1
|
Herdendorf TJ, Mishra N, Fatehi S, Gido CD, Prakash O, Geisbrecht BV. New advances in understanding inhibition of myeloperoxidase and neutrophil serine proteases by two families of staphylococcal innate immune evasion proteins. Arch Biochem Biophys 2024; 761:110177. [PMID: 39393662 PMCID: PMC11560548 DOI: 10.1016/j.abb.2024.110177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/25/2024] [Accepted: 10/08/2024] [Indexed: 10/13/2024]
Abstract
Neutrophils are the most abundant leukocytes in humans and play an important early role in the innate immune response against microorganisms. Neutrophil phagosomes contain high concentrations of antibacterial enzymes, including myeloperoxidase (MPO) and the neutrophil serine proteases (NSPs). These antibacterial enzymes can also be released extracellularly upon degranulation or as a component of neutrophil extracellular traps (NETs). Due to host/pathogen coevolution, S. aureus expresses a diverse arsenal of innate immune evasion proteins that target many aspects of the neutrophil antibacterial response. In the last decade, two new classes of staphylococcal innate immune evasion proteins that act as potent, selective inhibitors of MPO and NSPs, respectively, have been discovered. The Staphylococcal Peroxidase INhibitor (SPIN) is a small ∼8.3 kDa α-helical bundle protein that blocks MPO activity by interfering with substrate and product exchange with the MPO active site. The Extracellular Adherence Protein (EAP) family consists of three unique proteins comprised of one or more copies of an ∼11 kDa β-grasp domain capable of high-affinity, selective, non-covalent inhibition of NSPs. This brief review article summarizes recent advances in understanding the structural and functional properties of SPIN and EAP family members and outlines some potential avenues for future investigation of these enzyme inhibitors.
Collapse
Affiliation(s)
- Timothy J Herdendorf
- Department of Biochemistry & Molecular Biophysics, Kansas State University, Manhattan, KS 66506, USA
| | - Nitin Mishra
- Department of Biochemistry & Molecular Biophysics, Kansas State University, Manhattan, KS 66506, USA
| | - Soheila Fatehi
- Department of Biochemistry & Molecular Biophysics, Kansas State University, Manhattan, KS 66506, USA
| | - Carson D Gido
- Department of Biochemistry & Molecular Biophysics, Kansas State University, Manhattan, KS 66506, USA
| | - Om Prakash
- Department of Biochemistry & Molecular Biophysics, Kansas State University, Manhattan, KS 66506, USA.
| | - Brian V Geisbrecht
- Department of Biochemistry & Molecular Biophysics, Kansas State University, Manhattan, KS 66506, USA.
| |
Collapse
|
2
|
Loh JM, Aghababa H, Proft T. Eluding the immune system's frontline defense: Secreted complement evasion factors of pathogenic Gram-positive cocci. Microbiol Res 2023; 277:127512. [PMID: 37826985 DOI: 10.1016/j.micres.2023.127512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/01/2023] [Accepted: 10/04/2023] [Indexed: 10/14/2023]
Abstract
The human complement system is an important part of the innate immune response in the fight against invasive bacteria. Complement responses can be activated independently by the classical pathway, the lectin pathway, or the alternative pathway, each resulting in the formation of a C3 convertase that produces the anaphylatoxin C3a and the opsonin C3b by specifically cutting C3. Other important features of complement are the production of the chemotactic C5a peptide and the generation of the membrane attack complex to lyse intruding pathogens. Invasive pathogens like Staphylococcus aureus and several species of the genus Streptococcus have developed a variety of complement evasion strategies to resist complement activity thereby increasing their virulence and potential to cause disease. In this review, we focus on secreted complement evasion factors that assist the bacteria to avoid opsonization and terminal pathway lysis. We also briefly discuss the potential role of complement evasion factors for the development of vaccines and therapeutic interventions.
Collapse
Affiliation(s)
- Jacelyn Ms Loh
- Department of Molecular Medicine & Pathology, School of Medical Sciences, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand
| | - Haniyeh Aghababa
- Department of Molecular Medicine & Pathology, School of Medical Sciences, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Thomas Proft
- Department of Molecular Medicine & Pathology, School of Medical Sciences, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand.
| |
Collapse
|
3
|
Bruserud Ø, Mosevoll KA, Bruserud Ø, Reikvam H, Wendelbo Ø. The Regulation of Neutrophil Migration in Patients with Sepsis: The Complexity of the Molecular Mechanisms and Their Modulation in Sepsis and the Heterogeneity of Sepsis Patients. Cells 2023; 12:cells12071003. [PMID: 37048076 PMCID: PMC10093057 DOI: 10.3390/cells12071003] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/21/2023] [Accepted: 03/22/2023] [Indexed: 03/29/2023] Open
Abstract
Sepsis is defined as life-threatening organ dysfunction caused by a dysregulated host response to infection. Common causes include gram-negative and gram-positive bacteria as well as fungi. Neutrophils are among the first cells to arrive at an infection site where they function as important effector cells of the innate immune system and as regulators of the host immune response. The regulation of neutrophil migration is therefore important both for the infection-directed host response and for the development of organ dysfunctions in sepsis. Downregulation of CXCR4/CXCL12 stimulates neutrophil migration from the bone marrow. This is followed by transmigration/extravasation across the endothelial cell barrier at the infection site; this process is directed by adhesion molecules and various chemotactic gradients created by chemotactic cytokines, lipid mediators, bacterial peptides, and peptides from damaged cells. These mechanisms of neutrophil migration are modulated by sepsis, leading to reduced neutrophil migration and even reversed migration that contributes to distant organ failure. The sepsis-induced modulation seems to differ between neutrophil subsets. Furthermore, sepsis patients should be regarded as heterogeneous because neutrophil migration will possibly be further modulated by the infecting microorganisms, antimicrobial treatment, patient age/frailty/sex, other diseases (e.g., hematological malignancies and stem cell transplantation), and the metabolic status. The present review describes molecular mechanisms involved in the regulation of neutrophil migration; how these mechanisms are altered during sepsis; and how bacteria/fungi, antimicrobial treatment, and aging/frailty/comorbidity influence the regulation of neutrophil migration.
Collapse
Affiliation(s)
- Øystein Bruserud
- Leukemia Research Group, Department of Clinical Science, University of Bergen, 5021 Bergen, Norway
- Section for Hematology, Department of Medicine, Haukeland University Hospital, 5021 Bergen, Norway
- Correspondence:
| | - Knut Anders Mosevoll
- Section for Infectious Diseases, Department of Medicine, Haukeland University Hospital, 5021 Bergen, Norway
- Section for Infectious Diseases, Department of Clinical Research, University of Bergen, 5021 Bergen, Norway
| | - Øyvind Bruserud
- Department for Anesthesiology and Intensive Care, Haukeland University Hospital, 5021 Bergen, Norway
| | - Håkon Reikvam
- Leukemia Research Group, Department of Clinical Science, University of Bergen, 5021 Bergen, Norway
- Section for Hematology, Department of Medicine, Haukeland University Hospital, 5021 Bergen, Norway
| | - Øystein Wendelbo
- Section for Infectious Diseases, Department of Medicine, Haukeland University Hospital, 5021 Bergen, Norway
- Faculty of Health, VID Specialized University, Ulriksdal 10, 5009 Bergen, Norway
| |
Collapse
|
4
|
Yang C, Barbieri JT, Dahms NM, Chen C. Multiple Domains of Staphylococcal Superantigen-like Protein 11 (SSL11) Contribute to Neutrophil Inhibition. Biochemistry 2022; 61:616-624. [PMID: 35285627 DOI: 10.1021/acs.biochem.2c00018] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Staphylococcus aureus is an opportunistic pathogen producing many immune evasion molecules targeting various components of the host immune defense, including the Staphylococcal superantigen-like protein (SSL 1-14) family. Despite sharing similar structures with the powerful superantigens (SAgs), which cause massive T cell activation, SSLs interfere with a wide range of innate immune defenses. SSLs are divided into two subgroups, SSLs that contain a conserved carbohydrate Sialyl Lewis X [Neu5Acα2-3Galβ1-4(Fucα1-3) GlcNAcβ, SLeX] binding site and SSLs that lack the SLeX binding site. SSL2-6 and SSL11 possess the SLeX binding site. Our previous studies showed that SSL11 arrests cell motility by inducing cell adhesion in differentiated HL60 (dHL60) cells, while SSL7 did not bind dHL60 cells. SSL7-based chimeras were engineered by exchanging the SSL7 sequence with the corresponding SSL11 sequence and assaying for a gain of SSL11 function, namely, the induction of cell spreading and motility arrest. In addition to the SLeX-binding site, we observed that three beta-strands β6, β7, and β9 and the N-terminal residues, Y16 and Y17, transitioned SSL7 to gain SSL11 activities. These studies define the structure-function properties of SSL11 that may allow SSL11 to inhibit S. aureus clearance by the host innate immune system, allowing S. aureus to maintain a carrier state in humans, an understudied aspect of S. aureus pathogenesis.
Collapse
Affiliation(s)
- Chen Yang
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Joseph T Barbieri
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, United States
| | - Nancy M Dahms
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, United States
| | - Chen Chen
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| |
Collapse
|
5
|
Buchan KD, van Gent M, Prajsnar TK, Ogryzko NV, de Jong NWM, Kolata J, Foster SJ, van Strijp JAG, Renshaw SA. Human-specific staphylococcal virulence factors enhance pathogenicity in a humanised zebrafish C5a receptor model. J Cell Sci 2021; 134:jcs.252205. [PMID: 33589501 DOI: 10.1242/jcs.252205] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 01/12/2021] [Indexed: 11/20/2022] Open
Abstract
Staphylococcus aureus infects ∼30% of the human population and causes a spectrum of pathologies ranging from mild skin infections to life-threatening invasive diseases. The strict host specificity of its virulence factors has severely limited the accuracy of in vivo models for the development of vaccines and therapeutics. To resolve this, we generated a humanised zebrafish model and determined that neutrophil-specific expression of the human C5a receptor conferred susceptibility to the S. aureus toxins PVL and HlgCB, leading to reduced neutrophil numbers at the site of infection and increased infection-associated mortality. These results show that humanised zebrafish provide a valuable platform to study the contribution of human-specific S. aureus virulence factors to infection in vivo that could facilitate the development of novel therapeutic approaches and essential vaccines.
Collapse
Affiliation(s)
- Kyle D Buchan
- The Bateson Centre and Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK.,The Florey Institute for Host-Pathogen Interactions, Department of Molecular Biology and Biotechnology, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
| | - Michiel van Gent
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht 3584 CX, The Netherlands
| | - Tomasz K Prajsnar
- The Bateson Centre and Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
| | - Nikolay V Ogryzko
- The Bateson Centre and Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
| | - Nienke W M de Jong
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht 3584 CX, The Netherlands
| | - Julia Kolata
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht 3584 CX, The Netherlands
| | - Simon J Foster
- The Florey Institute for Host-Pathogen Interactions, Department of Molecular Biology and Biotechnology, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
| | - Jos A G van Strijp
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht 3584 CX, The Netherlands
| | - Stephen A Renshaw
- The Bateson Centre and Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
| |
Collapse
|
6
|
Chamon RC, Marques LM, Timenetsky J, da Costa Rachid CT, Ferreira RB, de Oliveira TL, Glatthardt T, de Oliveira Moreira L, dos Santos KR. Genome Sequence of a Highly Virulent pvl-positive Vancomycin intermediate- resistant Staphylococcus aureus Sequence Type 30. Curr Genomics 2020; 21:128-137. [PMID: 32655307 PMCID: PMC7324871 DOI: 10.2174/1389202921666200327105756] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 03/16/2020] [Accepted: 03/16/2020] [Indexed: 11/22/2022] Open
Abstract
Background:
Staphylococcus aureus isolates expressing the Panton-Valentine Leukocidin
(PVL) have been related to a wide range of diseases. Recently, pvl-positive community-associated
methicillin-resistant S. aureus belonging to USA1100 (ST30/CC30/SCCmec IV) lineage has emerged
in Brazilian hospitals.
Objective:
The aim of this work was to sequence the genome of a pvl-positive USA1100 Vancomycin-
Intermediate-Resistant S. aureus (VISA) isolate from Rio de Janeiro, Brazil.
Methods:
The 13420 genome was sequenced using the HiSeq 2500 platform. The draft genome, plasmids
annotation, and genome analysis were performed using RAST. Comparison of the relative pvl
gene expression of six S. aureus isolates was performed by qRT-PCR.
Results:
The isolate presented the ϕPVL phage codifying for the H2b PVL protein isoform, and another
prophage carrying a PVL variant named lukF and lukS-PV.2. The 13420 genome presented a
high number of virulence determinants, such as genes codifying for serine-protease proteins, enterotoxins
(egc), the immune evasion cluster (IEC), adhesion proteins, spermine/spermidine acetyltransferase
gene (blt), superantigen-like proteins, as well as the ica operon. Point mutations at vraS, tcaA,
and tcaB genes were detected. Moreover, the PVL mRNA relative expression of the 13420 isolate was
five times higher than mRNA PVL levels of the USA300/ST8 reference strain.
Conclusion:
We described for the first time the genome sequence of a VISA isolate harboring two
pvl-associated genes and other virulence factors that may improve the USA1100/ST30 lineage fitness
and impact its pathogenicity and spreading at Brazilian hospitals.
Collapse
Affiliation(s)
- Raiane C. Chamon
- Laboratorio de Infeccao Hospitalar, Departamento de Microbiologia Medica, Instituto de Microbiologia Paulo de Goes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Lucas M. Marques
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Bahia, Brazil
| | - Jorge Timenetsky
- Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Caio T.C. da Costa Rachid
- Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Goes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Rosana B.R. Ferreira
- Laboratorio de Infeccao Hospitalar, Departamento de Microbiologia Medica, Instituto de Microbiologia Paulo de Goes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Tamara L.R. de Oliveira
- Laboratorio de Infeccao Hospitalar, Departamento de Microbiologia Medica, Instituto de Microbiologia Paulo de Goes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Thais Glatthardt
- Laboratorio de Infeccao Hospitalar, Departamento de Microbiologia Medica, Instituto de Microbiologia Paulo de Goes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Lilian de Oliveira Moreira
- Laboratorio de Bacteriologia e Imunologia Clinica, Departamento de Analises Clínicas e Toxicologicas, Faculdade de Farmacia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Kátia R.N. dos Santos
- Laboratorio de Infeccao Hospitalar, Departamento de Microbiologia Medica, Instituto de Microbiologia Paulo de Goes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
7
|
de Jong NWM, van Kessel KPM, van Strijp JAG. Immune Evasion by Staphylococcus aureus. Microbiol Spectr 2019; 7:10.1128/microbiolspec.gpp3-0061-2019. [PMID: 30927347 PMCID: PMC11590434 DOI: 10.1128/microbiolspec.gpp3-0061-2019] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Indexed: 12/23/2022] Open
Abstract
Staphylococcus aureus has become a serious threat to human health. In addition to having increased antibiotic resistance, the bacterium is a master at adapting to its host by evading almost every facet of the immune system, the so-called immune evasion proteins. Many of these immune evasion proteins target neutrophils, the most important immune cells in clearing S. aureus infections. The neutrophil attacks pathogens via a plethora of strategies. Therefore, it is no surprise that S. aureus has evolved numerous immune evasion strategies at almost every level imaginable. In this review we discuss step by step the aspects of neutrophil-mediated killing of S. aureus, such as neutrophil activation, migration to the site of infection, bacterial opsonization, phagocytosis, and subsequent neutrophil-mediated killing. After each section we discuss how S. aureus evasion molecules are able to resist the neutrophil attack of these different steps. To date, around 40 immune evasion molecules of S. aureus are known, but its repertoire is still expanding due to the discovery of new evasion proteins and the addition of new functions to already identified evasion proteins. Interestingly, because the different parts of neutrophil attack are redundant, the evasion molecules display redundant functions as well. Knowing how and with which proteins S. aureus is evading the immune system is important in understanding the pathophysiology of this pathogen. This knowledge is crucial for the development of therapeutic approaches that aim to clear staphylococcal infections.
Collapse
Affiliation(s)
- Nienke W M de Jong
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Kok P M van Kessel
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Jos A G van Strijp
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
8
|
Speziale P, Rindi S, Pietrocola G. Antibody-Based Agents in the Management of Antibiotic-Resistant Staphylococcus aureus Diseases. Microorganisms 2018. [PMID: 29533985 PMCID: PMC5874639 DOI: 10.3390/microorganisms6010025] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Staphylococcus aureus is a human pathogen that can cause a wide spectrum of diseases, including sepsis, pneumonia, arthritis, and endocarditis. Ineffective treatment of a number of staphylococcal infections with antibiotics is due to the development and spread of antibiotic-resistant strains following decades of antibiotic usage. This has generated renewed interest within the scientific community in alternative therapeutic agents, such as anti-S. aureus antibodies. Although the role of antibodies in the management of S. aureus diseases is controversial, the success of this pathogen in neutralizing humoral immunity clearly indicates that antibodies offer the host extensive protection. In this review, we report an update on efforts to develop antibody-based agents, particularly monoclonal antibodies, and their therapeutic potential in the passive immunization approach to the treatment and prevention of S. aureus infections.
Collapse
Affiliation(s)
- Pietro Speziale
- Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy.
- Department of Industrial and Information Engineering, University of Pavia, 27100 Pavia, Italy.
| | - Simonetta Rindi
- Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy.
| | | |
Collapse
|
9
|
Langley RJ, Ting YT, Clow F, Young PG, Radcliff FJ, Choi JM, Sequeira RP, Holtfreter S, Baker H, Fraser JD. Staphylococcal enterotoxin-like X (SElX) is a unique superantigen with functional features of two major families of staphylococcal virulence factors. PLoS Pathog 2017; 13:e1006549. [PMID: 28880913 PMCID: PMC5589262 DOI: 10.1371/journal.ppat.1006549] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Accepted: 07/24/2017] [Indexed: 11/23/2022] Open
Abstract
Staphylococcus aureus is an opportunistic pathogen that produces many virulence factors. Two major families of which are the staphylococcal superantigens (SAgs) and the Staphylococcal Superantigen-Like (SSL) exoproteins. The former are immunomodulatory toxins that induce a Vβ-specific activation of T cells, while the latter are immune evasion molecules that interfere with a wide range of innate immune defences. The superantigenic properties of Staphylococcal enterotoxin-like X (SElX) have recently been established. We now reveal that SElX also possesses functional characteristics of the SSLs. A region of SElX displays high homology to the sialyl-lactosamine (sLacNac)-specific binding site present in a sub-family of SSLs. By analysing the interaction of SElX with sLacNac-containing glycans we show that SElX has an equivalent specificity and host cell binding range to the SSLs. Mutation of key amino acids in this conserved region affects the ability of SElX to bind to cells of myeloid origin and significantly reduces its ability to protect S. aureus from destruction in a whole blood killing (WBK) assay. Like the SSLs, SElX is up-regulated early during infection and is under the control of the S. aureus exotoxin expression (Sae) two component gene regulatory system. Additionally, the structure of SElX in complex with the sLacNac-containing tetrasaccharide sialyl Lewis X (sLeX) reveals that SElX is a unique single-domain SAg. In summary, SElX is an ‘SSL-like’ SAg. The ability of Staphylococcus aureus to cause disease can be attributed to the wide range of toxins and immune evasion molecules it produces. The 25-member superantigen (SAg) family of toxins disrupts adaptive immunity by activating large proportions of T cells. In contrast, the structurally-related 14-member Staphylococcal Superantigen-Like (SSL) family inhibits a wide range of innate immune functions. We have discovered that the SAg staphylococcal enterotoxin-like X (SElX) has the sialylated-glycan-dependent active site found in a sub-family of SSLs. Through this site it possesses the ability to affect host innate immunity defences. By solving the X-ray crystal structure of SElX we have also discovered that SElX is a unique single-domain SAg. While it retains a typical β-grasp domain, it lacks the OB-fold domain that is present in all other staphylococcal SAgs.
Collapse
Affiliation(s)
- Ries J. Langley
- School of Medical Sciences, and The Maurice Wilkins Centre for Molecular Biodiscovery, the University of Auckland, Auckland, New Zealand
- * E-mail:
| | - Yi Tian Ting
- School of Biological Sciences, and The Maurice Wilkins Centre for Molecular Biodiscovery, the University of Auckland, Auckland, New Zealand
| | - Fiona Clow
- School of Medical Sciences, and The Maurice Wilkins Centre for Molecular Biodiscovery, the University of Auckland, Auckland, New Zealand
| | - Paul G. Young
- School of Biological Sciences, and The Maurice Wilkins Centre for Molecular Biodiscovery, the University of Auckland, Auckland, New Zealand
| | - Fiona J. Radcliff
- School of Medical Sciences, and The Maurice Wilkins Centre for Molecular Biodiscovery, the University of Auckland, Auckland, New Zealand
| | - Jeong Min Choi
- School of Medical Sciences, and The Maurice Wilkins Centre for Molecular Biodiscovery, the University of Auckland, Auckland, New Zealand
| | - Richard P. Sequeira
- School of Medical Sciences, and The Maurice Wilkins Centre for Molecular Biodiscovery, the University of Auckland, Auckland, New Zealand
| | - Silva Holtfreter
- School of Medical Sciences, and The Maurice Wilkins Centre for Molecular Biodiscovery, the University of Auckland, Auckland, New Zealand
| | - Heather Baker
- School of Biological Sciences, and The Maurice Wilkins Centre for Molecular Biodiscovery, the University of Auckland, Auckland, New Zealand
| | - John D. Fraser
- School of Medical Sciences, and The Maurice Wilkins Centre for Molecular Biodiscovery, the University of Auckland, Auckland, New Zealand
| |
Collapse
|
10
|
Guerra FE, Borgogna TR, Patel DM, Sward EW, Voyich JM. Epic Immune Battles of History: Neutrophils vs. Staphylococcus aureus. Front Cell Infect Microbiol 2017; 7:286. [PMID: 28713774 PMCID: PMC5491559 DOI: 10.3389/fcimb.2017.00286] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 06/12/2017] [Indexed: 12/23/2022] Open
Abstract
Neutrophils are the most abundant leukocytes in human blood and the first line of defense after bacteria have breached the epithelial barriers. After migration to a site of infection, neutrophils engage and expose invading microorganisms to antimicrobial peptides and proteins, as well as reactive oxygen species, as part of their bactericidal arsenal. Ideally, neutrophils ingest bacteria to prevent damage to surrounding cells and tissues, kill invading microorganisms with antimicrobial mechanisms, undergo programmed cell death to minimize inflammation, and are cleared away by macrophages. Staphylococcus aureus (S. aureus) is a prevalent Gram-positive bacterium that is a common commensal and causes a wide range of diseases from skin infections to endocarditis. Since its discovery, S. aureus has been a formidable neutrophil foe that has challenged the efficacy of this professional assassin. Indeed, proper clearance of S. aureus by neutrophils is essential to positive infection outcome, and S. aureus has developed mechanisms to evade neutrophil killing. Herein, we will review mechanisms used by S. aureus to modulate and evade neutrophil bactericidal mechanisms including priming, activation, chemotaxis, production of reactive oxygen species, and resolution of infection. We will also highlight how S. aureus uses sensory/regulatory systems to tailor production of virulence factors specifically to the triggering signal, e.g., neutrophils and defensins. To conclude, we will provide an overview of therapeutic approaches that may potentially enhance neutrophil antimicrobial functions.
Collapse
Affiliation(s)
- Fermin E Guerra
- Department of Microbiology and Immunology, Montana State UniversityBozeman, MT, United States
| | - Timothy R Borgogna
- Department of Microbiology and Immunology, Montana State UniversityBozeman, MT, United States
| | - Delisha M Patel
- Department of Microbiology and Immunology, Montana State UniversityBozeman, MT, United States
| | - Eli W Sward
- Department of Microbiology and Immunology, Montana State UniversityBozeman, MT, United States
| | - Jovanka M Voyich
- Department of Microbiology and Immunology, Montana State UniversityBozeman, MT, United States
| |
Collapse
|
11
|
Neutrophils and Immunity: From Bactericidal Action to Being Conquered. J Immunol Res 2017; 2017:9671604. [PMID: 28299345 PMCID: PMC5337389 DOI: 10.1155/2017/9671604] [Citation(s) in RCA: 137] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 01/29/2017] [Indexed: 12/19/2022] Open
Abstract
The neutrophil is the major phagocyte and the final effector cell of the innate immunity, with a primary role in the clearance of extracellular pathogens. Using the broad array of cytokines, extracellular traps, and effector molecules as the humoral arm, neutrophils play a crucial role in the host defense against pathogen infections. On the other hand, the pathogen has the capacity to overcome neutrophil-mediated host defense to establish infection causing human disease. Pathogens, such as S. aureus, have the potential to thwart neutrophil chemotaxis and phagocytosis and thereby succeed in evading killing by neutrophils. Furthermore, S. aureus surviving within neutrophils promotes neutrophil cytolysis, resulting in the release of host-derived molecules that promote local inflammation. Here, we provide a detailed overview of the mechanisms by which neutrophils kill the extracellular pathogens and how pathogens evade neutrophils degradation. This review will provide insights that might be useful for the development of novel therapies against infections caused by antibiotic resistant pathogens.
Collapse
|
12
|
do Vale A, Cabanes D, Sousa S. Bacterial Toxins as Pathogen Weapons Against Phagocytes. Front Microbiol 2016; 7:42. [PMID: 26870008 PMCID: PMC4734073 DOI: 10.3389/fmicb.2016.00042] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 01/11/2016] [Indexed: 12/31/2022] Open
Abstract
Bacterial toxins are virulence factors that manipulate host cell functions and take over the control of vital processes of living organisms to favor microbial infection. Some toxins directly target innate immune cells, thereby annihilating a major branch of the host immune response. In this review we will focus on bacterial toxins that act from the extracellular milieu and hinder the function of macrophages and neutrophils. In particular, we will concentrate on toxins from Gram-positive and Gram-negative bacteria that manipulate cell signaling or induce cell death by either imposing direct damage to the host cells cytoplasmic membrane or enzymatically modifying key eukaryotic targets. Outcomes regarding pathogen dissemination, host damage and disease progression will be discussed.
Collapse
Affiliation(s)
- Ana do Vale
- Host Interaction and Response, Instituto de Investigação e Inovação em Saúde, Universidade do PortoPorto, Portugal; Group of Fish Immunology and Vaccinology, Instituto de Biologia Molecular e Celular, Universidade do PortoPorto, Portugal
| | - Didier Cabanes
- Host Interaction and Response, Instituto de Investigação e Inovação em Saúde, Universidade do PortoPorto, Portugal; Group of Molecular Microbiology, Instituto de Biologia Molecular e Celular, Universidade do PortoPorto, Portugal
| | - Sandra Sousa
- Host Interaction and Response, Instituto de Investigação e Inovação em Saúde, Universidade do PortoPorto, Portugal; Group of Molecular Microbiology, Instituto de Biologia Molecular e Celular, Universidade do PortoPorto, Portugal
| |
Collapse
|
13
|
Groß A, Hashimoto C, Sticht H, Eichler J. Synthetic Peptides as Protein Mimics. Front Bioeng Biotechnol 2016; 3:211. [PMID: 26835447 PMCID: PMC4717299 DOI: 10.3389/fbioe.2015.00211] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 12/22/2015] [Indexed: 12/21/2022] Open
Abstract
The design and generation of molecules capable of mimicking the binding and/or functional sites of proteins represents a promising strategy for the exploration and modulation of protein function through controlled interference with the underlying molecular interactions. Synthetic peptides have proven an excellent type of molecule for the mimicry of protein sites because such peptides can be generated as exact copies of protein fragments, as well as in diverse chemical modifications, which includes the incorporation of a large range of non-proteinogenic amino acids as well as the modification of the peptide backbone. Apart from extending the chemical and structural diversity presented by peptides, such modifications also increase the proteolytic stability of the molecules, enhancing their utility for biological applications. This article reviews recent advances by this and other laboratories in the use of synthetic protein mimics to modulate protein function, as well as to provide building blocks for synthetic biology.
Collapse
Affiliation(s)
- Andrea Groß
- Department of Chemistry and Pharmacy, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Chie Hashimoto
- Department of Chemistry and Pharmacy, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Heinrich Sticht
- Institute of Biochemistry, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Jutta Eichler
- Department of Chemistry and Pharmacy, University of Erlangen-Nuremberg, Erlangen, Germany
| |
Collapse
|
14
|
Stapels DAC, Kuipers A, von Köckritz-Blickwede M, Ruyken M, Tromp AT, Horsburgh MJ, de Haas CJC, van Strijp JAG, van Kessel KPM, Rooijakkers SHM. Staphylococcus aureus protects its immune-evasion proteins against degradation by neutrophil serine proteases. Cell Microbiol 2015; 18:536-45. [PMID: 26418545 DOI: 10.1111/cmi.12528] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 09/20/2015] [Indexed: 12/12/2022]
Abstract
Neutrophils store large quantities of neutrophil serine proteases (NSPs) that contribute, via multiple mechanisms, to antibacterial immune defences. Even though neutrophils are indispensable in fighting Staphylococcus aureus infections, the importance of NSPs in anti-staphylococcal defence is yet unknown. However, the fact that S. aureus produces three highly specific inhibitors for NSPs [the extracellular adherence proteins (EAPs) Eap, EapH1 and EapH2], suggests that these proteases are important for host defences against this bacterium. In this study we demonstrate that NSPs can inactivate secreted virulence factors of S. aureus and that EAP proteins function to prevent this degradation. Specifically, we find that a large group of S. aureus immune-evasion proteins is vulnerable to proteolytic inactivation by NSPs. In most cases, NSP cleavage leads to functional inactivation of virulence proteins. Interestingly, proteins with similar immune-escape functions appeared to have differential cleavage sensitivity towards NSPs. Using targeted mutagenesis and complementation analyses in S. aureus, we demonstrate that all EAP proteins can protect other virulence factors from NSP degradation in complex bacterial supernatants. These findings show that NSPs inactivate S. aureus virulence factors. Moreover, the protection by EAP proteins can explain why this antibacterial function of NSPs was masked in previous studies. Furthermore, our results indicate that therapeutic inactivation of EAP proteins can help to restore the natural host immune defences against S. aureus.
Collapse
Affiliation(s)
- D A C Stapels
- Medical Microbiology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - A Kuipers
- Medical Microbiology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - M von Köckritz-Blickwede
- Department of Physiological Chemistry, University of Veterinary Medicine Hannover, Hannover, Germany
| | - M Ruyken
- Medical Microbiology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - A T Tromp
- Medical Microbiology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - M J Horsburgh
- Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| | - C J C de Haas
- Medical Microbiology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - J A G van Strijp
- Medical Microbiology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - K P M van Kessel
- Medical Microbiology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - S H M Rooijakkers
- Medical Microbiology, University Medical Center Utrecht, Utrecht, the Netherlands
| |
Collapse
|
15
|
Koymans KJ, Vrieling M, Gorham RD, van Strijp JAG. Staphylococcal Immune Evasion Proteins: Structure, Function, and Host Adaptation. Curr Top Microbiol Immunol 2015; 409:441-489. [PMID: 26919864 DOI: 10.1007/82_2015_5017] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Staphylococcus aureus is a successful human and animal pathogen. Its pathogenicity is linked to its ability to secrete a large amount of virulence factors. These secreted proteins interfere with many critical components of the immune system, both innate and adaptive, and hamper proper immune functioning. In recent years, numerous studies have been conducted in order to understand the molecular mechanism underlying the interaction of evasion molecules with the host immune system. Structural studies have fundamentally contributed to our understanding of the mechanisms of action of the individual factors. Furthermore, such studies revealed one of the most striking characteristics of the secreted immune evasion molecules: their conserved structure. Despite high-sequence variability, most immune evasion molecules belong to a small number of structural categories. Another remarkable characteristic is that S. aureus carries most of these virulence factors on mobile genetic elements (MGE) or ex-MGE in its accessory genome. Coevolution of pathogen and host has resulted in immune evasion molecules with a highly host-specific function and prevalence. In this review, we explore how these shared structures and genomic locations relate to function and host specificity. This is discussed in the context of therapeutic options for these immune evasion molecules in infectious as well as in inflammatory diseases.
Collapse
Affiliation(s)
- Kirsten J Koymans
- Department of Medical Microbiology, University Medical Center Utrecht, G04-614, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands.
| | - Manouk Vrieling
- Department of Medical Microbiology, University Medical Center Utrecht, G04-614, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands
| | - Ronald D Gorham
- Department of Medical Microbiology, University Medical Center Utrecht, G04-614, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands
| | - Jos A G van Strijp
- Department of Medical Microbiology, University Medical Center Utrecht, G04-614, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands
| |
Collapse
|
16
|
Spaan AN, Vrieling M, Wallet P, Badiou C, Reyes-Robles T, Ohneck EA, Benito Y, de Haas CJ, Day CJ, Jennings MP, Lina G, Vandenesch F, van Kessel KP, Torres VJ, van Strijp JA, Henry T. The staphylococcal toxins γ-haemolysin AB and CB differentially target phagocytes by employing specific chemokine receptors. Nat Commun 2014; 5:5438. [PMID: 25384670 PMCID: PMC4228697 DOI: 10.1038/ncomms6438] [Citation(s) in RCA: 111] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Accepted: 10/01/2014] [Indexed: 12/20/2022] Open
Abstract
Evasion of the host phagocyte response by Staphylococcus aureus is crucial to successful infection with the pathogen. γ-haemolysin AB and CB (HlgAB, HlgCB) are bicomponent pore-forming toxins present in almost all human S. aureus isolates. Cellular tropism and contribution of the toxins to S. aureus pathophysiology are poorly understood. Here we identify the chemokine receptors CXCR1, CXCR2 and CCR2 as targets for HlgAB, and the complement receptors C5aR and C5L2 as targets for HlgCB. The receptor expression patterns allow the toxins to efficiently and differentially target phagocytic cells. Murine neutrophils are resistant to HlgAB and HlgCB. CCR2 is the sole murine receptor orthologue compatible with γ-haemolysin. In a murine peritonitis model, HlgAB contributes to S. aureus bacteremia in a CCR2-dependent manner. HlgAB-mediated targeting of CCR2(+) cells highlights the involvement of inflammatory macrophages during S. aureus infection. Functional quantification identifies HlgAB and HlgCB as major secreted staphylococcal leukocidins.
Collapse
MESH Headings
- Animals
- Bacterial Proteins/physiology
- Bacterial Toxins
- Cells, Cultured
- Disease Models, Animal
- Female
- Hemolysin Proteins/physiology
- Humans
- Macrophages/microbiology
- Macrophages/pathology
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Peritonitis/microbiology
- Peritonitis/pathology
- Peritonitis/physiopathology
- Phagocytes/microbiology
- Phagocytes/pathology
- Receptors, CCR2/deficiency
- Receptors, CCR2/genetics
- Receptors, CCR2/physiology
- Receptors, Chemokine/physiology
- Receptors, Complement/physiology
- Receptors, Interleukin-8A/physiology
- Receptors, Interleukin-8B/physiology
- Staphylococcal Infections/pathology
- Staphylococcal Infections/physiopathology
- Staphylococcus aureus
Collapse
Affiliation(s)
- András N. Spaan
- Department of Medical Microbiology, University Medical Center Utrecht, 3584CX Utrecht, The Netherlands
- CIRI, International Center for Infectiology Research, Université Lyon 1 and Ecole Normale Supérieure de Lyon, 69007 Lyon, France
- Inserm, U1111, 69007 Lyon, France
| | - Manouk Vrieling
- Department of Medical Microbiology, University Medical Center Utrecht, 3584CX Utrecht, The Netherlands
| | - Pierre Wallet
- CIRI, International Center for Infectiology Research, Université Lyon 1 and Ecole Normale Supérieure de Lyon, 69007 Lyon, France
- Inserm, U1111, 69007 Lyon, France
- CNRS, UMR5308, 69007 Lyon, France
| | - Cédric Badiou
- CIRI, International Center for Infectiology Research, Université Lyon 1 and Ecole Normale Supérieure de Lyon, 69007 Lyon, France
- Inserm, U1111, 69007 Lyon, France
- CNRS, UMR5308, 69007 Lyon, France
| | - Tamara Reyes-Robles
- Department of Microbiology, New York University School of Medicine, 10016 New York, USA
| | - Elizabeth A. Ohneck
- Department of Microbiology, New York University School of Medicine, 10016 New York, USA
| | - Yvonne Benito
- CIRI, International Center for Infectiology Research, Université Lyon 1 and Ecole Normale Supérieure de Lyon, 69007 Lyon, France
- Inserm, U1111, 69007 Lyon, France
- CNRS, UMR5308, 69007 Lyon, France
- Centre National de Référence des Staphylocoques, Hospices Civils de Lyon, 69007 Lyon, France
| | - Carla J.C. de Haas
- Department of Medical Microbiology, University Medical Center Utrecht, 3584CX Utrecht, The Netherlands
| | - Christopher J. Day
- Institute for Glycomics, Griffith University, Gold Coast, Queensland 4222, Australia
| | - Michael P. Jennings
- Institute for Glycomics, Griffith University, Gold Coast, Queensland 4222, Australia
| | - Gérard Lina
- CIRI, International Center for Infectiology Research, Université Lyon 1 and Ecole Normale Supérieure de Lyon, 69007 Lyon, France
- Inserm, U1111, 69007 Lyon, France
- CNRS, UMR5308, 69007 Lyon, France
- Centre National de Référence des Staphylocoques, Hospices Civils de Lyon, 69007 Lyon, France
| | - François Vandenesch
- CIRI, International Center for Infectiology Research, Université Lyon 1 and Ecole Normale Supérieure de Lyon, 69007 Lyon, France
- Inserm, U1111, 69007 Lyon, France
- CNRS, UMR5308, 69007 Lyon, France
- Centre National de Référence des Staphylocoques, Hospices Civils de Lyon, 69007 Lyon, France
| | - Kok P.M. van Kessel
- Department of Medical Microbiology, University Medical Center Utrecht, 3584CX Utrecht, The Netherlands
| | - Victor J. Torres
- Department of Microbiology, New York University School of Medicine, 10016 New York, USA
| | - Jos A.G. van Strijp
- Department of Medical Microbiology, University Medical Center Utrecht, 3584CX Utrecht, The Netherlands
| | - Thomas Henry
- CIRI, International Center for Infectiology Research, Université Lyon 1 and Ecole Normale Supérieure de Lyon, 69007 Lyon, France
- Inserm, U1111, 69007 Lyon, France
| |
Collapse
|
17
|
Staphylococcus aureus secretes a unique class of neutrophil serine protease inhibitors. Proc Natl Acad Sci U S A 2014; 111:13187-92. [PMID: 25161283 DOI: 10.1073/pnas.1407616111] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Neutrophils are indispensable for clearing infections with the prominent human pathogen Staphylococcus aureus. Here, we report that S. aureus secretes a family of proteins that potently inhibits the activity of neutrophil serine proteases (NSPs): neutrophil elastase (NE), proteinase 3, and cathepsin G. The NSPs, but not related serine proteases, are specifically blocked by the extracellular adherence protein (Eap) and the functionally orphan Eap homologs EapH1 and EapH2, with inhibitory-constant values in the low-nanomolar range. Eap proteins are together essential for NSP inhibition by S. aureus in vitro and promote staphylococcal infection in vivo. The crystal structure of the EapH1/NE complex showed that Eap molecules constitute a unique class of noncovalent protease inhibitors that occlude the catalytic cleft of NSPs. These findings increase our insights into the complex pathogenesis of S. aureus infections and create opportunities to design novel treatment strategies for inflammatory conditions related to excessive NSP activity.
Collapse
|
18
|
Fevre C, Bestebroer J, Mebius MM, de Haas CJC, van Strijp JAG, Fitzgerald JR, Haas PJA. Staphylococcus aureus proteins SSL6 and SElX interact with neutrophil receptors as identified using secretome phage display. Cell Microbiol 2014; 16:1646-65. [PMID: 24840181 DOI: 10.1111/cmi.12313] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Revised: 05/02/2014] [Accepted: 05/05/2014] [Indexed: 12/20/2022]
Abstract
In order to cause colonization and invasive disease, pathogenic bacteria secrete proteins that modulate host immune defences. Identification and characterization of these proteins leads to a better understanding of the pathological processes underlying infectious and inflammatory diseases and is essential in the development of new strategies for their prevention and treatment. Current techniques to functionally characterize these proteins are laborious and inefficient. Here we describe a high-throughput functional selection strategy using phage display in order to identify immune evasion proteins. Using this technique we identified two previously uncharacterized proteins secreted by Staphylococcus aureus, SElX and SSL6 that bind to neutrophil surface receptors. SElX binds PSGL-1 on neutrophils and thereby inhibits the interaction between PSGL-1 and P-selectin, a crucial step in the recruitment of neutrophils to the site of infection. SSL6 is the first bacterial protein identified that binds CD47, a widely expressed cell surface protein recently described as an interesting target in anti-cancer therapy. Our findings provide new insights into the pathogenesis of S. aureus infections and support phage display as an efficient method to identify bacterial secretome proteins interacting with humoral or cellular immune components.
Collapse
Affiliation(s)
- Cindy Fevre
- Department of Medical Microbiology, University Medical Center Utrecht, PO G04.614, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
19
|
Spaan AN, Henry T, van Rooijen WJM, Perret M, Badiou C, Aerts PC, Kemmink J, de Haas CJC, van Kessel KPM, Vandenesch F, Lina G, van Strijp JAG. The staphylococcal toxin Panton-Valentine Leukocidin targets human C5a receptors. Cell Host Microbe 2013; 13:584-594. [PMID: 23684309 DOI: 10.1016/j.chom.2013.04.006] [Citation(s) in RCA: 218] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Revised: 03/15/2013] [Accepted: 04/09/2013] [Indexed: 12/14/2022]
Abstract
Panton-Valentine Leukocidin (PVL) is a staphylococcal bicomponent pore-forming toxin linked to severe invasive infections. Target-cell and species specificity of PVL are poorly understood, and the mechanism of action of this toxin in Staphylococcus aureus virulence is controversial. Here, we identify the human complement receptors C5aR and C5L2 as host targets of PVL, mediating both toxin binding and cytotoxicity. Expression and interspecies variations of the C5aR determine cell and species specificity of PVL. The C5aR binding PVL component, LukS-PV, is a potent inhibitor of C5a-induced immune cell activation. These findings provide insight into leukocidin function and staphylococcal virulence and offer directions for future investigations into individual susceptibility to severe staphylococcal disease.
Collapse
Affiliation(s)
- András N Spaan
- Medical Microbiology, University Medical Center Utrecht, 3584CX Utrecht, The Netherlands
| | - Thomas Henry
- CIRI, International Center for Infectiology Research, LabEx Ecofect, Université Lyon 1, 69007 Lyon, France; Inserm, U1111, 69007 Lyon, France; Ecole Normale Supérieure de Lyon, 69007 Lyon, France; CNRS, UMR5308, 69007 Lyon, France
| | | | - Magali Perret
- CIRI, International Center for Infectiology Research, LabEx Ecofect, Université Lyon 1, 69007 Lyon, France; Inserm, U1111, 69007 Lyon, France; Ecole Normale Supérieure de Lyon, 69007 Lyon, France; CNRS, UMR5308, 69007 Lyon, France
| | - Cédric Badiou
- CIRI, International Center for Infectiology Research, LabEx Ecofect, Université Lyon 1, 69007 Lyon, France; Inserm, U1111, 69007 Lyon, France; Ecole Normale Supérieure de Lyon, 69007 Lyon, France; CNRS, UMR5308, 69007 Lyon, France
| | - Piet C Aerts
- Medical Microbiology, University Medical Center Utrecht, 3584CX Utrecht, The Netherlands
| | - Johan Kemmink
- Medicinal Chemistry and Chemical Biology, Utrecht University, 3584CX Utrecht, The Netherlands
| | - Carla J C de Haas
- Medical Microbiology, University Medical Center Utrecht, 3584CX Utrecht, The Netherlands
| | - Kok P M van Kessel
- Medical Microbiology, University Medical Center Utrecht, 3584CX Utrecht, The Netherlands
| | - François Vandenesch
- CIRI, International Center for Infectiology Research, LabEx Ecofect, Université Lyon 1, 69007 Lyon, France; Inserm, U1111, 69007 Lyon, France; Ecole Normale Supérieure de Lyon, 69007 Lyon, France; CNRS, UMR5308, 69007 Lyon, France; Hospices Civils de Lyon, 69007 Lyon, France
| | - Gérard Lina
- CIRI, International Center for Infectiology Research, LabEx Ecofect, Université Lyon 1, 69007 Lyon, France; Inserm, U1111, 69007 Lyon, France; Ecole Normale Supérieure de Lyon, 69007 Lyon, France; CNRS, UMR5308, 69007 Lyon, France; Hospices Civils de Lyon, 69007 Lyon, France
| | - Jos A G van Strijp
- Medical Microbiology, University Medical Center Utrecht, 3584CX Utrecht, The Netherlands.
| |
Collapse
|
20
|
Spaan AN, Surewaard BGJ, Nijland R, van Strijp JAG. Neutrophils versus Staphylococcus aureus: a biological tug of war. Annu Rev Microbiol 2013; 67:629-50. [PMID: 23834243 DOI: 10.1146/annurev-micro-092412-155746] [Citation(s) in RCA: 245] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The pathogen Staphylococcus aureus is well adapted to its human host. Neutrophil-mediated killing is a crucial defense system against S. aureus; however, the pathogen has evolved many strategies to resist killing. We first describe the discrete steps of neutrophil activation and migration to the site of infection and the killing of microbes by neutrophils in general. We then highlight the different approaches utilized by S. aureus to resist the different steps of neutrophil attack. Various molecules are discussed in their evolutionary context. Most of the molecules secreted by S. aureus to combat neutrophil attacks at the site of infection show clear human specificity. Many elements of human neutrophil defenses appear redundant, and so the evasion strategies of staphylococci display redundant functions as well. All efforts by S. aureus to resist neutrophil-mediated killing stress the importance of these mechanisms in the pathophysiology of staphylococcal diseases. However, the highly human-specific nature of most host-pathogen interactions hinders the in vivo establishment of their contribution to staphylococcal pathophysiology.
Collapse
Affiliation(s)
- András N Spaan
- Department of Medical Microbiology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands; , , ,
| | | | | | | |
Collapse
|
21
|
Lorenz N, Clow F, Radcliff FJ, Fraser JD. Full functional activity of SSL7 requires binding of both complement C5 and IgA. Immunol Cell Biol 2013; 91:469-76. [PMID: 23797068 DOI: 10.1038/icb.2013.28] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Revised: 05/26/2013] [Accepted: 05/26/2013] [Indexed: 12/21/2022]
Abstract
Staphylococcus aureus is an opportunistic bacterial pathogen responsible for a range of diseases, from local skin infections through to life-threatening illnesses such as toxic shock syndrome. S. aureus produces an assortment of molecules designed to evade or subvert the host immune system. One example is the 23 kDa staphylococcal superantigen-like protein 7 (SSL7) that simultaneously binds immunoglobulin A (IgA) and complement C5 to inhibit complement-mediated hemolytic and bactericidal activity. The avirulent bacterium Lactococcus lactis was engineered to express SSL7 so that its role in bacterial survival could be assessed without interference from other virulence factors. Expression of SSL7 by L. lactis led to significantly enhanced bacterial survival in whole human blood and prevented the membrane attack complex (C5b-9) forming on the cell wall. To further understand the mechanism of action of SSL7, the activity of wild-type SSL7 protein was compared with a panel of mutant proteins lacking the capacity to bind IgA, C5, or both IgA and C5. SSL7 potently inhibited in vitro chemotaxis of inflammatory myeloid cells in response to a pathogenic stimulus and when injected into mice, SSL7 blocked the migration of neutrophils into the peritoneum in response to an inoculum of heat-killed S. aureus. Mutagenesis of the C5-binding site on SSL7 abolished all inhibitory activity, while mutation of the IgA-binding site had only partial effects, indicating that while IgA binding enhances activity it is not essential. SSL7 is an important staphylococcal virulence factor with potent anti-inflammatory properties, which are mediated by targeting complement C5 and IgA.
Collapse
Affiliation(s)
- Natalie Lorenz
- Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, School of Medical Sciences and Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand
| | | | | | | |
Collapse
|
22
|
Nuutila J, Jalava-Karvinen P, Hohenthal U, Kotilainen P, Pelliniemi TT, Nikoskelainen J, Lilius EM. A rapid flow cytometric method for distinguishing between febrile bacterial and viral infections. J Microbiol Methods 2012; 92:64-72. [PMID: 23154042 DOI: 10.1016/j.mimet.2012.11.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Revised: 11/02/2012] [Accepted: 11/05/2012] [Indexed: 11/26/2022]
Abstract
Antibiotic resistance due to the inappropriate use of antimicrobials is one of the most critical public health problems worldwide. A major factor underlying the unnecessary use of antibiotics is the lack of rapid and accurate diagnostic tests. Therefore, we aimed to develop a novel rapid flow cytometric method for distinguishing between febrile bacterial and viral infections. In this prospective comparative study, quantitative flow cytometric analysis of FcγRII/CD32, CR1/CD35, MHC Class I receptor (MHCI), and C5aR/CD88 on human phagocytes was performed in 286 hospitalized febrile patients with suspected infection. After using microbiological and serological detection methods, or clinical diagnosis, 205 patients were identified with either bacterial (n=136) or viral (n=69) infection. Receptor data from patients were compared to those of 50 healthy controls. We developed a flow cytometric marker of local and systemic bacterial infections designated "bacterial infection score (BIS)" incorporating the quantitative analysis of FcγRII/CD32, CR1/CD35, C5aR/CD88 and MHCI on neutrophils and/or monocytes, which displays 91% sensitivity and 92% specificity in distinguishing between microbiologically confirmed bacterial (n=77) and serologically confirmed viral infections (n=61) within 1h. The BIS method was effectively applied to distinguish between bacterial and viral (pandemic H1N1 influenza) pneumonia cases with 96% sensitivity and 92% specificity. We propose that the rapid BIS test can assist physicians in deciding whether antibiotic treatment is necessary, thus reducing unnecessary antimicrobial use.
Collapse
Affiliation(s)
- Jari Nuutila
- Department of Biochemistry, University of Turku, Turku, Finland.
| | | | | | | | | | | | | |
Collapse
|
23
|
Liu ZJ, Yang YJ, Jiang L, Xu YC, Wang AX, Du GH, Gao JM. Tyrosine sulfation in N-terminal domain of human C5a receptor is necessary for binding of chemotaxis inhibitory protein of Staphylococcus aureus. Acta Pharmacol Sin 2011; 32:1038-44. [PMID: 21706042 DOI: 10.1038/aps.2011.53] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
AIM Staphylococcus aureus evades host defense through releasing several virulence proteins, such as chemotaxis inhibitory protein of staphylococcus aureus (CHIPS). It has been shown that extracellular N terminus of C5a receptor (C5aR) forms the binding domain for CHIPS, and tyrosine sulfation is emerging as a key factor in determining protein-protein interaction. The aim of this study was to evaluate the role of tyrosine sulfation of N-terminal of C5aR in its binding with CHIPS. METHODS Expression plasmids encoding C5aR and its mutants were prepared using PCR and site-directed mutagenesis and were used to transfect HEK 293T cells using calcium phosphate. Recombinant CHIPS protein was purified. Western blotting was used to examine the binding efficiency of CHIPS to C5aR or its mutants. RESULTS CHIPS exclusively binds to C5aR, but not to C5L2 or C3aR. A nonspecific sulfation inhibitor, sodium chlorate (50 nmol/L), diminishes the binding ability of C5aR with CHIPS. Blocking sulfation by mutation of tyrosine to phenylalanine at positions 11 and 14 of C5aR N terminus, which blocked sulfation, completely abrogates CHIPS binding. When tyrosine 14 alone was mutated to phenylalanine, the binding efficiency of recombinant CHIPS was substantially decreased. CONCLUSION The results demonstrate a structural basis of C5aR-CHIPS association, in which tyrosine sulfation of N-terminal C5aR plays an important role. Our data may have potential significance in development of novel drugs for therapeutic intervention.
Collapse
|
24
|
Bunschoten A, Ippel JH, Kruijtzer JAW, Feitsma L, de Haas CJC, Liskamp RMJ, Kemmink J. A peptide mimic of the chemotaxis inhibitory protein of Staphylococcus aureus: towards the development of novel anti-inflammatory compounds. Amino Acids 2010; 40:731-40. [PMID: 20683629 PMCID: PMC3020301 DOI: 10.1007/s00726-010-0711-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2010] [Accepted: 07/19/2010] [Indexed: 12/13/2022]
Abstract
Complement factor C5a is one of the most powerful pro-inflammatory agents involved in recruitment of leukocytes, activation of phagocytes and other inflammatory responses. C5a triggers inflammatory responses by binding to its G-protein-coupled C5a-receptor (C5aR). Excessive or erroneous activation of the C5aR has been implicated in numerous inflammatory diseases. The C5aR is therefore a key target in the development of specific anti-inflammatory compounds. A very potent natural inhibitor of the C5aR is the 121-residue chemotaxis inhibitory protein of Staphylococcus aureus (CHIPS). Although CHIPS effectively blocks C5aR activation by binding tightly to its extra-cellular N terminus, it is not suitable as a potential anti-inflammatory drug due to its immunogenic properties. As a first step in the development of an improved CHIPS mimic, we designed and synthesized a substantially shorter 50-residue adapted peptide, designated CHOPS. This peptide included all residues important for receptor binding as based on the recent structure of CHIPS in complex with the C5aR N terminus. Using isothermal titration calorimetry we demonstrate that CHOPS has micromolar affinity for a model peptide comprising residues 7–28 of the C5aR N terminus including two O-sulfated tyrosine residues at positions 11 and 14. CD and NMR spectroscopy showed that CHOPS is unstructured free in solution. Upon addition of the doubly sulfated model peptide, however, the NMR and CD spectra reveal the formation of structural elements in CHOPS reminiscent of native CHIPS.
Collapse
Affiliation(s)
- Anton Bunschoten
- Department of Medicinal Chemistry and Chemical Biology, Utrecht University, Sorbonnelaan 16, 3584 CA, Utrecht, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
25
|
Bestebroer J, de Haas CJ, van Strijp JA. How microorganisms avoid phagocyte attraction. FEMS Microbiol Rev 2010; 34:395-414. [DOI: 10.1111/j.1574-6976.2009.00202.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
|
26
|
Bunschoten A, Feitsma LJ, Kruijtzer JAW, de Haas CJC, Liskamp RMJ, Kemmink J. CHIPS binds to the phosphorylated N-terminus of the C5a-receptor. Bioorg Med Chem Lett 2010; 20:3338-40. [PMID: 20457523 DOI: 10.1016/j.bmcl.2010.04.028] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2010] [Revised: 04/08/2010] [Accepted: 04/09/2010] [Indexed: 10/19/2022]
Abstract
Replacement of the sulfate groups, present in vivo on the N-terminus of the C5a-receptor (C5aR), by phosphate groups is explored. Phosphorylated mimics of the C5a-receptor N-terminus are synthesized and their binding to Chemotaxis Inhibitory Protein of Staphylococcus aureus (CHIPS) is studied by ITC and NMR. The phosphorylated C5aR mimics showed comparable binding affinity and a similar binding mode towards CHIPS compared to their sulfated forms. The activities of the phosphorylated peptides in a biological assay, however, were significantly lower compared to their sulfated counterparts.
Collapse
Affiliation(s)
- Anton Bunschoten
- Medicinal Chemistry & Chemical Biology, Faculty of Science, Utrecht University, Sorbonnelaan 16, 3584 CA, Utrecht, The Netherlands
| | | | | | | | | | | |
Collapse
|
27
|
Isenman DE, Leung E, Mackay JD, Bagby S, van den Elsen JMH. Mutational analyses reveal that the staphylococcal immune evasion molecule Sbi and complement receptor 2 (CR2) share overlapping contact residues on C3d: implications for the controversy regarding the CR2/C3d cocrystal structure. THE JOURNAL OF IMMUNOLOGY 2010; 184:1946-55. [PMID: 20083651 DOI: 10.4049/jimmunol.0902919] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
We recently characterized an interaction between the Staphylococcus aureus immune evasion molecule Staphylococcus aureus binder of Ig (Sbi) and complement C3, an interaction mediated primarily through the binding of C3d(g) to Sbi domain IV. Events related to these studies prompted us to investigate via mutagenesis the binding interface of C3d for Sbi domain IV (Sbi-IV), as well as to revisit the controversial issue of the complement receptor 2 (CR2) binding site of C3d. Specifically, we had shown that Sbi domains III and IV fragment binding to C3dg inhibited the latter's binding to CR2. Moreover, a published cocrystal structure of C3d bound to complement inhibitory C-terminal domain of extracellular fibrinogen-binding protein (Efb-C), a structural and functional homolog of Sbi-IV, showed Efb-C binding to a region on the concave face of C3d previously implicated in CR2 binding by our mutagenesis data but not confirmed in the CR2(short consensus repeat [SCR]1-2):C3d cocrystal structure. We have now analyzed by surface plasmon resonance the binding of a series of variant C3dg molecules to biosensor-bound Sbi-IV or CR2(SCR1-2). We found that mutations to the concave face acidic pocket of C3d significantly affected binding to both Sbi-IV and CR2, although there was divergence in which residues were most important in each case. By contrast, no binding defects were seen for mutations made to the sideface of C3d implicated from the cocrystal structure to be involved in binding CR2(SCR1-2). The results with Sbi-IV suggest a mode of binding highly similar to that visualized in the Efb-C:C3d complex. The results with CR2 confirm our earlier mapping studies and cast even further doubt on the physiologic relevance of the complex visualized in the C3d:CR2 cocrystal.
Collapse
Affiliation(s)
- David E Isenman
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada.
| | | | | | | | | |
Collapse
|
28
|
Gustafsson E, Rosén A, Barchan K, van Kessel KPM, Haraldsson K, Lindman S, Forsberg C, Ljung L, Bryder K, Walse B, Haas PJ, van Strijp JAG, Furebring C. Directed evolution of chemotaxis inhibitory protein of Staphylococcus aureus generates biologically functional variants with reduced interaction with human antibodies. Protein Eng Des Sel 2009; 23:91-101. [PMID: 19959567 DOI: 10.1093/protein/gzp062] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Chemotaxis inhibitory protein of Staphylococcus aureus (CHIPS) is a protein that binds and blocks the C5a receptor (C5aR) and formylated peptide receptor, thereby inhibiting the immune cell recruitment associated with inflammation. If CHIPS was less reactive with existing human antibodies, it would be a promising anti-inflammatory drug candidate. Therefore, we applied directed evolution and computational/rational design to the CHIPS gene in order to generate new CHIPS variants displaying lower interaction with human IgG, yet retaining biological function. The optimization was performed in four rounds: one round of random mutagenesis to add diversity into the CHIPS gene and three rounds of DNA recombination by Fragment INduced Diversity (FIND). Every round was screened by phage selection and/or ELISA for decreased interaction with human IgG and retained C5aR binding. The mean binding of human anti-CHIPS IgG decreased with every round of evolution. For further optimization, new amino acid substitutions were introduced by rational design, based on the mutations identified during directed evolution. Finally, seven CHIPS variants with low interaction with human IgG and retained C5aR blocking capacity could be identified.
Collapse
|
29
|
Prat C, Haas PJ, Bestebroer J, de Haas CJC, van Strijp JAG, van Kessel KPM. A homolog of formyl peptide receptor-like 1 (FPRL1) inhibitor from Staphylococcus aureus (FPRL1 inhibitory protein) that inhibits FPRL1 and FPR. THE JOURNAL OF IMMUNOLOGY 2009; 183:6569-78. [PMID: 19846866 DOI: 10.4049/jimmunol.0801523] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The members of the formyl peptide receptor (FPR) family are involved in the sensing of chemoattractant substances, including bacteria-derived N-formylated peptides and host-derived peptides and proteins. We have recently described two chemoattractant receptor inhibitors from Staphylococcus aureus. Chemotaxis inhibitory protein of S. aureus (CHIPS) blocks the formyl peptide receptor (FPR) and the receptor for complement C5a (C5aR), while FPR-like 1 (FPRL1) inhibitory protein (FLIPr) blocks the FPRL1. Here, we describe another staphylococcal chemoattractant-inhibiting protein with 73% overall homology to FLIPr and identical first 25 aa, which we termed FLIPr-like. This protein inhibits neutrophil calcium mobilization and chemotaxis induced by the FPRL1-ligand MMK-1 and FPR-ligand fMLP. While its FPRL1-inhibitory activity lies in the comparable nanomolar range of FLIPr, its antagonism of the FPR is approximately 100-fold more potent than that of FLIPr and comparable to that of CHIPS. The second N-terminal phenylalanine was required for its inhibition of the FPR, but it was dispensable for the FPRL1. Furthermore, the deletion of the first seven amino acids reduced its antagonism of the FPRL1, and the exchange of the first six amino acids with that of CHIPS-conferred receptor specificity. Finally, studies with cells transfected with several chemoattractant receptors confirmed that FLIPr-like specifically binds to the FPR and FPRL1. In conclusion, the newly described excreted protein from S. aureus, FLIPr-like, is a potent inhibitor of the FPR- and FPRL1-mediated neutrophil responses and may be used to selectively modulate these chemoattractant receptors.
Collapse
Affiliation(s)
- Cristina Prat
- Medical Microbiology, University Medical Center Utrecht, Utrecht, the Netherlands
| | | | | | | | | | | |
Collapse
|
30
|
Structural models for the complex of chemotaxis inhibitory protein of Staphylococcus aureus with the C5a receptor. Biochem Biophys Res Commun 2009; 390:481-4. [PMID: 19799858 DOI: 10.1016/j.bbrc.2009.09.113] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2009] [Accepted: 09/24/2009] [Indexed: 01/03/2023]
Abstract
The study presents structural models for the complex of the chemotaxis inhibitory protein of Staphylococcus aureus, CHIPS, and receptor for anaphylotoxin C5a, C5aR. The models are based on the recently found NMR structure of the complex between CHIPS fragment 31-121 and C5aR fragment 7-28, as well as on previous results of molecular modeling of C5aR. Simple and straightforward modeling procedure selected low-energy conformations of the C5aR fragment 8-41 that simultaneously fit the NMR structure of the C5aR 10-18 fragment and properly orient the NMR structure of CHIPS(31-121) relative to C5aR. Extensive repacking of the side chains of CHIPS(31-121) and C5aR(8-41) predicted specific residue-residue interactions on the interface between CHIPS and C5aR. Many of these interactions were rationalized with experimental data obtained by site-directed mutagenesis of CHIPS and C5aR. The models correctly showed that CHIPS binds only to the first binding site of C5a to C5aR not competing with C5a fragment 59-74, which binds the second binding site of C5aR. The models also predict that two elements of CHIPS, fragments 48-58 and 97-111, may be used as structural templates for potential inhibitors of C5a.
Collapse
|
31
|
Staphylococcal superantigen-like 10 inhibits CXCL12-induced human tumor cell migration. Neoplasia 2009; 11:333-44. [PMID: 19308288 DOI: 10.1593/neo.81508] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2008] [Revised: 02/10/2009] [Accepted: 02/12/2009] [Indexed: 02/07/2023] Open
Abstract
PURPOSE Tumor cell migration and metastasis share many similarities with leukocyte trafficking, which is critically regulated by chemokines and their receptors. CXCR4 is the most widely expressed chemokine receptor in many different types of cancer and has been linked to tumor dissemination and poor prognosis. Several CXCR4 antagonists have been synthesized. A totally novel approach to discover chemokine receptor antagonists is the use of bacteria. Bacteria produce chemokine receptor inhibitors to prevent neutrophil extravasation and migration toward the infection site to escape clearance by innate immune cells. The aim of the current study was to find and identify the mechanism of a bacterial protein that specifically targets CXCR4, a chemokine receptor shared by neutrophils and cancer cells. EXPERIMENTAL DESIGN Several staphylococcal proteins were screened for their capacity to prevent binding of a function-blocking antibody against CXCR4. RESULTS Staphylococcal superantigen-like 10 was found to bind CXCR4 expressed on human T acute lymphoblastic leukemia, lymphoma, and cervical carcinoma cell lines. It potently inhibited CXCL12-induced calcium mobilization and cell migration. CONCLUSIONS Staphylococcal superantigen-like 10 is a potential lead in the development of new anticancer compounds preventing metastasis by targeting CXCR4.
Collapse
|
32
|
Gustafsson E, Haas PJ, Walse B, Hijnen M, Furebring C, Ohlin M, van Strijp JAG, van Kessel KPM. Identification of conformational epitopes for human IgG on Chemotaxis inhibitory protein of Staphylococcus aureus. BMC Immunol 2009; 10:13. [PMID: 19284584 PMCID: PMC2662796 DOI: 10.1186/1471-2172-10-13] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2008] [Accepted: 03/11/2009] [Indexed: 11/17/2022] Open
Abstract
Background The Chemotaxis inhibitory protein of Staphylococcus aureus (CHIPS) blocks the Complement fragment C5a receptor (C5aR) and formylated peptide receptor (FPR) and is thereby a potent inhibitor of neutrophil chemotaxis and activation of inflammatory responses. The majority of the healthy human population has antibodies against CHIPS that have been shown to interfere with its function in vitro. The aim of this study was to define potential epitopes for human antibodies on the CHIPS surface. We also initiate the process to identify a mutated CHIPS molecule that is not efficiently recognized by preformed anti-CHIPS antibodies and retains anti-inflammatory activity. Results In this paper, we panned peptide displaying phage libraries against a pool of CHIPS specific affinity-purified polyclonal human IgG. The selected peptides could be divided into two groups of sequences. The first group was the most dominant with 36 of the 48 sequenced clones represented. Binding to human affinity-purified IgG was verified by ELISA for a selection of peptide sequences in phage format. For further analysis, one peptide was chemically synthesized and antibodies affinity-purified on this peptide were found to bind the CHIPS molecule as studied by ELISA and Surface Plasmon Resonance. Furthermore, seven potential conformational epitopes responsible for antibody recognition were identified by mapping phage selected peptide sequences on the CHIPS surface as defined in the NMR structure of the recombinant CHIPS31–121 protein. Mapped epitopes were verified by in vitro mutational analysis of the CHIPS molecule. Single mutations introduced in the proposed antibody epitopes were shown to decrease antibody binding to CHIPS. The biological function in terms of C5aR signaling was studied by flow cytometry. A few mutations were shown to affect this biological function as well as the antibody binding. Conclusion Conformational epitopes recognized by human antibodies have been mapped on the CHIPS surface and amino acid residues involved in both antibody and C5aR interaction could be defined. This information has implications for the development of an effective anti-inflammatory agent based on a functional CHIPS molecule with low interaction with human IgG.
Collapse
|
33
|
Ippel JH, de Haas CJC, Bunschoten A, van Strijp JAG, Kruijtzer JAW, Liskamp RMJ, Kemmink J. Structure of the tyrosine-sulfated C5a receptor N terminus in complex with chemotaxis inhibitory protein of Staphylococcus aureus. J Biol Chem 2009; 284:12363-72. [PMID: 19251703 DOI: 10.1074/jbc.m808179200] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Complement component C5a is a potent pro-inflammatory agent inducing chemotaxis of leukocytes toward sites of infection and injury. C5a mediates its effects via its G protein-coupled C5a receptor (C5aR). Although under normal conditions highly beneficial, excessive levels of C5a can be deleterious to the host and have been related to numerous inflammatory diseases. A natural inhibitor of the C5aR is chemotaxis inhibitory protein of Staphylococcus aureus (CHIPS). CHIPS is a 121-residue protein excreted by S. aureus. It binds the N terminus of the C5aR (residues 1-35) with nanomolar affinity and thereby potently inhibits C5a-mediated responses in human leukocytes. Therefore, CHIPS provides a starting point for the development of new anti-inflammatory agents. Two O-sulfated tyrosine residues located at positions 11 and 14 within the C5aR N terminus play a critical role in recognition of C5a, but their role in CHIPS binding has not been established so far. By isothermal titration calorimetry, using synthetic Tyr-11- and Tyr-14-sulfated and non-sulfated C5aR N-terminal peptides, we demonstrate that the sulfate groups are essential for tight binding between the C5aR and CHIPS. In addition, the NMR structure of the complex of CHIPS and a sulfated C5aR N-terminal peptide reveals the precise binding motif as well as the distinct roles of sulfated tyrosine residues sY11 and sY14. These results provide a molecular framework for the design of novel CHIPS-based C5aR inhibitors.
Collapse
Affiliation(s)
- Johannes H Ippel
- Department of Medicinal Chemistry and Chemical Biology, Utrecht University, Sorbonnelaan 16, 3584 CA Utrecht, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
34
|
Veldkamp KE, Strijp JAG. Innate Immune Evasion by Staphylococci. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2009; 666:19-31. [DOI: 10.1007/978-1-4419-1601-3_2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
35
|
Abstract
Staphylococcus aureus secretes several virulence factors modulating immune responses. Staphylococcal superantigen-like (SSL) proteins are a family of 14 exotoxins with homology to superantigens, but with generally unknown function. Recently, we showed that SSL5 binds to P-selectin glycoprotein ligand 1 dependently of sialyl Lewis X and inhibits P-selectin-dependent neutrophil rolling. Here, we show that SSL5 potently and specifically inhibits leukocyte activation by anaphylatoxins and all classes of chemokines. SSL5 inhibited calcium mobilization, actin polymerization, and chemotaxis induced by chemokines and anaphylatoxins but not by other chemoattractants. Antibody competition experiments showed that SSL5 targets several chemokine and anaphylatoxin receptors. In addition, transfection studies showed that SSL5 binds glycosylated N-termini of all G protein-coupled receptors (GPCRs) but only inhibits stimuli of protein nature that require the receptor N-terminus for activation. Furthermore, SSL5 increased binding of chemokines to cells independent of chemokine receptors through their common glycosaminoglycan-binding site. Importance of glycans was shown for both GPCR and chemokine binding. Thus, SSL5 is an important immunomodulatory protein of S aureus that targets several crucial, initial stages of leukocyte extravasation. It is therefore a potential new antiinflammatory compound for diseases associated with chemoattractants and their receptors and disorders characterized by excessive recruitment of leukocytes.
Collapse
|
36
|
Lambris JD, Ricklin D, Geisbrecht BV. Complement evasion by human pathogens. Nat Rev Microbiol 2008; 6:132-42. [PMID: 18197169 DOI: 10.1038/nrmicro1824] [Citation(s) in RCA: 558] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The human immune system has developed an elaborate network of cascades for dealing with microbial intruders. Owing to its ability to rapidly recognize and eliminate microorganisms, the complement system is an essential and efficient component of this machinery. However, many pathogenic organisms have found ways to escape the attack of complement through a range of different mechanisms. Recent discoveries in this field have provided important insights into these processes on a molecular level. These vital developments could augment our knowledge of the pathology and treatment of infectious and inflammatory diseases.
Collapse
Affiliation(s)
- John D Lambris
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, 422 Curie Boulevard, Philadelphia, Pennsylvania 19104, USA.
| | | | | |
Collapse
|
37
|
Geisbrecht BV. Staphylococcal Complement Inhibitors: Biological Functions, Recognition of Complement Components, and Potential Therapeutic Implications. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2008. [DOI: 10.1007/978-0-387-78952-1_16] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
38
|
Hammel M, Nemecek D, Keightley JA, Thomas GJ, Geisbrecht BV. The Staphylococcus aureus extracellular adherence protein (Eap) adopts an elongated but structured conformation in solution. Protein Sci 2007; 16:2605-17. [PMID: 18029416 PMCID: PMC2222813 DOI: 10.1110/ps.073170807] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2007] [Revised: 09/08/2007] [Accepted: 09/12/2007] [Indexed: 12/26/2022]
Abstract
The extracellular adherence protein (Eap) of Staphylococcus aureus participates in a wide range of protein-protein interactions that facilitate the initiation and dissemination of Staphylococcal disease. In this report, we describe the use of a multidisciplinary approach to characterize the solution structure of full-length Eap. In contrast to previous reports suggesting that a six-domain isoform of Eap undergoes multimerization, sedimentation equilibrium analytical ultracentrifugation data revealed that a four-domain isoform of Eap is a monomer in solution. In vitro proteolysis and solution small angle X-ray scattering studies both indicate that Eap adopts an extended conformation in solution, where the linkers connecting sequential EAP modules are solvent exposed. Construction of a low-resolution model of full-length Eap using a combination of ab initio deconvolution of the SAXS data and rigid body modeling of the EAP domain crystal structure suggests that full-length Eap may present several unique concave surfaces capable of participating in ligand binding. These results also raise the possibility that such surfaces may be held together by additional interactions between adjacent EAP modules. This hypothesis is supported by a comparative Raman spectroscopic analysis of full-length Eap and a stoichiometric solution of the individual EAP modules, which indicates the presence of additional secondary structure and a greater extent of hydrogen/deuterium exchange protection in full-length Eap. Our results provide the first insight into the solution structure of full-length Eap and an experimental basis for interpreting the EAP domain crystal structures within the context of the full-length molecule. They also lay a foundation for future studies into the structural and molecular bases of Eap-mediated protein-protein interactions with its many ligands.
Collapse
Affiliation(s)
- Michal Hammel
- Division of Cell Biology and Biophysics, School of Biological Sciences, University of Missouri-Kansas City, Kansas City, Missouri 64110, USA
| | | | | | | | | |
Collapse
|
39
|
Haas PJ, van Strijp J. Anaphylatoxins: their role in bacterial infection and inflammation. Immunol Res 2007; 37:161-75. [PMID: 17873401 DOI: 10.1007/bf02697367] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/1999] [Revised: 11/30/1999] [Accepted: 11/30/1999] [Indexed: 12/16/2022]
Abstract
Activation of the complement system plays a crucial role in the pathogenesis of infection and inflammation. Especially the complement activation products C3a and C5a, known as the anaphylatoxins, are potent proinflammatory mediators. In addition to their evident role in innate immunity, it is clear that the anaphylatoxins also play a role in regulation of adaptive immune responses. The anaphylatoxins play a role in a variety of infectious and inflammatory diseases like sepsis, ischemia-reperfusion injury, immune complex diseases, and hypersensitivity diseases like asthma. In this review we discuss the role of anaphylatoxins in infection and inflammation. Furthermore, we focus on bacterial complement evasion strategies that can provide tools for further research on pathogenesis of infectious diseases and a better understanding of the role of complement and anaphylatoxins in infection and inflammation.
Collapse
Affiliation(s)
- Pieter-Jan Haas
- Eijkman-Winkler Center for Experimental Microbiology, University Medical Center Utrecht, HP:G04-614, Utrecht, 3584 CX, The Netherlands.
| | | |
Collapse
|
40
|
Baker HM, Basu I, Chung MC, Caradoc-Davies T, Fraser JD, Baker EN. Crystal structures of the staphylococcal toxin SSL5 in complex with sialyl Lewis X reveal a conserved binding site that shares common features with viral and bacterial sialic acid binding proteins. J Mol Biol 2007; 374:1298-308. [PMID: 17996251 DOI: 10.1016/j.jmb.2007.09.091] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2007] [Revised: 09/28/2007] [Accepted: 09/28/2007] [Indexed: 12/24/2022]
Abstract
Staphylococcus aureus is a significant human pathogen. Among its large repertoire of secreted toxins is a group of staphylococcal superantigen-like proteins (SSLs). These are homologous to superantigens but do not have the same activity. SSL5 is shown here to bind to human granulocytes and to the cell surface receptors for human IgA (Fc alphaRI) and P-selectin [P-selectin glycoprotein ligand-1 (PSGL-1)] in a sialic acid (Sia)-dependent manner. Co-crystallization of SSL5 with the tetrasaccharide sialyl Lewis X (sLe(X)), a key determinant of PSGL-1 binding to P-selectin, led to crystal structures of the SSL5-sLe(X) complex at resolutions of 1.65 and 2.75 A for crystals at two pH values. In both structures, sLe(X) bound to a specific site on the surface of the C-terminal domain of SSL5 in a conformation identical with that bound by P-selectin. Conservation of the key carbohydrate binding residues indicates that this ability to bind human glycans is shared by a substantial subgroup of the SSLs, including SSL2, SSL3, SSL4, SSL5, SSL6, and SSL11. This indicates that the ability to target human glycans is an important property of this group of toxins. Structural comparisons also showed that the Sia binding site in SSL5 contains a substructure that is shared by other Sia binding proteins from bacteria as well as viruses and represents a common binding motif.
Collapse
Affiliation(s)
- Heather M Baker
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand
| | | | | | | | | | | |
Collapse
|
41
|
Ramsland PA, Willoughby N, Trist HM, Farrugia W, Hogarth PM, Fraser JD, Wines BD. Structural basis for evasion of IgA immunity by Staphylococcus aureus revealed in the complex of SSL7 with Fc of human IgA1. Proc Natl Acad Sci U S A 2007; 104:15051-6. [PMID: 17848512 PMCID: PMC1986611 DOI: 10.1073/pnas.0706028104] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2007] [Indexed: 11/18/2022] Open
Abstract
Infection by Staphylococcus aureus can result in severe conditions such as septicemia, toxic shock, pneumonia, and endocarditis with antibiotic resistance and persistent nasal carriage in normal individuals being key drivers of the medical impact of this virulent pathogen. In both virulent infection and nasal colonization, S. aureus encounters the host immune system and produces a wide array of factors that frustrate host immunity. One in particular, the prototypical staphylococcal superantigen-like protein SSL7, potently binds IgA and C5, thereby inhibiting immune responses dependent on these major immune mediators. We report here the three-dimensional structure of the complex of SSL7 with Fc of human IgA1 at 3.2 A resolution. Two SSL7 molecules interact with the Fc (one per heavy chain) primarily at the junction between the Calpha2 and Calpha3 domains. The binding site on each IgA chain is extensive, with SSL7 shielding most of the lateral surface of the Calpha3 domain. However, the SSL7 molecules are positioned such that they should allow binding to secretory IgA. The key IgA residues interacting with SSL7 are also bound by the leukocyte IgA receptor, FcalphaRI (CD89), thereby explaining how SSL7 potently inhibits IgA-dependent cellular effector functions mediated by FcalphaRI, such as phagocytosis, degranulation, and respiratory burst. Thus, the ability of S. aureus to subvert IgA-mediated immunity is likely to facilitate survival in mucosal environments such as the nasal passage and may contribute to systemic infections.
Collapse
MESH Headings
- Antigens, CD/chemistry
- Antigens, CD/immunology
- Antigens, CD/metabolism
- Bacterial Proteins/chemistry
- Bacterial Proteins/immunology
- Bacterial Proteins/metabolism
- Binding Sites, Antibody
- Cells, Cultured
- Crystallography, X-Ray
- Genes, Bacterial/immunology
- Humans
- Immunoglobulin A/chemistry
- Immunoglobulin A/immunology
- Immunoglobulin A/metabolism
- Models, Molecular
- Mutagenesis
- Protein Conformation
- Receptors, Fc/chemistry
- Receptors, Fc/immunology
- Receptors, Fc/metabolism
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/metabolism
- Staphylococcus aureus/immunology
- Superantigens/chemistry
- Superantigens/immunology
Collapse
Affiliation(s)
- Paul A. Ramsland
- *The Inflammatory Disease and Structural Immunology Laboratories, The Burnet Institute, Austin Hospital, Studley Road, Heidelberg, Victoria 3084, Australia
- Department of Pathology, University of Melbourne, Melbourne, Victoria 3010, Australia; and
- Department of Immunology, Monash University, Melbourne, Victoria 3004, Australia
| | - Natasha Willoughby
- The Maurice Wilkins Centre and School of Medical Sciences, University of Auckland, Auckland 1020, New Zealand
| | - Halina M. Trist
- *The Inflammatory Disease and Structural Immunology Laboratories, The Burnet Institute, Austin Hospital, Studley Road, Heidelberg, Victoria 3084, Australia
| | - William Farrugia
- *The Inflammatory Disease and Structural Immunology Laboratories, The Burnet Institute, Austin Hospital, Studley Road, Heidelberg, Victoria 3084, Australia
| | - P. Mark Hogarth
- *The Inflammatory Disease and Structural Immunology Laboratories, The Burnet Institute, Austin Hospital, Studley Road, Heidelberg, Victoria 3084, Australia
- Department of Pathology, University of Melbourne, Melbourne, Victoria 3010, Australia; and
- Department of Immunology, Monash University, Melbourne, Victoria 3004, Australia
| | - John D. Fraser
- The Maurice Wilkins Centre and School of Medical Sciences, University of Auckland, Auckland 1020, New Zealand
| | - Bruce D. Wines
- *The Inflammatory Disease and Structural Immunology Laboratories, The Burnet Institute, Austin Hospital, Studley Road, Heidelberg, Victoria 3084, Australia
- Department of Pathology, University of Melbourne, Melbourne, Victoria 3010, Australia; and
- Department of Immunology, Monash University, Melbourne, Victoria 3004, Australia
| |
Collapse
|
42
|
Chavakis T, Preissner KT, Herrmann M. The anti-inflammatory activities of Staphylococcus aureus. Trends Immunol 2007; 28:408-18. [PMID: 17681885 DOI: 10.1016/j.it.2007.07.002] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2007] [Revised: 05/29/2007] [Accepted: 07/17/2007] [Indexed: 11/30/2022]
Abstract
Staphylococcus aureus is a versatile and harmful pathogen in both hospital- and community-associated infections that range from superficial to systemic infections. S. aureus engages a multitude of mechanisms to subvert the innate immune response of the host, including inhibition of complement activation and neutralization of anti-microbial peptides. In addition, inflammatory cell and phagocyte recruitment is an integral part of the innate defense to staphylococcal infection and comprises a well-coordinated multi-step cascade of adhesive events. Recent and rapidly growing experimental evidence indicates the existence of a machinery of anti-adhesive and anti-chemotactic moieties of S. aureus that allow the bacterium to interfere with specific adhesive steps of the homing mechanism of leukocytes. Understanding the functions of these S. aureus-derived anti-inflammatory agents could also provide the platform for designing new therapies in several inflammatory and autoimmune diseases.
Collapse
Affiliation(s)
- Triantafyllos Chavakis
- Experimental Immunology Branch, National Cancer Institute, NIH, Bethesda, MD 20892, USA.
| | | | | |
Collapse
|
43
|
Rabiet MJ, Huet E, Boulay F. The N-formyl peptide receptors and the anaphylatoxin C5a receptors: an overview. Biochimie 2007; 89:1089-106. [PMID: 17428601 PMCID: PMC7115771 DOI: 10.1016/j.biochi.2007.02.015] [Citation(s) in RCA: 119] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2006] [Accepted: 02/23/2007] [Indexed: 12/31/2022]
Abstract
Leukocyte recruitment to sites of inflammation and infection is dependent on the presence of a gradient of locally produced chemotactic factors. This review is focused on current knowledge about the activation and regulation of chemoattractant receptors. Emphasis is placed on the members of the N-formyl peptide receptor family, namely FPR (N-formyl peptide receptor), FPRL1 (FPR like-1) and FPRL2 (FPR like-2), and the complement fragment C5a receptors (C5aR and C5L2). Upon chemoattractant binding, the receptors transduce an activation signal through a G protein-dependent pathway, leading to biochemical responses that contribute to physiological defense against bacterial infection and tissue damage. C5aR, and the members of the FPR family that were previously thought to be restricted to phagocytes proved to have a much broader spectrum of cell expression. In addition to N-formylated peptides, numerous unrelated ligands were recently found to interact with FPR and FPRL1. Novel agonists include both pathogen- and host-derived components, and synthetic peptides. Antagonistic molecules have been identified that exhibit limited receptor specificity. How distinct ligands can both induce different biological responses and produce different modes of receptor activation and unique sets of cellular responses are discussed. Cell responses to chemoattractants are tightly regulated at the level of the receptors. This review describes in detail the regulation of receptor signalling and the multi-step process of receptor inactivation. New concepts, such as receptor oligomerization and receptor clustering, are considered. Although FPR, FPRL1 and C5aR trigger similar biological functions and undergo a rapid chemoattractant-mediated phosphorylation, they appear to be differentially regulated and experience different intracellular fates.
Collapse
Affiliation(s)
| | | | - François Boulay
- Corresponding author. Tel.: +33 438 78 31 38; fax: +33 438 78 51 85.
| |
Collapse
|
44
|
Wright AJ, Higginbottom A, Philippe D, Upadhyay A, Bagby S, Read RC, Monk PN, Partridge LJ. Characterisation of receptor binding by the chemotaxis inhibitory protein of Staphylococcus aureus and the effects of the host immune response. Mol Immunol 2007; 44:2507-17. [PMID: 17258808 PMCID: PMC2646901 DOI: 10.1016/j.molimm.2006.12.022] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2006] [Accepted: 12/17/2006] [Indexed: 11/26/2022]
Abstract
The chemotaxis inhibitory protein of Staphylococcus aureus (CHIPS) is reported to bind to the receptors for C5a and formylated peptides and has been proposed as a promising lead for the development of new anti-inflammatory compounds. Here we have examined the receptor specificity and mode of action of recombinant CHIPS28–149 and also the immune response to CHIPS28–149 in patients with S. aureus infections and in uninfected controls. Recombinant CHIPS28–149 bound with high affinity to the human C5a receptor (C5aR), but had low affinity for the second C5a receptor, C5L2, and the formyl peptide receptor, FPR. Although ligand binding to C5aR was potently inhibited, CHIPS28–149 had much weaker effects on ligand binding to C5L2 and FPR. Similarly, CHIPS28–149 potently inhibited the ligand-induced activation of C5aR but was less potent at inhibition via FPR. NMR studies showed that CHIPS28–149 bound directly to the N-terminus of C5aR but not C5L2, and CHIPS28–149 residues involved in the interaction were identified by chemical shift analysis. All human sera examined contained high titres of IgG and IgA reactivity against CHIPS28–149, and no correlation was observed between infection status at the time of serum collection and antibody titre. Individual serum samples promoted or inhibited the binding of CHIPS28–149 to C5aR, or had no effect. IgG depletion of serum samples abrogated the effects on CHIPS binding, demonstrating that these were antibody mediated. Sera from infected individuals were more likely to inhibit CHIPS28–149 binding than sera from healthy controls. However, high antibody titres correlated well with both inhibition and enhancement of CHIPS28–149 binding to C5aR; this suggests that the inhibitory effect relates to epitope specificity rather than greater antibody binding. We conclude that CHIPS is likely to be too immunogenic to be used as an anti-inflammatory treatment but that some antibodies against CHIPS may be useful in the treatment of S. aureus infections.
Collapse
Affiliation(s)
- Andrew J. Wright
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, UK
| | - Adrian Higginbottom
- School of Medicine and Biomedical Science, University of Sheffield, Sheffield S10 2RX, UK
| | - Didier Philippe
- Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, UK
| | - Abhishek Upadhyay
- Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, UK
| | - Stefan Bagby
- Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, UK
| | - Robert C. Read
- School of Medicine and Biomedical Science, University of Sheffield, Sheffield S10 2RX, UK
| | - Peter N. Monk
- School of Medicine and Biomedical Science, University of Sheffield, Sheffield S10 2RX, UK
- Corresponding author. Tel.: +44 114 226 1312; fax: +44 114 226 1201.
| | - Lynda J. Partridge
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, UK
| |
Collapse
|
45
|
Janssen BJC, Gros P. Conformational complexity of complement component C3. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2007; 586:291-312. [PMID: 16893080 DOI: 10.1007/0-387-34134-x_20] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Bert J C Janssen
- Crystal and Structural Chemistry, Bijvoet Center for Biomolecular Research, Dept. of Chemistry, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | | |
Collapse
|
46
|
Bestebroer J, Poppelier MJJG, Ulfman LH, Lenting PJ, Denis CV, van Kessel KPM, van Strijp JAG, de Haas CJC. Staphylococcal superantigen-like 5 binds PSGL-1 and inhibits P-selectin–mediated neutrophil rolling. Blood 2006; 109:2936-43. [PMID: 17132726 DOI: 10.1182/blood-2006-06-015461] [Citation(s) in RCA: 138] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
AbstractStaphylococcus aureus secretes several virulence factors interfering with host-cell functions. Staphylococcal superantigen-like (SSL) proteins are a family of 11 exotoxins with structural homology to superantigens but with generally unknown functions. Recently, we described that chemotaxis inhibitory protein of Staphylococcus aureus (CHIPS31-121), a potent inhibitor of C5a-induced responses, is structurally homologous to the C-terminal domain of SSL5. Here, we identify P-selectin glycoprotein ligand-1 (PSGL-1), involved in the initial rolling of neutrophils along the endothelium, as a target for SSL5. SSL5 specifically bound to Chinese hamster ovary cells stably expressing PSGL-1 (CHO–PSGL-1), which was dependent of sulfation and sialylation. Furthermore, SSL5 bound to PSGL-1/Ig fusion protein immobilized on a biosensor chip. SSL5 affected binding of soluble P-selectin/Fc chimera, the principle ligand of PSGL-1, to CHO–PSGL-1 cells and inhibited adhesion of neutrophils to immobilized P-selectin under static conditions. Under flow conditions SSL5 strongly decreased neutrophil rolling on immobilized P-selectin/Fc and activated human endothelial cells. In conclusion, SSL5 interferes with the interaction between PSGL-1 and P-selectin, suggesting that S aureus uses SSL5 to prevent neutrophil extravasation toward the site of infection. This makes SSL5 a potential lead for the development of new anti-inflammatory compounds for disorders characterized by excessive recruitment of leukocytes.
Collapse
Affiliation(s)
- Jovanka Bestebroer
- Experimental Microbiology, University Medical Center Utrecht, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Rooijakkers SHM, van Strijp JAG. Bacterial complement evasion. Mol Immunol 2006; 44:23-32. [PMID: 16875737 DOI: 10.1016/j.molimm.2006.06.011] [Citation(s) in RCA: 149] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2006] [Revised: 06/22/2006] [Accepted: 06/27/2006] [Indexed: 12/25/2022]
Abstract
The human complement system is elemental to recognize bacteria, opsonize them for handling by phagocytes, or kill them by direct lysis. However, successful bacterial pathogens have in turn evolved ingenious strategies to overcome this part of the immune system. In this review we discuss the different stages of complement activation sequentially and illustrate the immune evasion strategies that various bacteria have developed to evade each subsequent step. The focus is on bacterial proteins, either surface-bound or excreted, that block complement activation. The underlying molecular mechanism of action and the possible role in pathophysiology of bacterial infections are discussed.
Collapse
Affiliation(s)
- Suzan H M Rooijakkers
- Experimental Microbiology, UMC Utrecht G04-614, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | | |
Collapse
|
48
|
|