1
|
Suladze S, Sustay Martinez C, Rodriguez Camargo DC, Engler J, Rodina N, Sarkar R, Zacharias M, Reif B. Structural Insights into Seeding Mechanisms of hIAPP Fibril Formation. J Am Chem Soc 2024; 146:13783-13796. [PMID: 38723619 PMCID: PMC11117405 DOI: 10.1021/jacs.3c14233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 04/26/2024] [Accepted: 04/29/2024] [Indexed: 05/23/2024]
Abstract
The deposition of islet amyloid polypeptide (hIAPP) fibrils is a hallmark of β-cell death in type II diabetes. In this study, we employ state-of-the-art MAS solid-state spectroscopy to investigate the previously elusive N-terminal region of hIAPP fibrils, uncovering both rigidity and heterogeneity. Comparative analysis between wild-type hIAPP and a disulfide-deficient variant (hIAPPC2S,C7S) unveils shared fibril core structures yet strikingly distinct dynamics in the N-terminus. Specifically, the variant fibrils exhibit extended β-strand conformations, facilitating surface nucleation. Moreover, our findings illuminate the pivotal roles of specific residues in modulating secondary nucleation rates. These results deepen our understanding of hIAPP fibril assembly and provide critical insights into the molecular mechanisms underpinning type II diabetes, holding promise for future therapeutic strategies.
Collapse
Affiliation(s)
- Saba Suladze
- Bayerisches
NMR Zentrum (BNMRZ) at the Department of Biosciences, School of Natural
Sciences, Technische Universität
München, 85747 Garching, Germany
- Helmholtz-Zentrum
München (HMGU), Deutsches Forschungszentrum für Gesundheit
und Umwelt, Institute of Structural Biology
(STB), Ingolstädter
Landstraße 1, 85764 Neuherberg, Germany
| | - Christian Sustay Martinez
- Center
for
Functional Protein Assemblies (CPA), Department of Bioscience, TUM
School of Natural Sciences, Technische Universität
München, Ernst-Otto-Fischer-Straße
8, 85747 Garching, Germany
| | - Diana C. Rodriguez Camargo
- Bayerisches
NMR Zentrum (BNMRZ) at the Department of Biosciences, School of Natural
Sciences, Technische Universität
München, 85747 Garching, Germany
- Helmholtz-Zentrum
München (HMGU), Deutsches Forschungszentrum für Gesundheit
und Umwelt, Institute of Structural Biology
(STB), Ingolstädter
Landstraße 1, 85764 Neuherberg, Germany
| | - Jonas Engler
- Bayerisches
NMR Zentrum (BNMRZ) at the Department of Biosciences, School of Natural
Sciences, Technische Universität
München, 85747 Garching, Germany
- Helmholtz-Zentrum
München (HMGU), Deutsches Forschungszentrum für Gesundheit
und Umwelt, Institute of Structural Biology
(STB), Ingolstädter
Landstraße 1, 85764 Neuherberg, Germany
| | - Natalia Rodina
- Bayerisches
NMR Zentrum (BNMRZ) at the Department of Biosciences, School of Natural
Sciences, Technische Universität
München, 85747 Garching, Germany
- Helmholtz-Zentrum
München (HMGU), Deutsches Forschungszentrum für Gesundheit
und Umwelt, Institute of Structural Biology
(STB), Ingolstädter
Landstraße 1, 85764 Neuherberg, Germany
| | - Riddhiman Sarkar
- Bayerisches
NMR Zentrum (BNMRZ) at the Department of Biosciences, School of Natural
Sciences, Technische Universität
München, 85747 Garching, Germany
- Helmholtz-Zentrum
München (HMGU), Deutsches Forschungszentrum für Gesundheit
und Umwelt, Institute of Structural Biology
(STB), Ingolstädter
Landstraße 1, 85764 Neuherberg, Germany
| | - Martin Zacharias
- Center
for
Functional Protein Assemblies (CPA), Department of Bioscience, TUM
School of Natural Sciences, Technische Universität
München, Ernst-Otto-Fischer-Straße
8, 85747 Garching, Germany
| | - Bernd Reif
- Bayerisches
NMR Zentrum (BNMRZ) at the Department of Biosciences, School of Natural
Sciences, Technische Universität
München, 85747 Garching, Germany
- Helmholtz-Zentrum
München (HMGU), Deutsches Forschungszentrum für Gesundheit
und Umwelt, Institute of Structural Biology
(STB), Ingolstädter
Landstraße 1, 85764 Neuherberg, Germany
| |
Collapse
|
2
|
Yu L, Wang R, Li S, Kara UI, Boerner EC, Chen B, Zhang F, Jian Z, Li S, Liu M, Wang Y, Liu S, Yang Y, Wang C, Zhang W, Yao Y, Wang X, Wang C. Experimental Insights into Conformational Ensembles of Assembled β-Sheet Peptides. ACS CENTRAL SCIENCE 2023; 9:1480-1487. [PMID: 37521785 PMCID: PMC10375872 DOI: 10.1021/acscentsci.3c00230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Indexed: 08/01/2023]
Abstract
Deciphering the conformations and interactions of peptides in their assemblies offers a basis for guiding the rational design of peptide-assembled materials. Here we report the use of scanning tunneling microscopy (STM), a single-molecule imaging method with a submolecular resolution, to distinguish 18 types of coexisting conformational substates of the β-strand of the 8-37 segment of human islet amyloid polypeptide (hIAPP 8-37). We analyzed the pairwise peptide-peptide interactions in the hIAPP 8-37 assembly and found 82 interconformation interactions within a free energy difference of 3.40 kBT. Besides hIAPP 8-37, this STM method validates the existence of multiple conformations of other β-sheet peptide assemblies, including mutated hIAPP 8-37 and amyloid-β 42. Overall, the results reported in this work provide single-molecule experimental insights into the conformational ensemble and interpeptide interactions in the β-sheet peptide assembly.
Collapse
Affiliation(s)
- Lanlan Yu
- State
Key Laboratory of Common Mechanism Research for Major Diseases, Haihe
Laboratory of Cell Ecosystem, Department of Biophysics and Structural
Biology, Institute of Basic Medical Sciences,
Chinese Academy of Medical Sciences, School of Basic Medicine Peking
Union Medical College, Beijing 100005, People’s
Republic of China
| | - Ruonan Wang
- State
Key Laboratory of Common Mechanism Research for Major Diseases, Haihe
Laboratory of Cell Ecosystem, Department of Biophysics and Structural
Biology, Institute of Basic Medical Sciences,
Chinese Academy of Medical Sciences, School of Basic Medicine Peking
Union Medical College, Beijing 100005, People’s
Republic of China
| | - Shucong Li
- Department
of Chemistry and Chemical Biology, Harvard
University, Cambridge, Massachusetts, 02138, United States
| | - Ufuoma I. Kara
- William
G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio 43210, United States
| | - Eric C. Boerner
- William
G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio 43210, United States
| | - Boyuan Chen
- William
G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio 43210, United States
| | - Feiyi Zhang
- State
Key Laboratory of Common Mechanism Research for Major Diseases, Haihe
Laboratory of Cell Ecosystem, Department of Biophysics and Structural
Biology, Institute of Basic Medical Sciences,
Chinese Academy of Medical Sciences, School of Basic Medicine Peking
Union Medical College, Beijing 100005, People’s
Republic of China
- Institute
for Advanced Materials, Jiangsu University, Zhenjiang, Jiangsu 212013, People’s
Republic of China
| | - Zhongyi Jian
- State
Key Laboratory of Common Mechanism Research for Major Diseases, Haihe
Laboratory of Cell Ecosystem, Department of Biophysics and Structural
Biology, Institute of Basic Medical Sciences,
Chinese Academy of Medical Sciences, School of Basic Medicine Peking
Union Medical College, Beijing 100005, People’s
Republic of China
| | - Shuyuan Li
- State
Key Laboratory of Common Mechanism Research for Major Diseases, Haihe
Laboratory of Cell Ecosystem, Department of Biophysics and Structural
Biology, Institute of Basic Medical Sciences,
Chinese Academy of Medical Sciences, School of Basic Medicine Peking
Union Medical College, Beijing 100005, People’s
Republic of China
| | - Mingwei Liu
- State
Key Laboratory of Common Mechanism Research for Major Diseases, Haihe
Laboratory of Cell Ecosystem, Department of Biophysics and Structural
Biology, Institute of Basic Medical Sciences,
Chinese Academy of Medical Sciences, School of Basic Medicine Peking
Union Medical College, Beijing 100005, People’s
Republic of China
| | - Yang Wang
- State
Key Laboratory of Common Mechanism Research for Major Diseases, Haihe
Laboratory of Cell Ecosystem, Department of Biophysics and Structural
Biology, Institute of Basic Medical Sciences,
Chinese Academy of Medical Sciences, School of Basic Medicine Peking
Union Medical College, Beijing 100005, People’s
Republic of China
| | - Shuli Liu
- Department
of Clinical Laboratory, Peking University
Civil Aviation School of Clinical Medicine, Beijing 100123, People’s Republic of China
| | - Yanlian Yang
- CAS Key Laboratory
of Biological Effects of Nanomaterials and Nanosafety, CAS Key Laboratory
of Standardization and Measurement for Nanotechnology, Laboratory of Theoretical and Computational Nanoscience,
CAS Center for Excellence in Nanoscience, National Center for Nanoscience
and Technology, Beijing 100190, People’s Republic
of China
| | - Chen Wang
- CAS Key Laboratory
of Biological Effects of Nanomaterials and Nanosafety, CAS Key Laboratory
of Standardization and Measurement for Nanotechnology, Laboratory of Theoretical and Computational Nanoscience,
CAS Center for Excellence in Nanoscience, National Center for Nanoscience
and Technology, Beijing 100190, People’s Republic
of China
| | - Wenbo Zhang
- State
Key Laboratory of Common Mechanism Research for Major Diseases, Haihe
Laboratory of Cell Ecosystem, Department of Biophysics and Structural
Biology, Institute of Basic Medical Sciences,
Chinese Academy of Medical Sciences, School of Basic Medicine Peking
Union Medical College, Beijing 100005, People’s
Republic of China
| | - Yuxing Yao
- Division
of Chemistry and Chemical Engineering, California
Institute of Technology, Pasadena, California 91125, United States
| | - Xiaoguang Wang
- William
G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio 43210, United States
- Sustainability
Institute, The Ohio State University, Columbus, Ohio, 43210, United
States
| | - Chenxuan Wang
- State
Key Laboratory of Common Mechanism Research for Major Diseases, Haihe
Laboratory of Cell Ecosystem, Department of Biophysics and Structural
Biology, Institute of Basic Medical Sciences,
Chinese Academy of Medical Sciences, School of Basic Medicine Peking
Union Medical College, Beijing 100005, People’s
Republic of China
| |
Collapse
|
3
|
Understanding the mechanism of amylin aggregation: From identifying crucial segments to tracing dominant sequential events to modeling potential aggregation suppressors. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2023; 1871:140866. [PMID: 36272537 DOI: 10.1016/j.bbapap.2022.140866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 10/07/2022] [Accepted: 10/13/2022] [Indexed: 11/13/2022]
Abstract
One of the most abundant, prevailing, and life-threatening human diseases that are currently baffling the scientific community is type 2 diabetes (T2D). The self-association of human amylin has been implicated in the pathogenesis of T2D, though with an inconclusive understanding of the mechanism. Hence, we focused on the characterization of the conformational ensembles of all the species that are believed to define the structural polymorphism of the aggregation process - the functional monomeric, the initially self-associated oligomeric, and the structured protofibril - by employing near-equilibrium, non-equilibrium, and equilibrium atomistic simulations on the sporadic, two familial variants (S20G and G33R), and their proline-substituted forms (S20P and G33P). The dynamic near-equilibrium assays hint toward - the abundance of helical conformation in the monomeric state, the retainment of the helicity in the initial self-associated oligomeric phase pointing toward the existence of the helix-helix association mechanism, the difference in preference of specific segments to have definite secondary structural features, the phase-dependent variability in the dominance of specific segments and mutation sites, and the simultaneous presence of generic and unique features among various sequences. Furthermore, the non-equilibrium pulling assays exemplify a generic sequential unzipping mechanism of the protofibrils, however, the sequence-dependent uniqueness comes from the difference in location and magnitude of the control of a specific terminus. Importantly, the equilibrium thermodynamic assays efficiently rank order the potential of aggregability among sequences and consequently suggests the probability of designing effective aggregation suppressors against sporadic and familial amylin variants incorporating proline as the mutation.
Collapse
|
4
|
Fortier M, Côté-Cyr M, Nguyen V, Babych M, Nguyen PT, Gaudreault R, Bourgault S. Contribution of the 12–17 hydrophobic region of islet amyloid polypeptide in self-assembly and cytotoxicity. Front Mol Biosci 2022; 9:1017336. [PMID: 36262476 PMCID: PMC9573943 DOI: 10.3389/fmolb.2022.1017336] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 09/15/2022] [Indexed: 11/17/2022] Open
Abstract
The islet amyloid polypeptide (IAPP) is a 37-residue aggregation-prone peptide hormone whose deposition as insoluble fibrils in the islets of Langerhans is associated with type II diabetes. Therapeutic interventions targeting IAPP amyloidogenesis, which contributes to pancreatic β-cell degeneration, remain elusive owing to the lack of understanding of the self-assembly mechanisms and of the quaternary proteospecies mediating toxicity. While countless studies have investigated the contributions of the 20–29 amyloidogenic core in self-assembly, IAPP central region, i.e. positions 11 to 19, has been less studied, notwithstanding its potential key role in oligomerization. In this context, the present study aimed at investigating the physicochemical and conformational properties driving IAPP self-assembly and associated cytotoxicity. Computational tools and all-atom molecular dynamics simulation suggested that the hydrophobic 12–17 segment promotes IAPP self-recognition and aggregation. Alanine scanning revealed that the hydrophobic side chains of Leu12, Phe15 and Val17 are critical for amyloid fibril formation. Destabilization of the α-helical folding by Pro substitution enhanced self-assembly when the pyrrolidine ring was successively introduced at positions Ala13, Asn14 and Phe15, in comparison to respective Ala-substituted counterparts. Modulating the peptide backbone flexibility at position Leu16 through successive incorporation of Pro, Gly and α-methylalanine, inhibited amyloid formation and reduced cytotoxicity, while the isobutyl side chain of Leu16 was not critical for self-assembly and IAPP-mediated toxicity. These results highlight the importance of the 12–17 hydrophobic region of IAPP for self-recognition, ultimately supporting the development of therapeutic approaches to prevent oligomerization and/or fibrillization.
Collapse
Affiliation(s)
- Mathilde Fortier
- Department of Chemistry, Succursale Centre-Ville, Université du Québec à Montréal, Montreal, QC, Canada
- Quebec Network for Research on Protein Function, Engineering and Applications, PROTEO, Montreal, QC, Canada
| | - Mélanie Côté-Cyr
- Department of Chemistry, Succursale Centre-Ville, Université du Québec à Montréal, Montreal, QC, Canada
- Quebec Network for Research on Protein Function, Engineering and Applications, PROTEO, Montreal, QC, Canada
| | - Vy Nguyen
- Department of Chemistry, Succursale Centre-Ville, Université du Québec à Montréal, Montreal, QC, Canada
- Quebec Network for Research on Protein Function, Engineering and Applications, PROTEO, Montreal, QC, Canada
| | - Margaryta Babych
- Department of Chemistry, Succursale Centre-Ville, Université du Québec à Montréal, Montreal, QC, Canada
- Quebec Network for Research on Protein Function, Engineering and Applications, PROTEO, Montreal, QC, Canada
| | - Phuong Trang Nguyen
- Department of Chemistry, Succursale Centre-Ville, Université du Québec à Montréal, Montreal, QC, Canada
- Quebec Network for Research on Protein Function, Engineering and Applications, PROTEO, Montreal, QC, Canada
| | - Roger Gaudreault
- Department of Chemistry, Succursale Centre-Ville, Université du Québec à Montréal, Montreal, QC, Canada
- Department of Physics, Université de Montréal, Succursale Centre-ville, Montreal, QC, Canada
- *Correspondence: Roger Gaudreault, ; Steve Bourgault,
| | - Steve Bourgault
- Department of Chemistry, Succursale Centre-Ville, Université du Québec à Montréal, Montreal, QC, Canada
- Quebec Network for Research on Protein Function, Engineering and Applications, PROTEO, Montreal, QC, Canada
- *Correspondence: Roger Gaudreault, ; Steve Bourgault,
| |
Collapse
|
5
|
In silico studies of the human IAPP in the presence of osmolytes. J Mol Model 2022; 28:188. [PMID: 35697975 DOI: 10.1007/s00894-022-05180-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 05/30/2022] [Indexed: 10/18/2022]
Abstract
The human islet amyloid polypeptide or amylin is secreted along with insulin by pancreatic islets. Under the drastic environmental conditions, amylin can aggregate to form amyloid fibrils. This amyloid plaque of hIAPP in the pancreatic cells is the cause of type II diabetes. Early stages of amylin aggregates are more cytotoxic than the matured fibrils. Here, we have used the all-atom molecular dynamic simulation to see the effect of water, TMAO, urea and urea/TMAO having ratio 2:1 of different concentrations on the amylin protein. Our study suggest that the amylin protein forms β-sheets in its monomeric form and may cause the aggregation of protein through the residue 13-17 and the C-terminal region. α-Helical content of protein increases with an increase in TMAO concentration by decreasing the SASA value of protein, increase in intramolecular hydrogen bonds and on making the short-range hydrophobic interactions. Electrostatic potential surfaces show that hydrophobic groups are buried and normalised configurational entropy of backbone, and side-chain atoms is lesser in the presence of TMAO, whereas opposite behaviour is obtained in the case of urea. Counteraction effect of TMAO using Kast model towards urea is also observed in ternary solution of urea/TMAO.
Collapse
|
6
|
Subedi S, Sasidharan S, Nag N, Saudagar P, Tripathi T. Amyloid Cross-Seeding: Mechanism, Implication, and Inhibition. Molecules 2022; 27:1776. [PMID: 35335141 PMCID: PMC8955620 DOI: 10.3390/molecules27061776] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 03/04/2022] [Accepted: 03/07/2022] [Indexed: 01/21/2023] Open
Abstract
Most neurodegenerative diseases such as Alzheimer's disease, type 2 diabetes, Parkinson's disease, etc. are caused by inclusions and plaques containing misfolded protein aggregates. These protein aggregates are essentially formed by the interactions of either the same (homologous) or different (heterologous) sequences. Several experimental pieces of evidence have revealed the presence of cross-seeding in amyloid proteins, which results in a multicomponent assembly; however, the molecular and structural details remain less explored. Here, we discuss the amyloid proteins and the cross-seeding phenomena in detail. Data suggest that targeting the common epitope of the interacting amyloid proteins may be a better therapeutic option than targeting only one species. We also examine the dual inhibitors that target the amyloid proteins participating in the cross-seeding events. The future scopes and major challenges in understanding the mechanism and developing therapeutics are also considered. Detailed knowledge of the amyloid cross-seeding will stimulate further research in the practical aspects and better designing anti-amyloid therapeutics.
Collapse
Affiliation(s)
- Sushma Subedi
- Molecular and Structural Biophysics Laboratory, Department of Biochemistry, North-Eastern Hill University, Shillong 793022, India; (S.S.); (N.N.)
| | - Santanu Sasidharan
- Department of Biotechnology, National Institute of Technology Warangal, Warangal 506004, India;
| | - Niharika Nag
- Molecular and Structural Biophysics Laboratory, Department of Biochemistry, North-Eastern Hill University, Shillong 793022, India; (S.S.); (N.N.)
| | - Prakash Saudagar
- Department of Biotechnology, National Institute of Technology Warangal, Warangal 506004, India;
| | - Timir Tripathi
- Molecular and Structural Biophysics Laboratory, Department of Biochemistry, North-Eastern Hill University, Shillong 793022, India; (S.S.); (N.N.)
| |
Collapse
|
7
|
Saxena V, Steendam R, Jansen TLC. Distinguishing islet amyloid polypeptide fibril structures with infrared isotope-label spectroscopy. J Chem Phys 2022; 156:055101. [DOI: 10.1063/5.0082322] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
- Vishesh Saxena
- University of Groningen, Zernike Institute for Advanced Materials, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Ruben Steendam
- University of Groningen, Zernike Institute for Advanced Materials, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Thomas L. C. Jansen
- University of Groningen, Zernike Institute for Advanced Materials, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| |
Collapse
|
8
|
Cretenoud J, Giffin M, Özen B, Fadaei-Tirani F, Scopelliti R, Plummer CJG, Frauenrath H. Semiaromatic Polyamides with Re-Entrant Chain Folding Templated by “U-Turn” Repeat Units. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c01867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Julien Cretenoud
- Institute of Materials, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Michael Giffin
- Institute of Materials, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Bilal Özen
- Institute of Materials, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Farzaneh Fadaei-Tirani
- Institute of Chemical Science and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Rosario Scopelliti
- Institute of Chemical Science and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | | | - Holger Frauenrath
- Institute of Materials, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| |
Collapse
|
9
|
Pathak BK, Dey S, Mozumder S, Sengupta J. The role of membranes in function and dysfunction of intrinsically disordered amyloidogenic proteins. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2021; 128:397-434. [PMID: 35034725 DOI: 10.1016/bs.apcsb.2021.08.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Membrane-protein interactions play a major role in human physiology as well as in diseases pathology. Interaction of a protein with the membrane was previously thought to be dependent on well-defined three-dimensional structure of the protein. In recent decades, however, it has become evident that a large fraction of the proteome, particularly in eukaryotes, stays disordered in solution and these proteins are termed as intrinsically disordered proteins (IDPs). Also, a vast majority of human proteomes have been reported to contain substantially long disordered regions, called intrinsically disordered regions (IDRs), in addition to the structurally ordered regions. IDPs exist in an ensemble of conformations and the conformational flexibility enables IDPs to achieve functional diversity. IDPs (and IDRs) are found to be important players in cell signaling, where biological membranes act as anchors for signaling cascades. Therefore, IDPs modulate the membrane architectures, at the same time membrane composition also affects the binding of IDPs. Because of intrinsic disorders, misfolding of IDPs often leads to formation of oligomers, protofibrils and mature fibrils through progressive self-association. Accumulation of amyloid-like aggregates of some of the IDPs is a known causative agent for numerous diseases. In this chapter we highlight recent advances in understanding membrane interactions of some of the intrinsically disordered proteins involved in the pathogenesis of human diseases.
Collapse
Affiliation(s)
- Bani Kumar Pathak
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, Jadavpur, Kolkata, India
| | - Sandip Dey
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, Jadavpur, Kolkata, India
| | - Sukanya Mozumder
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, Jadavpur, Kolkata, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Jayati Sengupta
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, Jadavpur, Kolkata, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India.
| |
Collapse
|
10
|
Lesma J, Bizet F, Berardet C, Tonali N, Pellegrino S, Taverna M, Khemtemourian L, Soulier JL, van Heijenoort C, Halgand F, Ha-Duong T, Kaffy J, Ongeri S. β-Hairpin Peptide Mimics Decrease Human Islet Amyloid Polypeptide (hIAPP) Aggregation. Front Cell Dev Biol 2021; 9:729001. [PMID: 34604227 PMCID: PMC8481668 DOI: 10.3389/fcell.2021.729001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 08/23/2021] [Indexed: 11/17/2022] Open
Abstract
Amyloid diseases are degenerative pathologies, highly prevalent today because they are closely related to aging, that have in common the erroneous folding of intrinsically disordered proteins (IDPs) which aggregate and lead to cell death. Type 2 Diabetes involves a peptide called human islet amyloid polypeptide (hIAPP), which undergoes a conformational change, triggering the aggregation process leading to amyloid aggregates and fibers rich in β-sheets mainly found in the pancreas of all diabetic patients. Inhibiting the aggregation of amyloid proteins has emerged as a relevant therapeutic approach and we have recently developed the design of acyclic flexible hairpins based on peptidic recognition sequences of the amyloid β peptide (Aβ1–42) as a successful strategy to inhibit its aggregation involved in Alzheimer’s disease. The present work reports the extension of our strategy to hIAPP aggregation inhibitors. The design, synthesis, conformational analyses, and biophysical evaluations of dynamic β-hairpin like structures built on a piperidine-pyrrolidine β-turn inducer are described. By linking to this β-turn inducer three different arms (i) pentapeptide, (ii) tripeptide, and (iii) α/aza/aza/pseudotripeptide, we demonstrate that the careful selection of the peptide-based arms from the sequence of hIAPP allowed to selectively modulate its aggregation, while the peptide character can be decreased. Biophysical assays combining, Thioflavin-T fluorescence, transmission electronic microscopy, capillary electrophoresis, and mass spectrometry showed that the designed compounds inhibit both the oligomerization and the fibrillization of hIAPP. They are also capable to decrease the aggregation process in the presence of membrane models and to strongly delay the membrane-leakage induced by hIAPP. More generally, this work provides the proof of concept that our rational design is a versatile and relevant strategy for developing efficient and selective inhibitors of aggregation of amyloidogenic proteins.
Collapse
Affiliation(s)
- Jacopo Lesma
- BioCIS, CNRS, Université Paris-Saclay, Châtenay-Malabry, France
| | - Faustine Bizet
- BioCIS, CNRS, Université Paris-Saclay, Châtenay-Malabry, France
| | - Corentin Berardet
- BioCIS, CNRS, Université Paris-Saclay, Châtenay-Malabry, France.,Institute Galien Paris-Saclay, CNRS, Université Paris-Saclay, Châtenay-Malabry, France
| | - Nicolo Tonali
- BioCIS, CNRS, Université Paris-Saclay, Châtenay-Malabry, France
| | - Sara Pellegrino
- DISFARM, Sezione di Chimica Generale e Organica "A. Marchesini," Università degli Studi di Milano, Milan, Italy
| | - Myriam Taverna
- Institute Galien Paris-Saclay, CNRS, Université Paris-Saclay, Châtenay-Malabry, France
| | - Lucie Khemtemourian
- Institute of Chemistry and Biology of Membranes and Nanoobjects, Institut Polytechnique Bordeaux, CNRS UMR 5248, Université de Bordeaux, Pessac, France
| | | | - Carine van Heijenoort
- ICSN, Equipe Biologie et Chimie Structurales, Département de Chimie et Biologie Structurales et Analytiques, CNRS, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Frédéric Halgand
- Institut de Chimie Physique, Equipe Chimie Analytique Physicochimie Réactivité des Ions, CNRS, Université Paris-Saclay, Orsay, France
| | - Tâp Ha-Duong
- BioCIS, CNRS, Université Paris-Saclay, Châtenay-Malabry, France
| | - Julia Kaffy
- BioCIS, CNRS, Université Paris-Saclay, Châtenay-Malabry, France
| | - Sandrine Ongeri
- BioCIS, CNRS, Université Paris-Saclay, Châtenay-Malabry, France
| |
Collapse
|
11
|
Sepehri A, Nepal B, Lazaridis T. Distinct Modes of Action of IAPP Oligomers on Membranes. J Chem Inf Model 2021; 61:4645-4655. [PMID: 34499498 DOI: 10.1021/acs.jcim.1c00767] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Islet amyloid polypeptide (IAPP, also known as amylin) is a peptide hormone that is co-secreted with insulin by pancreatic β-cells and forms amyloid aggregates in type II diabetes. Various lines of evidence indicate that oligomers of this peptide may induce toxicity by disrupting or forming pores in cell membranes, but the structure of these pores is unknown. Here, we create models of pores for both helical and β-structured peptides using implicit membrane modeling and test their stability using multimicrosecond all-atom simulations. We find that the helical peptides behave similarly to antimicrobial peptides; they remain stably inserted in a highly tilted or partially unfolded configuration creating a narrow water channel. Parallel helix orientation creates a somewhat larger pore. An octameric β barrel of parallel β-hairpins is highly stable in the membrane, whereas the corresponding barrel made of antiparallel hairpins is not. We propose that certain experiments probe the helical pore state while others probe the β-structured pore state; this provides a possible explanation for lack of correlation that is sometimes observed between in vivo toxicity and in vitro liposome permeabilization experiments.
Collapse
Affiliation(s)
- Aliasghar Sepehri
- Department of Chemistry, City College of New York, New York, New York 10031, United States
| | - Binod Nepal
- Department of Chemistry, City College of New York, New York, New York 10031, United States
| | - Themis Lazaridis
- Department of Chemistry, City College of New York, New York, New York 10031, United States.,Graduate Programs in Chemistry, Biochemistry, and Physics, The Graduate Center, City University of New York, New York, New York, New York 10016, United States
| |
Collapse
|
12
|
Sawaya MR, Hughes MP, Rodriguez JA, Riek R, Eisenberg DS. The expanding amyloid family: Structure, stability, function, and pathogenesis. Cell 2021; 184:4857-4873. [PMID: 34534463 PMCID: PMC8772536 DOI: 10.1016/j.cell.2021.08.013] [Citation(s) in RCA: 214] [Impact Index Per Article: 53.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 07/26/2021] [Accepted: 08/11/2021] [Indexed: 02/05/2023]
Abstract
The hidden world of amyloid biology has suddenly snapped into atomic-level focus, revealing over 80 amyloid protein fibrils, both pathogenic and functional. Unlike globular proteins, amyloid proteins flatten and stack into unbranched fibrils. Stranger still, a single protein sequence can adopt wildly different two-dimensional conformations, yielding distinct fibril polymorphs. Thus, an amyloid protein may define distinct diseases depending on its conformation. At the heart of this conformational variability lies structural frustrations. In functional amyloids, evolution tunes frustration levels to achieve either stability or sensitivity according to the fibril's biological function, accounting for the vast versatility of the amyloid fibril scaffold.
Collapse
Affiliation(s)
- Michael R Sawaya
- Departments of Chemistry and Biochemistry and Biological Chemistry, UCLA, Los Angeles, CA 90095, USA; Howard Hughes Medical Institute, UCLA, Los Angeles, CA 90095, USA; UCLA-DOE Institute, UCLA, Los Angeles, CA 90095, USA; Molecular Biology Institute, UCLA, Los Angeles, CA 90095, USA
| | - Michael P Hughes
- Departments of Chemistry and Biochemistry and Biological Chemistry, UCLA, Los Angeles, CA 90095, USA; Howard Hughes Medical Institute, UCLA, Los Angeles, CA 90095, USA; UCLA-DOE Institute, UCLA, Los Angeles, CA 90095, USA; Molecular Biology Institute, UCLA, Los Angeles, CA 90095, USA
| | - Jose A Rodriguez
- Departments of Chemistry and Biochemistry and Biological Chemistry, UCLA, Los Angeles, CA 90095, USA; Howard Hughes Medical Institute, UCLA, Los Angeles, CA 90095, USA; UCLA-DOE Institute, UCLA, Los Angeles, CA 90095, USA; Molecular Biology Institute, UCLA, Los Angeles, CA 90095, USA
| | - Roland Riek
- Laboratory of Physical Chemistry, ETH Zurich, Vladimir Prelog Weg 2, CH-8093 Zurich, Switzerland
| | - David S Eisenberg
- Departments of Chemistry and Biochemistry and Biological Chemistry, UCLA, Los Angeles, CA 90095, USA; Howard Hughes Medical Institute, UCLA, Los Angeles, CA 90095, USA; UCLA-DOE Institute, UCLA, Los Angeles, CA 90095, USA; Molecular Biology Institute, UCLA, Los Angeles, CA 90095, USA.
| |
Collapse
|
13
|
Lu J, Xue Y, Bernardino K, Zhang NN, Gomes WR, Ramesar NS, Liu S, Hu Z, Sun T, de Moura AF, Kotov NA, Liu K. Enhanced optical asymmetry in supramolecular chiroplasmonic assemblies with long-range order. Science 2021; 371:1368-1374. [DOI: 10.1126/science.abd8576] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 02/09/2021] [Indexed: 12/12/2022]
Affiliation(s)
- Jun Lu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, China
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Yao Xue
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, China
| | - Kalil Bernardino
- Institute of Chemistry, University of São Paulo, 05508-000, São Paulo, SP, Brazil
| | - Ning-Ning Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, China
| | - Weverson R. Gomes
- Department of Chemistry, Federal University of São Carlos, 13565-905, São Carlos, SP, Brazil
| | - Naomi S. Ramesar
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Shuhan Liu
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Immunology, The First Hospital, Jilin University, Changchun, China
| | - Zheng Hu
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Immunology, The First Hospital, Jilin University, Changchun, China
| | - Tianmeng Sun
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Immunology, The First Hospital, Jilin University, Changchun, China
| | - Andre Farias de Moura
- Department of Chemistry, Federal University of São Carlos, 13565-905, São Carlos, SP, Brazil
| | - Nicholas A. Kotov
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Kun Liu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, China
- Optical Functional Theranostics Joint Laboratory of Medicine and Chemistry, The First Hospital, Jilin University, Changchun, China
- Chiral Nanomaterials Research Center, International Center of Future Science, Jilin University, Changchun, China
| |
Collapse
|
14
|
Li X, Lao Z, Zou Y, Dong X, Li L, Wei G. Mechanistic Insights into the Co-Aggregation of Aβ and hIAPP: An All-Atom Molecular Dynamic Study. J Phys Chem B 2021; 125:2050-2060. [PMID: 33616398 DOI: 10.1021/acs.jpcb.0c11132] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Patients with Alzheimer's disease (AD) have a high risk of developing Type II diabetes (T2D). The co-aggregation of the two disease-related proteins, Aβ and hIAPP, has been proposed as a potential molecular mechanism. However, the detailed Aβ-hIAPP interactions and structural characteristics of co-aggregates are mostly unknown at atomic level. Here, we explore the conformational ensembles of the Aβ-hIAPP heterodimer and Aβ or hIAPP homodimer by performing all-atom explicit-solvent replica exchange molecular dynamic simulations. Our simulations show that the interaction propensity of Aβ-hIAPP in the heterodimer is comparable with that of Aβ-Aβ/hIAPP-hIAPP in the homodimer. Similar hot spot residues of Aβ/hIAPP in the homodimer and heterodimer are identified, indicating that both Aβ and hIAPP have similar molecular recognition sites for self-aggregation and co-aggregation. Aβ in the heterodimer possesses three high β-sheet probability regions: the N-terminal region E3-H6, the central hydrophobic core region K16-E22, and the C-terminal hydrophobic region I31-A41, which is highly similar to Aβ in the homodimer. More importantly, in the heterodimer, the regions E3-H6, F19-E22, and I31-M35 of Aβ and the amyloid core region N20-T30 of hIAPP display higher β-sheet probability than they do in homodimer, implying their crucial roles in the formation of β-sheet-rich co-aggregates. Our study sheds light on the co-aggregation of Aβ and hIAPP at an atomic level, which will be helpful for an in-depth understanding of the molecular mechanism for epidemiological correlation of AD and T2D.
Collapse
Affiliation(s)
- Xuhua Li
- State Key Laboratory of Surface Physics and Department of Physics, Fudan University, 2005 Songhu Road, Shanghai 200438, China.,MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an 710049, China
| | - Zenghui Lao
- State Key Laboratory of Surface Physics and Department of Physics, Fudan University, 2005 Songhu Road, Shanghai 200438, China
| | - Yu Zou
- Department of Sport and Exercise Science, College of Education, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310007 Zhejiang, China
| | - Xuewei Dong
- State Key Laboratory of Surface Physics and Department of Physics, Fudan University, 2005 Songhu Road, Shanghai 200438, China
| | - Le Li
- State Key Laboratory of Surface Physics and Department of Physics, Fudan University, 2005 Songhu Road, Shanghai 200438, China
| | - Guanghong Wei
- State Key Laboratory of Surface Physics and Department of Physics, Fudan University, 2005 Songhu Road, Shanghai 200438, China
| |
Collapse
|
15
|
Konstantoulea K, Louros N, Rousseau F, Schymkowitz J. Heterotypic interactions in amyloid function and disease. FEBS J 2021; 289:2025-2046. [PMID: 33460517 DOI: 10.1111/febs.15719] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 01/07/2021] [Accepted: 01/15/2021] [Indexed: 11/27/2022]
Abstract
Amyloid aggregation results from the self-assembly of identical aggregation-prone sequences into cross-beta-sheet structures. The process is best known for its association with a wide range of human pathologies but also as a functional mechanism in all kingdoms of life. Less well elucidated is the role of heterotypic interactions between amyloids and other proteins and macromolecules and how this contributes to disease. We here review current data with a focus on neurodegenerative amyloid-associated diseases. Evidence indicates that heterotypic interactions occur in a wide range of amyloid processes and that these interactions modify fundamental aspects of amyloid aggregation including seeding, aggregation rates and toxicity. More work is required to understand the mechanistic origin of these interactions, but current understanding suggests that both supersaturation and sequence-specific binding can contribute to heterotypic amyloid interactions. Further unravelling these mechanisms may help to answer outstanding questions in the field including the selective vulnerability of cells types and tissues and the stereotypical spreading patterns of amyloids in disease.
Collapse
Affiliation(s)
- Katerina Konstantoulea
- VIB Center for Brain and Disease Research, Leuven, Belgium.,Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Nikolaos Louros
- VIB Center for Brain and Disease Research, Leuven, Belgium.,Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Frederic Rousseau
- VIB Center for Brain and Disease Research, Leuven, Belgium.,Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Joost Schymkowitz
- VIB Center for Brain and Disease Research, Leuven, Belgium.,Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| |
Collapse
|
16
|
Sun Y, Huang J, Duan X, Ding F. Direct Observation of β-Barrel Intermediates in the Self-Assembly of Toxic SOD1 28-38 and Absence in Nontoxic Glycine Mutants. J Chem Inf Model 2021; 61:966-975. [PMID: 33445870 DOI: 10.1021/acs.jcim.0c01319] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Soluble low-molecular-weight oligomers formed during the early stage of amyloid aggregation are considered the major toxic species in amyloidosis. The structure-function relationship between oligomeric assemblies and the cytotoxicity in amyloid diseases are still elusive due to the heterogeneous and transient nature of these aggregation intermediates. To uncover the structural characteristics of toxic oligomeric intermediates, we compared the self-assembly dynamics and structures of SOD128-38, a cytotoxic fragment of the superoxide dismutase 1 (SOD1) associated with the amyotrophic lateral sclerosis, with its two nontoxic mutants G33V and G33W using molecular dynamics simulations. Single-point glycine substitutions in SOD128-38 have been reported to abolish the amyloid toxicity. Our simulation results showed that the toxic SOD128-38 and its nontoxic mutants followed different aggregation pathways featuring distinct aggregation intermediates. Specifically, wild-type SOD128-38 initially self-assembled into random-coil-rich oligomers, among which fibrillar aggregates composed of well-defined curved single-layer β-sheets were nucleated via coil-to-sheet conversions and the formation of β-barrels as intermediates. In contrast, the nontoxic G33V/G33W mutants readily assembled into small β-sheet-rich oligomers and then coagulated with each other into cross-β fibrils formed by two-layer β-sheets without forming β-barrels as the intermediates. The direct observation of β-barrel oligomers during the assembly of toxic SOD128-38 fragments but not the nontoxic glycine-substitution mutants strongly supports β-barrels as the toxic oligomers in amyloidosis, probably via interactions with the cell membrane and forming amyloid pores. With well-defined structures, the β-barrel might serve as a novel therapeutic target against amyloid-related diseases.
Collapse
Affiliation(s)
- Yunxiang Sun
- School of Physical Science and Technology, Ningbo University, Ningbo 315211, China.,Department of Physics and Astronomy, Clemson University, Clemson, South Carolina 29634, United States
| | - Junchao Huang
- School of Physical Science and Technology, Ningbo University, Ningbo 315211, China.,Department of Physics and Astronomy, Clemson University, Clemson, South Carolina 29634, United States
| | - Xiangmei Duan
- School of Physical Science and Technology, Ningbo University, Ningbo 315211, China
| | - Feng Ding
- Department of Physics and Astronomy, Clemson University, Clemson, South Carolina 29634, United States
| |
Collapse
|
17
|
Tang Y, Zhang D, Zhang Y, Liu Y, Gong X, Chang Y, Ren B, Zheng J. Introduction and Fundamentals of Human Islet Amyloid Polypeptide Inhibitors. ACS APPLIED BIO MATERIALS 2020; 3:8286-8308. [DOI: 10.1021/acsabm.0c01234] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Yijing Tang
- Department of Chemical, Biomolecular, and Corrosion Engineering, The University of Akron, Akron, Ohio 44325-3906, United States
| | - Dong Zhang
- Department of Chemical, Biomolecular, and Corrosion Engineering, The University of Akron, Akron, Ohio 44325-3906, United States
| | - Yanxian Zhang
- Department of Chemical, Biomolecular, and Corrosion Engineering, The University of Akron, Akron, Ohio 44325-3906, United States
| | - Yonglan Liu
- Department of Chemical, Biomolecular, and Corrosion Engineering, The University of Akron, Akron, Ohio 44325-3906, United States
| | - Xiong Gong
- Department of Polymer Engineering, The University of Akron, Akron, Ohio 44325-0301, United States
| | - Yung Chang
- Department of Chemical Engineering, R&D Center for Membrane Technology, Chung Yuan Christian University, Taoyuan 320, Taiwan
| | - Baiping Ren
- Department of Chemical, Biomolecular, and Corrosion Engineering, The University of Akron, Akron, Ohio 44325-3906, United States
| | - Jie Zheng
- Department of Chemical, Biomolecular, and Corrosion Engineering, The University of Akron, Akron, Ohio 44325-3906, United States
| |
Collapse
|
18
|
Suire CN, Brizuela MK, Leissring MA. Quantitative, High-Throughput Assays for Proteolytic Degradation of Amylin. Methods Protoc 2020; 3:mps3040081. [PMID: 33255272 PMCID: PMC7711817 DOI: 10.3390/mps3040081] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 11/17/2020] [Accepted: 11/20/2020] [Indexed: 02/07/2023] Open
Abstract
Amylin is a pancreatic peptide hormone that regulates glucose homeostasis but also aggregates to form islet amyloid in type-2 diabetes. Given its role in both health and disease, there is renewed interest in proteolytic degradation of amylin by insulin-degrading enzyme (IDE) and other proteases. Here, we describe the development and detailed characterization of three novel assays for amylin degradation, two based on a fluoresceinated and biotinylated form of rodent amylin (fluorescein-rodent amylin-biotin, FrAB), which can be used for any amylin protease, and another based on an internally quenched fluorogenic substrate (FRET-based amylin, FRAM), which is more specific for IDE. The FrAB-based substrate can be used in a readily implemented fluorescence-based protocol or in a fluorescence polarization (FP)-based protocol that is more amenable to high-throughput screening (HTS), whereas the FRAM substrate has the advantage of permitting continuous monitoring of proteolytic activity. All three assays yield highly quantitative data and are resistant to DMSO, and the FRAM and FP-based FrAB assay are ideally suited to HTS applications.
Collapse
Affiliation(s)
- Caitlin N. Suire
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine (UCI MIND), Irvine, CA 92697, USA; (C.N.S.); (M.K.B.)
- Department of Neurobiology and Behavior, University of California, Irvine, CA 92697, USA
| | - Monica K. Brizuela
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine (UCI MIND), Irvine, CA 92697, USA; (C.N.S.); (M.K.B.)
- Department of Neurobiology and Behavior, University of California, Irvine, CA 92697, USA
| | - Malcolm A. Leissring
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine (UCI MIND), Irvine, CA 92697, USA; (C.N.S.); (M.K.B.)
- Correspondence:
| |
Collapse
|
19
|
Saini RK, Goyal D, Goyal B. Targeting Human Islet Amyloid Polypeptide Aggregation and Toxicity in Type 2 Diabetes: An Overview of Peptide-Based Inhibitors. Chem Res Toxicol 2020; 33:2719-2738. [PMID: 33124419 DOI: 10.1021/acs.chemrestox.0c00416] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Type 2 diabetes (T2D) is a chronic metabolic disease characterized by insulin resistance and a progressive loss of pancreatic islet β-cell mass, which leads to insufficient secretion of insulin and hyperglycemia. Emerging evidence suggests that toxic oligomers and fibrils of human islet amyloid polypeptide (hIAPP) contribute to the death of β-cells and lead to T2D pathogenesis. These observations have opened new avenues for the development of islet amyloid therapies for the treatment of T2D. The peptide-based inhibitors are of great value as therapeutic agents against hIAPP aggregation in T2D owing to their biocompatibility, feasibility of synthesis and modification, high specificity, low toxicity, proteolytic stability (modified peptides), and weak immunogenicity as well as the large size of involved interfaces during self-aggregation of hIAPP. An understanding of what has been done and achieved will provide key insights into T2D pathology and assist in the discovery of more potent drug candidates for the treatment of T2D. In this article, we review various peptide-based inhibitors of hIAPP aggregation, including those derived from the hIAPP sequence and those not based on the sequence, consisting of both natural as well as unnatural amino acids and their derivatives. The present review will be beneficial in advancing the field of peptide medicine for the treatment of T2D.
Collapse
Affiliation(s)
- Rajneet Kaur Saini
- Department of Chemistry, Faculty of Basic and Applied Sciences, Sri Guru Granth Sahib World University, Fatehgarh Sahib 140406, Punjab India
| | - Deepti Goyal
- Department of Chemistry, Faculty of Basic and Applied Sciences, Sri Guru Granth Sahib World University, Fatehgarh Sahib 140406, Punjab India
| | - Bhupesh Goyal
- School of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala 147004, Punjab India
| |
Collapse
|
20
|
Enlightening amyloid fibrils linked to type 2 diabetes and cross-interactions with Aβ. Nat Struct Mol Biol 2020; 27:1006-1008. [DOI: 10.1038/s41594-020-00523-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
21
|
Andreychuk YV, Zadorsky SP, Zhuk AS, Stepchenkova EI, Inge-Vechtomov SG. Relationship between Type I and Type II Template Processes: Amyloids and Genome Stability. Mol Biol 2020. [DOI: 10.1134/s0026893320050027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
22
|
Fibril structures of diabetes-related amylin variants reveal a basis for surface-templated assembly. Nat Struct Mol Biol 2020; 27:1048-1056. [PMID: 32929282 DOI: 10.1038/s41594-020-0496-3] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 08/04/2020] [Indexed: 12/19/2022]
Abstract
Aggregation of the peptide hormone amylin into amyloid deposits is a pathological hallmark of type-2 diabetes (T2D). While no causal link between T2D and amyloid has been established, the S20G mutation in amylin is associated with early-onset T2D. Here we report cryo-EM structures of amyloid fibrils of wild-type human amylin and its S20G variant. The wild-type fibril structure, solved to 3.6-Å resolution, contains two protofilaments, each built from S-shaped subunits. S20G fibrils, by contrast, contain two major polymorphs. Their structures, solved at 3.9-Å and 4.0-Å resolution, respectively, share a common two-protofilament core that is distinct from the wild-type structure. Remarkably, one polymorph contains a third subunit with another, distinct, cross-β conformation. The presence of two different backbone conformations within the same fibril may explain the increased aggregation propensity of S20G, and illustrates a potential structural basis for surface-templated fibril assembly.
Collapse
|
23
|
Bishoyi AK, Roham PH, Rachineni K, Save S, Hazari MA, Sharma S, Kumar A. Human islet amyloid polypeptide (hIAPP) - a curse in type II diabetes mellitus: insights from structure and toxicity studies. Biol Chem 2020; 402:133-153. [PMID: 33544470 DOI: 10.1515/hsz-2020-0174] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 08/11/2020] [Indexed: 12/13/2022]
Abstract
The human islet amyloid polypeptide (hIAPP) or amylin, a neuroendocrine peptide hormone, is known to misfold and form amyloidogenic aggregates that have been observed in the pancreas of 90% subjects with Type 2 Diabetes Mellitus (T2DM). Under normal physiological conditions, hIAPP is co-stored and co-secreted with insulin; however, under chronic hyperglycemic conditions associated with T2DM, the overexpression of hIAPP occurs that has been associated with the formation of amyloid deposits; as well as the death and dysfunction of pancreatic β-islets in T2DM. Hitherto, various biophysical and structural studies have shown that during this process of aggregation, the peptide conformation changes from random structure to helix, then to β-sheet, subsequently to cross β-sheets, which finally form left-handed helical aggregates. The intermediates, formed during this process, have been shown to induce higher cytotoxicity in the β-cells by inducing cell membrane disruption, endoplasmic reticulum stress, mitochondrial dysfunction, oxidative stress, islet inflammation, and DNA damage. As a result, several research groups have attempted to target both hIAPP aggregation phenomenon and the destabilization of preformed fibrils as a therapeutic intervention for T2DM management. In this review, we have summarized structural aspects of various forms of hIAPP viz. monomer, oligomers, proto-filaments, and fibrils of hIAPP. Subsequently, cellular toxicity caused by toxic conformations of hIAPP has been elaborated upon. Finally, the need for performing structural and toxicity studies in vivo to fill in the gap between the structural and cellular aspects has been discussed.
Collapse
Affiliation(s)
- Ajit Kumar Bishoyi
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, Maharashtra, India
| | - Pratiksha H Roham
- Department of Biotechnology, Savitribai Phule Pune University (Formerly University of Pune), Ganeshkhind, Pune, 411007, Maharashtra, India
| | - Kavitha Rachineni
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, Maharashtra, India
| | - Shreyada Save
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, Maharashtra, India
| | - M Asrafuddoza Hazari
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, Maharashtra, India
| | - Shilpy Sharma
- Department of Biotechnology, Savitribai Phule Pune University (Formerly University of Pune), Ganeshkhind, Pune, 411007, Maharashtra, India
| | - Ashutosh Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, Maharashtra, India
| |
Collapse
|
24
|
Ke PC, Zhou R, Serpell LC, Riek R, Knowles TPJ, Lashuel HA, Gazit E, Hamley IW, Davis TP, Fändrich M, Otzen DE, Chapman MR, Dobson CM, Eisenberg DS, Mezzenga R. Half a century of amyloids: past, present and future. Chem Soc Rev 2020; 49:5473-5509. [PMID: 32632432 PMCID: PMC7445747 DOI: 10.1039/c9cs00199a] [Citation(s) in RCA: 355] [Impact Index Per Article: 71.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Amyloid diseases are global epidemics with profound health, social and economic implications and yet remain without a cure. This dire situation calls for research into the origin and pathological manifestations of amyloidosis to stimulate continued development of new therapeutics. In basic science and engineering, the cross-β architecture has been a constant thread underlying the structural characteristics of pathological and functional amyloids, and realizing that amyloid structures can be both pathological and functional in nature has fuelled innovations in artificial amyloids, whose use today ranges from water purification to 3D printing. At the conclusion of a half century since Eanes and Glenner's seminal study of amyloids in humans, this review commemorates the occasion by documenting the major milestones in amyloid research to date, from the perspectives of structural biology, biophysics, medicine, microbiology, engineering and nanotechnology. We also discuss new challenges and opportunities to drive this interdisciplinary field moving forward.
Collapse
Affiliation(s)
- Pu Chun Ke
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
- Zhongshan Hospital, Fudan University, 111 Yixueyuan Rd, Xuhui District, Shanghai, China
| | - Ruhong Zhou
- Institute of Quantitative Biology, Zhejiang University, Hangzhou 310058, China; Department of Chemistry, Columbia University, New York, New York, 10027, USA
| | - Louise C. Serpell
- School of Life Sciences, University of Sussex, Falmer, East Sussex BN1 9QG, UK
| | - Roland Riek
- Laboratory of Physical Chemistry, Department of Chemistry and Applied Biosciences, ETH Zurich, Wolfgang-Pauli-Str. 10, 8093 Zurich, Switzerland
| | - Tuomas P. J. Knowles
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
- Cavendish Laboratory, University of Cambridge, J J Thomson Avenue, CB3 0HE, Cambridge, UK
| | - Hilal A. Lashuel
- Laboratory of Molecular Neurobiology and Neuroproteomics, Brain Mind Institute, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Ehud Gazit
- Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences; Department of Materials Science and Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, 69978 Tel Aviv, Israel
| | - Ian W. Hamley
- School of Chemistry, Food Biosciences and Pharmacy, University of Reading, Whiteknights, Reading RG6 6AD, UK
| | - Thomas P. Davis
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane Qld 4072, Australia
| | - Marcus Fändrich
- Institute of Protein Biochemistry, Ulm University, 89081, Ulm, Germany
| | - Daniel Erik Otzen
- Department of Molecular Biology, Center for Insoluble Protein Structures (inSPIN), Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus C, Denmark
| | - Matthew R. Chapman
- Department of Molecular, Cellular and Developmental Biology, Centre for Microbial Research, University of Michigan, Ann Arbor, MI 48109-1048, USA
| | - Christopher M. Dobson
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | - David S. Eisenberg
- Departments of Chemistry and Biochemistry and Biological Chemistry, UCLA-DOE Institute and Howard Hughes Medical Institute, UCLA, Los Angeles, CA, USA
| | - Raffaele Mezzenga
- Department of Health Science & Technology, ETH Zurich, Schmelzbergstrasse 9, LFO, E23, 8092 Zurich, Switzerland
- Department of Materials, ETH Zurich, Wolfgang Pauli Strasse 10, 8093 Zurich, Switzerland
| |
Collapse
|
25
|
Yu L, Zhang W, Luo W, Dupont RL, Xu Y, Wang Y, Tu B, Xu H, Wang X, Fang Q, Yang Y, Wang C, Wang C. Molecular recognition of human islet amyloid polypeptide assembly by selective oligomerization of thioflavin T. SCIENCE ADVANCES 2020; 6:eabc1449. [PMID: 32821844 PMCID: PMC7406363 DOI: 10.1126/sciadv.abc1449] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 06/22/2020] [Indexed: 06/11/2023]
Abstract
Selective oligomerization is a common phenomenon existing widely in the formation of intricate biological structures in nature. The precise design of drug molecules with an oligomerization state that specifically recognizes its receptor, however, remains substantially challenging. Here, we used scanning tunneling microscopy (STM) to identify the oligomerization states of an amyloid probe thioflavin T (ThT) on hIAPP8-37 assembly to be exclusively even numbers. We demonstrate that both adhesive interactions between ThT and the protein substrate and cohesive interactions among ThT molecules govern the oligomerization state of the bounded ThT. Specifically, the work of the cohesive interaction between two head/tail ThTs is determined to be 6.4 k B T, around 50% larger than that of the cohesive interaction between two side-by-side ThTs (4.2 k B T). Overall, our STM imaging and theoretical understanding at the single-molecule level provide valuable insights into the design of drug compounds using the selective oligomerization of molecular probes to recognize protein self-assembly.
Collapse
Affiliation(s)
- Lanlan Yu
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, P. R. China
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing 100005, P. R. China
| | - Wenbo Zhang
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, P. R. China
| | - Wendi Luo
- CAS Key Laboratory of Biological Effects of Nanomaterials and Nanosafety, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, Laboratory of Theoretical and Computational Nanoscience, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P. R. China
- Sino-Danish Center for Education and Research, University of Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Robert L. Dupont
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Yang Xu
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Yibing Wang
- State Key Laboratory of Bioreactor Engineering, Biomedical Nanotechnology Center, Shanghai Collaborative Innovation Center for Biomanufacturing Technology, School of Biotechnology, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Bin Tu
- CAS Key Laboratory of Biological Effects of Nanomaterials and Nanosafety, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, Laboratory of Theoretical and Computational Nanoscience, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P. R. China
| | - Haiyan Xu
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing 100005, P. R. China
| | - Xiaoguang Wang
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Qiaojun Fang
- CAS Key Laboratory of Biological Effects of Nanomaterials and Nanosafety, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, Laboratory of Theoretical and Computational Nanoscience, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P. R. China
| | - Yanlian Yang
- CAS Key Laboratory of Biological Effects of Nanomaterials and Nanosafety, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, Laboratory of Theoretical and Computational Nanoscience, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P. R. China
| | - Chen Wang
- CAS Key Laboratory of Biological Effects of Nanomaterials and Nanosafety, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, Laboratory of Theoretical and Computational Nanoscience, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P. R. China
| | - Chenxuan Wang
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, P. R. China
| |
Collapse
|
26
|
Pandey P, Nguyen N, Hansmann UHE. d-Retro Inverso Amylin and the Stability of Amylin Fibrils. J Chem Theory Comput 2020; 16:5358-5368. [PMID: 32667784 DOI: 10.1021/acs.jctc.0c00523] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Motivated by the role that amylin aggregates play in type-II diabetes, we compare the stability of regular amylin fibrils with the stability of fibrils where l-amino acid chains are replaced by d-retro inverso (DRI) amylin, that is, peptides where the sequence of amino acids is reversed, and at the same time, the l-amino acids are replaced by their mirror images. Our molecular dynamics simulations show that despite leading to only a marginal difference in the fibril structure and stability, aggregating DRI-amylin peptides have different patterns of contacts and hydrogen bonding. Because of these differences, DRI-amylin, when interacting with regular (l) amylin, alters the elongation process and lowers the stability of hybrid amylin fibrils. Our results not only suggest the potential use of DRI-amylin as an inhibitor of amylin fibril formation but also point to the possibility of using the insertion of DRI proteins in l-assemblies as a way to probe the role of certain kinds of hydrogen bonds in supramolecular assemblies or aggregates.
Collapse
Affiliation(s)
- Preeti Pandey
- Department of Chemistry & Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Natalie Nguyen
- Department of Chemistry & Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Ulrich H E Hansmann
- Department of Chemistry & Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, United States
| |
Collapse
|
27
|
Röder C, Kupreichyk T, Gremer L, Schäfer LU, Pothula KR, Ravelli RBG, Willbold D, Hoyer W, Schröder GF. Cryo-EM structure of islet amyloid polypeptide fibrils reveals similarities with amyloid-β fibrils. Nat Struct Mol Biol 2020; 27:660-667. [PMID: 32541895 DOI: 10.1101/2020.02.11.944546] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 04/30/2020] [Indexed: 05/18/2023]
Abstract
Amyloid deposits consisting of fibrillar islet amyloid polypeptide (IAPP) in pancreatic islets are associated with beta-cell loss and have been implicated in type 2 diabetes (T2D). Here, we applied cryo-EM to reconstruct densities of three dominant IAPP fibril polymorphs, formed in vitro from synthetic human IAPP. An atomic model of the main polymorph, built from a density map of 4.2-Å resolution, reveals two S-shaped, intertwined protofilaments. The segment 21-NNFGAIL-27, essential for IAPP amyloidogenicity, forms the protofilament interface together with Tyr37 and the amidated C terminus. The S-fold resembles polymorphs of Alzheimer's disease (AD)-associated amyloid-β (Aβ) fibrils, which might account for the epidemiological link between T2D and AD and reports on IAPP-Aβ cross-seeding in vivo. The results structurally link the early-onset T2D IAPP genetic polymorphism (encoding Ser20Gly) with the AD Arctic mutation (Glu22Gly) of Aβ and support the design of inhibitors and imaging probes for IAPP fibrils.
Collapse
Affiliation(s)
- Christine Röder
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, Jülich, Germany
- Jülich Centre for Structural Biology (JuStruct), Forschungszentrum Jülich, Jülich, Germany
- Institut für Physikalische Biologie, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Tatsiana Kupreichyk
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, Jülich, Germany
- Jülich Centre for Structural Biology (JuStruct), Forschungszentrum Jülich, Jülich, Germany
- Institut für Physikalische Biologie, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Lothar Gremer
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, Jülich, Germany
- Jülich Centre for Structural Biology (JuStruct), Forschungszentrum Jülich, Jülich, Germany
- Institut für Physikalische Biologie, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Luisa U Schäfer
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, Jülich, Germany
- Jülich Centre for Structural Biology (JuStruct), Forschungszentrum Jülich, Jülich, Germany
| | - Karunakar R Pothula
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, Jülich, Germany
- Jülich Centre for Structural Biology (JuStruct), Forschungszentrum Jülich, Jülich, Germany
| | - Raimond B G Ravelli
- The Multimodal Molecular Imaging Institute, Maastricht University, Maastricht, the Netherlands
| | - Dieter Willbold
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, Jülich, Germany
- Jülich Centre for Structural Biology (JuStruct), Forschungszentrum Jülich, Jülich, Germany
- Institut für Physikalische Biologie, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Wolfgang Hoyer
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, Jülich, Germany.
- Jülich Centre for Structural Biology (JuStruct), Forschungszentrum Jülich, Jülich, Germany.
- Institut für Physikalische Biologie, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
| | - Gunnar F Schröder
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, Jülich, Germany.
- Jülich Centre for Structural Biology (JuStruct), Forschungszentrum Jülich, Jülich, Germany.
- Physics Department, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
| |
Collapse
|
28
|
Cryo-EM structure of islet amyloid polypeptide fibrils reveals similarities with amyloid-β fibrils. Nat Struct Mol Biol 2020; 27:660-667. [PMID: 32541895 DOI: 10.1038/s41594-020-0442-4] [Citation(s) in RCA: 121] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 04/30/2020] [Indexed: 01/09/2023]
Abstract
Amyloid deposits consisting of fibrillar islet amyloid polypeptide (IAPP) in pancreatic islets are associated with beta-cell loss and have been implicated in type 2 diabetes (T2D). Here, we applied cryo-EM to reconstruct densities of three dominant IAPP fibril polymorphs, formed in vitro from synthetic human IAPP. An atomic model of the main polymorph, built from a density map of 4.2-Å resolution, reveals two S-shaped, intertwined protofilaments. The segment 21-NNFGAIL-27, essential for IAPP amyloidogenicity, forms the protofilament interface together with Tyr37 and the amidated C terminus. The S-fold resembles polymorphs of Alzheimer's disease (AD)-associated amyloid-β (Aβ) fibrils, which might account for the epidemiological link between T2D and AD and reports on IAPP-Aβ cross-seeding in vivo. The results structurally link the early-onset T2D IAPP genetic polymorphism (encoding Ser20Gly) with the AD Arctic mutation (Glu22Gly) of Aβ and support the design of inhibitors and imaging probes for IAPP fibrils.
Collapse
|
29
|
Bolarinwa O, Li C, Khadka N, Li Q, Wang Y, Pan J, Cai J. γ-AApeptides-based Small Molecule Ligands That Disaggregate Human Islet Amyloid Polypeptide. Sci Rep 2020; 10:95. [PMID: 31919432 PMCID: PMC6952368 DOI: 10.1038/s41598-019-56500-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Accepted: 11/26/2019] [Indexed: 01/21/2023] Open
Abstract
The abnormal folding and aggregation of functional proteins into amyloid is a typical feature of many age-related diseases, including Type II diabetes. Growing evidence has revealed that the prevention of aggregate formation in culprit proteins could retard the progression of amyloid diseases. Human Amylin, also known as human islet amyloid polypeptide (hIAPP), is the major factor for categorizing Type II diabetes as an amyloid disease. Specifically, hIAPP has a great aggregation potential, which always results in a lethal situation for the pancreas. Many peptide inhibitors have been constructed from the various segments of the full-length hIAPP peptide; however, only a few have their origin from the screening of combinatorial peptidomimetic library. In this study, based on HW-155, which was previously discovered from a one-bead-one compound (OBOC) library to inhibit Aβ40 aggregation, we investigated eight (8) analogues and evaluated their amyloid-prevention capabilities for inhibiting fibrillization of hIAPP. Characterization studies revealed that all analogues of HW-155, as well as HW-155, were effective inhibitors of the fibril formation by hIAPP.
Collapse
Affiliation(s)
- Olapeju Bolarinwa
- Department of Chemistry, University of South Florida, 4202 East Fowler Avenue, Tampa, Florida, 33620, United States
| | - Chunpu Li
- Department of Chemistry, University of South Florida, 4202 East Fowler Avenue, Tampa, Florida, 33620, United States
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, P. R. China
| | - Nawal Khadka
- Department of Physics, University of South Florida, 4202 East Fowler Avenue, Tampa, Florida, 33620, United States
| | - Qi Li
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, P. R. China
| | - Yan Wang
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, P. R. China
| | - Jianjun Pan
- Department of Physics, University of South Florida, 4202 East Fowler Avenue, Tampa, Florida, 33620, United States.
| | - Jianfeng Cai
- Department of Chemistry, University of South Florida, 4202 East Fowler Avenue, Tampa, Florida, 33620, United States.
| |
Collapse
|
30
|
Computational prediction and redesign of aberrant protein oligomerization. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2020; 169:43-83. [DOI: 10.1016/bs.pmbts.2019.11.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
31
|
Lao Z, Chen Y, Tang Y, Wei G. Molecular Dynamics Simulations Reveal the Inhibitory Mechanism of Dopamine against Human Islet Amyloid Polypeptide (hIAPP) Aggregation and Its Destabilization Effect on hIAPP Protofibrils. ACS Chem Neurosci 2019; 10:4151-4159. [PMID: 31436406 DOI: 10.1021/acschemneuro.9b00393] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The aberrant self-assembly of human islet amyloid polypeptide (hIAPP) into toxic oligomers, protofibrils, and mature fibrils is associated with the pathogenesis of type 2 diabetes (T2D). Inhibition of hIAPP aggregation and destabilization of preformed hIAPP fibrils are considered as two major therapeutic strategies for treating T2D. Previous experimental studies reported that dopamine prevented the formation of hIAPP oligomers and fibrils. However, the underlying inhibitory mechanism at the atomic level remains elusive. Herein we investigated the conformational ensembles of hIAPP dimer with and without dopamine using replica-exchange molecular dynamics simulations. The simulations demonstrated that dopamine preferentially bound to R11, L12, F15, H18, F23, I26, L27, and Y37 residues, inhibited the formation of β-sheets in the amyloidogenic regions spanning residues 11RLANFLVH18, 22NFGAIL27, and 30TNVGSNT36, and resulted in more disordered hIAPP dimers, thus hindering the amyloid formation of hIAPP. Protonated and deprotonated dopamine molecules displayed distinct binding capabilities but bound to similar residue sites on hIAPP. Additional microsecond molecular dynamics simulations showed that dopamine mainly bound to the β1 and turn regions of hIAPP protofibril and destabilized the protofibril structure. This study not only revealed the molecular mechanism of dopamine toward the inhibition of hIAPP aggregation but also demonstrated the protofibril-destabilizing effects of dopamine, which may be helpful for the design of drug candidates to treat T2D.
Collapse
Affiliation(s)
- Zenghui Lao
- Department of Physics, State Key Laboratory of Surface Physics, Key Laboratory for Computational Physical Sciences (Ministry of Education), Fudan University, 2005 Songhu Road, Shanghai 200438, People’s Republic of China
| | - Yujie Chen
- Department of Physics, State Key Laboratory of Surface Physics, Key Laboratory for Computational Physical Sciences (Ministry of Education), Fudan University, 2005 Songhu Road, Shanghai 200438, People’s Republic of China
| | - Yiming Tang
- Department of Physics, State Key Laboratory of Surface Physics, Key Laboratory for Computational Physical Sciences (Ministry of Education), Fudan University, 2005 Songhu Road, Shanghai 200438, People’s Republic of China
| | - Guanghong Wei
- Department of Physics, State Key Laboratory of Surface Physics, Key Laboratory for Computational Physical Sciences (Ministry of Education), Fudan University, 2005 Songhu Road, Shanghai 200438, People’s Republic of China
| |
Collapse
|
32
|
Xi XX, Sun J, Chen HC, Chen AD, Gao LP, Yin J, Jing YH. High-Fat Diet Increases Amylin Accumulation in the Hippocampus and Accelerates Brain Aging in hIAPP Transgenic Mice. Front Aging Neurosci 2019; 11:225. [PMID: 31507407 PMCID: PMC6718729 DOI: 10.3389/fnagi.2019.00225] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 08/08/2019] [Indexed: 12/23/2022] Open
Abstract
The accumulation of human islet amyloid polypeptide (hIAPP) in pancreatic islets under induction by a high-fat diet plays a critical role in the development of type-2 diabetes mellitus (T2DM). T2DM is a risk factor of late-onset Alzheimer’s disease (AD). Nevertheless, whether hIAPP in combination with hyperlipidemia may lead to AD-like pathological changes in the brain remains unclear. hIAPP transgenic mice were fed with a high-fat diet for 6 or 12 months to establish the T2DM model. The accumulation of amylin, the numbers of Fluoro-Jade C (FJC)-positive and β-gal positive cells, and the deposition level of Aβ42 in the hippocampi of the transgenic mice were detected by using brain sections. Cytoplasmic and membrane proteins were extracted from the hippocampi of the transgenic mice, and the ratio of membrane GLUT4 expression to cytoplasmic GLUT4 expression was measured through Western blot analysis. Changes in the cognitive functions of hIAPP transgenic mice after 12 months of feeding with a high-fat diet were evaluated. hIAPP transgenic mice fed with a high-fat diet for 6 or 12 months showed elevated blood glucose levels and insulin resistance; increased amylin accumulation, number of FJC-positive and β-gal positive cells, and Aβ42 deposition in the hippocampi; and reduced membrane GLUT4 expression levels. hIAPP transgenic mice fed with a high-fat diet for 12 months showed reductions in social cognitive ability and passive learning ability. A high-fat diet increased amylin accumulation in the hippocampi of hIAPP transgenic mice, which presented AD-like pathology and behavior characterized by neural degeneration, brain aging, Aβ42 deposition, and impaired glucose utilization and cognition.
Collapse
Affiliation(s)
- Xiao-Xia Xi
- Center of Experimental Animal, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Jing Sun
- Center of Experimental Animal, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Hai-Chao Chen
- School of Basic Medical Sciences, Institute of Anatomy and Histology & Embryology, Neuroscience, Lanzhou University, Lanzhou, China
| | - An-Di Chen
- School of Basic Medical Sciences, Institute of Biochemistry and Molecular Biology, Lanzhou University, Lanzhou, China
| | - Li-Ping Gao
- School of Basic Medical Sciences, Institute of Biochemistry and Molecular Biology, Lanzhou University, Lanzhou, China
| | - Jie Yin
- School of Basic Medical Sciences, Institute of Anatomy and Histology & Embryology, Neuroscience, Lanzhou University, Lanzhou, China
| | - Yu-Hong Jing
- School of Basic Medical Sciences, Institute of Anatomy and Histology & Embryology, Neuroscience, Lanzhou University, Lanzhou, China.,Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| |
Collapse
|
33
|
Iadanza MG, Jackson MP, Hewitt EW, Ranson NA, Radford SE. A new era for understanding amyloid structures and disease. Nat Rev Mol Cell Biol 2019; 19:755-773. [PMID: 30237470 DOI: 10.1038/s41580-018-0060-8] [Citation(s) in RCA: 649] [Impact Index Per Article: 108.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The aggregation of proteins into amyloid fibrils and their deposition into plaques and intracellular inclusions is the hallmark of amyloid disease. The accumulation and deposition of amyloid fibrils, collectively known as amyloidosis, is associated with many pathological conditions that can be associated with ageing, such as Alzheimer disease, Parkinson disease, type II diabetes and dialysis-related amyloidosis. However, elucidation of the atomic structure of amyloid fibrils formed from their intact protein precursors and how fibril formation relates to disease has remained elusive. Recent advances in structural biology techniques, including cryo-electron microscopy and solid-state NMR spectroscopy, have finally broken this impasse. The first near-atomic-resolution structures of amyloid fibrils formed in vitro, seeded from plaque material and analysed directly ex vivo are now available. The results reveal cross-β structures that are far more intricate than anticipated. Here, we describe these structures, highlighting their similarities and differences, and the basis for their toxicity. We discuss how amyloid structure may affect the ability of fibrils to spread to different sites in the cell and between organisms in a prion-like manner, along with their roles in disease. These molecular insights will aid in understanding the development and spread of amyloid diseases and are inspiring new strategies for therapeutic intervention.
Collapse
Affiliation(s)
- Matthew G Iadanza
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Matthew P Jackson
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Eric W Hewitt
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Neil A Ranson
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Sheena E Radford
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK.
| |
Collapse
|
34
|
Paul S, Paul S. Molecular dynamics simulation study on the inhibitory effects of choline-O-sulfate on hIAPP protofibrilation. J Comput Chem 2019; 40:1957-1968. [PMID: 31062393 DOI: 10.1002/jcc.25851] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Revised: 04/10/2019] [Accepted: 04/16/2019] [Indexed: 11/06/2022]
Abstract
Type 2 diabetes mellitus (T2Dm) is a neurodegenerative disease, which occurs due to the self-association of human islet amyloid polypeptide (hIAPP), also known as human amylin. It was reported experimentally that choline-O-sulfate (COS), a small organic molecule having a tertiary amino group and sulfate group, can prevent the aggregation of human amylin without providing the mechanism of the action of COS in the inhibition process. In this work, we investigate the influence of COS on the full-length hIAPP peptide by performing 500 ns classical molecular dynamics simulations. From pure water simulation (without COS), we have identified the residues 11-20 and 23-36 that mainly participate in the fibril formation, but in the presence of 1.07 M COS these residues become totally free of β-sheet conformation. Our results also show that the sulfate oxygen of COS directly interacts with the peptide backbone, which leads to the local disruption of peptide-peptide interaction. Moreover, the presence of favorable peptide-COS vdW interaction energy and high coordination number of COS molecules in the first solvation shell of the peptide indicates the hydrophobic solvation of the peptide residues by COS molecules, which also play a crucial role in the prevention of β-sheet formation. Finally, from the potential of mean force (PMFs) calculations, we observe that the free energy between two peptides is more negative in the absence of COS and with increasing concentration of COS, it becomes unfavorable significantly indicating that the peptide dimer formation is most stable in pure water, which becomes less favorable in the presence of COS. © 2019 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Srijita Paul
- Department of Chemistry, Indian Institute of Technology, Guwahati, Assam, India 781039
| | - Sandip Paul
- Department of Chemistry, Indian Institute of Technology, Guwahati, Assam, India 781039
| |
Collapse
|
35
|
Khatun S, Singh A, Pawar N, Gupta AN. Aggregation of amylin: Spectroscopic investigation. Int J Biol Macromol 2019; 133:1242-1248. [PMID: 31028814 DOI: 10.1016/j.ijbiomac.2019.04.167] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 04/12/2019] [Accepted: 04/23/2019] [Indexed: 12/17/2022]
Abstract
Apart from its relevance to pathology, protein misfolding disease like Type-II Diabetes Mellitus, caused by amyloids of amylin protein has attracted more attention due to structural changes occurring during the aggregation process. We report extensive spectroscopy data of amylin during fibril formation through Raman, FTIR, CD, UV-vis absorption and photoluminescence (PL) spectroscopy. UV-vis and PL spectrum showed the sigmoidal growth of fibril with a lag time of ~2 days, which is consistent with earlier reported work using dynamic light scattering (DLS). Raman spectra revealed the formation of parallel and anti-parallel β-sheet from 0% to 20% with ageing (1st day to 21st day) at pH 6.5 ± 0.1. The results are corroborated by CD and FTIR data. These show the change in β-sheet by 23% at pH 6.5 ± 0.1, 26% at pH = 1.0 ± 0.1 and 30% at pH = 12 ± 0.1. It is also shown that the formation and conversion of other secondary structures into β-sheet is very sensitive towards the pH and ageing. The study may be used for the development of therapeutic strategies that could inhibit or even reverse the process of aggregation.
Collapse
Affiliation(s)
- Suparna Khatun
- Biophysics and Soft Matter Laboratory, Department of Physics, Indian Institute of Technology Kharagpur, 721302, India
| | - Anurag Singh
- Biophysics and Soft Matter Laboratory, Department of Physics, Indian Institute of Technology Kharagpur, 721302, India
| | - Nisha Pawar
- Biophysics and Soft Matter Laboratory, Department of Physics, Indian Institute of Technology Kharagpur, 721302, India
| | - Amar Nath Gupta
- Biophysics and Soft Matter Laboratory, Department of Physics, Indian Institute of Technology Kharagpur, 721302, India.
| |
Collapse
|
36
|
Repulsive interaction induces fibril formation and their growth. Int J Biol Macromol 2019; 123:20-25. [DOI: 10.1016/j.ijbiomac.2018.10.205] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 10/27/2018] [Accepted: 10/29/2018] [Indexed: 01/27/2023]
|
37
|
Huang Q, Wang H, Gao H, Cheng P, Zhu L, Wang C, Yang Y. In Situ Observation of Amyloid Nucleation and Fibrillation by FastScan Atomic Force Microscopy. J Phys Chem Lett 2019; 10:214-222. [PMID: 30543438 DOI: 10.1021/acs.jpclett.8b03143] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Amyloidogenic proteins are key components in various amyloid diseases. The aggregation process and the local structural changes of the toxic species from toxic oligomers to protofibrils and subsequently to mature fibrils are crucial for understanding the molecular mechanism of the amyloidgenic process and also for developing a treatment strategy. Exploration on amyloid aggregation dynamics in situ under real liquid condition is feasible for reflection of the whole process with biological correlations. Herein we report the in situ dynamic study and structure exploration of Amylin1-37 aggregation by FastScan atomic force microscopy. Amylin1-37 nucleation process was observed in which smaller oligomers or monomers were assimilated by the surrounding big oligomers. Amylin1-37 protofibril aggregation was positively correlated with monomer concentration, whereas no direct relationship was observed between fibril elongation and monomer concentration. Growing end and passivated end were found during Amylin1-37 fibrillation. In the assembly process, the growing end kept its structure, and its stiffness was lower than the aggregate body, whereas the passivated end might experience rearrangements of β-structures, which eventually enabled fibril growth from this end. This work is beneficial to the insights of amyloid fibrillation and may shed light on the development of drugs targeting the specific phase of amyloid aggregation.
Collapse
Affiliation(s)
- Qunxing Huang
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory of Biological Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience , National Center for Nanoscience and Technology , Beijing 100190 , China
- University of Chinese Academy of Sciences , 19 A Yuquan Rd , Shijingshan District, Beijing 100049 , China
| | - Huayi Wang
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory of Biological Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience , National Center for Nanoscience and Technology , Beijing 100190 , China
- University of Chinese Academy of Sciences , 19 A Yuquan Rd , Shijingshan District, Beijing 100049 , China
| | - Houqian Gao
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory of Biological Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience , National Center for Nanoscience and Technology , Beijing 100190 , China
- University of Chinese Academy of Sciences , 19 A Yuquan Rd , Shijingshan District, Beijing 100049 , China
| | - Peng Cheng
- State Key Laboratory of Tribology, Department of Mechanical Engineering , Tsinghua University , Beijing 100084 , China
| | - Ling Zhu
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory of Biological Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience , National Center for Nanoscience and Technology , Beijing 100190 , China
- University of Chinese Academy of Sciences , 19 A Yuquan Rd , Shijingshan District, Beijing 100049 , China
| | - Chen Wang
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory of Biological Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience , National Center for Nanoscience and Technology , Beijing 100190 , China
- University of Chinese Academy of Sciences , 19 A Yuquan Rd , Shijingshan District, Beijing 100049 , China
| | - Yanlian Yang
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory of Biological Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience , National Center for Nanoscience and Technology , Beijing 100190 , China
- University of Chinese Academy of Sciences , 19 A Yuquan Rd , Shijingshan District, Beijing 100049 , China
| |
Collapse
|
38
|
Bondarev SA, Bondareva OV, Zhouravleva GA, Kajava AV. BetaSerpentine: a bioinformatics tool for reconstruction of amyloid structures. Bioinformatics 2018; 34:599-608. [PMID: 29444233 DOI: 10.1093/bioinformatics/btx629] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 10/03/2017] [Indexed: 11/12/2022] Open
Abstract
Motivation Numerous experimental studies have suggested that polypeptide chains of large amyloidogenic regions zig-zag in β-serpentine arrangements. These β-serpentines are stacked axially and form the superpleated β-structure. Despite this progress in the understanding of amyloid folds, the determination of their 3D structure at the atomic level is still a problem due to the polymorphism of these fibrils and incompleteness of experimental structural data. Today, the way to get insight into the atomic structure of amyloids is a combination of experimental studies with bioinformatics. Results We developed a computer program BetaSerpentine that reconstructs β-serpentine arrangements from individual β-arches predicted by ArchCandy program and ranks them in order of preference. It was shown that the BetaSerpentine program in combination with the experimental data can be used to gain insight into the detailed 3D structure of amyloids. It opens avenues to the structure-based interpretation and design of the experiments. Availability and implementation BetaSerpentine webserver can be accessed through website: http://bioinfo.montp.cnrs.fr/b-serpentine. Source code is available in git.hub repository (github.com/stanislavspbgu/BetaSerpentine). Contact stanislavspbgu@gmail.com or andrey.kajava@crbm.cnrs.fr. Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Stanislav A Bondarev
- Laboratory of Amyloid Biology and Department of Genetics and Biotechnology, St. Petersburg State University, Saint Petersburg 199034, Russia
| | - Olga V Bondareva
- Laboratory of Molecular Systematics, Zoological Institute RAS, Saint Petersburg 199034, Russia
| | - Galina A Zhouravleva
- Laboratory of Amyloid Biology and Department of Genetics and Biotechnology, St. Petersburg State University, Saint Petersburg 199034, Russia
| | - Andrey V Kajava
- Structural Bioinformatics and Molecular Modeling, Centre de Recherche en Biologie Cellulaire de Montpellier, CNRS, Université Montpellier, Montpellier 34293, France.,Institut de Biologie Computationnelle, Montpellier 34095, France.,Bioengineering Department, University ITMO, Saint Petersburg, 197101, Russia
| |
Collapse
|
39
|
IAPP in type II diabetes: Basic research on structure, molecular interactions, and disease mechanisms suggests potential intervention strategies. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2018. [DOI: 10.1016/j.bbamem.2018.02.020] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
40
|
Lu L, Deng Y, Li X, Li H, Karniadakis GE. Understanding the Twisted Structure of Amyloid Fibrils via Molecular Simulations. J Phys Chem B 2018; 122:11302-11310. [PMID: 30106299 DOI: 10.1021/acs.jpcb.8b07255] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Accumulation and aggregation of amyloid are associated with the pathogenesis of many human diseases, such as Alzheimer's disease and Type 2 diabetes mellitus. Therefore, a quantitative understanding of the molecular mechanisms causing different aggregated structures and biomechanical properties of amyloid fibrils could shed some light into the progression of these diseases. In this work, we develop coarse-grained molecular dynamics (CGMD) models to simulate the dynamic self-assembly of two types of amyloids (amylin and amyloid β (Aβ)). We investigate the structural and mechanical properties of different types of aggregated amyloid fibrils. Our simulations demonstrate that amyloid fibrils could result from longitudinal growth of protofilament bundles, confirming one of the hypotheses on the fibril formation. In addition, we find that the persistence length of amylin fibrils increases concurrently with their pitch length, suggesting that the bending stiffness of amylin fibrils becomes larger when the amylin fibrils are less twisted. Similar results are observed for Aβ fibrils. These findings quantify the connection between the structural and the biomechanical properties of the fibrils. The CGMD models developed in this work can be potentially used to examine efficacy of anti-aggregation drugs, which could help in developing new treatments.
Collapse
Affiliation(s)
- Lu Lu
- Division of Applied Mathematics , Brown University , Providence , Rhode Island 02912 , United States
| | - Yixiang Deng
- School of Engineering , Brown University , Providence , Rhode Island 02912 , United States
| | - Xuejin Li
- Division of Applied Mathematics , Brown University , Providence , Rhode Island 02912 , United States
| | - He Li
- Division of Applied Mathematics , Brown University , Providence , Rhode Island 02912 , United States
| | - George Em Karniadakis
- Division of Applied Mathematics , Brown University , Providence , Rhode Island 02912 , United States
| |
Collapse
|
41
|
Sulatskaya AI, Rychkov GN, Sulatsky MI, Rodina NP, Kuznetsova IM, Turoverov KK. Thioflavin T Interaction with Acetylcholinesterase: New Evidence of 1:1 Binding Stoichiometry Obtained with Samples Prepared by Equilibrium Microdialysis. ACS Chem Neurosci 2018; 9:1793-1801. [PMID: 29652131 DOI: 10.1021/acschemneuro.8b00111] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The aim of the present work was investigation of the fluorescent dye thioflavin T (ThT) binding to acetylcholinesterase (AChE). ThT is an effective test for protease activity, as well as a probe for amyloid fibril formation. Despite the extended and active investigation of ThT-AChE binding, there is still no common view on the stoichiometry of this interaction. In particular, there is a hypothesis explaining the spectral properties of bound to AChE dye and high quantum yield of its fluorescence by formation of dimers or excimers of ThT. In order to confirm or deny this hypothesis, we proposed a new experimental approach for examination of ThT-AChE interaction based on spectroscopic investigation of samples prepared by equilibrium microdialysis. This approach allowed us to prove 1/1 ThT/AChE binding stoichiometry. The increase of ThT fluorescence quantum yield and lifetime accompanying its binding to AChE can be explained by the molecular rotor nature of this dye. Together with the coincidence of the positions of free and AChE-bound ThT fluorescence spectra, the obtained results prove the groundlessness of the hypotheses about ThT aggregation while binding to AChE. The model of ThT localization in the active site of AChE was proposed by using molecular docking simulations. These results also allowed us to suggest the key role of aromatic residues in ThT-AChE interaction, as observed for some amyloid fibrils.
Collapse
Affiliation(s)
- A. I. Sulatskaya
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology of the Russian Academy of Science, Tikhoretsky ave. 4, St. Petersburg 194064, Russia
| | - G. N. Rychkov
- Institute of Physics, Nanotechnology and Telecommunications, Peter the Great St.-Petersburg Polytechnic University, Polytechnicheskaya 29, St. Petersburg 195251, Russia
- Department of Molecular and Radiation Biophysics, Petersburg Nuclear Physics Institute, NRC Kurchatov Institute, Orlova Roscha, Gatchina, Leningrad District, 188300, Russia
| | - M. I. Sulatsky
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology of the Russian Academy of Science, Tikhoretsky ave. 4, St. Petersburg 194064, Russia
| | - N. P. Rodina
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology of the Russian Academy of Science, Tikhoretsky ave. 4, St. Petersburg 194064, Russia
- Institute of Physics, Nanotechnology and Telecommunications, Peter the Great St.-Petersburg Polytechnic University, Polytechnicheskaya 29, St. Petersburg 195251, Russia
| | - I. M. Kuznetsova
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology of the Russian Academy of Science, Tikhoretsky ave. 4, St. Petersburg 194064, Russia
| | - K. K. Turoverov
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology of the Russian Academy of Science, Tikhoretsky ave. 4, St. Petersburg 194064, Russia
- Institute of Physics, Nanotechnology and Telecommunications, Peter the Great St.-Petersburg Polytechnic University, Polytechnicheskaya 29, St. Petersburg 195251, Russia
| |
Collapse
|
42
|
Asthana S, Sahu M, Nayak PS, Mallick B, Jha S. The smaller heparin fragments bind non-specifically through the IAPP sequence: An in silico study. Int J Biol Macromol 2018; 113:1092-1104. [DOI: 10.1016/j.ijbiomac.2018.03.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 02/28/2018] [Accepted: 03/01/2018] [Indexed: 11/29/2022]
|
43
|
Ridgway Z, Zhang X, Wong AG, Abedini A, Schmidt AM, Raleigh DP. Analysis of the Role of the Conserved Disulfide in Amyloid Formation by Human Islet Amyloid Polypeptide in Homogeneous and Heterogeneous Environments. Biochemistry 2018; 57:3065-3074. [PMID: 29697253 DOI: 10.1021/acs.biochem.8b00017] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Human islet amyloid polypeptide (hIAPP) is a hormone secreted from β-cells in the Islets of Langerhans in response to the same stimuli that lead to insulin secretion. hIAPP plays an adaptive role in glucose homeostasis but misfolds to form insoluble, fibrillar aggregates in type II diabetes that are associated with the disease. Along the misfolding pathway, hIAPP forms species that are toxic to β-cells, resulting in reduced β-cell mass. hIAPP contains a strictly conserved disulfide bond between residues 2 and 7, which forms a small loop at the N-terminus of the molecule. The loop is located outside of the cross β-core in all models of the hIAPP amyloid fibrils. Mutations in this region are rare, and the disulfide loop plays a role in receptor binding; however, the contribution of this region to the aggregation of hIAPP is not well understood. We define the role of the disulfide by analyzing a collection of analogues that remove the disulfide, by mutation of Cys to Ser, by reduction and modification of the Cys residues, or by deletion of the first seven residues. The cytotoxic properties of hIAPP are retained in the Cys to Ser disulfide-free mutant. Removal of the disulfide bond accelerates amyloid formation in all constructs, both in solution and in the presence of model membranes. Removal of the disulfide weakens the ability of hIAPP to induce leakage of vesicles consisting of POPS and POPC. Smaller effects are observed with vesicles that contain 40 mol % cholesterol, although N-terminal truncation still reduces the extent of leakage.
Collapse
Affiliation(s)
- Zachary Ridgway
- Department of Chemistry , Stony Brook University , Stony Brook , New York 11794-3400 , United States
| | - Xiaoxue Zhang
- Department of Chemistry , Stony Brook University , Stony Brook , New York 11794-3400 , United States
| | - Amy G Wong
- Department of Chemistry , Stony Brook University , Stony Brook , New York 11794-3400 , United States
| | - Andisheh Abedini
- Diabetes Research Program, Division of Endocrinology, Diabetes and Metabolism, Department of Medicine , New York University School of Medicine , New York , New York 10016 , United States
| | - Ann Marie Schmidt
- Diabetes Research Program, Division of Endocrinology, Diabetes and Metabolism, Department of Medicine , New York University School of Medicine , New York , New York 10016 , United States
| | - Daniel P Raleigh
- Department of Chemistry , Stony Brook University , Stony Brook , New York 11794-3400 , United States.,Laufer Center for Quantitative Biology , Stony Brook University , Stony Brook , New York 11794-3400 , United States
| |
Collapse
|
44
|
Rawat A, Langen R, Varkey J. Membranes as modulators of amyloid protein misfolding and target of toxicity. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2018; 1860:1863-1875. [PMID: 29702073 DOI: 10.1016/j.bbamem.2018.04.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 04/19/2018] [Accepted: 04/19/2018] [Indexed: 12/15/2022]
Abstract
Abnormal protein aggregation is a hallmark of various human diseases. α-Synuclein, a protein implicated in Parkinson's disease, is found in aggregated form within Lewy bodies that are characteristically observed in the brains of PD patients. Similarly, deposits of aggregated human islet amyloid polypeptide (IAPP) are found in the pancreatic islets in individuals with type 2 diabetes mellitus. Significant number of studies have focused on how monomeric, disaggregated proteins transition into various amyloid structures leading to identification of a vast number of aggregation promoting molecules and processes over the years. Inasmuch as these factors likely enhance the formation of toxic, misfolded species, they might act as risk factors in disease. Cellular membranes, and particularly certain lipids, are considered to be among the major players for aggregation of α-synuclein and IAPP, and membranes might also be the target of toxicity. Past studies have utilized an array of biophysical tools, both in vitro and in vivo, to expound the membrane-mediated aggregation. Here, we focus on membrane interaction of α-synuclein and IAPP, and how various kinds of membranes catalyze or modulate the aggregation of these proteins and how, in turn, these proteins disrupt membrane integrity, both in vitro and in vivo. The membrane interaction and subsequent aggregation has been briefly contrasted to aggregation of α-synuclein and IAPP in solution. This article is part of a Special Issue entitled: Protein Aggregation and Misfolding at the Cell Membrane Interface edited by Ayyalusamy Ramamoorthy.
Collapse
Affiliation(s)
- Anoop Rawat
- Zilkha Neurogenetic Institute, University of Southern California, Los Angeles, CA 90033, United States
| | - Ralf Langen
- Zilkha Neurogenetic Institute, University of Southern California, Los Angeles, CA 90033, United States.
| | - Jobin Varkey
- Zilkha Neurogenetic Institute, University of Southern California, Los Angeles, CA 90033, United States.
| |
Collapse
|
45
|
Sasahara K. Membrane-mediated amyloid deposition of human islet amyloid polypeptide. Biophys Rev 2018; 10:453-462. [PMID: 29204886 PMCID: PMC5899711 DOI: 10.1007/s12551-017-0351-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 11/14/2017] [Indexed: 01/01/2023] Open
Abstract
Amyloid deposition of human islet amyloid polypeptide (hIAPP) within the islet of Langerhans is closely associated with type II diabetes mellitus. Accumulating evidence indicates that the membrane-mediated aggregation and subsequent deposition of hIAPP are linked to the dysfunction and death of insulin-producing pancreatic β-cells, but the molecular process of hIAPP deposition is poorly understood. In this review, I focus on recent in vitro studies utilizing model membranes to observe the membrane-mediated aggregation/deposition of hIAPP. Membrane surfaces can serve as templates for both hIAPP adsorption and aggregation. Using high-sensitivity surface analyzing/imaging techniques that can characterize the processes of hIAPP aggregation and deposition at the membrane surface, these studies provide valuable insights into the mechanism of membrane damage caused by amyloid deposition of the peptide.
Collapse
Affiliation(s)
- Kenji Sasahara
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
46
|
Recombinant human islet amyloid polypeptide forms shorter fibrils and mediates β-cell apoptosis via generation of oxidative stress. Biochem J 2017; 474:3915-3934. [DOI: 10.1042/bcj20170323] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Revised: 10/09/2017] [Accepted: 10/11/2017] [Indexed: 02/08/2023]
Abstract
Protein misfolding and aggregation play an important role in many human diseases including Alzheimer's, Parkinson's and type 2 diabetes mellitus (T2DM). The human islet amyloid polypeptide (hIAPP) forms amyloid plaques in the pancreas of T2DM subjects (>95%) that are involved in deteriorating islet function and in mediating β-cell apoptosis. However, the detailed mechanism of action, structure and nature of toxic hIAPP species responsible for this effect remains elusive to date mainly due to the high cost associated with the chemical synthesis of pure peptide required for these studies. In the present work, we attempted to obtain structural and mechanistic insights into the hIAPP aggregation process using recombinant hIAPP (rhIAPP) isolated from Escherichia coli. Results from biophysical and structural studies indicate that the rhIAPP self-assembled into highly pure, β-sheet-rich amyloid fibrils with uniform morphology. rhIAPP-mediated apoptosis in INS-1E cells was associated with increased oxidative stress and changes in mitochondrial membrane potential. The transcript levels of apoptotic genes - Caspase-3 and Bax were found to be up-regulated, while the levels of the anti-apoptotic gene - Bcl2 were down-regulated in rhIAPP-treated cells. Additionally, the expression levels of genes involved in combating oxidative stress namely Catalase, SOD1 and GPx were down-regulated. rhIAPP exposure also affected glucose-stimulated insulin secretion from isolated pancreatic islets. The aggregation of rhIAPP also occurred significantly faster when compared with that of the chemically synthesized peptide. We also show that the rhIAPP fibrils were shorter and more cytotoxic. In summary, our study is one among the few to provide comprehensive evaluation of structural, biophysical and cytotoxic properties of rhIAPP.
Collapse
|
47
|
Banach M, Konieczny L, Roterman I. Why do antifreeze proteins require a solenoid? Biochimie 2017; 144:74-84. [PMID: 29054801 DOI: 10.1016/j.biochi.2017.10.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 10/12/2017] [Indexed: 12/21/2022]
Abstract
Proteins whose presence prevents water from freezing in living organisms at temperatures below 0 °C are referred to as antifreeze proteins. This group includes molecules of varying size (from 30 to over 300 aa) and variable secondary/supersecondary conformation. Some of these proteins also contain peculiar structural motifs called solenoids. We have applied the fuzzy oil drop model in the analysis of four categories of antifreeze proteins: 1 - very small proteins, i.e. helical peptides (below 40 aa); 2 - small globular proteins (40-100 aa); 3 - large globular proteins (>100 aa) and 4 - proteins containing solenoids. The FOD model suggests a mechanism by which antifreeze proteins prevent freezing. In accordance with this theory, the presence of the protein itself produces an ordering of water molecules which counteracts the formation of ice crystals. This conclusion is supported by analysis of the ordering of hydrophobic and hydrophilic residues in antifreeze proteins, revealing significant variability - from perfect adherence to the fuzzy oil drop model through structures which lack a clearly defined hydrophobic core, all the way to linear arrangement of alternating local minima and maxima propagating along the principal axis of the solenoid (much like in amyloids). The presented model - alternative with respect to the ice docking model - explains the antifreeze properties of compounds such as saccharides and fatty acids. The fuzzy oil drop model also enables differentiation between amyloids and antifreeze proteins.
Collapse
Affiliation(s)
- M Banach
- Department of Bioinformatics and Telemedicine, Jagiellonian University, Medical College, Lazarza 16, 31-530, Krakow, Poland
| | - L Konieczny
- Chair of Medical Biochemistry, Jagiellonian University, Medical College, Kopernika 7, 31-034, Krakow, Poland
| | - I Roterman
- Department of Bioinformatics and Telemedicine, Jagiellonian University, Medical College, Lazarza 16, 31-530, Krakow, Poland.
| |
Collapse
|
48
|
Christensen M, Skeby KK, Schiøtt B. Identification of Key Interactions in the Initial Self-Assembly of Amylin in a Membrane Environment. Biochemistry 2017; 56:4884-4894. [PMID: 28786287 DOI: 10.1021/acs.biochem.7b00344] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Islet amyloid polypeptide, also known as amylin, forms aggregates that reduce the amount of insulin-producing cells in patients with type II diabetes mellitus. Much remains unknown about the process of aggregation and cytotoxicity, but it is known that certain cell membrane components can alter the rate of aggregation. Using atomistic molecular dynamics simulations combined with the highly mobile membrane mimetic model incorporating enhanced sampling of lipid diffusion, we investigate interaction of amylin peptides with the membrane components as well as the self-assembly of amylin. Consistent with experimental evidence, we find that an initial membrane-bound α-helical state folds into stable β-sheet structures upon self-assembly. Our results suggest the following mechanism for the initial phase of amylin self-assembly. The peptides move around on the membrane with the positively charged N-terminus interacting with the negatively charged lipid headgroups. When the peptides start to interact, they partly unfold and break some of the contacts with the membrane. The initial interactions between the peptides are dominated by aromatic and hydrophobic interactions. Oligomers are formed showing both intra- and interpeptide β-sheets, initially with interactions mainly in the C-terminal domain of the peptides. Decreasing the pH to 5.5 is known to inhibit amyloid formation. At low pH, His18 is protonated, adding a fourth positive charge at the peptide. With His18 protonated, no oligomerization is observed in the simulations. The additional charge gives a strong midpoint anchoring of the peptides to negatively charged membrane components, and the peptides experience additional interpeptide repulsion, thereby preventing interactions.
Collapse
Affiliation(s)
- Mikkel Christensen
- Interdisciplinary Nanoscience Center (iNANO) and Department of Chemistry, Aarhus University , DK-8000 Aarhus, Denmark.,Sino-Danish Center for Education and Research , Beijing, China
| | - Katrine K Skeby
- Interdisciplinary Nanoscience Center (iNANO) and Department of Chemistry, Aarhus University , DK-8000 Aarhus, Denmark
| | - Birgit Schiøtt
- Interdisciplinary Nanoscience Center (iNANO) and Department of Chemistry, Aarhus University , DK-8000 Aarhus, Denmark
| |
Collapse
|
49
|
Yousaf M, Huang H, Li P, Wang C, Yang Y. Fluorine Functionalized Graphene Quantum Dots as Inhibitor against hIAPP Amyloid Aggregation. ACS Chem Neurosci 2017; 8:1368-1377. [PMID: 28230965 DOI: 10.1021/acschemneuro.7b00015] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Fibrillar deposits of the human islet amyloid polypeptide (hIAPP) are considered as a root of Type II diabetes mellitus. Fluorinated graphene quantum dots (FGQDs) are new carbon nanomaterials with unique physicochemical properties containing highly electronegative F atoms. Herein we report a single step synthesis method of FGQDs with an inhibitory effect on aggregation and cytotoxicity of hIAPP in vitro. Highly fluorescent and water dispersible FGQDs, less than 3 nm in size, were synthesized by the microwave-assisted hydrothermal method. Efficient inhibition capability of FGQDs to amyloid aggregation was demonstrated. The morphologies of hIAPP aggregates were observed to change from the entangled long fibrils to short thin fibrils and amorphous aggregates in the presence of FGQDs. In thioflavin T fluorescence analysis, inhibited aggregation with prolonged lag time and reduced fluorescence intensity at equilibrium were observed when hIAPP was incubated together with FGQDs. Circular dichroism spectrum results reveal that FGQDs could inhibit conformational transition of the peptide from native structure to β-sheets. FGQDs could also rescue the cytotoxicity of INS-1 cells induced by hIAPP in a dose dependent manner. This study could be beneficial for design and preparation of inhibitors for amyloids, which is important for prevention and treatment of amyloidosis.
Collapse
Affiliation(s)
- Maryam Yousaf
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory of Biological Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- University of Chinese Academy of Sciences , 19 A Yuquan Rd, Shijingshan District, Beijing, P. R. China 100049
| | - Huan Huang
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory of Biological Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Ping Li
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory of Biological Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Chen Wang
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory of Biological Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- University of Chinese Academy of Sciences , 19 A Yuquan Rd, Shijingshan District, Beijing, P. R. China 100049
| | - Yanlian Yang
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory of Biological Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- University of Chinese Academy of Sciences , 19 A Yuquan Rd, Shijingshan District, Beijing, P. R. China 100049
| |
Collapse
|
50
|
Chiti F, Dobson CM. Protein Misfolding, Amyloid Formation, and Human Disease: A Summary of Progress Over the Last Decade. Annu Rev Biochem 2017; 86:27-68. [DOI: 10.1146/annurev-biochem-061516-045115] [Citation(s) in RCA: 1817] [Impact Index Per Article: 227.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Abstract
Peptides and proteins have been found to possess an inherent tendency to convert from their native functional states into intractable amyloid aggregates. This phenomenon is associated with a range of increasingly common human disorders, including Alzheimer and Parkinson diseases, type II diabetes, and a number of systemic amyloidoses. In this review, we describe this field of science with particular reference to the advances that have been made over the last decade in our understanding of its fundamental nature and consequences. We list the proteins that are known to be deposited as amyloid or other types of aggregates in human tissues and the disorders with which they are associated, as well as the proteins that exploit the amyloid motif to play specific functional roles in humans. In addition, we summarize the genetic factors that have provided insight into the mechanisms of disease onset. We describe recent advances in our knowledge of the structures of amyloid fibrils and their oligomeric precursors and of the mechanisms by which they are formed and proliferate to generate cellular dysfunction. We show evidence that a complex proteostasis network actively combats protein aggregation and that such an efficient system can fail in some circumstances and give rise to disease. Finally, we anticipate the development of novel therapeutic strategies with which to prevent or treat these highly debilitating and currently incurable conditions.
Collapse
Affiliation(s)
- Fabrizio Chiti
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio,” Section of Biochemistry, Università di Firenze, 50134 Firenze, Italy
| | - Christopher M. Dobson
- Department of Chemistry, Centre for Misfolding Diseases, University of Cambridge, Cambridge CB2 1EW, United Kingdom
| |
Collapse
|