1
|
Ferrer CM, Cho HM, Boon R, Bernasocchi T, Wong LP, Cetinbas M, Haggerty ER, Mitsiades I, Wojtkiewicz GR, McLoughlin DE, Aboushousha R, Abdelhamid H, Kugel S, Rheinbay E, Sadreyev R, Juric D, Janssen-Heininger YMW, Mostoslavsky R. The glutathione S-transferase Gstt1 drives survival and dissemination in metastases. Nat Cell Biol 2024; 26:975-990. [PMID: 38862786 DOI: 10.1038/s41556-024-01426-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 04/18/2024] [Indexed: 06/13/2024]
Abstract
Identifying the adaptive mechanisms of metastatic cancer cells remains an elusive question in the treatment of metastatic disease, particularly in pancreatic cancer (pancreatic adenocarcinoma, PDA). A loss-of-function shRNA targeted screen in metastatic-derived cells identified Gstt1, a member of the glutathione S-transferase superfamily, as uniquely required for dissemination and metastasis, but dispensable for primary tumour growth. Gstt1 is expressed in latent disseminated tumour cells (DTCs), is retained within a subpopulation of slow-cycling cells within existing metastases, and its inhibition leads to complete regression of macrometastatic tumours. This distinct Gstt1high population is highly metastatic and retains slow-cycling phenotypes, epithelial-mesenchymal transition features and DTC characteristics compared to the Gstt1low population. Mechanistic studies indicate that in this subset of cancer cells, Gstt1 maintains metastases by binding and glutathione-modifying intracellular fibronectin, in turn promoting its secretion and deposition into the metastatic microenvironment. We identified Gstt1 as a mediator of metastasis, highlighting the importance of heterogeneity and its influence on the metastatic tumour microenvironment.
Collapse
Affiliation(s)
- Christina M Ferrer
- The Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA.
- The Broad Institute of Harvard and MIT, Cambridge, MA, USA.
- University of Maryland School of Medicine and the Greenebaum Comprehensive Cancer Center, Baltimore, MD, USA.
| | - Hyo Min Cho
- The Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
- The Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Ruben Boon
- The Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
- Galapagos NV, 2800 Mechelen, Belgium
| | - Tiziano Bernasocchi
- The Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
- The Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Lai Ping Wong
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA
| | - Murat Cetinbas
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA
| | - Elizabeth R Haggerty
- The Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
| | - Irene Mitsiades
- The Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
| | | | - Daniel E McLoughlin
- The Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
- Termeer Center for Targeted Therapies, Massachusetts General Hospital, Boston, MA, USA
| | - Reem Aboushousha
- University of Vermont Larner College of Medicine, Burlington, VT, USA
| | - Hend Abdelhamid
- University of Vermont Larner College of Medicine, Burlington, VT, USA
| | - Sita Kugel
- Fred Hutchison Cancer Research Center, Seattle, WA, USA
| | - Esther Rheinbay
- The Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
| | - Ruslan Sadreyev
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA
| | - Dejan Juric
- The Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
- Termeer Center for Targeted Therapies, Massachusetts General Hospital, Boston, MA, USA
| | | | - Raul Mostoslavsky
- The Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA.
- The Broad Institute of Harvard and MIT, Cambridge, MA, USA.
| |
Collapse
|
2
|
The Association of HLA-B*35 and GSTT1 Genotypes and Hepatotoxicity in Thai People Living with HIV. J Pers Med 2022; 12:jpm12060940. [PMID: 35743726 PMCID: PMC9225434 DOI: 10.3390/jpm12060940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 05/28/2022] [Accepted: 06/06/2022] [Indexed: 11/25/2022] Open
Abstract
Glutathione s-transferase (GST) is a family of drug-metabolizing enzymes responsible for metabolizing and detoxifying drugs and xenobiotic substances. Therefore, deletion polymorphisms of GSTs can be implicated in developing several pathological conditions, including antiretroviral drug-induced liver injury (ARVDILI). Notably, GST polymorphisms have been shown to be associated with ARVDILI risk. However, data on GST polymorphisms in the Thai population are limited. Therefore, this study investigated possible associations between GST genetic polymorphisms and ARVDILI development. A total of 362 people living with HIV (PLHIV) and 85 healthy controls from multiple centers were enrolled. GSTM1 and GSTT1 genetic polymorphisms were determined using polymerase chain reactions. In addition, HLA genotypes were determined using a sequence-based HLA typing method. After comparing GST genotypic frequencies, there was no significant difference between PLHIV and healthy volunteers. However, while observing the PLHIV group, GSTT1 wild type was significantly associated with a 2.04-fold increased risk of ARVDILI (95%CI: 1.01, 4.14; p = 0.045). Interestingly, a combination of GSTT1 wild type and HLA-B*35:05 was associated with a 2.28-fold higher risk of ARVDILI (95%CI: 1.15, 4.50; p = 0.02). Collectively, GSTT1 wild type and a combination of GSTT1 wild type plus HLA-B*35:05 were associated with susceptibility to ARVDILI in the Thai population.
Collapse
|
3
|
Kim DK, Lee HJ, Kong J, Cho HY, Kim S, Kang BS. Structural basis for the dynamics of human methionyl-tRNA synthetase in multi-tRNA synthetase complexes. Nucleic Acids Res 2021; 49:6549-6568. [PMID: 34086935 PMCID: PMC8216282 DOI: 10.1093/nar/gkab453] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 05/06/2021] [Accepted: 05/12/2021] [Indexed: 11/14/2022] Open
Abstract
In mammals, eight aminoacyl-tRNA synthetases (AARSs) and three AARS-interacting multifunctional proteins (AIMPs) form a multi-tRNA synthetase complex (MSC). MSC components possess extension peptides for MSC assembly and specific functions. Human cytosolic methionyl-tRNA synthetase (MRS) has appended peptides at both termini of the catalytic main body. The N-terminal extension includes a glutathione transferase (GST) domain responsible for interacting with AIMP3, and a long linker peptide between the GST and catalytic domains. Herein, we determined crystal structures of the human MRS catalytic main body, and the complex of the GST domain and AIMP3. The structures reveal human-specific structural details of the MRS, and provide a dynamic model for MRS at the level of domain orientation. A movement of zinc knuckles inserted in the catalytic domain is required for MRS catalytic activity. Depending on the position of the GST domain relative to the catalytic main body, MRS can either block or present its tRNA binding site. Since MRS is part of a huge MSC, we propose a dynamic switching between two possible MRS conformations; a closed conformation in which the catalytic domain is compactly attached to the MSC, and an open conformation with a free catalytic domain dissociated from other MSC components.
Collapse
Affiliation(s)
- Dong Kyu Kim
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Korea
| | - Hyun Joo Lee
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Korea
| | - Jiwon Kong
- Medicinal Bioconvergence Research Center, College of Pharmacy & School of Medicine, Yonsei University, Incheon 21983, Korea
| | - Ha Yeon Cho
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Korea
| | - Sunghoon Kim
- Medicinal Bioconvergence Research Center, College of Pharmacy & School of Medicine, Yonsei University, Incheon 21983, Korea
| | - Beom Sik Kang
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Korea
| |
Collapse
|
4
|
Uppugunduri CRS, Muthukumaran J, Robin S, Santos-Silva T, Ansari M. In silico and in vitro investigations on the protein-protein interactions of glutathione S-transferases with mitogen-activated protein kinase 8 and apoptosis signal-regulating kinase 1. J Biomol Struct Dyn 2020; 40:1430-1440. [PMID: 32996404 DOI: 10.1080/07391102.2020.1827036] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Cytosolic glutathione S-transferase (GST) enzymes participate in several cellular processes in addition to facilitating glutathione conjugation reactions that eliminate endogenous and exogenous toxic compounds, especially electrophiles. GSTs are thought to interact with various kinases, resulting in the modulation of apoptotic processes and cellular proliferation. The present research used a combination of in silico and in vitro studies to investigate protein-protein interactions between the seven most abundant cytosolic GSTs-GST alpha-1 (GST-A1), GST alpha-2 (GST-A2), GST mu-1 (GST-M1), GST mu-2 (GST-M2), GST mu-5 (GST-M5), GST theta-1 (GST-T1) and GST pi-1 (GST-P1)-and Mitogen-activated protein kinase 8 (MAPK8) and Apoptosis signal-regulating kinase 1 (ASK1). MAPK8 and ASK1 were chosen as this study's protein interaction partners because of their predominant role in electrophile or cytokine-induced stress-mediated apoptosis, inflammation and fibrosis. The highest degree of sequence homology or sequence similarity was observed in two GST subgroups: the GST-A1, GST-A2 and GST-P1 isoforms constituted subgroup1; the GST-M1, GST-M2 and GST-M5 isoforms constituted subgroup 2. The GST-T1 isoform diverged from these isoforms. In silico investigations revealed that GST-M1 showed a significantly higher binding affinity to MAPK8, and its complex was more structurally stable than the other isoforms, in the order GST-M1 > GST-M5 > GST-P1 > GST-A2 > GST-A1 > GST-M2 > GST-T1. Similarly, GST-A1, GST-P1 and GST-T1 actively interacted with ASK1, and their structural stability was also better, in the order GST-T1 > GST-A1 > GST-P1 > GST-A2 > GST-M5 > GST-M1 > GST-M2. To validate in silico results, we performed in vitro crosslinking and mass spectroscopy experiments. Results indicated that GST-M1 interacted with GST-T1 to form heterodimers and confirmed the predicted interaction between GST-M1 and MAPK8.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Chakradhara Rao S Uppugunduri
- Onco-Haematology Unit, Department of Paediatrics, Obstetrics and Gynaecology, Geneva University Hospitals, Geneva, Switzerland.,Research Platform on Pediatric Onco-Hematology, Department of Paediatrics, Obstetrics and Gynaecology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Jayaraman Muthukumaran
- UCIBIO-Applied Molecular Biosciences Unit, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal.,Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, India
| | - Shannon Robin
- Research Platform on Pediatric Onco-Hematology, Department of Paediatrics, Obstetrics and Gynaecology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Teresa Santos-Silva
- UCIBIO-Applied Molecular Biosciences Unit, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
| | - Marc Ansari
- Onco-Haematology Unit, Department of Paediatrics, Obstetrics and Gynaecology, Geneva University Hospitals, Geneva, Switzerland.,Research Platform on Pediatric Onco-Hematology, Department of Paediatrics, Obstetrics and Gynaecology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
5
|
Abstract
The mercapturic acid pathway is a major route for the biotransformation of xenobiotic and endobiotic electrophilic compounds and their metabolites. Mercapturic acids (N-acetyl-l-cysteine S-conjugates) are formed by the sequential action of the glutathione transferases, γ-glutamyltransferases, dipeptidases, and cysteine S-conjugate N-acetyltransferase to yield glutathione S-conjugates, l-cysteinylglycine S-conjugates, l-cysteine S-conjugates, and mercapturic acids; these metabolites constitute a "mercapturomic" profile. Aminoacylases catalyze the hydrolysis of mercapturic acids to form cysteine S-conjugates. Several renal transport systems facilitate the urinary elimination of mercapturic acids; urinary mercapturic acids may serve as biomarkers for exposure to chemicals. Although mercapturic acid formation and elimination is a detoxication reaction, l-cysteine S-conjugates may undergo bioactivation by cysteine S-conjugate β-lyase. Moreover, some l-cysteine S-conjugates, particularly l-cysteinyl-leukotrienes, exert significant pathophysiological effects. Finally, some enzymes of the mercapturic acid pathway are described as the so-called "moonlighting proteins," catalytic proteins that exert multiple biochemical or biophysical functions apart from catalysis.
Collapse
Affiliation(s)
- Patrick E Hanna
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN, USA
| | - M W Anders
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY, USA
| |
Collapse
|
6
|
Ni J, Liu Y, Shen C, Chen D, Xin Y, Liu Q. Bioinformatics, bacterial expression and enzyme activity analyses of dichloromethane dehalogenase from Methylobacterium rhodesianum H13. BIOTECHNOL BIOTEC EQ 2020. [DOI: 10.1080/13102818.2020.1818622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Affiliation(s)
- Jianguo Ni
- Department of Environmental Engineering, College of Life and Environmental Science, Hangzhou Normal University, Hangzhou, Zhejiang, PR China
- Department of Linpu Environmental Protection, Hangzhou Ecological Environment Bureau of Xiaoshan Branch, Hangzhou, Zhejiang, PR China
| | - Ying Liu
- Department of Environmental Engineering, College of Life and Environmental Science, Hangzhou Normal University, Hangzhou, Zhejiang, PR China
| | - Chenjia Shen
- Department of Environmental Engineering, College of Life and Environmental Science, Hangzhou Normal University, Hangzhou, Zhejiang, PR China
| | - Dongzhi Chen
- Department of Environmental Engineering, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang, PR China
| | - Yueyong Xin
- Department of Environmental Engineering, College of Life and Environmental Science, Hangzhou Normal University, Hangzhou, Zhejiang, PR China
| | - Qi Liu
- Department of Environmental Engineering, College of Life and Environmental Science, Hangzhou Normal University, Hangzhou, Zhejiang, PR China
| |
Collapse
|
7
|
Molecular Docking and Site-Directed Mutagenesis of Dichloromethane Dehalogenase to Improve Enzyme Activity for Dichloromethane Degradation. Appl Biochem Biotechnol 2019; 190:487-505. [DOI: 10.1007/s12010-019-03106-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 07/18/2019] [Indexed: 10/26/2022]
|
8
|
Uno Y, Murayama N, Kato M, Tanaka S, Ohkoshi T, Yamazaki H. Genetic Variants of Glutathione S-Transferase GSTT1 and GSTT2 in Cynomolgus Macaques: Identification of GSTT Substrates and Functionally Relevant Alleles. Chem Res Toxicol 2018; 31:1086-1091. [PMID: 30169019 DOI: 10.1021/acs.chemrestox.8b00198] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Glutathione S-transferase (GST) is a family of important drug-metabolizing enzymes, conjugating endogenous and exogenous compounds. Genetic polymorphisms result in the inter-individual variability of GST activity in humans. Especially, human GSTT1 and GSTT2 null alleles are associated with toxicity and various cancers derived from chemicals. Cynomolgus macaque, a nonhuman primate species widely used in drug metabolism studies, has molecular and enzymatic similarities of GSTs to the human orthologs; however, genetic polymorphisms have not been investigated in this species. In this study, resequencing of GSTT1 and GSTT2 in 64 cynomolgus and 32 rhesus macaques found 15 nonsynonymous variants and 1 nonsense variant for GSTT1 and 15 nonsynonymous variants for GSTT2. Some of these GSTT variants were distributed differently in Indochinese and Indonesian cynomolgus macaques and rhesus macaques. For analysis of functional relevance of the GSTT variants, 1-iodohexane and dibromomethane were determined to be suitable substrates for cynomolgus GSTT1 and GSTT2. However, the conjugation activities were roughly correlated with GSTT protein levels immunochemically quantified in cynomolgus liver samples with no statistical significances, implying the contributions of the GST genetic variants. Among the GSTT1 variants identified, the animals carrying R76C and D125G mutations showed lower conjugation activities toward dibromomethane than those of the wild-type in liver cytosolic fractions. Moreover, the recombinant R76C/D125G and D125G GSTT variant proteins showed significantly lower 1-iodohexane or dibromomethane conjugation activities than those of the wild-type protein. Therefore, inter-animal variability of GSTT-dependent drug metabolism is at least partly accounted for by GSTT1 and possibly GSTT2 variants in cynomolgus and rhesus macaques.
Collapse
Affiliation(s)
- Yasuhiro Uno
- Shin Nippon Biomedical Laboratories, Ltd. , 16-1 Minami Akasaka , Kainan 642-0017 , Japan
| | - Norie Murayama
- Laboratory of Drug Metabolism and Pharmacokinetics , Showa Pharmaceutical University , 3-3165 Higashi-tamagawa Gakuen , Machida, Tokyo 194-8543 , Japan
| | - Masami Kato
- Laboratory of Drug Metabolism and Pharmacokinetics , Showa Pharmaceutical University , 3-3165 Higashi-tamagawa Gakuen , Machida, Tokyo 194-8543 , Japan
| | - Saki Tanaka
- Laboratory of Drug Metabolism and Pharmacokinetics , Showa Pharmaceutical University , 3-3165 Higashi-tamagawa Gakuen , Machida, Tokyo 194-8543 , Japan
| | - Tomoko Ohkoshi
- Laboratory of Drug Metabolism and Pharmacokinetics , Showa Pharmaceutical University , 3-3165 Higashi-tamagawa Gakuen , Machida, Tokyo 194-8543 , Japan
| | - Hiroshi Yamazaki
- Laboratory of Drug Metabolism and Pharmacokinetics , Showa Pharmaceutical University , 3-3165 Higashi-tamagawa Gakuen , Machida, Tokyo 194-8543 , Japan
| |
Collapse
|
9
|
Mohana K, Achary A. Human cytosolic glutathione-S-transferases: quantitative analysis of expression, comparative analysis of structures and inhibition strategies of isozymes involved in drug resistance. Drug Metab Rev 2017; 49:318-337. [DOI: 10.1080/03602532.2017.1343343] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Krishnamoorthy Mohana
- Department of Biotechnology, Centre for Research, Kamaraj College of Engineering and Technology, Virudhunagar, India
| | - Anant Achary
- Department of Biotechnology, Centre for Research, Kamaraj College of Engineering and Technology, Virudhunagar, India
| |
Collapse
|
10
|
Scian M, Le Trong I, Mazari AMA, Mannervik B, Atkins WM, Stenkamp RE. Comparison of epsilon- and delta-class glutathione S-transferases: the crystal structures of the glutathione S-transferases DmGSTE6 and DmGSTE7 from Drosophila melanogaster. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2015; 71:2089-98. [PMID: 26457432 PMCID: PMC4601370 DOI: 10.1107/s1399004715013929] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 07/22/2015] [Indexed: 12/30/2022]
Abstract
Cytosolic glutathione transferases (GSTs) comprise a large family of enzymes with canonical structures that diverge functionally and structurally among mammals, invertebrates and plants. Whereas mammalian GSTs have been characterized extensively with regard to their structure and function, invertebrate GSTs remain relatively unstudied. The invertebrate GSTs do, however, represent potentially important drug targets for infectious diseases and agricultural applications. In addition, it is essential to fully understand the structure and function of invertebrate GSTs, which play important roles in basic biological processes. Invertebrates harbor delta- and epsilon-class GSTs, which are not found in other organisms. Drosophila melanogaster GSTs (DmGSTs) are likely to contribute to detoxication or antioxidative stress during development, but they have not been fully characterized. Here, the structures of two epsilon-class GSTs from Drosophila, DmGSTE6 and DmGSTE7, are reported at 2.1 and 1.5 Å resolution, respectively, and are compared with other GSTs to identify structural features that might correlate with their biological functions. The structures of DmGSTE6 and DmGSTE7 are remarkably similar; the structures do not reveal obvious sources of the minor functional differences that have been observed. The main structural difference between the epsilon- and delta-class GSTs is the longer helix (A8) at the C-termini of the epsilon-class enzymes.
Collapse
Affiliation(s)
- Michele Scian
- Department of Medicinal Chemistry, University of Washington, Box 357610, Seattle, WA 98195-7610, USA
| | - Isolde Le Trong
- Department of Biological Structure, University of Washington, Box 357420, Seattle, WA 98195-7420, USA
- Biomolecular Structure Center, University of Washington, Box 357742, Seattle, WA 98195-7742, USA
| | - Aslam M. A. Mazari
- Department of Neurochemistry, Arrhenius Laboratories, Stockholm University, SE-10 691 Stockholm, Sweden
| | - Bengt Mannervik
- Department of Neurochemistry, Arrhenius Laboratories, Stockholm University, SE-10 691 Stockholm, Sweden
| | - William M. Atkins
- Department of Medicinal Chemistry, University of Washington, Box 357610, Seattle, WA 98195-7610, USA
| | - Ronald E. Stenkamp
- Department of Biological Structure, University of Washington, Box 357420, Seattle, WA 98195-7420, USA
- Biomolecular Structure Center, University of Washington, Box 357742, Seattle, WA 98195-7742, USA
- Department of Biochemistry, University of Washington, Box 357430, Seattle, WA 98195-7430, USA
| |
Collapse
|
11
|
An Updated Meta-Analysis: Risk Conferred by Glutathione S-Transferases (GSTM1 and GSTT1) Polymorphisms to Age-Related Cataract. J Ophthalmol 2015; 2015:103950. [PMID: 25692031 PMCID: PMC4322823 DOI: 10.1155/2015/103950] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 11/21/2014] [Indexed: 01/13/2023] Open
Abstract
Purpose. To study the effects of glutathione S-transferase M1 (GSTM1) and T1 (GSTT1) polymorphisms on age-related cataract (ARC). Methods. After a systematic literature search, all relevant studies evaluating the association between GSTs polymorphisms and ARC were included. Results. Fifteen studies on GSTM1 and nine studies on GSTT1 were included in this meta-analysis. In the pooled analysis, a significant association between null genotype of GSTT1 and ARC was found (OR = 1.229, 95% CI = 1.057–1.429, and P = 0.007). In subgroup analysis, the association between cortical cataract (CC) and GSTM1 null genotype was statistically significant (OR = 0.713, 95% CI = 0.598–0.850, and P < 0.001). In addition, GSTM1 null genotype was significantly associated with ARC causing risk to individuals working indoors and not individuals working outdoors. The association between GSTT1 null genotype and risk of ARC was statistically significant in Asians (OR = 1.442, 95% CI = 1.137–1.830, and P = 0.003) but not in Caucasians. Conclusions. GSTM1 positive genotype is associated with increased risk of CC and loses the protective role in persons who work outdoors. Considering the ethnic variation, GSTT1 null genotype is found to be associated with increased risk of ARC in Asians but not in Caucasians.
Collapse
|
12
|
Hossain MDT, Yamada N, Yamamoto K. Glutathione-binding site of a bombyx mori theta-class glutathione transferase. PLoS One 2014; 9:e97740. [PMID: 24848539 PMCID: PMC4029803 DOI: 10.1371/journal.pone.0097740] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Accepted: 04/23/2014] [Indexed: 11/18/2022] Open
Abstract
The glutathione transferase (GST) superfamily plays key roles in the detoxification of various xenobiotics. Here, we report the isolation and characterization of a silkworm protein belonging to a previously reported theta-class GST family. The enzyme (bmGSTT) catalyzes the reaction of glutathione with 1-chloro-2,4-dinitrobenzene, 1,2-epoxy-3-(4-nitrophenoxy)-propane, and 4-nitrophenethyl bromide. Mutagenesis of highly conserved residues in the catalytic site revealed that Glu66 and Ser67 are important for enzymatic function. These results provide insights into the catalysis of glutathione conjugation in silkworm by bmGSTT and into the metabolism of exogenous chemical agents.
Collapse
Affiliation(s)
| | - Naotaka Yamada
- Faculty of Agriculture, Kyushu University Graduate School, Fukuoka, Japan
| | - Kohji Yamamoto
- Faculty of Agriculture, Kyushu University Graduate School, Fukuoka, Japan
- * E-mail:
| |
Collapse
|
13
|
Human cytosolic glutathione transferases: structure, function, and drug discovery. Trends Pharmacol Sci 2012; 33:656-68. [DOI: 10.1016/j.tips.2012.09.007] [Citation(s) in RCA: 124] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2012] [Revised: 09/26/2012] [Accepted: 09/27/2012] [Indexed: 11/19/2022]
|
14
|
Board PG, Menon D. Glutathione transferases, regulators of cellular metabolism and physiology. Biochim Biophys Acta Gen Subj 2012. [PMID: 23201197 DOI: 10.1016/j.bbagen.2012.11.019] [Citation(s) in RCA: 275] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
BACKGROUND The cytosolic glutathione transferases (GSTs) comprise a super family of proteins that can be categorized into multiple classes with a mixture of highly specific and overlapping functions. SCOPE OF REVIEW The review covers the genetics, structure and function of the human cytosolic GSTs with particular attention to their emerging roles in cellular metabolism. MAJOR CONCLUSIONS All the catalytically active GSTs contribute to the glutathione conjugation or glutathione dependant-biotransformation of xenobiotics and many catalyze glutathione peroxidase or thiol transferase reactions. GSTs also catalyze glutathione dependent isomerization reactions required for the synthesis of several prostaglandins and steroid hormones and the catabolism of tyrosine. An increasing body of work has implicated several GSTs in the regulation of cell signaling pathways mediated by stress-activated kinases like Jun N-terminal kinase. In addition, some members of the cytosolic GST family have been shown to form ion channels in intracellular membranes and to modulate ryanodine receptor Ca(2+) channels in skeletal and cardiac muscle. GENERAL SIGNIFICANCE In addition to their well established roles in the conjugation and biotransformation of xenobiotics, GSTs have emerged as significant regulators of pathways determining cell proliferation and survival and as regulators of ryanodine receptors that are essential for muscle function. This article is part of a Special Issue entitled Cellular functions of glutathione.
Collapse
Affiliation(s)
- Philip G Board
- John Curtin School of Medical Research, Australian National University, Canberra, Australia
| | | |
Collapse
|
15
|
Abstract
The conventional analysis of enzyme evolution is to regard one single salient feature as a measure of fitness, expressed in a milieu exposing the possible selective advantage at a given time and location. Given that a single protein may serve more than one function, fitness should be assessed in several dimensions. In the present study we have explored individual mutational steps leading to a triple-point-mutated human GST (glutathione transferase) A2-2 displaying enhanced activity with azathioprine. A total of eight alternative substrates were used to monitor the diverse evolutionary trajectories. The epistatic effects of the mutations on catalytic activity were variable in sign and magnitude and depended on the substrate used, showing that epistasis is a multidimensional quality. Evidently, the multidimensional fitness landscape can lead to alternative trajectories resulting in enzymes optimized for features other than the selectable markers relevant at the origin of the evolutionary process. In this manner the evolutionary response is robust and can adapt to changing environmental conditions.
Collapse
|
16
|
Zhang X, Li T, Zhang J, Li D, Guo Y, Qin G, Zhu KY, Ma E, Zhang J. Structural and catalytic role of two conserved tyrosines in Delta-class glutathione S-transferase from Locusta migratoria. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2012; 80:77-91. [PMID: 22581614 DOI: 10.1002/arch.21025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Glutathione S-transferases (GSTs) are an important family of detoxifying enzymes and play a key role in pesticide resistance in the insect. Tyrosine is essential for its detoxification function. In the present study, two conserved tyrosine residues are located at positions 108 and 116 in H-site of LmGSTD1. To elucidate how the two residues participate in the catalytic process and keeping structural stability, four mutants, Y108A, Y108E, Y116A, and Y116E, were generated. It was found that the four mutants affected the specific activity of LmGSTD1 in various degrees, depending on the types of substrate and reaction mechanism. Steady-state kinetics assay revealed that Y108E and Y116E had a significant influence on GSH-binding ability, which indicates the two tyrosine residues of H-site contribute to topology rearrangement of G-site. Both Y116A and Y116E exhibited lower CDNB-binding affinity, suggesting that Y116 takes part in hydrophobic substrate binding. The thermostability assay, intrinsic, and 8-anilino-1-naphthalenesulfonic acid (ANS) florescence results showed that the two tyrosine residues were involved in regulation of active-site conformation. Finally, homology modeling provided evidence that the two tyrosines in H-site participate in hydrophobic substrate binding. Furthermore, Y108 is closer to the S atom of S-hexylglutathione. In conclusion, the two tyrosines in LmGSTD1 are important residues in both the catalytic process and protein stability.
Collapse
Affiliation(s)
- Xueyao Zhang
- Research Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi, China
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Edwards TE, Bryan CM, Leibly DJ, Dieterich SH, Abendroth J, Sankaran B, Sivam D, Staker BL, Van Voorhis WC, Myler PJ, Stewart LJ. Structures of a putative ζ-class glutathione S-transferase from the pathogenic fungus Coccidioides immitis. Acta Crystallogr Sect F Struct Biol Cryst Commun 2011; 67:1038-43. [PMID: 21904047 PMCID: PMC3169399 DOI: 10.1107/s1744309111009493] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2010] [Accepted: 03/12/2011] [Indexed: 11/25/2022]
Abstract
Coccidioides immitis is a pathogenic fungus populating the southwestern United States and is a causative agent of coccidioidomycosis, sometimes referred to as Valley Fever. Although the genome of this fungus has been sequenced, many operons are not properly annotated. Crystal structures are presented for a putative uncharacterized protein that shares sequence similarity with ζ-class glutathione S-transferases (GSTs) in both apo and glutathione-bound forms. The apo structure reveals a nonsymmetric homodimer with each protomer comprising two subdomains: a C-terminal helical domain and an N-terminal thioredoxin-like domain that is common to all GSTs. Half-site binding is observed in the glutathione-bound form. Considerable movement of some components of the active site relative to the glutathione-free form was observed, indicating an induced-fit mechanism for cofactor binding. The sequence homology, structure and half-site occupancy imply that the protein is a ζ-class glutathione S-transferase, a maleylacetoacetate isomerase (MAAI).
Collapse
|
18
|
Josephy PD, Pan D, Ianni MD, Mannervik B. Functional studies of single-nucleotide polymorphic variants of human glutathione transferase T1-1 involving residues in the dimer interface. Arch Biochem Biophys 2011; 513:87-93. [PMID: 21781954 DOI: 10.1016/j.abb.2011.07.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2011] [Revised: 07/02/2011] [Accepted: 07/04/2011] [Indexed: 11/27/2022]
Abstract
Glutathione transferase T1-1 catalyses detoxication and bioactivation processes in which glutathione conjugates are formed from endogenous and xenobiotic substrates, including alkylating agents and halogenated alkanes. Although the common null polymorphism of the human GSTT1 gene has been studied extensively, little is known about the consequences of GSTT1 single-nucleotide polymorphisms (SNPs). Here, we have examined the effects of two SNPs that alter amino acid residues in the dimer interface of the GST T1-1 protein and one that causes a conservative substitution in the core of the subunit. Variant proteins were expressed in an Escherichia coli strain in which the metabolism of ethylene dibromide to a glutathione conjugate leads to lacZ reversion mutations. We measured the kinetic properties of the enzymes with the characteristic substrate 1,2-epoxy-3-(p-nitrophenoxy)propane (EPNP) and determined the specific activities with several other substrates. Circular dichroism spectroscopy was used to measure protein thermal denaturation profiles. Variant T104P, which has been reported as inactive, showed weak but detectable activity with each substrate. Variant R76S was expressed at lower levels and showed much-reduced thermal stability. The results are interpreted in the context of the three-dimensional structure of human GST T1-1.
Collapse
Affiliation(s)
- P David Josephy
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada N1G2W1.
| | | | | | | |
Collapse
|
19
|
|
20
|
Josephy PD. Genetic variations in human glutathione transferase enzymes: significance for pharmacology and toxicology. HUMAN GENOMICS AND PROTEOMICS : HGP 2010; 2010:876940. [PMID: 20981235 PMCID: PMC2958679 DOI: 10.4061/2010/876940] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2010] [Accepted: 03/22/2010] [Indexed: 01/21/2023]
Abstract
Glutathione transferase enzymes (GSTs) catalyze reactions in which electrophiles are conjugated to the tripeptide thiol glutathione. While many GST-catalyzed transformations result in the detoxication of xenobiotics, a few substrates, such as dihaloalkanes, undergo bioactivation to reactive intermediates. Many molecular epidemiological studies have tested associations between polymorphisms (especially, deletions) of human GST genes and disease susceptibility or response to therapy. This review presents a discussion of the biochemistry of GSTs, the sources-both genetic and environmental-of interindividual variation in GST activities, and their implications for pharmaco- and toxicogenetics; particular attention is paid to the Theta class GSTs.
Collapse
Affiliation(s)
- P David Josephy
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada N1G 2W1
| |
Collapse
|
21
|
Molecular evolution of Theta-class glutathione transferase for enhanced activity with the anticancer drug 1,3-bis-(2-chloroethyl)-1-nitrosourea and other alkylating agents. Arch Biochem Biophys 2010; 497:28-34. [DOI: 10.1016/j.abb.2010.03.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2010] [Revised: 02/27/2010] [Accepted: 03/01/2010] [Indexed: 11/18/2022]
|
22
|
Shokeer A, Mannervik B. Residue 234 is a master switch of the alternative-substrate activity profile of human and rodent theta class glutathione transferase T1-1. Biochim Biophys Acta Gen Subj 2010; 1800:466-73. [PMID: 20097269 DOI: 10.1016/j.bbagen.2010.01.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2009] [Revised: 12/24/2009] [Accepted: 01/15/2010] [Indexed: 10/19/2022]
Abstract
BACKGROUND The Theta class glutathione transferase GST T1-1 is a ubiquitously occurring detoxication enzyme. The rat and mouse enzymes have high catalytic activities with numerous electrophilic compounds, but the homologous human GST T1-1 has comparatively low activity with the same substrates. A major structural determinant of substrate recognition is the H-site, which binds the electrophile in proximity to the nucleophilic sulfur of the second substrate glutathione. The H-site is formed by several segments of amino acid residues located in separate regions of the primary structure. The C-terminal helix of the protein serves as a lid over the active site, and contributes several residues to the H-site. METHODS Site-directed mutagenesis of the H-site in GST T1-1 was used to create the mouse Arg234Trp for comparison with the human Trp234Arg mutant and the wild-type rat, mouse, and human enzymes. The kinetic properties were investigated with an array of alternative electrophilic substrates to establish substrate selectivity profiles for the different GST T1-1 variants. RESULTS The characteristic activity profile of the rat and mouse enzymes is dependent on Arg in position 234, whereas the human enzyme features Trp. Reciprocal mutations of residue 234 between the rodent and human enzymes transform the substrate-selectivity profiles from one to the other. CONCLUSIONS H-site residue 234 has a key role in governing the activity and substrate selectivity profile of GST T1-1. GENERAL SIGNIFICANCE The functional divergence between human and rodent Theta class GST demonstrates that a single point mutation can enable or suppress enzyme activities with different substrates.
Collapse
Affiliation(s)
- Abeer Shokeer
- Department of Biochemistry and Organic Chemistry, Uppsala University, BMC, Box 576, SE-75123 Uppsala, Sweden
| | | |
Collapse
|
23
|
Shokeer A, Mannervik B. Minor modifications of the C-terminal helix reschedule the favored chemical reactions catalyzed by theta class glutathione transferase T1-1. J Biol Chem 2009; 285:5639-45. [PMID: 20022951 DOI: 10.1074/jbc.m109.074757] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Adaptive responses to novel toxic challenges provide selective advantages to organisms in evolution. Glutathione transferases (GSTs) play a pivotal role in the cellular defense because they are main contributors to the inactivation of genotoxic compounds of exogenous as well as of endogenous origins. GSTs are promiscuous enzymes catalyzing a variety of chemical reactions with numerous alternative substrates. Despite broad substrate acceptance, individual GSTs display pronounced selectivities such that only a limited number of substrates are transformed with high catalytic efficiency. The present study shows that minor structural changes in the C-terminal helix of mouse GST T1-1 induce major changes in the substrate-activity profile of the enzyme to favor novel chemical reactions and to suppress other reactions catalyzed by the parental enzyme.
Collapse
Affiliation(s)
- Abeer Shokeer
- Department of Biochemistry and Organic Chemistry, Uppsala University, Biomedical Center, Box 576, SE-75123 Uppsala, Sweden
| | | |
Collapse
|
24
|
Josephy PD, Kent M, Mannervik B. Single-nucleotide polymorphic variants of human glutathione transferase T1-1 differ in stability and functional properties. Arch Biochem Biophys 2009; 490:24-9. [DOI: 10.1016/j.abb.2009.07.025] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2009] [Revised: 07/30/2009] [Accepted: 07/31/2009] [Indexed: 02/07/2023]
|
25
|
Güven M, Unal M, Sarici A, Ozaydin A, Batar B, Devranoğlu K. Glutathione-S-transferase M1 and T1 Genetic Polymorphisms and the Risk of Cataract Development: A Study in the Turkish Population. Curr Eye Res 2009; 32:447-54. [PMID: 17514530 DOI: 10.1080/02713680701338108] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
In this study, we aimed to determine the effects of genetic polymorphisms of glutathione-S-transferase M1 (GSTM1) and glutathione-S-transferase T1 (GSTT1) on risk of developing different subtypes of age-related cataract in the Turkish population. Using a multiplex polymerase chain reaction (PCR), GSTM1 and GSTT1 gene polymorphisms were analyzed in 195 patients with age-related cataract (75 patients with cortical, 53 with nuclear, 37 with posterior subcapsular, and 30 with mixed type) and in 136 patients of an otherwise healthy control group of similar age. GSTM1 null genotype had a significant association with the development of cataract in female subjects (p < 0.0029; OR, 2.98; 95% CI, 1.41-6.34). This relationship in female subjects was only in nuclear and mixed types cataract cases (p < 0.002; OR, 4.58; 95% CI, 1.67-12.78 and p < 0.03, respectively). There was also a statistically significant association between the combination of GSTM1-null and GSTT1-positive genotypes and the risk of cataract development in female subjects (p = 0.01; OR = 2.87; 95% CI = 1.25-6.69). Stratification by the subtypes revealed that this association was only in nuclear type cataract (p = 0.001; OR, 3.92; 95% CI, 1.34-11.71). GSTM1-null genotype or combination of the GSTM1-null and GSTT1-positive genotypes in females may be associated with increased risk of cataract development in the Turkish population.
Collapse
Affiliation(s)
- Mehmet Güven
- Department of Medical Biology, Cerrahpasa Faculty of Medicine, University of Istanbul, Istanbul, Turkey
| | | | | | | | | | | |
Collapse
|
26
|
Tatewaki N, Maekawa K, Katori N, Kurose K, Kaniwa N, Yamamoto N, Kunitoh H, Ohe Y, Nokihara H, Sekine I, Tamura T, Yoshida T, Saijo N, Saito Y, Sawada JI. Genetic Variations and Haplotype Structures of the Glutathione S-transferase Genes, GSTT1 and GSTM1, in a Japanese Patient Population. Drug Metab Pharmacokinet 2009; 24:118-26. [DOI: 10.2133/dmpk.24.118] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
27
|
Lerksuthirat T, Ketterman AJ. Characterization of putative hydrophobic substrate binding site residues of a Delta class glutathione transferase from Anopheles dirus. Arch Biochem Biophys 2008; 479:97-103. [DOI: 10.1016/j.abb.2008.08.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2008] [Revised: 08/07/2008] [Accepted: 08/08/2008] [Indexed: 10/21/2022]
|
28
|
Luo L, Wang Y, Feng Q, Zhang H, Xue B, Shen J, Ye Y, Han X, Ma H, Xu J, Chen D, Yin Z. Recombinant protein glutathione S-transferases P1 attenuates inflammation in mice. Mol Immunol 2008; 46:848-57. [PMID: 18962899 DOI: 10.1016/j.molimm.2008.09.010] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2008] [Revised: 07/10/2008] [Accepted: 09/07/2008] [Indexed: 10/21/2022]
Abstract
We have reported that intracellular glutathione S-transferases P1 (GSTP1) suppresses LPS (lipopolysaccharide)-induced excessive production of pro-inflammatory factors by inhibiting LPS-stimulated MAPKs (mitogen-activated protein kinases) as well as NF-kappaB activation. But under pathogenic circumstances, physiologic levels of GSTP1 are insufficient to stem pro-inflammatory signaling. Here we show that LPS-induced up-regulation of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) in RAW246.7 cells is significantly reduced by incubating cells with recombinant GSTP1 protein. In vivo study demonstrates that treatment of mice (i.p.) with recombinant GSTP1 protein effectively suppresses the devastating effects of acute inflammation, which includes reduction of mortality rate of endotoxic shock, alleviation of LPS-induced acute lung injury and abrogation of thioglycolate (TG)-induced peritoneal deposition of leukocytes and polymorphonuclear cells (PMNs). Meanwhile, GSTP1 prevented LPS-induced TNF-alpha, IL-1beta, MCP-1 and NO production. Further investigation by using confocal microscopy and flow cytometry shows that recombinant GSTP1 protein can be delivered into RAW246.7 cells, mouse peritoneal macrophages and HEK 293 cells suggesting that extracellular GSTP1 protein could be transported across plasma membrane and act as a cytosolic protein. In conclusion our research demonstrates a new finding that increasing cellular GSTP1 level by supplement of recombinant GSTP1 effectively suppresses the devastating effects of acute inflammation.
Collapse
Affiliation(s)
- Lan Luo
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210093, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Wu Y, Shen J, Yin Z. Expression, purification and functional analysis of hexahistidine-tagged human glutathione S-transferase P1-1 and its cysteinyl mutants. Protein J 2007; 26:359-70. [PMID: 17587159 DOI: 10.1007/s10930-006-9043-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The bacterial expression and purification of human glutathione S-transferase P1-1(hGST P1-1), as a hexahistidine-tagged polypeptide was performed. Site-directed mutagenesis was used to construct mutants in which alanine replaced two (C47A/C101A), three (C14A/C47A/C101A) or all four (C14A/C47A/ C101A/C169A) cysteine residues using the plasmid for the wild type enzyme. Analysis of their catalytic activities and kinetic parameters suggested that cysteins are not essential for the catalytic activity but may contribute to some extent to the catalytic efficiency. Moreover, on SDS-polyacrylamide gel electrophoresis (SDS-PAGE) under nonreducing conditions, hexahistidine-tagged hGST P1-1 (His(6)-hGST P1-1) treated with 1 mM H(2)O(2) showed at least three extra bands, in addition to the native His(6)-hGST P1-1 subunit band. These extra bands were not detected in the cysteinyl mutants. Thus, it indicated that disulfide bonds were formed mainly within subunits between cysteine residues, causing an apparent reduction in molecular weight, only small amounts of binding between subunits being observed.
Collapse
Affiliation(s)
- Yifan Wu
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, PR China
| | | | | |
Collapse
|
30
|
Unal M, Güven M, Devranoğlu K, Ozaydin A, Batar B, Tamçelik N, Görgün EE, Uçar D, Sarici A. Glutathione S transferase M1 and T1 genetic polymorphisms are related to the risk of primary open-angle glaucoma: a study in a Turkish population. Br J Ophthalmol 2007; 91:527-30. [PMID: 16973661 PMCID: PMC1994754 DOI: 10.1136/bjo.2006.102418] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/01/2006] [Indexed: 11/04/2022]
Abstract
BACKGROUND Genetic factors and oxidative damage have been shown to have a role in the development of primary open angle glaucoma (POAG). AIM To determine the effects of genetic polymorphisms of glutathione S transferase (GST)M1 and GSTT1 on the risk of POAG in a Turkish population. METHODS Using a multiplex polymerase chain reaction (PCR), GSTM1 and GSTT1 gene polymorphisms were analysed in 144 patients with POAG and in 121 otherwise healthy controls of similar age. RESULTS The GSTM1 positive genotype and the GSTT1 null genotype had an increased risk of developing POAG (p<0.001, OR 2.93, 95% CI 1.66 to 5.20 and OR 4.25, 95% CI 2.30 to 7.80, respectively). The risk of glaucoma also increased significantly in subjects with a combination of GSTM1 positive and GSTT1 null genotypes (p<0.001, OR 3.46, 95% CI 1.64 to 7.38). CONCLUSION The GSTM1 positive genotype and GSTT1 null genotype or the combination of both may be associated with the increased risk of development of POAG in the Turkish population.
Collapse
Affiliation(s)
- Mustafa Unal
- Department of Ophthalmology, Akdeniz University Medical Faculty, Antalya, Turkey.
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Josephy PD, Taylor PL, Vervaet G, Mannervik B. Screening and characterization of variant Theta-class glutathione transferases catalyzing the activation of ethylene dibromide to a mutagen. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2006; 47:657-65. [PMID: 16948056 DOI: 10.1002/em.20252] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Ethylene dibromide (EDB) is a widespread environmental pollutant and mutagen/carcinogen. Certain Theta-class glutathione transferases (GSTs), enzymes that catalyze the reaction of reduced glutathione (GSH) with electrophiles, activate EDB to a mutagen. Previous studies have shown that human GST T1-1, but not rat GST T2-2, activates EDB. We have constructed an E. coli lacZ reversion mutagenicity assay system in which expression of recombinant GST supports activation of EDB to a mutagen. Hexa-histidine N-terminal tagging of GST T1-1 results in greatly enhanced expression of the recombinant enzyme and gives a lacZ strain that shows a mutagenic response to EDB at extremely low levels (approximately 1 ng EDB per plate). The hexa-histidine-tagged enzyme was purified in one step by Ni(2+)-affinity chromatography. We applied the lacZ mutagenicity assay to the rapid screening of a library of variant GST Theta enzymes. Sequence variants with altered catalytic activities were identified, purified, and characterized.
Collapse
Affiliation(s)
- P David Josephy
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada.
| | | | | | | |
Collapse
|
32
|
Griswold KE, Aiyappan NS, Iverson BL, Georgiou G. The Evolution of Catalytic Efficiency and Substrate Promiscuity in Human Theta Class 1-1 Glutathione Transferase. J Mol Biol 2006; 364:400-10. [PMID: 17011574 PMCID: PMC1995603 DOI: 10.1016/j.jmb.2006.09.012] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2006] [Revised: 08/31/2006] [Accepted: 09/01/2006] [Indexed: 11/29/2022]
Abstract
Theta class glutathione transferases (GST) from various species exhibit markedly different catalytic activities in conjugating the tripeptide glutathione (GSH) to a variety of electrophilic substrates. For example, the human theta 1-1 enzyme (hGSTT1-1) is 440-fold less efficient than the rat theta 2-2 enzyme (rGSTT2-2) with the fluorogenic substrate 7-amino-4-chloromethyl coumarin (CMAC). Large libraries of hGSTT1-1 constructed by error-prone PCR, DNA shuffling, or saturation mutagenesis were screened for improved catalytic activity towards CMAC in a quantitative fashion using flow cytometry. An iterative directed evolution approach employing random mutagenesis in conjunction with homologous recombination gave rise to enzymes exhibiting up to a 20,000-fold increase in k(cat)/K(M) compared to hGSTT1-1. All highly active clones encoded one or more mutations at residues 32, 176, or 234. Combinatorial saturation mutagenesis was used to evaluate the full complement of natural amino acids at these positions, and resulted in the isolation of enzymes with catalytic rates comparable to those exhibited by the fastest mutants obtained via directed evolution. The substrate selectivities of enzymes resulting from random mutagenesis, DNA shuffling, and combinatorial saturation mutagenesis were evaluated using a series of distinct electrophiles. The results revealed that promiscuous substrate activities arose in a stochastic manner, as they did not correlate with catalytic efficiency towards the CMAC selection substrate. In contrast, chimeric enzymes previously constructed by homology-independent recombination of hGSTT-1 and rGSTT2-2 exhibited very different substrate promiscuity profiles, and showed a more defined relationship between evolved and promiscuous activities.
Collapse
Affiliation(s)
- Karl E. Griswold
- Department of Chemical Engineering, University of Texas at Austin, Austin, TX 78712
| | - Nandini S. Aiyappan
- Department of Chemistry and Biochemistry, University of Texas at Austin, Austin, TX 78712
| | - Brent L. Iverson
- Department of Chemistry and Biochemistry, University of Texas at Austin, Austin, TX 78712
- Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712
- ‡ To whom correspondence should be addressed: , Department of Chemistry and Biochemistry, WEL 5.320, University of Texas at Austin, Austin, TX 78712, Phone 512-471-5053, Fax 512-471-8615, , Department of Chemical Engineering, CPE 4.410, University of Texas at Austin, Austin, TX 78712, Phone 512-471-6975, Fax 512-471-7963
| | - George Georgiou
- Department of Chemical Engineering, University of Texas at Austin, Austin, TX 78712
- Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712
- ‡ To whom correspondence should be addressed: , Department of Chemistry and Biochemistry, WEL 5.320, University of Texas at Austin, Austin, TX 78712, Phone 512-471-5053, Fax 512-471-8615, , Department of Chemical Engineering, CPE 4.410, University of Texas at Austin, Austin, TX 78712, Phone 512-471-6975, Fax 512-471-7963
| |
Collapse
|
33
|
Zhong SL, Zhou SF, Chen X, Chan SY, Chan E, Ng KY, Duan W, Huang M. Relationship between genotype and enzyme activity of glutathione S-transferases M1 and P1 in Chinese. Eur J Pharm Sci 2006; 28:77-85. [PMID: 16488119 DOI: 10.1016/j.ejps.2006.01.002] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2005] [Revised: 12/28/2005] [Accepted: 01/02/2006] [Indexed: 11/20/2022]
Abstract
Glutathione S-transferases (GSTs) are the major detoxifying Phase II enzyme for eliminating electrophilic compounds. Mutations in GSTM1, GSTP1 and GSTT1 in Caucasian and GSTA1 in Chinese have been found to reduce enzyme activity. However, data on the impact of common genetic polymorphisms of GSTM1 and GSTP1 on enzyme activity in Chinese is lacking. This study aimed to investigate the effect of common GSTP1 and GSTM1 polymorphisms on erythrocyte GST activity in healthy Chinese (n = 196). GSTM1 null mutation (GSTM1*0) was analyzed by a PCR-Multiplex procedure, whereas GSTP1 313A-->G polymorphism (resulting in Ile105Val at codon 105) was analyzed by PCR-restriction fragment length polymorphism (RFLP) analysis. Erythrocyte GST activity was measured using 1-chloro-2,4-dinitro-bezene (CDNB) as the model substrate. The frequency of GSTM1 null genotype was 54.3% and the frequency of GSTP1-Ile/Ile, -Ile/Val, and -Val/Val genotype was 60.7%, 35.2% and 4.1%, respectively, with a frequency of 21.7% for the 105 valine allele. Age, gender and smoking did not significantly affect the erythrocyte GST activities. The mean erythrocyte GST enzyme activity for GSTP1*-Ile/Val genotype group (3.53 +/- 0.63U/gHb) was significantly lower than that for subjects with GSTP1-Ile/Ile genotype (4.25 +/- 1.07U/gHb, P = 0.004), while subjects with the GSTP1-Val/Val genotype had the lowest enzyme activity (2.44 +/- 0.67U/gHb). In addition, the GST activity in carriers of GSTM1*0/GSTP1-Ile/Ile was significantly higher than that of subjects inherited GSTM1*0/GSTP1-Ile/Val or GSTM1*0/GSTP1-Val/Val. However, there is no association between GSTM1 null mutation and reduced enzyme activity. GSTP1 codon 105 mutation led to reduced erythrocyte GST activity in Chinese. A combined GSTP1 and GSTM1 null mutations also resulted in significantly reduced GST activity. Further studies are needed to explore the clinical implications of GSTM1 and GSTP1 polymorphisms.
Collapse
Affiliation(s)
- Shi-long Zhong
- Department of Clinical Pharmacology, School of Pharmaceutical Sciences, Sun Yat-sen University, 74 Zhongshan Er Road, Guangzhou 510080, PR China
| | | | | | | | | | | | | | | |
Collapse
|