pThr234 but also the extension of the beta-sheet of the FHA domain by the addition of a beta-strand of hNIFK. The structure of an FHA domain in complex with a biologically relevant binding partner provides insights into ligand specificity and potentially links the cancer marker protein Ki67 to a signaling pathway associated with cell fate specification.
Collapse
Affiliation(s)
- In-Ja L Byeon
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, US National Institutes of Health (NIH), Bethesda, Maryland 20892, USA
| | | | | | | | | |
Collapse
|
31
|
Alderwick LJ, Molle V, Kremer L, Cozzone AJ, Dafforn TR, Besra GS, Fütterer K. Molecular structure of EmbR, a response element of Ser/Thr kinase signaling in Mycobacterium tuberculosis. Proc Natl Acad Sci U S A 2006; 103:2558-63. [PMID: 16477027 PMCID: PMC1413777 DOI: 10.1073/pnas.0507766103] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2005] [Indexed: 02/06/2023] Open
Abstract
Ser/Thr phosphorylation has emerged as a critical regulatory mechanism in a number of bacteria, including Mycobacterium tuberculosis. This problematic pathogen encodes 11 eukaryotic-like Ser/Thr kinases, yet few substrates or signaling targets have been characterized. Here, we report the structure of EmbR (2.0 A), a putative transcriptional regulator of key arabinosyltransferases (EmbC, -A, and -B), and an endogenous substrate of the Ser/Thr-kinase PknH. EmbR presents a unique domain architecture: the N-terminal winged-helix DNA-binding domain forms an extensive interface with the all-helical central bacterial transcriptional activation domain and is positioned adjacent to the regulatory C-terminal forkhead-associated (FHA) domain, which mediates binding to a Thr-phosphorylated site in PknH. The structure in complex with a phospho-peptide (1.9 A) reveals a conserved mode of phospho-threonine recognition by the FHA domain and evidence for specific recognition of the cognate kinase. The present structures suggest hypotheses as to how EmbR might propagate the phospho-relay signal from its cognate kinase, while serving as a template for the structurally uncharacterized Streptomyces antibiotic regulatory protein family of transcription factors.
Collapse
Affiliation(s)
- Luke J. Alderwick
- *School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Virginie Molle
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5086, Institut de Biologie et Chimie des Protéines, 7 Passage du Vercors, 69367 Lyon Cedex 07, France; and
| | - Laurent Kremer
- Laboratoire de Dynamique Moléculaire des Interactions Membranaires, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5539, Université Montpellier II, Case 107, Place Eugène Bataillon, 34095 Montpellier Cedex 05, France
| | - Alain J. Cozzone
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5086, Institut de Biologie et Chimie des Protéines, 7 Passage du Vercors, 69367 Lyon Cedex 07, France; and
| | - Timothy R. Dafforn
- *School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Gurdyal S. Besra
- *School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Klaus Fütterer
- *School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| |
Collapse
|
32
|
Li H, Shen H, Xu Q, Deng D, Wang S, Lu Y, Ma D. Expression of pin1 and ki67 in cervical cancer and their significance. ACTA ACUST UNITED AC 2006; 26:120-2. [PMID: 16711024 DOI: 10.1007/bf02828056] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
In order to investigate the expression levels of Pin1 mRNA and protein in cervical cancer and its association with Ki67 and their clinical significance, amplification of Pin1 gene was examined by RT-PCR, and the expression of both Pin1 and Ki67 protein was detected by immunohistochemistry in cervical cancer tissues. It was shown that the expression levels of Pin1 were higher in cervical cancer than in normal cervical tissues (P < 0.05). The expression of Pin1 protein was increased progressively along with the disease process from normal cervix to CIN and to cervical cancer (P < 0.05). No significant difference in the Pin1 expression was found between disease stages (FIGO), pathological grades or pelvic lymph node metastasis status (P > 0.05). The expression of Pin1 was significantly higher in adenocarcinoma than in squamous carcinoma of the uterine cervix (P < 0.05). In cervical cancer, the overexpression of Pin1 was positively correlated with that of Ki67 (P < 0.05). These results suggested that the overexpression of Pin1 was closely related with cancer cell proliferation or progression of cervical cancer and contributed to oncogenesis. Pin1 may serve as a potential marker for cervical cancer diagnosis.
Collapse
Affiliation(s)
- Hongyu Li
- Molecular Cancer Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | | | | | | | | | | | | |
Collapse
|
33
|
Ding Z, Lee GI, Liang X, Gallazzi F, Arunima A, Van Doren SR. PhosphoThr peptide binding globally rigidifies much of the FHA domain from Arabidopsis receptor kinase-associated protein phosphatase. Biochemistry 2005; 44:10119-34. [PMID: 16042389 PMCID: PMC2813517 DOI: 10.1021/bi050414a] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A net increase in the backbone rigidity of the kinase-interacting FHA domain (KI-FHA) from the Arabidopsis receptor kinase-associated protein phosphatase (KAPP) accompanies the binding of a phosphoThr peptide from its CLV1 receptor-like kinase partner, according to (15)N NMR relaxation at 11.7 and 14.1 T. All of the loops of free KI-FHA display evidence of nanosecond-scale motions. Many of these same residues have residual dipolar couplings that deviate from structural predictions. Binding of the CLV1 pT868 peptide seems to reduce nanosecond-scale fluctuations of all loops, including half of the residues of recognition loops. Residues important for affinity are found to be rigid, i.e., conserved residues and residues of the subsite for the key pT+3 peptide position. This behavior parallels SH2 and PTB domain recognition of pTyr peptides. PhosphoThr peptide binding increases KI-FHA backbone rigidity (S(2)) of three recognition loops, a loop nearby, seven strands from the beta-sandwich, and a distal loop. Compensating the trend of increased rigidity, binding enhances fast mobility at a few sites in four loops on the periphery of the recognition surface and in two loops on the far side of the beta-sandwich. Line broadening evidence of microsecond- to millisecond-scale fluctuations occurs across the six-stranded beta-sheet and nearby edges of the beta-sandwich; this forms a network connected by packing of interior side chains and H-bonding. A patch of the slowly fluctuating residues coincides with the site of segment-swapped dimerization in crystals of the FHA domain of human Chfr. Phosphopeptide binding introduces microsecond- to millisecond-scale fluctuations to more residues of the long 8/9 recognition loop of KI-FHA. The rigidity of this FHA domain appears to couple as a whole to pThr peptide binding.
Collapse
Affiliation(s)
| | | | - Xiangyang Liang
- Department of Biochemistry, 117 Schweitzer Hall, University of Missouri, Columbia, Missouri, 65211
| | - Fabio Gallazzi
- Molecular Biology Program, 125 Chemistry, 601 S. College Ave., University of Missouri, Columbia, Missouri, 65211 USA
| | - A. Arunima
- Department of Biochemistry, 117 Schweitzer Hall, University of Missouri, Columbia, Missouri, 65211
| | - Steven R. Van Doren
- To whom correspondence should be addressed, E-mail: , Phone: 1 (573) 882-5113, FAX: 1 (573) 884-4812
| |
Collapse
|
34
|
Villarino A, Duran R, Wehenkel A, Fernandez P, England P, Brodin P, Cole ST, Zimny-Arndt U, Jungblut PR, Cerveñansky C, Alzari PM. Proteomic identification of M. tuberculosis protein kinase substrates: PknB recruits GarA, a FHA domain-containing protein, through activation loop-mediated interactions. J Mol Biol 2005; 350:953-63. [PMID: 15978616 DOI: 10.1016/j.jmb.2005.05.049] [Citation(s) in RCA: 126] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2005] [Revised: 05/20/2005] [Accepted: 05/20/2005] [Indexed: 11/20/2022]
Abstract
Genes for functional Ser/Thr protein kinases (STPKs) are ubiquitous in prokaryotic genomes, but little is known about their physiological substrates and their actual involvement in bacterial signal transduction pathways. We report here the identification of GarA (Rv1827), a Forkhead-associated (FHA) domain-containing protein, as a putative physiological substrate of PknB, an essential Ser/Thr protein kinase from Mycobacterium tuberculosis. Using a global proteomic approach, GarA was found to be the best detectable substrate of the PknB catalytic domain in non-denatured whole-cell protein extracts from M. tuberculosis and the saprophyte Mycobacterium smegmatis. Enzymological and binding studies of the recombinant proteins demonstrate that docking interactions between the activation loop of PknB and the C-terminal FHA domain of GarA are required to enable efficient phosphorylation at a single N-terminal threonine residue, Thr22, of the substrate. The predicted amino acid sequence of the garA gene, including both the N-terminal phosphorylation motif and the FHA domain, is strongly conserved in mycobacteria and other related actinomycetes, suggesting a functional role of GarA in putative STPK-mediated signal transduction pathways. The ensuing model of PknB-GarA interactions suggests a substrate recruitment mechanism that might apply to other mycobacterial kinases bearing multiple phosphorylation sites in their activation loops.
Collapse
Affiliation(s)
- A Villarino
- Unité de Biochimie Structurale (URA 2185 CNRS), Institut Pasteur, Paris, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Abstract
The year 2004 represents a milestone for the biosensor research community: in this year, over 1000 articles were published describing experiments performed using commercially available systems. The 1038 papers we found represent an approximately 10% increase over the past year and demonstrate that the implementation of biosensors continues to expand at a healthy pace. We evaluated the data presented in each paper and compiled a 'top 10' list. These 10 articles, which we recommend every biosensor user reads, describe well-performed kinetic, equilibrium and qualitative/screening studies, provide comparisons between binding parameters obtained from different biosensor users, as well as from biosensor- and solution-based interaction analyses, and summarize the cutting-edge applications of the technology. We also re-iterate some of the experimental pitfalls that lead to sub-optimal data and over-interpreted results. We are hopeful that the biosensor community, by applying the hints we outline, will obtain data on a par with that presented in the 10 spotlighted articles. This will ensure that the scientific community at large can be confident in the data we report from optical biosensors.
Collapse
Affiliation(s)
- Rebecca L Rich
- Center for Biomolecular Interaction Analysis, University of Utah, Salt Lake City, UT 84132, USA
| | | |
Collapse
|
36
|
Garavaglia S, Raffaelli N, Finaurini L, Magni G, Rizzi M. A novel fold revealed by Mycobacterium tuberculosis NAD kinase, a key allosteric enzyme in NADP biosynthesis. J Biol Chem 2004; 279:40980-6. [PMID: 15269221 DOI: 10.1074/jbc.m406586200] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
NAD kinase catalyzes the magnesium-dependent phosphorylation of NAD, representing the sole source of freshly synthesized NADP in all organisms. The enzyme is essential for the growth of the deadly multidrug-resistant pathogen Mycobacterium tuberculosis and is an attractive target for novel antitubercular agents. The crystal structure of NAD kinase has been solved by multiwavelength anomalous dispersion at a resolution of 2.3 A in its T state. Two crystal forms have been obtained revealing either a dimer or a tetramer. The enzyme architecture discloses a novel molecular arrangement, with each subunit consisting of an alpha/beta N-terminal domain and a C-terminal 12-stranded beta sandwich domain, connected by swapped beta strands. The C-terminal domain shows a striking internal approximate 222 symmetry and an unprecedented topology, revealing a novel fold within the family of all beta structures. The catalytic site is located in the long crevice that defines the interface between the domains. The conserved GGDG structural fingerprint of the catalytic site is reminiscent of the related region in 6-phosphofructokinase, supporting the hypothesis that NAD kinase belongs to a newly reported superfamily of kinases.
Collapse
Affiliation(s)
- Silvia Garavaglia
- Dipartimento di Scienze Chimiche, Alimentari, Farmaceutiche, Farmacologiche-Istituto Nazionale Fisica della Materia, University of Piemonte Orientale "Amedeo Avogadro," Via Bovio 6, 28100 Novara, Italy
| | | | | | | | | |
Collapse
|
37
|
Abstract
Protein phosphorylation on certain serine or threonine residues preceding proline (Ser/Thr-Pro) is a pivitol signaling mechanism in diverse cellular processes and its deregulation can lead to human disease. However, little is known about how these phosphorylation events actually control cell signaling. Pin1 is a highly conserved enzyme that isomerizes only the phosphorylated Ser/Thr-Pro bonds in certain proteins, thereby inducing conformational changes. Recent results indicate that such conformational changes following phosphorylation are a novel signaling mechanism pivotal in regulating many cellular functions. This mechanism also offers new insights into the pathogenesis and treatment of human disease, most notably cancer and Alzheimer's disease. Thus, Pin1 plays a key role in linking signal transduction to the pathogenesis of cancer and Alzheimer's disease - two major age-related diseases.
Collapse
Affiliation(s)
- Kun Ping Lu
- Cancer Biology Program, Division of Hematology/Oncology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, NRB 1030K, Boston, MA 02215, USA.
| |
Collapse
|