1
|
Spooner HC, Dixon RE. 14-3-3 proteins: Regulators of cardiac excitation-contraction coupling and stress responses. J Physiol 2025. [PMID: 40349303 DOI: 10.1113/jp288566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Accepted: 04/14/2025] [Indexed: 05/14/2025] Open
Abstract
14-3-3 proteins are highly conserved proteins that regulate numerous cellular processes mostly through phosphorylation-dependent protein-protein interactions. In the heart 14-3-3 proteins play critical roles in cardiac conduction pathways, excitation-contraction (EC) coupling, development and stress responses. This review summarizes the current understanding of cardiac 14-3-3 regulation and function, with particular emphasis on its role in ion channel regulation and β-adrenergic signalling. We discuss how 14-3-3 proteins act through three main mechanisms - masking, clamping, and scaffolding - to regulate target proteins, including Cx43, CaV1.2, NaV1.5, and various potassium channels. The seven mammalian 14-3-3 isoforms display distinct but overlapping functions, with tissue-specific expression patterns and isoform-specific regulation through phosphorylation and dimerization. Recent work has revealed 14-3-3's importance in cardiac development and stress responses, where it generally serves a cardioprotective role. However in some pathological contexts such as ischaemia-reperfusion injury, 14-3-3 can be detrimental. We highlight emerging themes in cardiac 14-3-3 biology, including its role in prolonging β-adrenergic signalling. Understanding the complex regulation of cardiac 14-3-3 and its numerous targets presents both opportunities and challenges for therapeutic development.
Collapse
Affiliation(s)
- Heather C Spooner
- Department of Physiology and Membrane Biology, University of California Davis, School of Medicine, Davis, CA, USA
| | - Rose E Dixon
- Department of Physiology and Membrane Biology, University of California Davis, School of Medicine, Davis, CA, USA
| |
Collapse
|
2
|
Spooner HC, Costa AD, Westhoff M, Hernández-González A, Ibrahimkhail H, Yarov-Yarovoy V, Horne MC, Dickson EJ, Dixon RE. 14-3-3 promotes sarcolemmal expression of cardiac Ca V1.2 and nucleates isoproterenol-triggered channel superclustering. Proc Natl Acad Sci U S A 2025; 122:e2413308122. [PMID: 39869803 PMCID: PMC11804677 DOI: 10.1073/pnas.2413308122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 12/16/2024] [Indexed: 01/29/2025] Open
Abstract
The L-type Ca2+ channel (CaV1.2) is essential for cardiac excitation-contraction coupling. To contribute to the inward Ca2+ flux that drives Ca2+-induced-Ca2+-release, CaV1.2 channels must be expressed on the sarcolemma; thus the regulatory mechanisms that tune CaV1.2 expression to meet contractile demand are an emerging area of research. A ubiquitously expressed protein called 14-3-3 has been proposed to affect Ca2+ channel trafficking in nonmyocytes; however, whether 14-3-3 has similar effects on CaV1.2 in cardiomyocytes is unknown. 14-3-3 preferentially binds phospho-serine/threonine residues to affect many cellular processes and is known to regulate cardiac ion channels including NaV1.5 and the human ether-à-go-go-related gene (hERG) potassium channel. Altered 14-3-3 expression and function have been implicated in cardiac pathologies including hypertrophy. Accordingly, we tested the hypothesis that 14-3-3 interacts with CaV1.2 in a phosphorylation-dependent manner and regulates cardiac CaV1.2 trafficking and recycling. Confocal imaging, proximity ligation assays, superresolution imaging, and coimmunoprecipitation revealed a population of 14-3-3 colocalized and closely associated with CaV1.2. The degree of 14-3-3/CaV1.2 colocalization increased upon stimulation of β-adrenergic receptors with isoproterenol. Notably, only the 14-3-3-associated CaV1.2 population displayed increased cluster size with isoproterenol, revealing a role for 14-3-3 as a nucleation factor that directs CaV1.2 superclustering. Isoproterenol-stimulated augmentation of sarcolemmal CaV1.2 expression, Ca2+ currents, and Ca2+ transients in ventricular myocytes were strengthened by 14-3-3 overexpression and attenuated by 14-3-3 inhibition. These data support a model where 14-3-3 interacts with CaV1.2 in a phosphorylation-dependent manner to promote enhanced trafficking/recycling, clustering, and activity during β-adrenergic stimulation.
Collapse
Affiliation(s)
- Heather C. Spooner
- Department of Physiology and Membrane Biology, University of California Davis, Davis, CA95616
| | - Alexandre D. Costa
- Department of Physiology and Membrane Biology, University of California Davis, Davis, CA95616
| | - Maartje Westhoff
- Department of Physiology and Membrane Biology, University of California Davis, Davis, CA95616
| | | | - Husna Ibrahimkhail
- Department of Physiology and Membrane Biology, University of California Davis, Davis, CA95616
| | - Vladimir Yarov-Yarovoy
- Department of Physiology and Membrane Biology, University of California Davis, Davis, CA95616
- Department of Anesthesiology and Pain Medicine, University of California Davis, Davis, CA95616
| | - Mary C. Horne
- Department of Pharmacology, University of California Davis, Davis, CA95616
| | - Eamonn J. Dickson
- Department of Physiology and Membrane Biology, University of California Davis, Davis, CA95616
| | - Rose E. Dixon
- Department of Physiology and Membrane Biology, University of California Davis, Davis, CA95616
| |
Collapse
|
3
|
Elmore G, Ahern BM, McVay NM, Barker KW, Lohano SS, Ali N, Sebastian A, Andres DA, Satin J, Levitan BM. The C-terminus of Rad is required for membrane localization and L-type calcium channel regulation. J Gen Physiol 2024; 156:e202313518. [PMID: 38990175 PMCID: PMC11244639 DOI: 10.1085/jgp.202313518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 05/17/2024] [Accepted: 06/26/2024] [Indexed: 07/12/2024] Open
Abstract
L-type CaV1.2 current (ICa,L) links electrical excitation to contraction in cardiac myocytes. ICa,L is tightly regulated to control cardiac output. Rad is a Ras-related, monomeric protein that binds to L-type calcium channel β subunits (CaVβ) to promote inhibition of ICa,L. In addition to CaVβ interaction conferred by the Rad core motif, the highly conserved Rad C-terminus can direct membrane association in vitro and inhibition of ICa,L in immortalized cell lines. In this work, we test the hypothesis that in cardiomyocytes the polybasic C-terminus of Rad confers t-tubular localization, and that membrane targeting is required for Rad-dependent ICa,L regulation. We introduced a 3xFlag epitope to the N-terminus of the endogenous mouse Rrad gene to facilitate analysis of subcellular localization. Full-length 3xFlag-Rad (Flag-Rad) mice were compared with a second transgenic mouse model, in which the extended polybasic C-termini of 3xFlag-Rad was truncated at alanine 277 (Flag-RadΔCT). Ventricular cardiomyocytes were isolated for anti-Flag-Rad immunocytochemistry and ex vivo electrophysiology. Full-length Flag-Rad showed a repeating t-tubular pattern whereas Flag-RadΔCT failed to display membrane association. ICa,L in Flag-RadΔCT cardiomyocytes showed a hyperpolarized activation midpoint and an increase in maximal conductance. Additionally, current decay was faster in Flag-RadΔCT cells. Myocardial ICa,L in a Rad C-terminal deletion model phenocopies ICa,L modulated in response to β-AR stimulation. Mechanistically, the polybasic Rad C-terminus confers CaV1.2 regulation via membrane association. Interfering with Rad membrane association constitutes a specific target for boosting heart function as a treatment for heart failure with reduced ejection fraction.
Collapse
Affiliation(s)
- Garrett Elmore
- Department of Physiology, University of Kentucky, Lexington, KY, USA
| | - Brooke M. Ahern
- Department of Physiology, University of Kentucky, Lexington, KY, USA
| | - Nicholas M. McVay
- Department of Physiology, University of Kentucky, Lexington, KY, USA
| | - Kyle W. Barker
- Department of Physiology, University of Kentucky, Lexington, KY, USA
| | - Sarisha S. Lohano
- Department of Physiology, University of Kentucky, Lexington, KY, USA
| | - Nemat Ali
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, USA
| | - Andrea Sebastian
- Department of Physiology, University of Kentucky, Lexington, KY, USA
| | - Douglas A. Andres
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, USA
| | - Jonathan Satin
- Department of Physiology, University of Kentucky, Lexington, KY, USA
| | - Bryana M. Levitan
- Department of Physiology, University of Kentucky, Lexington, KY, USA
- Gill Heart and Vascular Institute, Lexington, KY, USA
| |
Collapse
|
4
|
Spooner HC, Costa AD, González AH, Ibrahimkhail H, Yarov-Yarovoy V, Horne M, Dickson EJ, Dixon RE. 14-3-3 promotes sarcolemmal expression of cardiac Ca V 1.2 and nucleates isoproterenol-triggered channel super-clustering. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.16.607987. [PMID: 39229175 PMCID: PMC11370440 DOI: 10.1101/2024.08.16.607987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
The L-type Ca 2+ channel (Ca V 1.2) is essential for cardiac excitation-contraction coupling. To contribute to the inward Ca 2+ flux that drives Ca 2+ -induced-Ca 2+ -release, Ca V 1.2 channels must be expressed on the sarcolemma; thus the regulatory mechanisms that tune Ca V 1.2 expression to meet contractile demand are an emerging area of research. A ubiquitously expressed protein called 14-3-3 has been proposed to affect Ca 2+ channel trafficking in non-myocytes, however whether 14-3-3 has similar effects on Ca V 1.2 in cardiomyocytes is unknown. 14-3-3 preferentially binds phospho-serine/threonine residues to affect many cellular processes and is known to regulate cardiac ion channels including Na V 1.5 and hERG. Altered 14-3-3 expression and function have been implicated in cardiac pathologies including hypertrophy. Accordingly, we tested the hypothesis that 14-3-3 interacts with Ca V 1.2 in a phosphorylation-dependent manner and regulates cardiac Ca V 1.2 trafficking and recycling. Confocal imaging, proximity ligation assays, super-resolution imaging, and co-immunoprecipitation revealed a population of 14-3-3 colocalized and closely associated with Ca V 1.2. The degree of 14-3-3/Ca V 1.2 colocalization increased upon stimulation of β -adrenergic receptors with isoproterenol. Notably, only the 14-3-3-associated Ca V 1.2 population displayed increased cluster size with isoproterenol, revealing a role for 14-3-3 as a nucleation factor that directs Ca V 1.2 super-clustering. 14-3-3 overexpression increased basal Ca V 1.2 cluster size and Ca 2+ currents in ventricular myocytes, with maintained channel responsivity to isoproterenol. In contrast, isoproterenol-stimulated augmentation of sarcolemmal Ca V 1.2 expression and currents in ventricular myocytes were abrogated by 14-3-3 inhibition. These data support a model where 14-3-3 interacts with Ca V 1.2 in a phosphorylation-dependent manner to promote enhanced trafficking/recycling, clustering, and activity during β -adrenergic stimulation. Significance Statement The L-type Ca 2+ channel, Ca V 1.2, plays an essential role in excitation-contraction coupling in the heart and in part regulates the overall strength of contraction during basal and fight- or-flight β -adrenergic signaling conditions. Proteins that modulate the trafficking and/or activity of Ca V 1.2 are interesting both from a physiological and pathological perspective, since alterations in Ca V 1.2 can impact action potential duration and cause arrythmias. A small protein called 14-3-3 regulates other ion channels in the heart and other Ca 2+ channels, but how it may interact with Ca V 1.2 in the heart has never been studied. Examining factors that affect Ca V 1.2 at rest and during β -adrenergic stimulation is crucial for our ability to understand and treat disease and aging conditions where these pathways are altered.
Collapse
|
5
|
Papa A, del Rivero Morfin PJ, Chen BX, Yang L, Katchman AN, Zakharov SI, Liu G, Bohnen MS, Zheng V, Katz M, Subramaniam S, Hirsch JA, Weiss S, Dascal N, Karlin A, Pitt GS, Colecraft HM, Ben-Johny M, Marx SO. A membrane-associated phosphoswitch in Rad controls adrenergic regulation of cardiac calcium channels. J Clin Invest 2024; 134:e176943. [PMID: 38227371 PMCID: PMC10904049 DOI: 10.1172/jci176943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 01/11/2024] [Indexed: 01/17/2024] Open
Abstract
The ability to fight or flee from a threat relies on an acute adrenergic surge that augments cardiac output, which is dependent on increased cardiac contractility and heart rate. This cardiac response depends on β-adrenergic-initiated reversal of the small RGK G protein Rad-mediated inhibition of voltage-gated calcium channels (CaV) acting through the Cavβ subunit. Here, we investigate how Rad couples phosphorylation to augmented Ca2+ influx and increased cardiac contraction. We show that reversal required phosphorylation of Ser272 and Ser300 within Rad's polybasic, hydrophobic C-terminal domain (CTD). Phosphorylation of Ser25 and Ser38 in Rad's N-terminal domain (NTD) alone was ineffective. Phosphorylation of Ser272 and Ser300 or the addition of 4 Asp residues to the CTD reduced Rad's association with the negatively charged, cytoplasmic plasmalemmal surface and with CaVβ, even in the absence of CaVα, measured here by FRET. Addition of a posttranslationally prenylated CAAX motif to Rad's C-terminus, which constitutively tethers Rad to the membrane, prevented the physiological and biochemical effects of both phosphorylation and Asp substitution. Thus, dissociation of Rad from the sarcolemma, and consequently from CaVβ, is sufficient for sympathetic upregulation of Ca2+ currents.
Collapse
Affiliation(s)
- Arianne Papa
- Division of Cardiology, Department of Medicine, and
- Department of Physiology and Cellular Biophysics, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York, USA
| | - Pedro J. del Rivero Morfin
- Department of Physiology and Cellular Biophysics, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York, USA
| | - Bi-Xing Chen
- Division of Cardiology, Department of Medicine, and
| | - Lin Yang
- Division of Cardiology, Department of Medicine, and
| | | | | | - Guoxia Liu
- Division of Cardiology, Department of Medicine, and
| | | | - Vivian Zheng
- Division of Cardiology, Department of Medicine, and
| | | | | | - Joel A. Hirsch
- Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | | | | | - Arthur Karlin
- Department of Physiology and Cellular Biophysics, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York, USA
- Department of Biochemistry and Molecular Biophysics, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York, USA
| | - Geoffrey S. Pitt
- Cardiovascular Research Institute and Department of Medicine, Weill Cornell Medical College, New York, New York, USA
| | - Henry M. Colecraft
- Department of Physiology and Cellular Biophysics, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York, USA
- Department of Pharmacology and Molecular Signaling, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York, USA
| | - Manu Ben-Johny
- Department of Physiology and Cellular Biophysics, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York, USA
| | - Steven O. Marx
- Division of Cardiology, Department of Medicine, and
- Department of Physiology and Cellular Biophysics, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York, USA
- Department of Pharmacology and Molecular Signaling, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York, USA
| |
Collapse
|
6
|
Allam S, Levenson-Palmer R, Chia Chang Z, Kaur S, Cernuda B, Raman A, Booth A, Dobbins S, Suppa G, Yang J, Buraei Z. Inactivation influences the extent of inhibition of voltage-gated Ca +2 channels by Gem-implications for channelopathies. Front Physiol 2023; 14:1155976. [PMID: 37654674 PMCID: PMC10466392 DOI: 10.3389/fphys.2023.1155976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 07/21/2023] [Indexed: 09/02/2023] Open
Abstract
Voltage-gated Ca2+ channels (VGCC) directly control muscle contraction and neurotransmitter release, and slower processes such as cell differentiation, migration, and death. They are potently inhibited by RGK GTP-ases (Rem, Rem2, Rad, and Gem/Kir), which decrease Ca2+ channel membrane expression, as well as directly inhibit membrane-resident channels. The mechanisms of membrane-resident channel inhibition are difficult to study because RGK-overexpression causes complete or near complete channel inhibition. Using titrated levels of Gem expression in Xenopus oocytes to inhibit WT P/Q-type calcium channels by ∼50%, we show that inhibition is dependent on channel inactivation. Interestingly, fast-inactivating channels, including Familial Hemiplegic Migraine mutants, are more potently inhibited than WT channels, while slow-inactivating channels, such as those expressed with the Cavβ2a auxiliary subunit, are spared. We found similar results in L-type channels, and, remarkably, Timothy Syndrome mutant channels were insensitive to Gem inhibition. Further results suggest that RGKs slow channel recovery from inactivation and further implicate RGKs as likely modulating factors in channelopathies.
Collapse
Affiliation(s)
- Salma Allam
- Department of Biology, Pace University, New York, NY, United States
| | - Rose Levenson-Palmer
- Department of Biological Sciences, Columbia University, New York, NY, United States
| | | | - Sukhjinder Kaur
- Department of Biology, Pace University, New York, NY, United States
| | - Bryan Cernuda
- Department of Biology, Pace University, New York, NY, United States
| | - Ananya Raman
- Department of Biology, Pace University, New York, NY, United States
| | - Audrey Booth
- Department of Biology, Pace University, New York, NY, United States
| | - Scott Dobbins
- Department of Biological Sciences, Columbia University, New York, NY, United States
| | - Gabrielle Suppa
- Department of Biology, Pace University, New York, NY, United States
| | - Jian Yang
- Department of Biological Sciences, Columbia University, New York, NY, United States
| | - Zafir Buraei
- Department of Biology, Pace University, New York, NY, United States
| |
Collapse
|
7
|
Kameyama M, Minobe E, Shao D, Xu J, Gao Q, Hao L. Regulation of Cardiac Cav1.2 Channels by Calmodulin. Int J Mol Sci 2023; 24:ijms24076409. [PMID: 37047381 PMCID: PMC10094977 DOI: 10.3390/ijms24076409] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/19/2023] [Accepted: 03/23/2023] [Indexed: 03/31/2023] Open
Abstract
Cav1.2 Ca2+ channels, a type of voltage-gated L-type Ca2+ channel, are ubiquitously expressed, and the predominant Ca2+ channel type, in working cardiac myocytes. Cav1.2 channels are regulated by the direct interactions with calmodulin (CaM), a Ca2+-binding protein that causes Ca2+-dependent facilitation (CDF) and inactivation (CDI). Ca2+-free CaM (apoCaM) also contributes to the regulation of Cav1.2 channels. Furthermore, CaM indirectly affects channel activity by activating CaM-dependent enzymes, such as CaM-dependent protein kinase II and calcineurin (a CaM-dependent protein phosphatase). In this article, we review the recent progress in identifying the role of apoCaM in the channel ‘rundown’ phenomena and related repriming of channels, and CDF, as well as the role of Ca2+/CaM in CDI. In addition, the role of CaM in channel clustering is reviewed.
Collapse
Affiliation(s)
- Masaki Kameyama
- Department of Physiology, Graduate School of Medical & Dental Sciences, Kagoshima University, Sakura-ga-oka, Kagoshima 890-8544, Japan
- Correspondence:
| | - Etsuko Minobe
- Department of Physiology, Graduate School of Medical & Dental Sciences, Kagoshima University, Sakura-ga-oka, Kagoshima 890-8544, Japan
| | - Dongxue Shao
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang 110012, China (L.H.)
| | - Jianjun Xu
- Department of Physiology, Graduate School of Medical & Dental Sciences, Kagoshima University, Sakura-ga-oka, Kagoshima 890-8544, Japan
| | - Qinghua Gao
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang 110012, China (L.H.)
| | - Liying Hao
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang 110012, China (L.H.)
| |
Collapse
|
8
|
Functional diversity in the RAS subfamily of small GTPases. Biochem Soc Trans 2022; 50:921-933. [PMID: 35356965 DOI: 10.1042/bst20211166] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/15/2022] [Accepted: 03/21/2022] [Indexed: 12/12/2022]
Abstract
RAS small GTPases regulate important signalling pathways and are notorious drivers of cancer development and progression. While most research to date has focused on understanding and addressing the oncogenic potential of three RAS oncogenes: HRAS, KRAS, and NRAS; the full RAS subfamily is composed of 35 related GTPases with diverse cellular functions. Most remain deeply understudied despite strong evolutionary conservation. Here, we highlight a group of 17 poorly characterized RAS GTPases that are frequently down-regulated in cancer and evidence suggests may function not as oncogenes, but as tumour suppressors. These GTPases remain largely enigmatic in terms of their cellular function, regulation, and interaction with effector proteins. They cluster within two families we designate as 'distal-RAS' (D-RAS; comprised of DIRAS, RASD, and RASL10) and 'CaaX-Less RAS' (CL-RAS; comprised of RGK, NKIRAS, RERG, and RASL11/12 GTPases). Evidence of a tumour suppressive role for many of these GTPases supports the premise that RAS subfamily proteins may collectively regulate cellular proliferation.
Collapse
|
9
|
Zhang J, Navarrete M, Wu Y, Zhou Y. 14-3-3 Dysfunction in Dorsal Hippocampus CA1 (dCA1) Induces Psychomotor Behavior via a dCA1-Lateral Septum-Ventral Tegmental Area Pathway. Front Mol Neurosci 2022; 15:817227. [PMID: 35237127 PMCID: PMC8882652 DOI: 10.3389/fnmol.2022.817227] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 01/14/2022] [Indexed: 11/22/2022] Open
Abstract
While hippocampal hyperactivity is implicated in psychosis by both human and animal studies, whether it induces a hyperdopaminergic state and the underlying neural circuitry remains elusive. Previous studies established that region-specific inhibition of 14-3-3 proteins in the dorsal hippocampus CA1 (dCA1) induces schizophrenia-like behaviors in mice, including a novelty-induced locomotor hyperactivity. In this study, we showed that 14-3-3 dysfunction in the dCA1 over-activates ventral tegmental area (VTA) dopaminergic neurons, and such over-activation is necessary for eliciting psychomotor behavior in mice. We demonstrated that such hippocampal dysregulation of the VTA during psychomotor behavior is dependent on an over-activation of the lateral septum (LS), given that inhibition of the LS attenuates over-activation of dopaminergic neurons and psychomotor behavior induced by 14-3-3 inhibition in the dCA1. Moreover, 14-3-3 inhibition-induced neuronal activations within the dCA1-LS-VTA pathway and psychomotor behavior can be reproduced by direct chemogenetic activation of LS-projecting dCA1 neurons. Collectively, these results suggest that 14-3-3 dysfunction in the dCA1 results in hippocampal hyperactivation which leads to psychomotor behavior via a dCA1-LS-VTA pathway.
Collapse
Affiliation(s)
| | | | | | - Yi Zhou
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL, United States
| |
Collapse
|
10
|
Contreras GF, Saavedra J, Navarro-Quezada N, Mellado G, Gonzalez C, Neely A. Direct inhibition of Ca V2.3 by Gem is dynamin dependent and does not require a direct alfa/beta interaction. Biochem Biophys Res Commun 2022; 586:107-113. [PMID: 34837834 DOI: 10.1016/j.bbrc.2021.11.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/21/2021] [Accepted: 11/14/2021] [Indexed: 11/17/2022]
Abstract
The Rad, Rem, Rem2, and Gem/Kir (RGK) sub-family of small GTP-binding proteins are crucial in regulating high voltage-activated (HVA) calcium channels. RGK proteins inhibit calcium current by either promoting endocytosis or reducing channel activity. They all can associate directly with Ca2+ channel β subunit (CaVβ), and the binding between CaVα1/CaVβ appears essential for the endocytic promotion of CaV1.X, CaV2.1, and CaV2.2 channels. In this study, we investigated the inhibition of CaV2.3 channels by RGK proteins in the absence of CaVβ. To this end, Xenopus laevis oocytes expressing CaV2.3 channels devoid of auxiliary subunit were injected with purified Gem and Rem and found that only Gem had an effect. Ca currents and charge movements were reduced by injection of Gem, pointing to a reduction in the number of channels in the plasma membrane. Since this reduction was ablated by co-expression of the dominant-negative mutant of dynamin K44A, enhanced endocytosis appears to mediate this reduction in the number of channels. Thus, Gem inhibition of CaV2.3 channels would be the only example of a CaVβ independent promotion of dynamin-dependent endocytosis.
Collapse
Affiliation(s)
- Gustavo F Contreras
- Instituto de Neurociencia, Facultad de Ciencias, Universidad de Valparaiso, Chile; Centro Interdisciplinario de Neurociencias Valparaíso, Chile
| | - Jonathan Saavedra
- Instituto de Neurociencia, Facultad de Ciencias, Universidad de Valparaiso, Chile; Centro Interdisciplinario de Neurociencias Valparaíso, Chile; Doctorado en Ciencias Mención Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Nieves Navarro-Quezada
- Instituto de Neurociencia, Facultad de Ciencias, Universidad de Valparaiso, Chile; Centro Interdisciplinario de Neurociencias Valparaíso, Chile
| | - Guido Mellado
- Instituto de Neurociencia, Facultad de Ciencias, Universidad de Valparaiso, Chile; Centro Interdisciplinario de Neurociencias Valparaíso, Chile; Doctorado en Ciencias Mención Biofisica y Biología Computacional, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Carlos Gonzalez
- Instituto de Neurociencia, Facultad de Ciencias, Universidad de Valparaiso, Chile; Centro Interdisciplinario de Neurociencias Valparaíso, Chile; Cardiovascular Research, Lankenau Institute for Medical Research, Wynnewood, Pennsylvania, USA
| | - Alan Neely
- Instituto de Neurociencia, Facultad de Ciencias, Universidad de Valparaiso, Chile
| |
Collapse
|
11
|
Dixon RE, Navedo MF, Binder MD, Santana LF. Mechanisms and Physiological Implications of Cooperative Gating of Ion Channels Clusters. Physiol Rev 2021; 102:1159-1210. [PMID: 34927454 DOI: 10.1152/physrev.00022.2021] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Ion channels play a central role in the regulation of nearly every cellular process. Dating back to the classic 1952 Hodgkin-Huxley model of the generation of the action potential, ion channels have always been thought of as independent agents. A myriad of recent experimental findings exploiting advances in electrophysiology, structural biology, and imaging techniques, however, have posed a serious challenge to this long-held axiom as several classes of ion channels appear to open and close in a coordinated, cooperative manner. Ion channel cooperativity ranges from variable-sized oligomeric cooperative gating in voltage-gated, dihydropyridine-sensitive Cav1.2 and Cav1.3 channels to obligatory dimeric assembly and gating of voltage-gated Nav1.5 channels. Potassium channels, transient receptor potential channels, hyperpolarization cyclic nucleotide-activated channels, ryanodine receptors (RyRs), and inositol trisphosphate receptors (IP3Rs) have also been shown to gate cooperatively. The implications of cooperative gating of these ion channels range from fine tuning excitation-contraction coupling in muscle cells to regulating cardiac function and vascular tone, to modulation of action potential and conduction velocity in neurons and cardiac cells, and to control of pace-making activity in the heart. In this review, we discuss the mechanisms leading to cooperative gating of ion channels, their physiological consequences and how alterations in cooperative gating of ion channels may induce a range of clinically significant pathologies.
Collapse
Affiliation(s)
- Rose Ellen Dixon
- Department of Physiology and Membrane Biology, University of California, Davis, CA, United States
| | - Manuel F Navedo
- Department of Pharmacology, University of California, Davis, CA, United States
| | - Marc D Binder
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, United States
| | - L Fernando Santana
- Department of Physiology and Membrane Biology, University of California, Davis, CA, United States
| |
Collapse
|
12
|
Del Villar SG, Voelker TL, Westhoff M, Reddy GR, Spooner HC, Navedo MF, Dickson EJ, Dixon RE. β-Adrenergic control of sarcolemmal Ca V1.2 abundance by small GTPase Rab proteins. Proc Natl Acad Sci U S A 2021; 118:e2017937118. [PMID: 33558236 PMCID: PMC7896340 DOI: 10.1073/pnas.2017937118] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The number and activity of Cav1.2 channels in the cardiomyocyte sarcolemma tunes the magnitude of Ca2+-induced Ca2+ release and myocardial contraction. β-Adrenergic receptor (βAR) activation stimulates sarcolemmal insertion of CaV1.2. This supplements the preexisting sarcolemmal CaV1.2 population, forming large "superclusters" wherein neighboring channels undergo enhanced cooperative-gating behavior, amplifying Ca2+ influx and myocardial contractility. Here, we determine this stimulated insertion is fueled by an internal reserve of early and recycling endosome-localized, presynthesized CaV1.2 channels. βAR-activation decreased CaV1.2/endosome colocalization in ventricular myocytes, as it triggered "emptying" of endosomal CaV1.2 cargo into the t-tubule sarcolemma. We examined the rapid dynamics of this stimulated insertion process with live-myocyte imaging of channel trafficking, and discovered that CaV1.2 are often inserted into the sarcolemma as preformed, multichannel clusters. Similarly, entire clusters were removed from the sarcolemma during endocytosis, while in other cases, a more incremental process suggested removal of individual channels. The amplitude of the stimulated insertion response was doubled by coexpression of constitutively active Rab4a, halved by coexpression of dominant-negative Rab11a, and abolished by coexpression of dominant-negative mutant Rab4a. In ventricular myocytes, βAR-stimulated recycling of CaV1.2 was diminished by both nocodazole and latrunculin-A, suggesting an essential role of the cytoskeleton in this process. Functionally, cytoskeletal disruptors prevented βAR-activated Ca2+ current augmentation. Moreover, βAR-regulation of CaV1.2 was abolished when recycling was halted by coapplication of nocodazole and latrunculin-A. These findings reveal that βAR-stimulation triggers an on-demand boost in sarcolemmal CaV1.2 abundance via targeted Rab4a- and Rab11a-dependent insertion of channels that is essential for βAR-regulation of cardiac CaV1.2.
Collapse
Affiliation(s)
- Silvia G Del Villar
- Department of Physiology and Membrane Biology, School of Medicine, University of California, Davis, CA 95616
| | - Taylor L Voelker
- Department of Physiology and Membrane Biology, School of Medicine, University of California, Davis, CA 95616
| | - Maartje Westhoff
- Department of Physiology and Membrane Biology, School of Medicine, University of California, Davis, CA 95616
| | - Gopireddy R Reddy
- Department of Pharmacology, School of Medicine, University of California, Davis, CA 95616
| | - Heather C Spooner
- Department of Physiology and Membrane Biology, School of Medicine, University of California, Davis, CA 95616
| | - Manuel F Navedo
- Department of Pharmacology, School of Medicine, University of California, Davis, CA 95616
| | - Eamonn J Dickson
- Department of Physiology and Membrane Biology, School of Medicine, University of California, Davis, CA 95616
| | - Rose E Dixon
- Department of Physiology and Membrane Biology, School of Medicine, University of California, Davis, CA 95616;
| |
Collapse
|
13
|
Weinert M, Millet A, Jonas EA, Alavian KN. The mitochondrial metabolic function of DJ-1 is modulated by 14-3-3β. FASEB J 2019; 33:8925-8934. [PMID: 31034784 PMCID: PMC6988861 DOI: 10.1096/fj.201802754r] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Mitochondrial metabolic plasticity is a key adaptive mechanism in response to changes in cellular metabolic demand. Changes in mitochondrial metabolic efficiency have been linked to pathophysiological conditions, including cancer, neurodegeneration, and obesity. The ubiquitously expressed DJ-1 (Parkinsonism-associated deglycase) is known as a Parkinson's disease gene and an oncogene. The pleiotropic functions of DJ-1 include reactive oxygen species scavenging, RNA binding, chaperone activity, endocytosis, and modulation of major signaling pathways involved in cell survival and metabolism. Nevertheless, how these functions are linked to the role of DJ-1 in mitochondrial plasticity is not fully understood. In this study, we describe an interaction between DJ-1 and 14-3-3β that regulates the localization of DJ-1, in a hypoxia-dependent manner, either to the cytosol or to mitochondria. This interaction acts as a modulator of mitochondrial metabolic efficiency and a switch between glycolysis and oxidative phosphorylation. Modulation of this novel molecular mechanism of mitochondrial metabolic efficiency is potentially involved in the neuroprotective function of DJ-1 as well as its role in proliferation of cancer cells.-Weinert, M., Millet, A., Jonas, E. A., Alavian, K. N. The mitochondrial metabolic function of DJ-1 is modulated by 14-3-3β.
Collapse
Affiliation(s)
- Maria Weinert
- Division of Brain Sciences, Department of Medicine, Imperial College London, London, United Kingdom
| | - Aurelie Millet
- Division of Brain Sciences, Department of Medicine, Imperial College London, London, United Kingdom
| | - Elizabeth A Jonas
- Division of Endocrinology, Department of Internal Medicine, Yale University, New Haven, Connecticut, USA
| | - Kambiz N Alavian
- Division of Brain Sciences, Department of Medicine, Imperial College London, London, United Kingdom.,Division of Endocrinology, Department of Internal Medicine, Yale University, New Haven, Connecticut, USA
| |
Collapse
|
14
|
14-3-3 Proteins in Glutamatergic Synapses. Neural Plast 2018; 2018:8407609. [PMID: 29849571 PMCID: PMC5937437 DOI: 10.1155/2018/8407609] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 03/13/2018] [Accepted: 03/27/2018] [Indexed: 11/18/2022] Open
Abstract
The 14-3-3 proteins are a family of proteins that are highly expressed in the brain and particularly enriched at synapses. Evidence accumulated in the last two decades has implicated 14-3-3 proteins as an important regulator of synaptic transmission and plasticity. Here, we will review previous and more recent research that has helped us understand the roles of 14-3-3 proteins at glutamatergic synapses. A key challenge for the future is to delineate the 14-3-3-dependent molecular pathways involved in regulating synaptic functions.
Collapse
|
15
|
Meza U, Beqollari D, Bannister RA. Molecular mechanisms and physiological relevance of RGK proteins in the heart. Acta Physiol (Oxf) 2018; 222:e13016. [PMID: 29237245 DOI: 10.1111/apha.13016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 12/05/2017] [Accepted: 12/06/2017] [Indexed: 12/19/2022]
Abstract
The primary route of Ca2+ entry into cardiac myocytes is via 1,4-dihydropyridine-sensitive, voltage-gated L-type Ca2+ channels. Ca2+ influx through these channels influences duration of action potential and engages excitation-contraction (EC) coupling in both the atria and the myocardium. Members of the RGK (Rad, Rem, Rem2 and Gem/Kir) family of small GTP-binding proteins are potent, endogenously expressed inhibitors of cardiac L-type channels. Although much work has focused on the molecular mechanisms by which RGK proteins inhibit the CaV 1.2 and CaV 1.3 L-type channel isoforms that expressed in the heart, their impact on greater cardiac function is only beginning to come into focus. In this review, we summarize recent findings regarding the influence of RGK proteins on normal cardiac physiology and the pathological consequences of aberrant RGK activity.
Collapse
Affiliation(s)
- U. Meza
- Departamento de Fisiología y Biofísica; Facultad de Medicina; Universidad Autónoma de San Luis Potosí; San Luis Potosí México
| | - D. Beqollari
- Department of Medicine-Cardiology Division; University of Colorado School of Medicine; Aurora CO USA
| | - R. A. Bannister
- Department of Medicine-Cardiology Division; University of Colorado School of Medicine; Aurora CO USA
| |
Collapse
|
16
|
Xu JH, Wang H, Zhang W, Tang FR. Alterations of L-type voltage dependent calcium channel alpha 1 subunit in the hippocampal CA3 region during and after pilocarpine-induced epilepsy. Neurochem Int 2018; 114:108-119. [DOI: 10.1016/j.neuint.2018.02.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 01/25/2018] [Accepted: 02/05/2018] [Indexed: 01/08/2023]
|
17
|
Withers CN, Brown DM, Byiringiro I, Allen MR, Condon KW, Satin J, Andres DA. Rad GTPase is essential for the regulation of bone density and bone marrow adipose tissue in mice. Bone 2017; 103:270-280. [PMID: 28732776 PMCID: PMC6886723 DOI: 10.1016/j.bone.2017.07.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 07/12/2017] [Accepted: 07/16/2017] [Indexed: 01/03/2023]
Abstract
The small GTP-binding protein Rad (RRAD, Ras associated with diabetes) is the founding member of the RGK (Rad, Rem, Rem2, and Gem/Kir) family that regulates cardiac voltage-gated Ca2+ channel function. However, its cellular and physiological functions outside of the heart remain to be elucidated. Here we report that Rad GTPase function is required for normal bone homeostasis in mice, as Rad deletion results in significantly lower bone mass and higher bone marrow adipose tissue (BMAT) levels. Dynamic histomorphometry in vivo and primary calvarial osteoblast assays in vitro demonstrate that bone formation and osteoblast mineralization rates are depressed, while in vitro osteoclast differentiation is increased, in the absence of Rad. Microarray analysis revealed that canonical osteogenic gene expression (Runx2, osterix, etc.) is not altered in Rad-/- calvarial osteoblasts; instead robust up-regulation of matrix Gla protein (MGP, +11-fold), an inhibitor of extracellular matrix mineralization and a protein secreted during adipocyte differentiation, was observed. Strikingly, Rad deficiency also resulted in significantly higher marrow adipose tissue levels in vivo and promoted spontaneous in vitro adipogenesis of primary calvarial osteoblasts. Adipogenic differentiation of wildtype calvarial osteoblasts resulted in the loss of endogenous Rad protein, further supporting a role for Rad in the control of BMAT levels. These findings reveal a novel in vivo function for Rad and establish a role for Rad signaling in the complex physiological control of skeletal homeostasis and bone marrow adiposity.
Collapse
Affiliation(s)
- Catherine N Withers
- Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, BBSRB, 741 S Limestone Street, Lexington, KY 40536-0509, USA.
| | - Drew M Brown
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, IN 46202-5120, USA.
| | - Innocent Byiringiro
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, IN 46202-5120, USA.
| | - Matthew R Allen
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, IN 46202-5120, USA.
| | - Keith W Condon
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, IN 46202-5120, USA.
| | - Jonathan Satin
- Department of Physiology, University of Kentucky College of Medicine, 800 Rose Street, Lexington, KY 40536-0298, USA.
| | - Douglas A Andres
- Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, BBSRB, 741 S Limestone Street, Lexington, KY 40536-0509, USA.
| |
Collapse
|
18
|
Dysregulated Glycoprotein B-Mediated Cell-Cell Fusion Disrupts Varicella-Zoster Virus and Host Gene Transcription during Infection. J Virol 2016; 91:JVI.01613-16. [PMID: 27795423 DOI: 10.1128/jvi.01613-16] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 10/14/2016] [Indexed: 12/19/2022] Open
Abstract
The highly conserved herpesvirus glycoprotein complex gB/gH-gL mediates membrane fusion during virion entry and cell-cell fusion. Varicella-zoster virus (VZV) characteristically forms multinucleated cells, or syncytia, during the infection of human tissues, but little is known about this process. The cytoplasmic domain of VZV gB (gBcyt) has been implicated in cell-cell fusion regulation because a gB[Y881F] substitution causes hyperfusion. gBcyt regulation is necessary for VZV pathogenesis, as the hyperfusogenic mutant gB[Y881F] is severely attenuated in human skin xenografts. In this study, gBcyt-regulated fusion was investigated by comparing melanoma cells infected with wild-type-like VZV or hyperfusogenic mutants. The gB[Y881F] mutant exhibited dramatically accelerated syncytium formation in melanoma cells caused by fusion of infected cells with many uninfected cells, increased cytoskeleton reorganization, and rapid displacement of nuclei to dense central structures compared to pOka using live-cell confocal microscopy. VZV and human transcriptomes were concurrently investigated using whole transcriptome sequencing (RNA-seq) to identify viral and cellular responses induced when gBcyt regulation was disrupted by the gB[Y881F] substitution. The expression of four vital VZV genes, ORF61 and the genes for glycoproteins gC, gE, and gI, was significantly reduced at 36 h postinfection for the hyperfusogenic mutants. Importantly, hierarchical clustering demonstrated an association of differential gene expression with dysregulated gBcyt-mediated fusion. A subset of Ras GTPase genes linked to membrane remodeling were upregulated in cells infected with the hyperfusogenic mutants. These data implicate gBcyt in the regulation of gB fusion function that, if unmodulated, triggers cellular processes leading to hyperfusion that attenuates VZV infection. IMPORTANCE The highly infectious, human-restricted pathogen varicella-zoster virus (VZV) causes chickenpox and shingles. Postherpetic neuralgia (PHN) is a common complication of shingles that manifests as prolonged excruciating pain, which has proven difficult to treat. The formation of fused multinucleated cells in ganglia might be associated with this condition. An effective vaccine against VZV is available but not recommended for immunocompromised individuals, highlighting the need for new therapies. This study investigated the viral and cellular responses to hyperfusion, a condition where the usual constraints of cell membranes are overcome and cells form multinucleated cells. This process hinders VZV and is regulated by a viral glycoprotein, gB. A combination of live-cell imaging and next-generation genomics revealed an alteration in viral and cellular responses during hyperfusion that was caused by the loss of gB regulation. These studies reveal mechanisms central to VZV pathogenesis, potentially leading to improved therapies.
Collapse
|
19
|
Chang DD, Colecraft HM. Rad and Rem are non-canonical G-proteins with respect to the regulatory role of guanine nucleotide binding in Ca(V)1.2 channel regulation. J Physiol 2016; 593:5075-90. [PMID: 26426338 DOI: 10.1113/jp270889] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Accepted: 09/27/2015] [Indexed: 12/15/2022] Open
Abstract
Rad and Rem are Ras-like G-proteins linked to diverse cardiovascular functions and pathophysiology. Understanding how Rad and Rem are regulated is important for deepened insights into their pathophysiological roles. As in other Ras-like G-proteins, Rad and Rem contain a conserved guanine-nucleotide binding domain (G-domain). Canonically, G-domains are key control modules, functioning as nucleotide-regulated switches of G-protein activity. Whether Rad and Rem G-domains conform to this canonical paradigm is ambiguous. Here, we used multiple functional measurements in HEK293 cells and cardiomyocytes (Ca(V)1.2 currents, Ca(2+) transients, Ca(V)β binding) as biosensors to probe the role of the G-domain in regulation of Rad and Rem function. We utilized Rad(S105N) and Rem(T94N), which are the cognate mutants to Ras(S17N), a dominant-negative variant of Ras that displays decreased nucleotide binding affinity. In HEK293 cells, over-expression of either Rad(S105N) or Rem(T94N) strongly inhibited reconstituted Ca(V)1.2 currents to the same extent as their wild-type (wt) counterparts, contrasting with reports that Rad(S105N) is functionally inert in HEK293 cells. Adenovirus-mediated expression of either wt Rad or Rad(S105N) in cardiomyocytes dramatically blocked L-type calcium current (I(Ca,L)) and inhibited Ca(2+)-induced Ca(2+) release, contradicting reports that Rad(S105N) acts as a dominant negative in heart. By contrast, Rem(T94N) was significantly less effective than wt Rem at inhibiting I(Ca,L) and Ca(2+) transients in cardiomyocytes. FRET analyses in cardiomyocytes revealed that both Rad(S105N) and Rem(T94N) had moderately reduced binding affinity for Ca(V)βs relative to their wt counterparts. The results indicate Rad and Rem are non-canonical G-proteins with respect to the regulatory role of their G-domain in Ca(V)1.2 regulation.
Collapse
Affiliation(s)
- Donald D Chang
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY, 10032, USA
| | - Henry M Colecraft
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY, 10032, USA
| |
Collapse
|
20
|
Rusconi F, Ceriotti P, Miragoli M, Carullo P, Salvarani N, Rocchetti M, Di Pasquale E, Rossi S, Tessari M, Caprari S, Cazade M, Kunderfranco P, Chemin J, Bang ML, Polticelli F, Zaza A, Faggian G, Condorelli G, Catalucci D. Peptidomimetic Targeting of Cavβ2 Overcomes Dysregulation of the L-Type Calcium Channel Density and Recovers Cardiac Function. Circulation 2016; 134:534-46. [PMID: 27486162 DOI: 10.1161/circulationaha.116.021347] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 06/27/2016] [Indexed: 02/07/2023]
Abstract
BACKGROUND L-type calcium channels (LTCCs) play important roles in regulating cardiomyocyte physiology, which is governed by appropriate LTCC trafficking to and density at the cell surface. Factors influencing the expression, half-life, subcellular trafficking, and gating of LTCCs are therefore critically involved in conditions of cardiac physiology and disease. METHODS Yeast 2-hybrid screenings, biochemical and molecular evaluations, protein interaction assays, fluorescence microscopy, structural molecular modeling, and functional studies were used to investigate the molecular mechanisms through which the LTCC Cavβ2 chaperone regulates channel density at the plasma membrane. RESULTS On the basis of our previous results, we found a direct linear correlation between the total amount of the LTCC pore-forming Cavα1.2 and the Akt-dependent phosphorylation status of Cavβ2 both in a mouse model of diabetic cardiac disease and in 6 diabetic and 7 nondiabetic cardiomyopathy patients with aortic stenosis undergoing aortic valve replacement. Mechanistically, we demonstrate that a conformational change in Cavβ2 triggered by Akt phosphorylation increases LTCC density at the cardiac plasma membrane, and thus the inward calcium current, through a complex pathway involving reduction of Cavα1.2 retrograde trafficking and protein degradation through the prevention of dynamin-mediated LTCC endocytosis; promotion of Cavα1.2 anterograde trafficking by blocking Kir/Gem-dependent sequestration of Cavβ2, thus facilitating the chaperoning of Cavα1.2; and promotion of Cavα1.2 transcription by the prevention of Kir/Gem-mediated shuttling of Cavβ2 to the nucleus, where it limits the transcription of Cavα1.2 through recruitment of the heterochromatin protein 1γ epigenetic repressor to the Cacna1c promoter. On the basis of this mechanism, we developed a novel mimetic peptide that, through targeting of Cavβ2, corrects LTCC life-cycle alterations, facilitating the proper function of cardiac cells. Delivery of mimetic peptide into a mouse model of diabetic cardiac disease associated with LTCC abnormalities restored impaired calcium balance and recovered cardiac function. CONCLUSIONS We have uncovered novel mechanisms modulating LTCC trafficking and life cycle and provide proof of concept for the use of Cavβ2 mimetic peptide as a novel therapeutic tool for the improvement of cardiac conditions correlated with alterations in LTCC levels and function.
Collapse
Affiliation(s)
- Francesca Rusconi
- From Humanitas Clinical and Research Center, Rozzano, Milan, Italy (F.R., P. Ceriotti, M.M., P. Carullo, N.S., E.D.P., P.K., M.-L.B., G.C., D.C.); Institute of Genetic and Biomedical Research UOS Milan National Research Council, Milan, Italy (F.R., P. Carullo, N.S., E.D.P., M.-L.B., D.C.); Department of Biotechnologies and Biosciences, University of Milan-Bicocca, Milan, Italy (M.R., A.Z.); Departments of Life Sciences (S.R.) and Clinical and Experimental Medicine (M.M.), University of Parma, Parma, Italy; University Hospital of Verona, Division of Cardiac Surgery, Verona, Italy (M.T., G.F.); Department of Sciences, University of Roma Tre, Rome, Italy (S.C., F.P.); University of Montpellier, CNRS UMR 5203, INSERM, Department of Neuroscience, Institute for Functional Genomics, LabEx Ion Channel Science and Therapeutics, Montpellier, France (M.C., J.C.); and National Institute of Nuclear Physics, Rome Tre Section, Rome, Italy (F.P.)
| | - Paola Ceriotti
- From Humanitas Clinical and Research Center, Rozzano, Milan, Italy (F.R., P. Ceriotti, M.M., P. Carullo, N.S., E.D.P., P.K., M.-L.B., G.C., D.C.); Institute of Genetic and Biomedical Research UOS Milan National Research Council, Milan, Italy (F.R., P. Carullo, N.S., E.D.P., M.-L.B., D.C.); Department of Biotechnologies and Biosciences, University of Milan-Bicocca, Milan, Italy (M.R., A.Z.); Departments of Life Sciences (S.R.) and Clinical and Experimental Medicine (M.M.), University of Parma, Parma, Italy; University Hospital of Verona, Division of Cardiac Surgery, Verona, Italy (M.T., G.F.); Department of Sciences, University of Roma Tre, Rome, Italy (S.C., F.P.); University of Montpellier, CNRS UMR 5203, INSERM, Department of Neuroscience, Institute for Functional Genomics, LabEx Ion Channel Science and Therapeutics, Montpellier, France (M.C., J.C.); and National Institute of Nuclear Physics, Rome Tre Section, Rome, Italy (F.P.)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Protein partners of the calcium channel β subunit highlight new cellular functions. Biochem J 2016; 473:1831-44. [DOI: 10.1042/bcj20160125] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 03/15/2016] [Indexed: 12/21/2022]
Abstract
Calcium plays a key role in cell signalling by its intervention in a wide range of physiological processes. Its entry into cells occurs mainly via voltage-gated calcium channels (VGCC), which are found not only in the plasma membrane of excitable cells but also in cells insensitive to electrical signals. VGCC are composed of different subunits, α1, β, α2δ and γ, among which the cytosolic β subunit (Cavβ) controls the trafficking of the channel to the plasma membrane, its regulation and its gating properties. For many years, these were the main functions associated with Cavβ. However, a growing number of proteins have been found to interact with Cavβ, emphasizing the multifunctional role of this versatile protein. Interestingly, some of the newly assigned functions of Cavβ are independent of its role in the regulation of VGCC, and thus further increase its functional roles. Based on the identity of Cavβ protein partners, this review emphasizes the diverse cellular functions of Cavβ and summarizes both past findings as well as recent progress in the understanding of VGCC.
Collapse
|
22
|
Liu J, Zhang C, Wu R, Lin M, Liang Y, Liu J, Wang X, Yang B, Feng Z. RRAD inhibits the Warburg effect through negative regulation of the NF-κB signaling. Oncotarget 2016; 6:14982-92. [PMID: 25893381 PMCID: PMC4558130 DOI: 10.18632/oncotarget.3719] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 03/05/2015] [Indexed: 01/28/2023] Open
Abstract
Cancer cells preferentially use aerobic glycolysis to meet their increased energetic and biosynthetic demands, a phenomenon known as the Warburg effect. Its underlying mechanism is not fully understood. RRAD, a small GTPase, is a potential tumor suppressor in lung cancer. RRAD expression is frequently down-regulated in lung cancer, which is associated with tumor progression and poor prognosis. Recently, RRAD was reported to repress the Warburg effect, indicating that down-regulation of RRAD expression is an important mechanism contributing to the Warburg effect in lung cancer. However, the mechanism by which RRAD inhibits the Warburg effect remains unclear. Here, we found that RRAD negatively regulates the NF-κB signaling to inhibit the GLUT1 translocation and the Warburg effect in lung cancer cells. Mechanically, RRAD directly binds to the p65 subunit of the NF-κB complex and inhibits the nuclear translocation of p65, which in turn negatively regulates the NF-κB signaling to inhibit GLUT1 translocation and the Warburg effect. Blocking the NF-κB signaling largely abolishes the inhibitory effects of RRAD on the translocation of GLUT1 to the plasma membrane and the Warburg effect. Taken together, our results revealed a novel mechanism by which RRAD negatively regulates the Warburg effect in lung cancer cells.
Collapse
Affiliation(s)
- Juan Liu
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers, State University of New Jersey, New Brunswick, NJ, USA
| | - Cen Zhang
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers, State University of New Jersey, New Brunswick, NJ, USA
| | - Rui Wu
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers, State University of New Jersey, New Brunswick, NJ, USA.,Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Meihua Lin
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers, State University of New Jersey, New Brunswick, NJ, USA
| | - Yingjian Liang
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers, State University of New Jersey, New Brunswick, NJ, USA
| | - Jia Liu
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers, State University of New Jersey, New Brunswick, NJ, USA
| | - Xiaolong Wang
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers, State University of New Jersey, New Brunswick, NJ, USA
| | - Bo Yang
- Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Zhaohui Feng
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers, State University of New Jersey, New Brunswick, NJ, USA
| |
Collapse
|
23
|
Abstract
According to the standard model of G protein-coupled receptor (GPCR) signaling, GPCRs are localized to the cell membrane where they respond to extracellular signals. Stimulation of GPCRs leads to the activation of heterotrimeric G proteins and their intracellular signaling pathways. However, this model fails to accommodate GPCRs, G proteins, and their downstream effectors that are found on the nuclear membrane or in the nucleus. Evidence from isolated nuclei indicates the presence of GPCRs on the nuclear membrane that can activate similar G protein-dependent signaling pathways in the nucleus as at the cell surface. These pathways also include activation of cyclic adenosine monophosphate, calcium and nitric oxide synthase signaling in cardiomyocytes. In addition, a number of distinct heterotrimeric and monomeric G proteins have been found in the nucleus of various cell types. This review will focus on understanding the function of nuclear G proteins with a focus on cardiac signaling where applicable.
Collapse
|
24
|
Zhang C, Liu J, Wu R, Liang Y, Lin M, Liu J, Chan CS, Hu W, Feng Z. Tumor suppressor p53 negatively regulates glycolysis stimulated by hypoxia through its target RRAD. Oncotarget 2015; 5:5535-46. [PMID: 25114038 PMCID: PMC4170611 DOI: 10.18632/oncotarget.2137] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Cancer cells display enhanced glycolysis to meet their energetic and biosynthetic demands even under normal oxygen concentrations. Recent studies have revealed that tumor suppressor p53 represses glycolysis under normoxia as a novel mechanism for tumor suppression. As the common microenvironmental stress for tumors, hypoxia drives the metabolic switch from the oxidative phosphorylation to glycolysis, which is crucial for survival and proliferation of cancer cells under hypoxia. The p53's role and mechanism in regulating glycolysis under hypoxia is poorly understood. Here, we found that p53 represses hypoxia-stimulated glycolysis in cancer cells through RRAD, a newly-identified p53 target. RRAD expression is frequently decreased in lung cancer. Ectopic expression of RRAD greatly reduces glycolysis whereas knockdown of RRAD promotes glycolysis in lung cancer cells. Furthermore, RRAD represses glycolysis mainly through inhibition of GLUT1 translocation to the plasma membrane. Under hypoxic conditions, p53 induces RRAD, which in turn inhibits the translocation of GLUT1 and represses glycolysis in lung cancer cells. Blocking RRAD by siRNA greatly abolishes p53's function in repressing glycolysis under hypoxia. Taken together, our results revealed an important role and mechanism of p53 in antagonizing the stimulating effect of hypoxia on glycolysis, which contributes to p53's function in tumor suppression.
Collapse
Affiliation(s)
- Cen Zhang
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers, State University of New Jersey, New Brunswick, USA; These two authors contributed equally to this work
| | - Juan Liu
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers, State University of New Jersey, New Brunswick, USA; These two authors contributed equally to this work
| | - Rui Wu
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers, State University of New Jersey, New Brunswick, USA
| | - Yingjian Liang
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers, State University of New Jersey, New Brunswick, USA
| | - Meihua Lin
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers, State University of New Jersey, New Brunswick, USA
| | - Jia Liu
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers, State University of New Jersey, New Brunswick, USA
| | - Chang S Chan
- Department of Medicine, Rutgers Cancer Institute of New Jersey, Rutgers, State University of New Jersey, New Brunswick, USA
| | - Wenwei Hu
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers, State University of New Jersey, New Brunswick, USA
| | - Zhaohui Feng
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers, State University of New Jersey, New Brunswick, USA
| |
Collapse
|
25
|
Zhang T, Taylor J, Jiang Y, Pereyra AS, Messi ML, Wang ZM, Hereñú C, Delbono O. Troponin T3 regulates nuclear localization of the calcium channel Cavβ1a subunit in skeletal muscle. Exp Cell Res 2015; 336:276-86. [PMID: 25981458 DOI: 10.1016/j.yexcr.2015.05.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 05/06/2015] [Indexed: 11/24/2022]
Abstract
The voltage-gated calcium channel (Cav) β1a subunit (Cavβ1a) plays an important role in excitation-contraction coupling (ECC), a process in the myoplasm that leads to muscle-force generation. Recently, we discovered that the Cavβ1a subunit travels to the nucleus of skeletal muscle cells where it helps to regulate gene transcription. To determine how it travels to the nucleus, we performed a yeast two-hybrid screening of the mouse fast skeletal muscle cDNA library and identified an interaction with troponin T3 (TnT3), which we subsequently confirmed by co-immunoprecipitation and co-localization assays in mouse skeletal muscle in vivo and in cultured C2C12 muscle cells. Interacting domains were mapped to the leucine zipper domain in TnT3 COOH-terminus (160-244 aa) and Cavβ1a NH2-terminus (1-99 aa), respectively. The double fluorescence assay in C2C12 cells co-expressing TnT3/DsRed and Cavβ1a/YFP shows that TnT3 facilitates Cavβ1a nuclear recruitment, suggesting that the two proteins play a heretofore unknown role during early muscle differentiation in addition to their classical role in ECC regulation.
Collapse
Affiliation(s)
- Tan Zhang
- Department of Internal Medicine-Gerontology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Jackson Taylor
- Department of Internal Medicine-Gerontology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Yang Jiang
- Department of Internal Medicine-Gerontology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Andrea S Pereyra
- Department of Histology, National University of La Plata, 1900 La Plata, Argentina
| | - Maria Laura Messi
- Department of Internal Medicine-Gerontology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Zhong-Min Wang
- Department of Internal Medicine-Gerontology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Claudia Hereñú
- Department of Histology, National University of La Plata, 1900 La Plata, Argentina
| | - Osvaldo Delbono
- Department of Internal Medicine-Gerontology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA; Neuroscience Program, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA.
| |
Collapse
|
26
|
Functional assessment of three Rem residues identified as critical for interactions with Ca(2+) channel β subunits. Pflugers Arch 2015; 467:2299-306. [PMID: 25771954 DOI: 10.1007/s00424-015-1700-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Accepted: 03/04/2015] [Indexed: 12/18/2022]
Abstract
Members of the Rem, Rem2, Rad, Gem/Kir (RGK) family of small GTP-binding proteins inhibit high-voltage-activated (HVA) Ca(2+) channels through interactions with both the principal α1 and the auxiliary β subunits of the channel complex. Three highly conserved residues of Rem (R200, L227, and H229) have been shown in vitro to be critical for interactions with β subunits. However, the functional significance of these residues is not known. To investigate the contributions of R200, L227, and H229 to β subunit-mediated RGK protein-dependent inhibition of HVA channels, we introduced alanine substitutions into all three positions of Venus fluorescent protein-tagged Rem (V-Rem AAA) and made three other V-Rem constructs with an alanine introduced at only one position (V-Rem R200A, V-Rem L227A, and V-Rem H229A). Confocal imaging and immunoblotting demonstrated that each Venus-Rem mutant construct had comparable expression levels to Venus-wild-type Rem when heterologously expressed in tsA201 cells. In electrophysiological experiments, V-Rem AAA failed to inhibit N-type Ca(2+) currents in tsA201 cells coexpressing CaV2.2 α1B, β3, and α2δ-1 channel subunits. The V-Rem L227A single mutant also failed to reduce N-type currents conducted by coexpressed CaV2.2 channels, a finding consistent with the previous observation that a leucine at position 227 is critical for Rem-β interactions. Rem-dependent inhibition of CaV2.2 channels was impaired to a much lesser extent by the R200A substitution. In contrast to the earlier work demonstrating that Rem H229A was unable to interact with β3 subunits in vitro, V-Rem H229A produced nearly complete inhibition of CaV2.2-mediated currents.
Collapse
|
27
|
Buraei Z, Lumen E, Kaur S, Yang J. RGK regulation of voltage-gated calcium channels. SCIENCE CHINA-LIFE SCIENCES 2015; 58:28-38. [PMID: 25576452 PMCID: PMC9074095 DOI: 10.1007/s11427-014-4788-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Accepted: 09/02/2014] [Indexed: 01/01/2023]
Abstract
Voltage-gated calcium channels (VGCCs) play critical roles in cardiac and skeletal muscle contractions, hormone and neurotransmitter release, as well as slower processes such as cell proliferation, differentiation, migration and death. Mutations in VGCCs lead to numerous cardiac, muscle and neurological disease, and their physiological function is tightly regulated by kinases, phosphatases, G-proteins, calmodulin and many other proteins. Fifteen years ago, RGK proteins were discovered as the most potent endogenous regulators of VGCCs. They are a family of monomeric GTPases (Rad, Rem, Rem2, and Gem/Kir), in the superfamily of Ras GTPases, and they have two known functions: regulation of cytoskeletal dynamics including dendritic arborization and inhibition of VGCCs. Here we review the mechanisms and molecular determinants of RGK-mediated VGCC inhibition, the physiological impact of this inhibition, and recent evidence linking the two known RGK functions.
Collapse
Affiliation(s)
- Zafir Buraei
- Department of Biology, Pace University, New York, NY, 10038, USA,
| | | | | | | |
Collapse
|
28
|
Beqollari D, Romberg CF, Meza U, Papadopoulos S, Bannister RA. Differential effects of RGK proteins on L-type channel function in adult mouse skeletal muscle. Biophys J 2014; 106:1950-7. [PMID: 24806927 DOI: 10.1016/j.bpj.2014.03.033] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Revised: 02/24/2014] [Accepted: 03/25/2014] [Indexed: 11/19/2022] Open
Abstract
Work in heterologous systems has revealed that members of the Rad, Rem, Rem2, Gem/Kir (RGK) family of small GTP-binding proteins profoundly inhibit L-type Ca(2+) channels via three mechanisms: 1), reduction of membrane expression; 2), immobilization of the voltage-sensors; and 3), reduction of Po without impaired voltage-sensor movement. However, the question of which mode is the critical one for inhibition of L-type channels in their native environments persists. To address this conundrum in skeletal muscle, we overexpressed Rad and Rem in flexor digitorum brevis (FDB) fibers via in vivo electroporation and examined the abilities of these two RGK isoforms to modulate the L-type Ca(2+) channel (CaV1.1). We found that Rad and Rem both potently inhibit L-type current in FDB fibers. However, intramembrane charge movement was only reduced in fibers transfected with Rad; charge movement for Rem-expressing fibers was virtually identical to charge movement observed in naïve fibers. This result indicated that Rem supports inhibition solely through a mechanism that allows for translocation of CaV1.1's voltage-sensors, whereas Rad utilizes at least one mode that limits voltage-sensor movement. Because Rad and Rem differ significantly only in their amino-termini, we constructed Rad-Rem chimeras to probe the structural basis for the distinct specificities of Rad- and Rem-mediated inhibition. Using this approach, a chimera composed of the amino-terminus of Rem and the core/carboxyl-terminus of Rad inhibited L-type current without reducing charge movement. Conversely, a chimera having the amino-terminus of Rad fused to the core/carboxyl-terminus of Rem inhibited L-type current with a concurrent reduction in charge movement. Thus, we have identified the amino-termini of Rad and Rem as the structural elements dictating the specific modes of inhibition of CaV1.1.
Collapse
Affiliation(s)
- D Beqollari
- Department of Medicine-Cardiology Division, University of Colorado Denver-Anschutz Medical Campus, Aurora, Colorado
| | - C F Romberg
- Department of Medicine-Cardiology Division, University of Colorado Denver-Anschutz Medical Campus, Aurora, Colorado
| | - U Meza
- Department of Medicine-Cardiology Division, University of Colorado Denver-Anschutz Medical Campus, Aurora, Colorado; Departamento de Fisiología y Biofísica, Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, México
| | - S Papadopoulos
- Institute of Vegetative Physiology, University Hospital of Cologne, Cologne, Germany
| | - R A Bannister
- Department of Medicine-Cardiology Division, University of Colorado Denver-Anschutz Medical Campus, Aurora, Colorado.
| |
Collapse
|
29
|
Huff LP, DeCristo MJ, Cox AD. Effector recruitment method to study spatially regulated activation of Ras and Rho GTPases. Methods Mol Biol 2014; 1120:263-83. [PMID: 24470032 DOI: 10.1007/978-1-62703-791-4_18] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Ras and Rho family GTPases control a wide variety of cellular processes, and the signaling downstream of these GTPases is influenced by their subcellular localization when activated. Since only a minority of total cellular GTPases is active, observation of the total subcellular distribution of GTPases does not reveal where active GTPases are localized. In this chapter, we describe the use of effector recruitment assays to monitor the subcellular localization of active Ras and Rho family GTPases. The recruitment assay relies on preferential binding of downstream effectors to active GTPases versus inactive GTPases. Tagging the GTPase-binding-domain (GBD) of a downstream effector with a fluorescent protein produces a probe that is recruited to compartments where GTPases are active. We describe an example of a recruitment assay using the GBD of PAK1 to monitor Rac1 activity and explain how the assay can be expanded to determine the subcellular localization of activation of other GTPases.
Collapse
Affiliation(s)
- Lauren P Huff
- Department of Radiation Oncology, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | | | |
Collapse
|
30
|
Ghiretti AE, Paradis S. Molecular mechanisms of activity-dependent changes in dendritic morphology: role of RGK proteins. Trends Neurosci 2014; 37:399-407. [PMID: 24910262 PMCID: PMC4113564 DOI: 10.1016/j.tins.2014.05.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Revised: 05/09/2014] [Accepted: 05/13/2014] [Indexed: 01/10/2023]
Abstract
The nervous system has the amazing capacity to transform sensory experience from the environment into changes in neuronal activity that, in turn, cause long-lasting alterations in neuronal morphology. Recent findings indicate that, surprisingly, sensory experience concurrently activates molecular signaling pathways that both promote and inhibit dendritic complexity. Historically, a number of positive regulators of activity-dependent dendritic complexity have been described, whereas the list of identified negative regulators of this process is much shorter. In recent years, there has been an emerging appreciation of the importance of the Rad/Rem/Rem2/Gem/Kir (RGK) GTPases as mediators of activity-dependent structural plasticity. In the following review, we discuss the traditional view of RGK proteins, as well as our evolving understanding of the role of these proteins in instructing structural plasticity.
Collapse
Affiliation(s)
- Amy E Ghiretti
- Department of Biology, National Center for Behavioral Genomics, and Volen Center for Complex Systems, Brandeis University, Waltham, MA 02454, USA
| | - Suzanne Paradis
- Department of Biology, National Center for Behavioral Genomics, and Volen Center for Complex Systems, Brandeis University, Waltham, MA 02454, USA.
| |
Collapse
|
31
|
Taylor J, Pereyra A, Zhang T, Messi ML, Wang ZM, Hereñú C, Kuan PF, Delbono O. The Cavβ1a subunit regulates gene expression and suppresses myogenin in muscle progenitor cells. ACTA ACUST UNITED AC 2014; 205:829-46. [PMID: 24934157 PMCID: PMC4068134 DOI: 10.1083/jcb.201403021] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Cavβ1a acts as a voltage-gated calcium channel-independent regulator of gene expression in muscle progenitor cells and is required for their normal expansion during myogenic development. Voltage-gated calcium channel (Cav) β subunits are auxiliary subunits to Cavs. Recent reports show Cavβ subunits may enter the nucleus and suggest a role in transcriptional regulation, but the physiological relevance of this localization remains unclear. We sought to define the nuclear function of Cavβ in muscle progenitor cells (MPCs). We found that Cavβ1a is expressed in proliferating MPCs, before expression of the calcium conducting subunit Cav1.1, and enters the nucleus. Loss of Cavβ1a expression impaired MPC expansion in vitro and in vivo and caused widespread changes in global gene expression, including up-regulation of myogenin. Additionally, we found that Cavβ1a localizes to the promoter region of a number of genes, preferentially at noncanonical (NC) E-box sites. Cavβ1a binds to a region of the Myog promoter containing an NC E-box, suggesting a mechanism for inhibition of myogenin gene expression. This work indicates that Cavβ1a acts as a Cav-independent regulator of gene expression in MPCs, and is required for their normal expansion during myogenic development.
Collapse
Affiliation(s)
- Jackson Taylor
- Department of Internal Medicine-Gerontology, Neuroscience Program, Wake Forest School of Medicine, Winston-Salem, NC 27157Department of Internal Medicine-Gerontology, Neuroscience Program, Wake Forest School of Medicine, Winston-Salem, NC 27157
| | - Andrea Pereyra
- Department of Internal Medicine-Gerontology, Neuroscience Program, Wake Forest School of Medicine, Winston-Salem, NC 27157 Biochemistry Research Institute of La Plata (INIBIOLP)/National Scientific and Technical Research Council (CONICET), School of Medicine, National University of La Plata, 1900 La Plata, BA, Argentina
| | - Tan Zhang
- Department of Internal Medicine-Gerontology, Neuroscience Program, Wake Forest School of Medicine, Winston-Salem, NC 27157
| | - Maria Laura Messi
- Department of Internal Medicine-Gerontology, Neuroscience Program, Wake Forest School of Medicine, Winston-Salem, NC 27157
| | - Zhong-Min Wang
- Department of Internal Medicine-Gerontology, Neuroscience Program, Wake Forest School of Medicine, Winston-Salem, NC 27157
| | - Claudia Hereñú
- Biochemistry Research Institute of La Plata (INIBIOLP)/National Scientific and Technical Research Council (CONICET), School of Medicine, National University of La Plata, 1900 La Plata, BA, Argentina
| | - Pei-Fen Kuan
- Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, NY 11794
| | - Osvaldo Delbono
- Department of Internal Medicine-Gerontology, Neuroscience Program, Wake Forest School of Medicine, Winston-Salem, NC 27157Department of Internal Medicine-Gerontology, Neuroscience Program, Wake Forest School of Medicine, Winston-Salem, NC 27157
| |
Collapse
|
32
|
Neely A, Hidalgo P. Structure-function of proteins interacting with the α1 pore-forming subunit of high-voltage-activated calcium channels. Front Physiol 2014; 5:209. [PMID: 24917826 PMCID: PMC4042065 DOI: 10.3389/fphys.2014.00209] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Accepted: 05/15/2014] [Indexed: 11/13/2022] Open
Abstract
Openings of high-voltage-activated (HVA) calcium channels lead to a transient increase in calcium concentration that in turn activate a plethora of cellular functions, including muscle contraction, secretion and gene transcription. To coordinate all these responses calcium channels form supramolecular assemblies containing effectors and regulatory proteins that couple calcium influx to the downstream signal cascades and to feedback elements. According to the original biochemical characterization of skeletal muscle Dihydropyridine receptors, HVA calcium channels are multi-subunit protein complexes consisting of a pore-forming subunit (α1) associated with four additional polypeptide chains β, α2, δ, and γ, often referred to as accessory subunits. Twenty-five years after the first purification of a high-voltage calcium channel, the concept of a flexible stoichiometry to expand the repertoire of mechanisms that regulate calcium channel influx has emerged. Several other proteins have been identified that associate directly with the α1-subunit, including calmodulin and multiple members of the small and large GTPase family. Some of these proteins only interact with a subset of α1-subunits and during specific stages of biogenesis. More strikingly, most of the α1-subunit interacting proteins, such as the β-subunit and small GTPases, regulate both gating and trafficking through a variety of mechanisms. Modulation of channel activity covers almost all biophysical properties of the channel. Likewise, regulation of the number of channels in the plasma membrane is performed by altering the release of the α1-subunit from the endoplasmic reticulum, by reducing its degradation or enhancing its recycling back to the cell surface. In this review, we discuss the structural basis, interplay and functional role of selected proteins that interact with the central pore-forming subunit of HVA calcium channels.
Collapse
Affiliation(s)
- Alan Neely
- Centro Interdisciplinario de Neurociencia de Valparaíso and Facultad de Ciencias, Universidad de Valparaíso Valparaíso, Chile
| | - Patricia Hidalgo
- Forschungszentrum Jülich, Institute of Complex Systems 4, Zelluläre Biophysik Jülich, Germany
| |
Collapse
|
33
|
Photic stimulation of the suprachiasmatic nucleus via the non-visual optic system. A gene expression study in the blind Crx −/− mouse. Cell Tissue Res 2014; 358:239-48. [DOI: 10.1007/s00441-014-1910-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Accepted: 04/23/2014] [Indexed: 12/23/2022]
|
34
|
DeRocher MM, Armaly FH, Lepore CJ, Hollis DM. Rem2 in the bullfrog (Rana catesbeiana): Patterns of expression within the central nervous system and brain expression at different ontogenetic stages. Gene 2014; 540:37-45. [PMID: 24576576 DOI: 10.1016/j.gene.2014.02.030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Revised: 02/13/2014] [Accepted: 02/18/2014] [Indexed: 12/12/2022]
Abstract
Rem2 is a member of the RGK (Rem, Rad, and Gem/Kir) subfamily of the Ras superfamily of GTP binding proteins. In mammals, Rem2 has been found to be unique in not only its structure, but also its tissue specificity, as it is the first member to be found at high levels in neuronal tissue. Because Rem2 has previously been implicated in neuronal cell proliferation, and amphibians maintain relatively high neuronal proliferative activity as adults, we sought to isolate and acquire the full-length sequence of the rem2 gene from the brain of the bullfrog (Rana catesbeiana). Furthermore, we used real time PCR (rtPCR) to characterize its tissue specificity, regional brain expression, and brain expression levels at different stages of development. Deduced amino acid sequence analysis showed that the bullfrog Rem2 protein possesses the unique 5' extension characteristic of mammalian Rem2 and the RGK subfamily to which it belongs. Tissue specificity of the bullfrog rem2 gene showed that the bullfrog is similar to both mammals and fish in that the levels of rem2 gene expression were significantly greater in the brain than all other tissues assayed. In the brain itself, differential rem2 expression patterns were observed between six major brain areas assayed and the spinal cord, with expression significantly high in the cerebrum and low in the cerebellum. Finally, examination of whole brain rem2 expression levels in bullfrogs at different stages of development revealed greater expression after metamorphic climax.
Collapse
|
35
|
Béguin P, Nagashima K, Mahalakshmi RN, Vigot R, Matsunaga A, Miki T, Ng MY, Ng YJA, Lim CH, Tay HS, Hwang LA, Firsov D, Tang BL, Inagaki N, Mori Y, Seino S, Launey T, Hunziker W. BARP suppresses voltage-gated calcium channel activity and Ca2+-evoked exocytosis. ACTA ACUST UNITED AC 2014; 205:233-49. [PMID: 24751537 PMCID: PMC4003244 DOI: 10.1083/jcb.201304101] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Voltage-gated calcium channels (VGCCs) are key regulators of cell signaling and Ca(2+)-dependent release of neurotransmitters and hormones. Understanding the mechanisms that inactivate VGCCs to prevent intracellular Ca(2+) overload and govern their specific subcellular localization is of critical importance. We report the identification and functional characterization of VGCC β-anchoring and -regulatory protein (BARP), a previously uncharacterized integral membrane glycoprotein expressed in neuroendocrine cells and neurons. BARP interacts via two cytosolic domains (I and II) with all Cavβ subunit isoforms, affecting their subcellular localization and suppressing VGCC activity. Domain I interacts at the α1 interaction domain-binding pocket in Cavβ and interferes with the association between Cavβ and Cavα1. In the absence of domain I binding, BARP can form a ternary complex with Cavα1 and Cavβ via domain II. BARP does not affect cell surface expression of Cavα1 but inhibits Ca(2+) channel activity at the plasma membrane, resulting in the inhibition of Ca(2+)-evoked exocytosis. Thus, BARP can modulate the localization of Cavβ and its association with the Cavα1 subunit to negatively regulate VGCC activity.
Collapse
Affiliation(s)
- Pascal Béguin
- Epithelial Cell Biology Laboratory and 2 Monoclonal Antibody Unit, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore 138673
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Hsiao BY, Chang TK, Wu IT, Chen MY. Rad GTPase inhibits the NFκB pathway through interacting with RelA/p65 to impede its DNA binding and target gene transactivation. Cell Signal 2014; 26:1437-44. [PMID: 24632303 DOI: 10.1016/j.cellsig.2014.03.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Accepted: 03/04/2014] [Indexed: 10/25/2022]
Abstract
Rad is a Ras-related small GTPase shown to inhibit cancer cell migration, and its expression is frequently lost in lung cancer cells. Here we provide evidence that Rad can negatively regulate the NFκB pathway. Overexpressing Rad in cells lowered both the basal and TNFα-stimulated transcriptional activity of NFκB. Compared with control cells, Rad-overexpressing cells displayed more cytoplasmic distribution of the NFκB subunit RelA/p65, while Rad-knockdown cells had higher levels of nuclear RelA/p65. Depleting Rad did not affect the kinetics of TNFα-induced IκB degradation, suggesting that Rad-mediated regulation of NFκB was through an IκB-independent mechanism. Expression of a nucleus-localized mutant Rad was sufficient to inhibit the NFκB transcriptional activity, whereas expressing the scaffolding protein 14-3-3γ to retain Rad in the cytoplasm alleviated the suppressive effect of Rad on NFκB. GST pull-down assays showed that Rad could directly bind to RelA/p65, and co-immunoprecipitation demonstrated that the Rad-p65 interaction primarily occurred in the nucleus. Adding Rad-containing nuclear extracts or purified GST-Rad in the electrophoretic mobility shift assays dose-dependently decreased the binding of RelA/p65 to an oligonucleotide probe containing the NFκB response element, suggesting that Rad may directly impede the interaction between RelA/p65 and DNA. Rad depletion altered the expression of an array of NFκB target genes, including upregulating MMP9. Knockdown of Rad expression in cells increased both basal and TNFα-stimulated MMP9 activities and cell invasion. Collectively, our results disclose a novel role of nuclear Rad in inhibiting the NFκB pathway function.
Collapse
Affiliation(s)
- Bo-Yuan Hsiao
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, No. 155, Section 2, Li-Nong Street, Taipei 11221, Taiwan.
| | - Tsun-Kai Chang
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, No. 155, Section 2, Li-Nong Street, Taipei 11221, Taiwan
| | - I-Ting Wu
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, No. 155, Section 2, Li-Nong Street, Taipei 11221, Taiwan
| | - Mei-Yu Chen
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, No. 155, Section 2, Li-Nong Street, Taipei 11221, Taiwan.
| |
Collapse
|
37
|
Meza U, Beqollari D, Romberg CF, Papadopoulos S, Bannister RA. Potent inhibition of L-type Ca2+ currents by a Rad variant associated with congestive heart failure. Biochem Biophys Res Commun 2013; 439:270-4. [PMID: 23973784 DOI: 10.1016/j.bbrc.2013.08.044] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2013] [Accepted: 08/13/2013] [Indexed: 10/26/2022]
Abstract
Ca(2+) influx via L-type voltage-gated Ca(2+) channels supports the plateau phase of ventricular action potentials and is the trigger for excitation-contraction (EC) coupling in the myocardium. Rad, a member of the RGK (Rem, Rem2, Rad, Gem/Kir) family of monomeric G proteins, regulates ventricular action potential duration and EC coupling gain through its ability to inhibit cardiac L-type channel activity. In this study, we have investigated the potential dysfunction of a naturally occurring Rad variant (Q66P) that has been associated with congestive heart failure in humans. Specifically, we have tested whether Rad Q66P limits, or even eliminates, the inhibitory actions of Rad on CaV1.2 and CaV1.3, the two L-type channel isoforms known to be expressed in the heart. We have found that mouse Rad Q65P (the murine equivalent of human Rad Q66P) inhibits L-type currents conducted by CaV1.2 or CaV1.3 channels as potently as wild-type Rad (>95% inhibition of both channels). In addition, Rad Q65P attenuates the gating movement of both channels as effectively as wild-type Rad, indicating that the Q65P substitution does not differentially impair any of the three described modes of L-type channel inhibition by RGK proteins. Thus, we conclude that if Rad Q66P contributes to cardiomyopathy, it does so via a mechanism that is not related to its ability to inhibit L-type channel-dependent processes per se. However, our results do not rule out the possibility that decreased expression, mistargeting or altered regulation of Rad Q66P may reduce the RGK protein's efficacy in vivo.
Collapse
Affiliation(s)
- U Meza
- Department of Medicine-Cardiology Division, University of Colorado Denver-Anschutz Medical Campus, 12700 East 19th Avenue, P15-8006, B-139, Aurora, CO 80045, USA; Departamento de Fisiología y Biofísica, Facultad de Medicina, Universidad Autónoma de San Luis Potosí, Venustiano Carranza #2405, San Luis Potosí, SLP 78210, México.
| | | | | | | | | |
Collapse
|
38
|
Felix R, Calderón-Rivera A, Andrade A. Regulation of high-voltage-activated Ca 2+ channel function, trafficking, and membrane stability by auxiliary subunits. ACTA ACUST UNITED AC 2013; 2:207-220. [PMID: 24949251 DOI: 10.1002/wmts.93] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Voltage-gated Ca2+ (CaV) channels mediate Ca2+ ions influx into cells in response to depolarization of the plasma membrane. They are responsible for initiation of excitation-contraction and excitation-secretion coupling, and the Ca2+ that enters cells through this pathway is also important in the regulation of protein phosphorylation, gene transcription, and many other intracellular events. Initial electrophysiological studies divided CaV channels into low-voltage-activated (LVA) and high-voltage-activated (HVA) channels. The HVA CaV channels were further subdivided into L, N, P/Q, and R-types which are oligomeric protein complexes composed of an ion-conducting CaVα1 subunit and auxiliary CaVα2δ, CaVβ, and CaVγ subunits. The functional consequences of the auxiliary subunits include altered functional and pharmacological properties of the channels as well as increased current densities. The latter observation suggests an important role of the auxiliary subunits in membrane trafficking of the CaVα1 subunit. This includes the mechanisms by which CaV channels are targeted to the plasma membrane and to appropriate regions within a given cell. Likewise, the auxiliary subunits seem to participate in the mechanisms that remove CaV channels from the plasma membrane for recycling and/or degradation. Diverse studies have provided important clues to the molecular mechanisms involved in the regulation of CaV channels by the auxiliary subunits, and the roles that these proteins could possibly play in channel targeting and membrane Stabilization.
Collapse
Affiliation(s)
- Ricardo Felix
- Department of Cell Biology, Center for Research and Advanced Studies of the National Polytechnic Institute (Cinvestav-IPN), Mexico City, Mexico
| | - Aida Calderón-Rivera
- Department of Cell Biology, Center for Research and Advanced Studies of the National Polytechnic Institute (Cinvestav-IPN), Mexico City, Mexico
| | - Arturo Andrade
- Department of Neuroscience, Brown University, Providence, RI, USA
| |
Collapse
|
39
|
Magyar J, Kiper CE, Sievert G, Cai W, Shi GX, Crump SM, Li L, Niederer S, Smith N, Andres DA, Satin J. Rem-GTPase regulates cardiac myocyte L-type calcium current. Channels (Austin) 2012; 6:166-73. [PMID: 22854599 DOI: 10.4161/chan.20192] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
RATIONALE The L-type calcium channels (LTCC) are critical for maintaining Ca(2+)-homeostasis. In heterologous expression studies, the RGK-class of Ras-related G-proteins regulates LTCC function; however, the physiological relevance of RGK-LTCC interactions is untested. OBJECTIVE In this report we test the hypothesis that the RGK protein, Rem, modulates native Ca(2+) current (I(Ca,L)) via LTCC in murine cardiomyocytes. METHODS AND RESULTS Rem knockout mice (Rem(-/-)) were engineered, and I(Ca,L) and Ca(2+) -handling properties were assessed. Rem(-/-) ventricular cardiomyocytes displayed increased I(Ca,L) density. I(Ca,L) activation was shifted positive on the voltage axis, and β-adrenergic stimulation normalized this shift compared with wild-type I(Ca,L). Current kinetics, steady-state inactivation, and facilitation was unaffected by Rem(-/-) . Cell shortening was not significantly different. Increased I(Ca,L) density in the absence of frank phenotypic differences motivated us to explore putative compensatory mechanisms. Despite the larger I(Ca,L) density, Rem(-/-) cardiomyocyte Ca(2+) twitch transient amplitude was significantly less than that compared with wild type. Computer simulations and immunoblot analysis suggests that relative dephosphorylation of Rem(-/-) LTCC can account for the paradoxical decrease of Ca(2+) transients. CONCLUSIONS This is the first demonstration that loss of an RGK protein influences I(Ca,L) in vivo in cardiac myocytes.
Collapse
Affiliation(s)
- Janos Magyar
- Department of Physiology, University of Kentucky College of Medicine, Lexington, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Yang T, Colecraft HM. Regulation of voltage-dependent calcium channels by RGK proteins. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2012; 1828:1644-54. [PMID: 23063948 DOI: 10.1016/j.bbamem.2012.10.005] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Revised: 10/04/2012] [Accepted: 10/05/2012] [Indexed: 12/28/2022]
Abstract
RGK proteins belong to the Ras superfamily of monomeric G-proteins, and currently include four members - Rad, Rem, Rem2, and Gem/Kir. RGK proteins are broadly expressed, and are the most potent known intracellular inhibitors of high-voltage-activated Ca²⁺ (Ca(V)1 and Ca(V)2) channels. Here, we review and discuss the evidence in the literature regarding the functional mechanisms, structural determinants, physiological role, and potential practical applications of RGK-mediated inhibition of Ca(V)1/Ca(V)2 channels. This article is part of a Special Issue entitled: Calcium channels.
Collapse
Affiliation(s)
- Tingting Yang
- Department of Physiology and Cellular Biophysics, Columbia University, College of Physicians and Surgeons, 1150 St. Nicholas Avenue, New York, NY 10032, USA
| | | |
Collapse
|
41
|
Buraei Z, Yang J. Structure and function of the β subunit of voltage-gated Ca²⁺ channels. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2012; 1828:1530-40. [PMID: 22981275 DOI: 10.1016/j.bbamem.2012.08.028] [Citation(s) in RCA: 97] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Revised: 08/22/2012] [Accepted: 08/25/2012] [Indexed: 12/31/2022]
Abstract
The voltage-gated Ca²⁺ channel β subunit (Ca(v)β) is a cytosolic auxiliary subunit that plays an essential role in regulating the surface expression and gating properties of high-voltage activated (HVA) Ca²⁺ channels. It is also crucial for the modulation of HVA Ca²⁺ channels by G proteins, kinases, Ras-related RGK GTPases, and other proteins. There are indications that Ca(v)β may carry out Ca²⁺ channel-independent functions. Ca(v)β knockouts are either non-viable or result in a severe pathophysiology, and mutations in Ca(v)β have been implicated in disease. In this article, we review the structure and various biological functions of Ca(v)β, as well as recent advances. This article is part of a Special Issue entitled: Calcium channels.
Collapse
Affiliation(s)
- Zafir Buraei
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | | |
Collapse
|
42
|
Tadmouri A, Kiyonaka S, Barbado M, Rousset M, Fablet K, Sawamura S, Bahembera E, Pernet-Gallay K, Arnoult C, Miki T, Sadoul K, Gory-Faure S, Lambrecht C, Lesage F, Akiyama S, Khochbin S, Baulande S, Janssens V, Andrieux A, Dolmetsch R, Ronjat M, Mori Y, De Waard M. Cacnb4 directly couples electrical activity to gene expression, a process defective in juvenile epilepsy. EMBO J 2012; 31:3730-44. [PMID: 22892567 DOI: 10.1038/emboj.2012.226] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Accepted: 07/17/2012] [Indexed: 12/11/2022] Open
Abstract
Calcium current through voltage-gated calcium channels (VGCC) controls gene expression. Here, we describe a novel signalling pathway in which the VGCC Cacnb4 subunit directly couples neuronal excitability to transcription. Electrical activity induces Cacnb4 association to Ppp2r5d, a regulatory subunit of PP2A phosphatase, followed by (i) nuclear translocation of Cacnb4/Ppp2r5d/PP2A, (ii) association with the tyrosine hydroxylase (TH) gene promoter through the nuclear transcription factor thyroid hormone receptor alpha (TRα), and (iii) histone binding through association of Cacnb4 with HP1γ concomitantly with Ser(10) histone H3 dephosphorylation by PP2A. This signalling cascade leads to TH gene repression by Cacnb4 and is controlled by the state of interaction between the SH3 and guanylate kinase (GK) modules of Cacnb4. The human R482X CACNB4 mutation, responsible for a form of juvenile myoclonic epilepsy, prevents association with Ppp2r5 and nuclear targeting of the complex by altering Cacnb4 conformation. These findings demonstrate that an intact VGCC subunit acts as a repressor recruiting platform to control neuronal gene expression.
Collapse
Affiliation(s)
- Abir Tadmouri
- Unité Inserm U, Grenoble Institute of Neuroscience, Université Joseph Fourier, La Tronche, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Fan M, Zhang WK, Buraei Z, Yang J. Molecular determinants of Gem protein inhibition of P/Q-type Ca2+ channels. J Biol Chem 2012; 287:22749-58. [PMID: 22589533 DOI: 10.1074/jbc.m111.291872] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The RGK family of monomeric GTP-binding proteins potently inhibits high voltage-activated Ca(2+) channels. The molecular mechanisms of this inhibition are largely unclear. In Xenopus oocytes, Gem suppresses the activity of P/Q-type Ca(2+) channels on the plasma membrane. This is presumed to occur through direct interactions of one or more Gem inhibitory sites and the pore-forming Ca(v)2.1 subunit in a manner dependent on the Ca(2+) channel subunit β (Ca(v)β). In this study we investigated the molecular determinants in Gem that are critical for this inhibition. Like other RGK proteins, Gem contains a conserved Ras-like core and extended N and C termini. A 12-amino acid fragment in the C terminus was found to be crucial for and sufficient to produce Ca(v)β-dependent inhibition, suggesting that this region forms an inhibitory site. A three-amino acid motif in the core was also found to be critical, possibly forming another inhibitory site. Mutating either site individually did not hamper Gem inhibition, but mutating both sites together completely abolished Gem inhibition without affecting Gem protein expression level or disrupting Gem interaction with Ca(v)2.1 or Ca(v)β. Mutating Gem residues that are crucial for interactions with previously demonstrated RGK modulators such as calmodulin, 14-3-3, and phosphatidylinositol lipids did not significantly affect Gem inhibition. These results suggest that Gem contains two candidate inhibitory sites, each capable of producing full inhibition of P/Q-type Ca(2+) channels.
Collapse
Affiliation(s)
- Mingming Fan
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | | | | | | |
Collapse
|
44
|
Yang T, Puckerin A, Colecraft HM. Distinct RGK GTPases differentially use α1- and auxiliary β-binding-dependent mechanisms to inhibit CaV1.2/CaV2.2 channels. PLoS One 2012; 7:e37079. [PMID: 22590648 PMCID: PMC3349659 DOI: 10.1371/journal.pone.0037079] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Accepted: 04/13/2012] [Indexed: 11/30/2022] Open
Abstract
CaV1/CaV2 channels, comprised of pore-forming α1 and auxiliary (β,α2δ) subunits, control diverse biological responses in excitable cells. Molecules blocking CaV1/CaV2 channel currents (ICa) profoundly regulate physiology and have many therapeutic applications. Rad/Rem/Rem2/Gem GTPases (RGKs) strongly inhibit CaV1/CaV2 channels. Understanding how RGKs block ICa is critical for insights into their physiological function, and may provide design principles for developing novel CaV1/CaV2 channel inhibitors. The RGK binding sites within CaV1/CaV2 channel complexes responsible for ICa inhibition are ambiguous, and it is unclear whether there are mechanistic differences among distinct RGKs. All RGKs bind β subunits, but it is unknown if and how this interaction contributes to ICa inhibition. We investigated the role of RGK/β interaction in Rem inhibition of recombinant CaV1.2 channels, using a mutated β (β2aTM) selectively lacking RGK binding. Rem blocked β2aTM-reconstituted channels (74% inhibition) less potently than channels containing wild-type β2a (96% inhibition), suggesting the prevalence of both β-binding-dependent and independent modes of inhibition. Two mechanistic signatures of Rem inhibition of CaV1.2 channels (decreased channel surface density and open probability), but not a third (reduced maximal gating charge), depended on Rem binding to β. We identified a novel Rem binding site in CaV1.2 α1C N-terminus that mediated β-binding-independent inhibition. The CaV2.2 α1B subunit lacks the Rem binding site in the N-terminus and displays a solely β-binding-dependent form of channel inhibition. Finally, we discovered an unexpected functional dichotomy amongst distinct RGKs— while Rem and Rad use both β-binding-dependent and independent mechanisms, Gem and Rem2 use only a β-binding-dependent method to inhibit CaV1.2 channels. The results provide new mechanistic perspectives, and reveal unexpected variations in determinants, underlying inhibition of CaV1.2/CaV2.2 channels by distinct RGK GTPases.
Collapse
Affiliation(s)
- Tingting Yang
- Department of Physiology and Cellular Biophysics, Columbia University, College of Physicians and Surgeons, New York, New York, United States of America
- * E-mail: (HMC); (TY)
| | - Akil Puckerin
- Department of Physiology and Cellular Biophysics, Columbia University, College of Physicians and Surgeons, New York, New York, United States of America
| | - Henry M. Colecraft
- Department of Physiology and Cellular Biophysics, Columbia University, College of Physicians and Surgeons, New York, New York, United States of America
- * E-mail: (HMC); (TY)
| |
Collapse
|
45
|
Jhun BS, O-Uchi J, Wang W, Ha CH, Zhao J, Kim JY, Wong C, Dirksen RT, Lopes CMB, Jin ZG. Adrenergic signaling controls RGK-dependent trafficking of cardiac voltage-gated L-type Ca2+ channels through PKD1. Circ Res 2011; 110:59-70. [PMID: 22076634 DOI: 10.1161/circresaha.111.254672] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
RATIONALE The Rad-Gem/Kir-related family (RGKs) consists of small GTP-binding proteins that strongly inhibit the activity of voltage-gated calcium channels. Among RGKs, Rem1 is strongly and specifically expressed in cardiac tissue. However, the physiological role and regulation of RGKs, and Rem1 in particular, are largely unknown. OBJECTIVE To determine if Rem1 function is physiologically regulated by adrenergic signaling and thus impacts voltage-gated L-type calcium channel (VLCC) activity in the heart. METHODS AND RESULTS We found that activation of protein kinase D1, a protein kinase downstream of α(1)-adrenergic signaling, leads to direct phosphorylation of Rem1 at Ser18. This results in an increase of the channel activity and plasma membrane expression observed by using a combination of electrophysiology, live cell confocal microscopy, and immunohistochemistry in heterologous expression system and neonatal cardiomyocytes. In addition, we show that stimulation of α(1)-adrenergic receptor-protein kinase D1-Rem1 signaling increases transverse-tubule VLCC expression that results in increased L-type Ca(2+) current density in adult ventricular myocytes. CONCLUSION The α(1)-adrenergic stimulation releases Rem1 inhibition of VLCCs through direct phosphorylation of Rem1 at Ser18 by protein kinase D1, resulting in an increase of the channel activity and transverse-tubule expression. Our results uncover a novel molecular regulatory mechanism of VLCC trafficking and function in the heart and provide the first demonstration of physiological regulation of RGK function.
Collapse
Affiliation(s)
- Bong Sook Jhun
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester NY, 14642 USA
| | - Jin O-Uchi
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester NY, 14642 USA
| | - Weiye Wang
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester NY, 14642 USA
| | - Chang Hoon Ha
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester NY, 14642 USA
| | - Jinjing Zhao
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester NY, 14642 USA
| | - Ji Young Kim
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester NY, 14642 USA
| | - Chelsea Wong
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester NY, 14642 USA
| | - Robert T Dirksen
- Department of Pharmacology and Physiology, University of Rochester School of Medicine and Dentistry, Rochester NY, 14642 USA
| | - Coeli M B Lopes
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester NY, 14642 USA
| | - Zheng Gen Jin
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester NY, 14642 USA
| |
Collapse
|
46
|
Ghiretti AE, Paradis S. The GTPase Rem2 regulates synapse development and dendritic morphology. Dev Neurobiol 2011; 71:374-89. [PMID: 21485012 DOI: 10.1002/dneu.20868] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Rem2 is a member of the Rad/Rem/Rem2/Gem/Kir subfamily of small Ras-like GTPases that was identified as an important mediator of synapse development. We performed a comprehensive, loss- of-function analysis of Rem2 function in cultured hippocampal neurons using RNAi to substantially decrease Rem2 protein levels. We found that knockdown of Rem2 decreases the density and maturity of dendritic spines, the primary site of excitatory synapses onto pyramidal neurons in the hippocampus. Knockdown of Rem2 also alters the gross morphology of dendritic arborizations, increasing the number of dendritic branches without altering total neurite length. Thus, Rem2 functions to inhibit dendritic branching and promote the development of dendritic spines and excitatory synapses. Interestingly, binding to the calcium-binding protein calmodulin is required for the Rem2 regulation of dendritic branching. However, this interaction is completely dispensable for synapse development. Overall, our results suggest that Rem2 regulates dendritic branching and synapse development via distinct and overlapping signal transduction pathways.
Collapse
Affiliation(s)
- Amy E Ghiretti
- Department of Biology and Volen Center for Complex Systems, Brandeis University, Waltham, Massachusetts 02454, USA
| | | |
Collapse
|
47
|
Both the C-terminal polylysine region and the farnesylation of K-RasB are important for its specific interaction with calmodulin. PLoS One 2011; 6:e21929. [PMID: 21750741 PMCID: PMC3130059 DOI: 10.1371/journal.pone.0021929] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2011] [Accepted: 06/09/2011] [Indexed: 02/03/2023] Open
Abstract
Background Ras protein, as one of intracellular signal switches, plays various roles in several cell activities such as differentiation and proliferation. There is considerable evidence showing that calmodulin (CaM) binds to K-RasB and dissociates K-RasB from membrane and that the inactivation of CaM is able to induce K-RasB activation. However, the mechanism for the interaction of CaM with K-RasB is not well understood. Methodology/Principal Findings Here, by applying fluorescence spectroscopy and isothermal titration calorimetry, we have obtained thermodynamic parameters for the interaction between these two proteins and identified the important elements of K-RasB for its interaction with Ca2+/CaM. One K-RasB molecule interacts with one CaM molecule in a GTP dependent manner with moderate, micromolar affinity at physiological pH and physiologic ionic strength. Mutation in the polybasic domain of K-Ras decreases the binding affinity. By using a chimera in which the C-terminal polylysine region of K-RasB has been replaced with that of H-Ras and vice versa, we find that at physiological pH, H-Ras-(KKKKKK) and Ca2+/CaM formed a 1∶1 complex with an equilibrium association constant around 105 M−1, whereas no binding reaction of K-RasB-(DESGPC) with Ca2+/CaM is detected. Furthermore, the interaction of K-RasB with Ca2+/CaM is found to be enhanced by the farnesylation of K-RasB. Conclusions/Significance We demonstrate that the polylysine region of K-RasB not only contributes importantly to the interaction of K-RasB with Ca2+/CaM, but also defines its isoform specific interaction with Ca2+/CaM. The farnesylation of K-RasB is also important for its specific interaction with Ca2+/CaM. Information obtained here can enhance our understanding of how CaM interacts with K-RasB in physiological environments.
Collapse
|
48
|
Sun Z, Zhang J, Zhang J, Chen C, Du Q, Chang L, Cao C, Zheng M, Garcia-Barrio MT, Chen YE, Xiao RP, Mao J, Zhu X. Rad GTPase induces cardiomyocyte apoptosis through the activation of p38 mitogen-activated protein kinase. Biochem Biophys Res Commun 2011; 409:52-7. [PMID: 21549102 DOI: 10.1016/j.bbrc.2011.04.104] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2011] [Accepted: 04/22/2011] [Indexed: 11/28/2022]
Abstract
Rad is a member of a subclass of small GTP-binding proteins, the RGK family. In the present study we investigated the role of Rad protein in regulating cardiomyocyte viability. DNA fragmentation and TUNEL assays demonstrated that Rad promoted rat neonatal cardiomyocyte apoptosis. Rad silencing fully blocked serum deprivation induced apoptosis, indicating Rad is necessary for trigger cardiomyocyte apoptosis. Rad overexpression caused a dramatic decrease of the anti-apoptotic molecule Bcl-x(L), whereas Bcl-x(L) overexpression protected cardiomyocytes against Rad-induced apoptosis. Rad-triggered apoptosis was mediated by the activation of p38 MAPK. The p38 blocker SB203580 effectively protected cardiomyocytes against Rad-evoked apoptosis.
Collapse
Affiliation(s)
- Zhongcui Sun
- Department of Cardiology, Peking University Third Hospital, Beijing, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Zhang J, Chang L, Chen C, Zhang M, Luo Y, Hamblin M, Villacorta L, Xiong JW, Chen YE, Zhang J, Zhu X. Rad GTPase inhibits cardiac fibrosis through connective tissue growth factor. Cardiovasc Res 2011; 91:90-8. [PMID: 21382976 DOI: 10.1093/cvr/cvr068] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
AIMS Our previous studies documented that Rad (Ras associated with diabetes), a member of the RGK (Rad, Gem, and Kir) family of Ras-related small G protein, is significantly decreased in human failing hearts and plays an important role in attenuating cardiac hypertrophy. The goal of this study is to identify the effect of Rad on cardiac fibrosis and the underlying mechanisms. METHODS AND RESULTS Rad knockout (KO) mice showed more severe cardiac fibrosis compared with wild-type littermate controls as detected by Sirius Red staining. Western blot analyses demonstrated that the expression of connective tissue growth factor (CTGF), a key mediator of fibrosis, increased dramatically in Rad KO mice. Overexpression of Rad in cultured neonatal cardiomyocytes suppressed both basal and transforming growth factor-β1-induced CTGF expression. Elevated CTGF expression was observed in cardiomyocytes when Rad was reduced by RNA interference. Moreover, cardiac fibroblasts produced greater extracellular matrix (ECM) when stimulated with conditioned medium from Rad-knockdown cardiomyocytes. ECM production was completely abolished by adding a CTGF-neutralizing antibody into the medium. CCAAT/enhancer-binding protein δ (C/EBP-δ) was demonstrated to activate CTGF in cardiomyocytes. Chromatin immunoprecipitation assay and co-immunoprecipitation further demonstrated that Rad inhibited the binding of C/EBP-δ to the CTGF promoter via direct interaction with C/EBP-δ. CONCLUSION Our data reveal that Rad deficiency can lead to cardiac fibrosis. Rad inhibits CTGF expression through binding with C/EBP-δ, thus regulating ECM production in the heart. This study suggests a potential link between decreased Rad levels and increased cardiac fibrosis in human failing hearts.
Collapse
Affiliation(s)
- Ji Zhang
- Institute of Molecular Medicine, Peking University, No. 5, Yi He Yuan Road, Beijing 100871, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Abstract
Calcium regulates a wide spectrum of physiological processes such as heartbeat, muscle contraction, neuronal communication, hormone release, cell division, and gene transcription. Major entryways for Ca(2+) in excitable cells are high-voltage activated (HVA) Ca(2+) channels. These are plasma membrane proteins composed of several subunits, including α(1), α(2)δ, β, and γ. Although the principal α(1) subunit (Ca(v)α(1)) contains the channel pore, gating machinery and most drug binding sites, the cytosolic auxiliary β subunit (Ca(v)β) plays an essential role in regulating the surface expression and gating properties of HVA Ca(2+) channels. Ca(v)β is also crucial for the modulation of HVA Ca(2+) channels by G proteins, kinases, and the Ras-related RGK GTPases. New proteins have emerged in recent years that modulate HVA Ca(2+) channels by binding to Ca(v)β. There are also indications that Ca(v)β may carry out Ca(2+) channel-independent functions, including directly regulating gene transcription. All four subtypes of Ca(v)β, encoded by different genes, have a modular organization, consisting of three variable regions, a conserved guanylate kinase (GK) domain, and a conserved Src-homology 3 (SH3) domain, placing them into the membrane-associated guanylate kinase (MAGUK) protein family. Crystal structures of Ca(v)βs reveal how they interact with Ca(v)α(1), open new research avenues, and prompt new inquiries. In this article, we review the structure and various biological functions of Ca(v)β, with both a historical perspective as well as an emphasis on recent advances.
Collapse
Affiliation(s)
- Zafir Buraei
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | | |
Collapse
|