1
|
Hung CH, Chan KH, Kong WP, Du RL, Ding K, Liang Z, Wang Y, Wong KY. A Water-Soluble Aggregation-Induced Emission Photosensitizer with Intrinsic Antibacterial Activity as an Antiplanktonic and Antibiofilm Therapeutic Agent. J Med Chem 2025; 68:8768-8785. [PMID: 40186565 PMCID: PMC12035805 DOI: 10.1021/acs.jmedchem.5c00403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 03/27/2025] [Accepted: 03/31/2025] [Indexed: 04/07/2025]
Abstract
Photosensitizers (PSs) with aggregation-induced emission (AIE) properties have gained popularity for treating bacterial infections. However, most AIE PSs have a poor water solubility and low selectivity, limiting their applications in biological systems. Herein, we report a water-soluble and bacteria-targeting AIE PS that exhibits minimum cytotoxicity toward human cells with and without light irradiation. Acting as a narrow-spectrum antibacterial agent without light irradiation, TPA-1 eradicates planktonic Staphylococcus aureus and inhibits biofilm formation by targeting the S. aureus membrane, inhibiting the supercoiling activity of S. aureus DNA gyrase, and causing the downregulation of multiple essential proteins. Upon light irradiation, TPA-1 generates reactive oxygen species (ROS) that cause membrane damage, resulting in excellent antiplanktonic and antibiofilm activities against S. aureus and Pseudomonas aeruginosa, significantly reducing the number of viable bacteria in biofilms and promoting wound healing in vivo.
Collapse
Affiliation(s)
- Cheung-Hin Hung
- State Key Laboratory of Chemical
Biology and Drug Discovery, Department of Applied Biology and Chemical
Technology, The Hong Kong Polytechnic University, Kowloon, Hong
Kong, China
| | - Ka Hin Chan
- State Key Laboratory of Chemical
Biology and Drug Discovery, Department of Applied Biology and Chemical
Technology, The Hong Kong Polytechnic University, Kowloon, Hong
Kong, China
| | - Wai-Po Kong
- State Key Laboratory of Chemical
Biology and Drug Discovery, Department of Applied Biology and Chemical
Technology, The Hong Kong Polytechnic University, Kowloon, Hong
Kong, China
| | - Ruo-Lan Du
- State Key Laboratory of Chemical
Biology and Drug Discovery, Department of Applied Biology and Chemical
Technology, The Hong Kong Polytechnic University, Kowloon, Hong
Kong, China
| | - Kang Ding
- State Key Laboratory of Chemical
Biology and Drug Discovery, Department of Applied Biology and Chemical
Technology, The Hong Kong Polytechnic University, Kowloon, Hong
Kong, China
| | - Zhiguang Liang
- State Key Laboratory of Chemical
Biology and Drug Discovery, Department of Applied Biology and Chemical
Technology, The Hong Kong Polytechnic University, Kowloon, Hong
Kong, China
| | - Yong Wang
- State Key Laboratory of Chemical
Biology and Drug Discovery, Department of Applied Biology and Chemical
Technology, The Hong Kong Polytechnic University, Kowloon, Hong
Kong, China
| | - Kwok-Yin Wong
- State Key Laboratory of Chemical
Biology and Drug Discovery, Department of Applied Biology and Chemical
Technology, The Hong Kong Polytechnic University, Kowloon, Hong
Kong, China
| |
Collapse
|
2
|
Gaur V, Kumar N, Vyas A, Chowdhury D, Singh J, Bera S. Identification of potential inhibitors against Escherichia coli Mur D enzyme to combat rising drug resistance: an in-silico approach. J Biomol Struct Dyn 2025; 43:3286-3296. [PMID: 38149858 DOI: 10.1080/07391102.2023.2297007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 12/13/2023] [Indexed: 12/28/2023]
Abstract
Indiscriminate use of anti-microbial agents has resulted in the inception, frequency, and spread of antibiotic resistance among targeted bacterial pathogens and the commensal flora. Mur enzymes, playing a crucial role in cell-wall synthesis, are one of the most appropriate targets for developing novel inhibitors against antibiotic-resistant bacterial pathogens. In the present study, in-silico high-throughput virtual (HTVS) and Standard-Precision (SP) screening was carried out with 0.3 million compounds from several small-molecule libraries against the E. coli Mur D enzyme (PDB ID 2UUP). The docked complexes were further subjected to extra-precision (XP) docking calculations, and highest Glide-score compound was further subjected to molecular simulation studies. The top six virtual hits (S1-S6) displayed a glide score (G-score) within the range of -9.013 to -7.126 kcal/mol and compound S1 was found to have the highest stable interactions with the Mur D enzyme (2UUP) of E. coli. The stability of compound S1 with the Mur D (2UUP) complex was validated by a 100-ns molecular dynamics simulation. Binding free energy calculation by the MM-GBSA strategy of the S1-2UUP (Mur D) complex established van der Waals, hydrogen bonding, lipophilic, and Coulomb energy terms as significant favorable contributors for ligand binding. The final lead molecules were subjected to ADMET predictions to study their pharmacokinetic properties and displayed promising results, except for certain modifications required to improve QPlogHERG values. So, the compounds screened against the Mur D enzyme can be further studied as preparatory points for in-vivo studies to develop potential drugs. HIGHLIGHTSE.coli is a common cause of urinary tract infections.E.coli MurD enzyme is a suitable target for drug development.Novel inhibitors against E.coli MurD enzyme were identified.Molecular dynamics studies identified in-silico potential of identified compound.ADMET predictions and Lipinski's rule of five studies showed promising results.
Collapse
Affiliation(s)
- Vinita Gaur
- Department of Microbiology, School of Bioengineering and Biosciences, Lovely Professional University, Punjab, India
| | - Neeraj Kumar
- Department of Pharmaceutical Chemistry, Bhupal Nobles' University, Udaipur, Rajasthan, India
| | - Ashish Vyas
- Department of Microbiology, School of Bioengineering and Biosciences, Lovely Professional University, Punjab, India
| | - Debabrata Chowdhury
- School of Medicine - Infectious Diseases, Stanford University, Stanford, CA, USA
| | - Joginder Singh
- Department of Microbiology, School of Bioengineering and Biosciences, Lovely Professional University, Punjab, India
| | - Surojit Bera
- Department of Microbiology, School of Bioengineering and Biosciences, Lovely Professional University, Punjab, India
| |
Collapse
|
3
|
Lupo V, Roomans C, Royen E, Ongena L, Jacquemin O, Mullender C, Kerff F, Baurain D. Identification and characterization of archaeal pseudomurein biosynthesis genes through pangenomics. mSystems 2025; 10:e0140124. [PMID: 39936904 PMCID: PMC11915815 DOI: 10.1128/msystems.01401-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 01/14/2025] [Indexed: 02/13/2025] Open
Abstract
The peptidoglycan (PG, or murein) is a mesh-like structure, which is made of glycan polymers connected by short peptides and surrounds the cell membrane of nearly all bacterial species. In contrast, there is no PG counterpart that would be universally found in Archaea but rather various polymers that are specific to some lineages. Methanopyrales and Methanobacteriales are two orders of Euryarchaeota that harbor pseudomurein (PM), a structural analog of the bacterial PG. Owing to the differences between PG and PM biosynthesis, some have argued that the origin of both polymers is not connected. However, recent studies have revealed that the genomes of PM-containing Archaea encode homologs of the bacterial genes involved in PG biosynthesis, even though neither their specific functions nor the relationships within the corresponding inter-domain phylogenies have been investigated so far. In this work, we devised a pangenomic bioinformatic pipeline to identify proteins for PM biosynthesis in Archaea without prior genetic knowledge. The taxonomic distribution and evolutionary relationships of the candidate proteins were studied in detail in Archaea and Bacteria through HMM sequence mining and phylogenetic inference of the Mur domain-containing family, the ATP-grasp superfamily, and the MraY-like family. Our results show that archaeal muramyl ligases are of bacterial origin but diversified through a mixture of horizontal gene transfers and gene duplications. However, in the ATP-grasp and MraY-like families, the archaeal members were not found to originate from Bacteria. Our pangenomic approach further identified five new genes potentially involved in PM synthesis and that would deserve functional characterization.IMPORTANCEMethanobrevibacter smithii is an archaea commonly found in the human gut, but its presence alongside pathogenic bacteria during infections has led some researchers to consider it as an opportunistic pathogen. Fortunately, endoisopeptidases isolated from phages, such as PeiW and PeiP, can cleave the cell walls of M. smithii and other pseudomurein-containing archaea. However, additional research is required to identify effective anti-archaeal agents to combat these opportunistic microorganisms. A better understanding of the pseudomurein cell wall and its biosynthesis is necessary to achieve this goal. Our study sheds light on the origin of cell wall structures in those microorganisms, showing that the archaeal muramyl ligases responsible for its formation have bacterial origins. This discovery challenges the conventional view of the cell-wall architecture in the last archaeal common ancestor and shows that the distinction between "common origin" and "convergent evolution" can be blurred in some cases.
Collapse
Affiliation(s)
- Valérian Lupo
- InBioS-PhytoSYSTEMS, Eukaryotic Phylogenomics, University of Liège, Liège, Belgium
- InBioS, Center for Protein Engineering, University of Liège, Liège, Belgium
| | - Célyne Roomans
- InBioS-PhytoSYSTEMS, Eukaryotic Phylogenomics, University of Liège, Liège, Belgium
| | - Edmée Royen
- InBioS-PhytoSYSTEMS, Eukaryotic Phylogenomics, University of Liège, Liège, Belgium
| | - Loïc Ongena
- InBioS-PhytoSYSTEMS, Eukaryotic Phylogenomics, University of Liège, Liège, Belgium
| | - Olivier Jacquemin
- InBioS-PhytoSYSTEMS, Eukaryotic Phylogenomics, University of Liège, Liège, Belgium
| | - Coralie Mullender
- InBioS-PhytoSYSTEMS, Eukaryotic Phylogenomics, University of Liège, Liège, Belgium
| | - Frédéric Kerff
- InBioS, Center for Protein Engineering, University of Liège, Liège, Belgium
| | - Denis Baurain
- InBioS-PhytoSYSTEMS, Eukaryotic Phylogenomics, University of Liège, Liège, Belgium
| |
Collapse
|
4
|
Prabhu D, Dharshini MKD, Rajamanikandan S, Padmavathi AR, Velusamy P, Gopinath SCB. Potential Anti-Filarial Molecules Against ATP Binding Site of MurE Enzyme: A Molecular Docking and Dynamics Approach to Combat Lymphatic Filariasis. Biotechnol Appl Biochem 2025. [PMID: 39957355 DOI: 10.1002/bab.2727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 01/18/2025] [Indexed: 02/18/2025]
Abstract
Lymphatic filariasis (LF) is a mosquito-borne disease caused by parasitic nematodes Brugia malayi, Brugia timori, and Wuchereria bancrofti. The drugs available are effective in several cases, and the absence of vaccination is the crucial factor hindering the elimination of LF. The UDP-N-acetylmuramoyl-L-alanyl-D-glutamate-2,6-diaminopimelate ligase (MurE) plays an important role in the peptidoglycan biosynthesis of Wolbachia endosymbiont B. malayi, which are reported to be a vital drug target for bacterial and endosymbiotic hosts. Thus, we selected the ATP binding cavity of MurE as the potential site to screen inhibitors. The MurE structure was modeled using AlphaFold due to the absence of an experimental structure. Structure-based screening identified five potent phytochemicals targeting the ATP binding site with higher Glide scores and affinity. The top five phytochemicals CID 311, CID 445713, CID 441626, CID 39077, and CID 10814 showed a docking score of -16.812, -16.117, -15.668, -15.324, and -13.442 kcal/mol, respectively. Further, the molecular dynamics simulations depicted the binding stability of the phytochemical inhibitors bound to the MurE complex. Moreover, ADME assessment and Density Functional Theory analyses of the predicted compounds have shown acceptable pharmacokinetic properties and high reactivity with the drug target of MurE.
Collapse
Affiliation(s)
- Dhamodharan Prabhu
- Center for Bioinformatics, Karpagam Academy of Higher Education, Coimbatore, Tamil Nadu, India
- Department of Biotechnology, Karpagam Academy of Higher Education, Coimbatore, Tamil Nadu, India
| | - Muthu Krishnan Dhivya Dharshini
- Center for Bioinformatics, Karpagam Academy of Higher Education, Coimbatore, Tamil Nadu, India
- Department of Biotechnology, Karpagam Academy of Higher Education, Coimbatore, Tamil Nadu, India
| | - Sundararaj Rajamanikandan
- Center for Bioinformatics, Karpagam Academy of Higher Education, Coimbatore, Tamil Nadu, India
- Department of Biochemistry, Karpagam Academy of Higher Education, Coimbatore, Tamil Nadu, India
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Alwar Ramanujam Padmavathi
- Biofouling and Biofilm Processes Section, Water and Steam Chemistry Division, Bhabha Atomic Research Centre, Kalpakkam, Tamil Nadu, India
- Homi Bhabha National Institute, Anushaktinagar, Mumbai, Maharashtra, India
| | - Palaniyandi Velusamy
- Innovation and Incubation Centre for Health Sciences (IICHS), Sree Balaji Medical College and Hospital (SBMCH), Bharath Institute of Higher Education and Research (BIHER), Chromepet, Tamil Nadu, India
| | - Subash C B Gopinath
- Center for Global Health Research, Saveetha Medical College & Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai, Tamil Nadu, India
- Faculty of Chemical Engineering & Technology, Institute of Nano Electronic Engineering & Micro System Technology, Universiti Malaysia Perlis (UniMAP), Arau, Perlis, Malaysia
| |
Collapse
|
5
|
Liu H, Lei H, Cao J, Xie Z, Shi Y, Zhao Y. AcfA Regulates the Virulence and Cell Envelope Stress Response of Vibrio parahaemolyticus. Microorganisms 2024; 13:7. [PMID: 39858775 PMCID: PMC11767970 DOI: 10.3390/microorganisms13010007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/16/2024] [Accepted: 12/18/2024] [Indexed: 01/27/2025] Open
Abstract
Vibrio parahaemolyticus is a ubiquitous inhabitant of estuarine and marine environments that causes vibriosis in aquatic animals and food poisoning in humans. Accessory colonizing factor (ACF) is employed by Vibrio to assist in the colonization and invasion of host cells leading to subsequent illnesses. In this work, ΔacfA, an in-frame deletion mutant strain lacking the 4th to the 645th nucleotides of the open reading frame (ORF) of the acfA gene, and the complementary strain acfA+ were constructed to decipher the function of AcfA in V. parahaemolyticus. The deletion of acfA had no effect on bacterial growth but resulted in a significant reduction in biofilm formation, hemolytic activity, mucus adhesion, and the accumulated mortality of zebrafish, compared to the wild-type strain and the complementary strain acfA+. Additionally, AcfA was involved in adapting to stressors, such as H2O2, EDTA, and acid, in V. parahaemolyticus. Furthermore, RNA-Seq transcriptome analysis was conducted to identify global gene transcription alterations resulting from deletion of the acfA gene. A total of 416 differentially expressed genes were identified in the ΔacfA vs. wild-type comparison, with 238 up-regulated genes and 178 down-regulated genes. The expression of genes associated with the type III secretion system, type VI secretion system, and oligopeptide permeases system were significantly reduced, and yet the expression of genes associated with cell envelope biosynthesis and response regulation system were enhanced dramatically in the absence of the acfA gene compared to the wild-type strain. These findings suggest that AcfA may play a role in the overall success of pathogenesis and the cell envelope stress response of V. parahaemolyticus.
Collapse
Affiliation(s)
- Huan Liu
- School of Food Science and Engineering, Shaanxi University of Science & Technology, No. 6 Xuefu Road, Xi’an 710021, China
- Shaanxi Research Institute of Agriculture Products Processing Technology, No. 6 Xuefu Road, Xi’an 710021, China
| | - Huayu Lei
- School of Food Science and Engineering, Shaanxi University of Science & Technology, No. 6 Xuefu Road, Xi’an 710021, China
| | - Juanjuan Cao
- School of Food Science and Engineering, Shaanxi University of Science & Technology, No. 6 Xuefu Road, Xi’an 710021, China
| | - Zhaobang Xie
- School of Food Science and Engineering, Shaanxi University of Science & Technology, No. 6 Xuefu Road, Xi’an 710021, China
| | - Yile Shi
- School of Food Science and Engineering, Shaanxi University of Science & Technology, No. 6 Xuefu Road, Xi’an 710021, China
| | - Yanni Zhao
- School of Food Science and Engineering, Shaanxi University of Science & Technology, No. 6 Xuefu Road, Xi’an 710021, China
- Shaanxi Research Institute of Agriculture Products Processing Technology, No. 6 Xuefu Road, Xi’an 710021, China
| |
Collapse
|
6
|
Kumar A, Singh P, Singh E, Jain M, Muthukumaran J, Singh AK. In silico strategies for identifying therapeutic candidates against Acinetobacter baumannii: spotlight on the UDP-N-acetylmuramoyl-L-alanine-D-glutamate:meso-diaminopimelate ligase (MurE). J Biomol Struct Dyn 2024:1-15. [PMID: 38486459 DOI: 10.1080/07391102.2024.2325661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 02/25/2024] [Indexed: 04/01/2025]
Abstract
The opportunistic bacterium Acinetobacter baumannii, which belongs to ESKAPE group of pathogenic bacteria, is leading cause of infections associated with gram-negative bacteria. Acinetobacter baumannii causes severe diseases, such as VAP (ventilator-associated pneumonia), meningitis, and UTI (urinary tract infections) among the nosocomial infections contracted in hospitals. The high infection rate and growing resistance to the vast array of antibiotics makes it paramount to look for new therapeutic strategies against this pathogen. The most promising therapeutic targets are the proteins involved in the synthesis of peptidoglycan which is chief component of bacterial cell wall, MurE is one of those enzymes and is responsible for the addition of one unit of meso-diaminopimelic acid (meso-A2pm) to the nucleotide precursor, UDPMurNAc-L-Ala-D-Glu, and aids in the formation of crosslinker pentapeptide chain. The three-dimensional structure of MurE was modelled using homology modelling technique and then vHTS was performed using this model against Approved Drug Library on DrugRep server using AutoDock Vina. Out of 500 drug molecules, two were selected based on estimated binding affinity, interaction pattern, interacting residues, etc. The selected drug molecules are DB12887 (Tazemetostat) and DB13879 (Glecaprevir). Then, MD simulations were performed on native MurE and its complexes with ligands to examine their dynamical behaviour, stability, integrity, compactness, and folding properties. The protein-ligand complexes were then subjected to binding free energy calculations using the MM/PBSA-based binding free energy analysis and the values are -109.788 ± 8.03 and -152.753 ± 11.98 kcal for MurE-DB12887 and MurE-DB13879 complex, respectively. All the analysis performed on MD trajectories for the complexes of these ligands with protein provided plenty of dependable evidences to consider these molecules for inhibition of MurE enzyme from A. baumannii.
Collapse
Affiliation(s)
- Ankit Kumar
- Department of Biotechnology, Sharda School of Engineering and Technology, Sharda University, Greater Noida, India
| | - Pratyaksha Singh
- School of Biotechnology, Gautam Budha University, Greater Noida, India
| | - Ekampreet Singh
- Department of Biotechnology, Sharda School of Engineering and Technology, Sharda University, Greater Noida, India
| | - Monika Jain
- Department of Biotechnology, Sharda School of Engineering and Technology, Sharda University, Greater Noida, India
| | - Jayaraman Muthukumaran
- Department of Biotechnology, Sharda School of Engineering and Technology, Sharda University, Greater Noida, India
| | - Amit Kumar Singh
- Department of Biotechnology, Sharda School of Engineering and Technology, Sharda University, Greater Noida, India
| |
Collapse
|
7
|
do Prado PFV, Ahrens FM, Liebers M, Ditz N, Braun HP, Pfannschmidt T, Hillen HS. Structure of the multi-subunit chloroplast RNA polymerase. Mol Cell 2024; 84:910-925.e5. [PMID: 38428434 DOI: 10.1016/j.molcel.2024.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 01/26/2024] [Accepted: 02/06/2024] [Indexed: 03/03/2024]
Abstract
Chloroplasts contain a dedicated genome that encodes subunits of the photosynthesis machinery. Transcription of photosynthesis genes is predominantly carried out by a plastid-encoded RNA polymerase (PEP), a nearly 1 MDa complex composed of core subunits with homology to eubacterial RNA polymerases (RNAPs) and at least 12 additional chloroplast-specific PEP-associated proteins (PAPs). However, the architecture of this complex and the functions of the PAPs remain unknown. Here, we report the cryo-EM structure of a 19-subunit PEP complex from Sinapis alba (white mustard). The structure reveals that the PEP core resembles prokaryotic and nuclear RNAPs but contains chloroplast-specific features that mediate interactions with the PAPs. The PAPs are unrelated to known transcription factors and arrange around the core in a unique fashion. Their structures suggest potential functions during transcription in the chemical environment of chloroplasts. These results reveal structural insights into chloroplast transcription and provide a framework for understanding photosynthesis gene expression.
Collapse
Affiliation(s)
- Paula F V do Prado
- University Medical Center Göttingen, Department of Cellular Biochemistry, Humboldtallee 23, 37073 Göttingen, Germany; Max Planck Institute for Multidisciplinary Sciences, Research Group Structure and Function of Molecular Machines, Am Fassberg 11, 37077 Göttingen, Germany; Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, 37075 Göttingen, Germany
| | - Frederik M Ahrens
- Institute of Botany, Plant Physiology, Leibniz University Hannover, Herrenhäuser Str. 2, 30419 Hannover, Germany
| | - Monique Liebers
- Institute of Botany, Plant Physiology, Leibniz University Hannover, Herrenhäuser Str. 2, 30419 Hannover, Germany
| | - Noah Ditz
- Institute of Plant Genetics, Plant Molecular Biology and Plant Proteomics, Leibniz University Hannover, Herrenhäuser Str. 2, 30419 Hannover, Germany
| | - Hans-Peter Braun
- Institute of Plant Genetics, Plant Molecular Biology and Plant Proteomics, Leibniz University Hannover, Herrenhäuser Str. 2, 30419 Hannover, Germany
| | - Thomas Pfannschmidt
- Institute of Botany, Plant Physiology, Leibniz University Hannover, Herrenhäuser Str. 2, 30419 Hannover, Germany.
| | - Hauke S Hillen
- University Medical Center Göttingen, Department of Cellular Biochemistry, Humboldtallee 23, 37073 Göttingen, Germany; Max Planck Institute for Multidisciplinary Sciences, Research Group Structure and Function of Molecular Machines, Am Fassberg 11, 37077 Göttingen, Germany; Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, 37075 Göttingen, Germany; Göttingen Center for Molecular Biosciences (GZMB), Research Group Structure and Function of Molecular Machines, University of Göttingen, 37077 Göttingen, Germany.
| |
Collapse
|
8
|
Koatale P, Welling MM, Ndlovu H, Kgatle M, Mdanda S, Mdlophane A, Okem A, Takyi-Williams J, Sathekge MM, Ebenhan T. Insights into Peptidoglycan-Targeting Radiotracers for Imaging Bacterial Infections: Updates, Challenges, and Future Perspectives. ACS Infect Dis 2024; 10:270-286. [PMID: 38290525 PMCID: PMC10862554 DOI: 10.1021/acsinfecdis.3c00443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 12/16/2023] [Accepted: 12/18/2023] [Indexed: 02/01/2024]
Abstract
The unique structural architecture of the peptidoglycan allows for the stratification of bacteria as either Gram-negative or Gram-positive, which makes bacterial cells distinguishable from mammalian cells. This classification has received attention as a potential target for diagnostic and therapeutic purposes. Bacteria's ability to metabolically integrate peptidoglycan precursors during cell wall biosynthesis and recycling offers an opportunity to target and image pathogens in their biological state. This Review explores the peptidoglycan biosynthesis for bacteria-specific targeting for infection imaging. Current and potential radiolabeled peptidoglycan precursors for bacterial infection imaging, their development status, and their performance in vitro and/or in vivo are highlighted. We conclude by providing our thoughts on how to shape this area of research for future clinical translation.
Collapse
Affiliation(s)
- Palesa
C. Koatale
- Department
of Nuclear Medicine, University of Pretoria, 0001 Pretoria, South Africa
- Nuclear
Medicine Research Infrastructure (NuMeRI) NPC, 0001 Pretoria, South Africa
| | - Mick M. Welling
- Interventional
Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Honest Ndlovu
- Department
of Nuclear Medicine, University of Pretoria, 0001 Pretoria, South Africa
- Nuclear
Medicine Research Infrastructure (NuMeRI) NPC, 0001 Pretoria, South Africa
| | - Mankgopo Kgatle
- Department
of Nuclear Medicine, University of Pretoria, 0001 Pretoria, South Africa
- Nuclear
Medicine Research Infrastructure (NuMeRI) NPC, 0001 Pretoria, South Africa
| | - Sipho Mdanda
- Department
of Nuclear Medicine, University of Pretoria, 0001 Pretoria, South Africa
- Nuclear
Medicine Research Infrastructure (NuMeRI) NPC, 0001 Pretoria, South Africa
| | - Amanda Mdlophane
- Department
of Nuclear Medicine, University of Pretoria, 0001 Pretoria, South Africa
- Nuclear
Medicine Research Infrastructure (NuMeRI) NPC, 0001 Pretoria, South Africa
| | - Ambrose Okem
- Department
of Anaesthesia, School of Clinical Medicine, University of Witwatersrand, 2050 Johannesburg, South Africa
| | - John Takyi-Williams
- Pharmacokinetic
and Mass Spectrometry Core, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Mike M. Sathekge
- Department
of Nuclear Medicine, University of Pretoria, 0001 Pretoria, South Africa
- Nuclear
Medicine Research Infrastructure (NuMeRI) NPC, 0001 Pretoria, South Africa
| | - Thomas Ebenhan
- Department
of Nuclear Medicine, University of Pretoria, 0001 Pretoria, South Africa
- Nuclear
Medicine Research Infrastructure (NuMeRI) NPC, 0001 Pretoria, South Africa
- DSI/NWU Pre-clinical
Drug Development Platform, North West University, 2520 Potchefstroom, South Africa
| |
Collapse
|
9
|
Kawamukai H, Takishita S, Shimizu K, Kohda D, Ishimori K, Saio T. Conformational Distribution of a Multidomain Protein Measured by Single-Pair Small-Angle X-ray Scattering. J Phys Chem Lett 2024; 15:744-750. [PMID: 38221741 PMCID: PMC10823528 DOI: 10.1021/acs.jpclett.3c02600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 12/20/2023] [Accepted: 12/20/2023] [Indexed: 01/16/2024]
Abstract
The difficulty in evaluating the conformational distribution of proteins in solution often hinders mechanistic insights. One possible strategy for visualizing conformational distribution is distance distribution measurement by single-pair small-angle X-ray scattering (SAXS), in which the scattering interference from only a specific pair of atoms in the target molecule is extracted. Despite this promising concept, with few applications in synthetic small molecules and DNA, technical difficulties have prevented its application in protein conformational studies. This study used a synthetic tag to fix the lanthanide ion at desired sites on the protein and used single-pair SAXS with contrast matching to evaluate the conformational distribution of the multidomain protein enzyme MurD. These data highlighted the broad conformational and ligand-driven distribution shifts of MurD in solution. This study proposes an important strategy in solution structural biology that targets dynamic proteins, including multidomain and intrinsically disordered proteins.
Collapse
Affiliation(s)
- Honoka Kawamukai
- Graduate
School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-8628, Japan
- Graduate
School of Medical Sciences, Tokushima University, Tokushima 770-8503, Japan
| | - Shumpei Takishita
- Graduate
School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-8628, Japan
| | - Kazumi Shimizu
- Faculty
of Education and Integrated Arts and Sciences, Waseda University, Tokyo 169-8050, Japan
| | - Daisuke Kohda
- Division
of Structural Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | - Koichiro Ishimori
- Graduate
School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-8628, Japan
- Department
of Chemistry, Faculty of Science, Hokkaido
University, Sapporo 060-0810, Japan
| | - Tomohide Saio
- Graduate
School of Medical Sciences, Tokushima University, Tokushima 770-8503, Japan
- Institute
of Advanced Medical Sciences, Tokushima
University, Tokushima 770-8503, Japan
- Fujii
Memorial Institute of Medical Sciences, Institute of Advanced Medical
Sciences, Tokushima University, Tokushima 770-8503, Japan
| |
Collapse
|
10
|
Hervin V, Roy V, Agrofoglio LA. Antibiotics and Antibiotic Resistance-Mur Ligases as an Antibacterial Target. Molecules 2023; 28:8076. [PMID: 38138566 PMCID: PMC10745416 DOI: 10.3390/molecules28248076] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 11/09/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023] Open
Abstract
The emergence of Multidrug Resistance (MDR) strains of bacteria has accelerated the search for new antibacterials. The specific bacterial peptidoglycan biosynthetic pathway represents opportunities for the development of novel antibacterial agents. Among the enzymes involved, Mur ligases, described herein, and especially the amide ligases MurC-F are key targets for the discovery of multi-inhibitors, as they share common active sites and structural features.
Collapse
Affiliation(s)
| | - Vincent Roy
- ICOA UMR CNRS 7311, Université d’Orléans et CNRS, Rue de Chartres, 45067 Orléans, France;
| | - Luigi A. Agrofoglio
- ICOA UMR CNRS 7311, Université d’Orléans et CNRS, Rue de Chartres, 45067 Orléans, France;
| |
Collapse
|
11
|
Wagdy RA, Abutaleb NS, Fathalla RK, Elgammal Y, Weck S, Pal R, Fischer PD, Ducho C, Abadi AH, N Seleem M, Engel M, Abdel-Halim M. Discovery of 1,2-diaryl-3-oxopyrazolidin-4-carboxamides as a new class of MurA enzyme inhibitors and characterization of their antibacterial activity. Eur J Med Chem 2023; 261:115789. [PMID: 37717380 DOI: 10.1016/j.ejmech.2023.115789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 08/29/2023] [Accepted: 09/01/2023] [Indexed: 09/19/2023]
Abstract
The cytoplasmic steps of peptidoglycan synthesis represent an important targeted pathway for development of new antibiotics. Herein, we report the synthesis of novel 3-oxopyrazolidin-4-carboxamide derivatives with variable amide side chains as potential antibacterial agents targeting MurA enzyme, the first committed enzyme in these cytosolic steps. Compounds 15 (isoindoline-1,3-dione-5-yl), 16 (4-(1H-pyrazol-4-yl)phenyl), 20 (5-cyanothiazol-2-yl), 21 and 31 (5-nitrothiazol-2-yl derivatives) exhibited the most potent MurA inhibition, with IC50 values of 9.8-12.2 μM. Compounds 15, 16 and 21 showed equipotent inhibition of the C115D MurA mutant developed by fosfomycin-resistant Escherichia coli. NMR binding studies revealed that some of the MurA residues targeted by 15 also interacted with fosfomycin, but not all, indicating an overlapping but not identical binding site. The antibacterial activity of the compounds against E. coli ΔtolC suggests that inhibition of MurA accounts for the observed effect on bacterial growth, considering that a few potent MurA inhibitors could not penetrate the bacterial outer membrane and were therefore inactive as proven by the bacterial cell uptake assay. The most promising compounds were also evaluated against a panel of Gram-positive bacteria. Remarkably, compounds 21 and 31 (MurA IC50 = 9.8 and 10.2 μM respectively) exhibited a potent activity against Clostridioides difficile strains with MIC values ranging from 0.125 to 1 μg/mL, and were also shown to be bactericidal with MBC values between 0.25 and 1 μg/mL. Furthermore, both compounds were shown to have a limited activity against human normal intestinal flora and showed high safety towards human colon cells (Caco-2) in vitro. The thiolactone derivative (compound 5) exhibited an interesting broad spectrum antibacterial activity despite its weak MurA inhibition. Altogether, the presented series provides a promising class of antibiotics that merits further investigation.
Collapse
Affiliation(s)
- Reem A Wagdy
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, 11835, Egypt
| | - Nader S Abutaleb
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA; Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt
| | - Reem K Fathalla
- Pharmaceutical and Medicinal Chemistry, Saarland University, Campus C2.3, D-66123, Saarbrücken, Germany
| | - Yehia Elgammal
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
| | - Stefanie Weck
- Pharmaceutical and Medicinal Chemistry, Saarland University, Campus C2.3, D-66123, Saarbrücken, Germany
| | - Rusha Pal
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
| | - Patrick D Fischer
- Pharmaceutical and Medicinal Chemistry, Saarland University, Campus C2.3, D-66123, Saarbrücken, Germany; Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, 02115, USA
| | - Christian Ducho
- Pharmaceutical and Medicinal Chemistry, Saarland University, Campus C2.3, D-66123, Saarbrücken, Germany
| | - Ashraf H Abadi
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, 11835, Egypt
| | - Mohamed N Seleem
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA; Center for One Health Research, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
| | - Matthias Engel
- Pharmaceutical and Medicinal Chemistry, Saarland University, Campus C2.3, D-66123, Saarbrücken, Germany.
| | - Mohammad Abdel-Halim
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, 11835, Egypt.
| |
Collapse
|
12
|
Braun C, Wingen LM, Menche D. Strategies and tactics for the synthesis of lipid I and II and shortened analogues: functional building blocks of bacterial cell wall biosynthesis. Nat Prod Rep 2023; 40:1718-1734. [PMID: 37492928 DOI: 10.1039/d3np00018d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
Abstract
Covering: the literature up to 2022This study discusses various synthetic strategies for the synthesis of lipid II, the pivotal bacterial cell wall precursor. In detail, it examines different solution phase approaches, reviews various solid phase sequences, and evaluates enzymatic ventures. The underlying rationale, scope, limitations, and perspectives of these strategies are discussed. The focus is on the tactics and strategies towards the authentic peptidoglycan compound, as well as analogues thereof with shortened side chains, which are increasingly recognized as more beneficial surrogates with more favorable physicochemical properties.
Collapse
Affiliation(s)
- Christina Braun
- Kekulé Institute of Organic Chemistry and Biochemistry, University of Bonn, D-53121 Bonn, Germany.
| | - Lukas Martin Wingen
- Kekulé Institute of Organic Chemistry and Biochemistry, University of Bonn, D-53121 Bonn, Germany.
| | - Dirk Menche
- Kekulé Institute of Organic Chemistry and Biochemistry, University of Bonn, D-53121 Bonn, Germany.
| |
Collapse
|
13
|
Sharon I, Hilvert D, Schmeing TM. Cyanophycin and its biosynthesis: not hot but very cool. Nat Prod Rep 2023; 40:1479-1497. [PMID: 37231979 DOI: 10.1039/d2np00092j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Covering: 1878 to early 2023Cyanophycin is a biopolymer consisting of a poly-aspartate backbone with arginines linked to each Asp sidechain through isopeptide bonds. Cyanophycin is made by cyanophycin synthetase 1 or 2 through ATP-dependent polymerization of Asp and Arg, or β-Asp-Arg, respectively. It is degraded into dipeptides by exo-cyanophycinases, and these dipeptides are hydrolyzed into free amino acids by general or dedicated isodipeptidase enzymes. When synthesized, chains of cyanophycin coalesce into large, inert, membrane-less granules. Although discovered in cyanobacteria, cyanophycin is made by species throughout the bacterial kingdom, and cyanophycin metabolism provides advantages for toxic bloom forming algae and some human pathogens. Some bacteria have developed dedicated schemes for cyanophycin accumulation and use, which include fine temporal and spatial regulation. Cyanophycin has also been heterologously produced in a variety of host organisms to a remarkable level, over 50% of the host's dry mass, and has potential for a variety of green industrial applications. In this review, we summarize the progression of cyanophycin research, with an emphasis on recent structural studies of enzymes in the cyanophycin biosynthetic pathway. These include several unexpected revelations that show cyanophycin synthetase to be a very cool, multi-functional macromolecular machine.
Collapse
Affiliation(s)
- Itai Sharon
- Department of Biochemistry and Centre de Recherche en Biologie Structurale, McGill University, Montréal, QC, Canada, H3G 0B1.
| | - Donald Hilvert
- Laboratory of Organic Chemistry, ETH Zürich, CH-8093 Zürich, Switzerland
| | - T Martin Schmeing
- Department of Biochemistry and Centre de Recherche en Biologie Structurale, McGill University, Montréal, QC, Canada, H3G 0B1.
| |
Collapse
|
14
|
Chang HY, Gui CY, Huang TC, Hung YC, Chen TY. Quantitative Proteomic Analysis on the Slightly Acidic Electrolyzed Water Triggered Viable but Non-Culturable Listeria monocytogenes. Int J Mol Sci 2023; 24:10616. [PMID: 37445793 DOI: 10.3390/ijms241310616] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/16/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
This study undertakes a comprehensive exploration of the impact of slightly acidic electrolyzed water (SAEW) on Listeria monocytogenes, a common foodborne pathogen, with a particular focus on understanding the molecular mechanisms leading to the viable but nonculturable (VBNC) state. Given the widespread application of SAEW as an effective disinfectant in the food industry, uncovering these molecular pathways is crucial for improving food safety measures. We employed tandem mass tags (TMT), labeling proteomic techniques and LC-MS/MS to identify differentially expressed proteins under two doses of SAEW conditions. We indicated 203 differential expressed proteins (DEPs), including 78 up-regulated and 125 down-regulated DEPs. The functional enrichment analysis of these proteins indicated that ribosomes, biosynthesis of secondary metabolites, and aminoacyl-tRNA biosynthesis were enriched functions affected by SAEW. Further, we delved into the role of protein chlorination, a potential consequence of reactive chlorine species generated during the SAEW production process, by identifying 31 chlorinated peptides from 22 proteins, with a dominant sequence motif of Rxxxxx[cY] and functionally enriched in translation. Our findings suggest that SAEW might prompt alterations in the protein translation process and trigger compensatory ribosome biosynthesis. However, an imbalance in the levels of elongation factors and AARSs could hinder recovery, leading to the VBNC state. This research carries substantial implications for food safety and sanitation, as it adds to our understanding of the SAEW-induced VBNC state in L. monocytogenes and offers potential strategies for its control.
Collapse
Affiliation(s)
- Hsin-Yi Chang
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei 11490, Taiwan
- Department of Research and Development, National Defense Medical Center, Taipei 11490, Taiwan
| | - Chin-Ying Gui
- Department of Food Science, National Taiwan Ocean University, Keelung 20224, Taiwan
| | - Tsui-Chin Huang
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
| | - Yen-Con Hung
- Department of Food Science & Technology, University of Georgia, Griffin, GA 30223-1797, USA
| | - Tai-Yuan Chen
- Department of Food Science, National Taiwan Ocean University, Keelung 20224, Taiwan
| |
Collapse
|
15
|
Swain K, Sharon I, Blackson W, Parrish S, Tekel S, Schmeing TM, Nielsen DR, Nannenga BL. Soluble and stable cyanophycin synthetase expression enhances heterologous cyanophycin production in Escherichia coli. Biochem Eng J 2023. [DOI: 10.1016/j.bej.2023.108916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2023]
|
16
|
Kumar A, Singh E, Jha RK, Khan RJ, Jain M, Varshney S, Muthukumaran J, Singh AK. Targeting multi-drug-resistant Acinetobacter baumannii: a structure-based approach to identify the promising lead candidates against glutamate racemase. J Mol Model 2023; 29:188. [PMID: 37225922 DOI: 10.1007/s00894-023-05587-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 05/09/2023] [Indexed: 05/26/2023]
Abstract
CONTEXT Acinetobacter baumannii, one of the critical ESKAPE pathogens, is a highly resilient, multi-drug-resistant, Gramnegative, rod-shaped, highly pathogenic bacteria. It is responsible for almost 1-2% of all hospital-borne infections in immunocompromised patients and causes community outbreaks. Because of its resilience and MDR characteristics, looking for new strategies to check the infections related to this pathogen becomes paramount. The enzymes involved in the peptidoglycan biosynthetic pathway are attractive and the most promising drug targets. They contribute to the formation of the bacterial envelope and help to maintain the rigidity and integrity of the cell. The MurI (glutamate racemase) is one of the crucial enzymes that aid in the formation of the pentapeptide responsible for the interlinkage of peptidoglycan chains. It converts L-glutamate to D-glutamate, which is required to synthesise the pentapeptide chain. METHODS In this study, the MurI protein of A. baumannii (strain AYE) was modelled and subjected to high-throughput virtual screening against the enamine-HTSC library, taking UDP-MurNAc-Ala binding site as the targeted site. Four ligand molecules, Z1156941329 (N-(1-methyl-2-oxo-3,4-dihydroquinolin-6-yl)-1-phenyl-3,4-dihydro-1H-isoquinoline-2-carboxamide), Z1726360919 (1-[2-[3-(benzimidazol-1-ylmethyl)piperidin-1-yl]-2-oxo-1-phenylethyl]piperidin-2-one), Z1920314754 (N-[[3-(3-methylphenyl)phenyl]methyl]-8-oxo-2,7-diazaspiro[4.4]nonane-2-carboxamide) and Z3240755352 (4R)-4-(2,5-difluorophenyl)-1-(4-fluorophenyl)-1,3a,4,5,7,7a-hexahydro-6H-pyrazolo[3,4-b]pyridin-6-one), were identified to be the lead candidates based on Lipinski's rule of five, toxicity, ADME properties, estimated binding affinity and intermolecular interactions. The complexes of these ligands with the protein molecule were then subjected to MD simulations to scrutinise their dynamic behaviour, structural stability and effects on protein dynamics. The molecular mechanics/Poisson-Boltzmann surface area-based binding free energy analysis was also performed to compute the binding free energy of protein-ligand complexes, which offered the following values -23.32 ± 3.04 kcal/mol, -20.67 ± 2.91kcal/mol, -8.93 ± 2.90 kcal/mol and -26.73 ± 2.95 kcal/mol for MurI-Z1726360919, MurI-Z1156941329, MurI-Z3240755352 and MurI-Z3240755354 complexes respectively. Together, the results from various computational analyses utilised in this study proposed that Z1726360919, Z1920314754 and Z3240755352 could act as potential lead molecules to suppress the function of MurI protein from Acinetobacter baumannii.
Collapse
Affiliation(s)
- Ankit Kumar
- Department of Biotechnology, Sharda School of Engineering and Technology, Sharda University, P.C. 201310, Greater Noida, U.P., India
| | - Ekampreet Singh
- Department of Biotechnology, Sharda School of Engineering and Technology, Sharda University, P.C. 201310, Greater Noida, U.P., India
| | - Rajat Kumar Jha
- Department of Biotechnology, Sharda School of Engineering and Technology, Sharda University, P.C. 201310, Greater Noida, U.P., India
| | - Rameez Jabeer Khan
- Department of Biotechnology, Sharda School of Engineering and Technology, Sharda University, P.C. 201310, Greater Noida, U.P., India
| | - Monika Jain
- Department of Biotechnology, Sharda School of Engineering and Technology, Sharda University, P.C. 201310, Greater Noida, U.P., India
| | - Sudeep Varshney
- Department of Computer Science and Engineering, Sharda School of Engineering and Technology, Sharda University, P.C. 201310, Greater Noida, U.P., India
| | - Jayaraman Muthukumaran
- Department of Biotechnology, Sharda School of Engineering and Technology, Sharda University, P.C. 201310, Greater Noida, U.P., India
| | - Amit Kumar Singh
- Department of Biotechnology, Sharda School of Engineering and Technology, Sharda University, P.C. 201310, Greater Noida, U.P., India.
| |
Collapse
|
17
|
Shirakawa KT, Sala FA, Miyachiro MM, Job V, Trindade DM, Dessen A. Architecture and genomic arrangement of the MurE-MurF bacterial cell wall biosynthesis complex. Proc Natl Acad Sci U S A 2023; 120:e2219540120. [PMID: 37186837 PMCID: PMC10214165 DOI: 10.1073/pnas.2219540120] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 04/05/2023] [Indexed: 05/17/2023] Open
Abstract
Peptidoglycan (PG) is a central component of the bacterial cell wall, and the disruption of its biosynthetic pathway has been a successful antibacterial strategy for decades. PG biosynthesis is initiated in the cytoplasm through sequential reactions catalyzed by Mur enzymes that have been suggested to associate into a multimembered complex. This idea is supported by the observation that in many eubacteria, mur genes are present in a single operon within the well conserved dcw cluster, and in some cases, pairs of mur genes are fused to encode a single, chimeric polypeptide. We performed a vast genomic analysis using >140 bacterial genomes and mapped Mur chimeras in numerous phyla, with Proteobacteria carrying the highest number. MurE-MurF, the most prevalent chimera, exists in forms that are either directly associated or separated by a linker. The crystal structure of the MurE-MurF chimera from Bordetella pertussis reveals a head-to-tail, elongated architecture supported by an interconnecting hydrophobic patch that stabilizes the positions of the two proteins. Fluorescence polarization assays reveal that MurE-MurF interacts with other Mur ligases via its central domains with KDs in the high nanomolar range, backing the existence of a Mur complex in the cytoplasm. These data support the idea of stronger evolutionary constraints on gene order when encoded proteins are intended for association, establish a link between Mur ligase interaction, complex assembly and genome evolution, and shed light on regulatory mechanisms of protein expression and stability in pathways of critical importance for bacterial survival.
Collapse
Affiliation(s)
- Karina T. Shirakawa
- Brazilian Biosciences National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, São Paulo13084-971, Brazil
- Departamento de Genética, Evolução, Microbiologia e Imunologia, Instituto de Biologia, Universidade Estadual de Campinas, CEP Campinas, São Paulo13083-862, Brazil
| | - Fernanda Angélica Sala
- Brazilian Biosciences National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, São Paulo13084-971, Brazil
| | - Mayara M. Miyachiro
- Univ. Grenoble Alpes, CNRS, Commissariat à l'Energie Atomique et aux Energies Alternatives, Institut de Biologie Structurale, Bacterial Pathogenesis Group, GrenobleF-38044, France
| | - Viviana Job
- Univ. Grenoble Alpes, CNRS, Commissariat à l'Energie Atomique et aux Energies Alternatives, Institut de Biologie Structurale, Bacterial Pathogenesis Group, GrenobleF-38044, France
| | - Daniel Maragno Trindade
- Brazilian Biosciences National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, São Paulo13084-971, Brazil
| | - Andréa Dessen
- Brazilian Biosciences National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, São Paulo13084-971, Brazil
- Univ. Grenoble Alpes, CNRS, Commissariat à l'Energie Atomique et aux Energies Alternatives, Institut de Biologie Structurale, Bacterial Pathogenesis Group, GrenobleF-38044, France
| |
Collapse
|
18
|
de Oliveira Rossini N, Dos Santos Silva C, Vinicius Bertacine Dias M. The crystal structure of Mycobacterium thermoresistibile MurE ligase reveals the binding mode of the substrate m-diaminopimelate. J Struct Biol 2023; 215:107957. [PMID: 36944394 DOI: 10.1016/j.jsb.2023.107957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 03/14/2023] [Accepted: 03/15/2023] [Indexed: 03/23/2023]
Abstract
The cytoplasmatic biosynthesis of the stem peptide from the peptidoglycan in bacteria involves six steps, which have the role of three ATP-dependent Mur ligases that incorporate three consecutive amino acids to a substrate precursor. MurE is the last Mur ligase to incorporate a free amino acid. Although the structure of MurE from Mycobacterium tuberculosis (MtbMurE) was determined at 3.0Å, the binding mode of (meso-Diaminopimelate) m-DAP and the effect of substrate absence is unknown. Herein, we show the structure of MurE from M. thermoresistibile (MthMurE) in complex with ADP and m-DAP at 1.4 Å resolution. The analysis of the structure indicates key conformational changes that the substrate UDP-MurNAc-L-Ala-D-Glu (UAG) and the free amino acid m-DAP cause on the MthMurE conformation. We observed several movements of domains or loop regions that displace their position in order to perform enzymatic catalysis. Since MthMurE has a high similarity to MtbMurE, this enzyme could also guide strategies for structure-based antimicrobial discovery to fight against tuberculosis or other mycobacterial infections. Synopsis Structural characterization of Mycobacterium thermoresistibile MurE at 1.45Å resolution in complex with ADP and m-DAP shows novel conformational changes when compared to other MurE structures in complex with different ligands.
Collapse
Affiliation(s)
- Nicolas de Oliveira Rossini
- Department of Microbiology, Institute of Biomedical Science, University of São Paulo. Av. Prof Lineu Prestes, 1374, CEP 05508-000, São Paulo, SP. Brazil
| | - Catharina Dos Santos Silva
- Department of Microbiology, Institute of Biomedical Science, University of São Paulo. Av. Prof Lineu Prestes, 1374, CEP 05508-000, São Paulo, SP. Brazil
| | - Marcio Vinicius Bertacine Dias
- Department of Microbiology, Institute of Biomedical Science, University of São Paulo. Av. Prof Lineu Prestes, 1374, CEP 05508-000, São Paulo, SP. Brazil; Department of Chemistry. The University of Warwick, Coventry, CV4 7AL, UK.
| |
Collapse
|
19
|
Anti-Tuberculosis Mur Inhibitors: Structural Insights and the Way Ahead for Development of Novel Agents. Pharmaceuticals (Basel) 2023; 16:ph16030377. [PMID: 36986477 PMCID: PMC10058398 DOI: 10.3390/ph16030377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 02/20/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
Mur enzymes serve as critical molecular devices for the synthesis of UDP-MurNAc-pentapeptide, the main building block of bacterial peptidoglycan polymer. These enzymes have been extensively studied for bacterial pathogens such as Escherichia coli and Staphylococcus aureus. Various selective and mixed Mur inhibitors have been designed and synthesized in the past few years. However, this class of enzymes remains relatively unexplored for Mycobacterium tuberculosis (Mtb), and thus offers a promising approach for drug design to overcome the challenges of battling this global pandemic. This review aims to explore the potential of Mur enzymes of Mtb by systematically scrutinizing the structural aspects of various reported bacterial inhibitors and implications concerning their activity. Diverse chemical scaffolds such as thiazolidinones, pyrazole, thiazole, etc., as well as natural compounds and repurposed compounds, have been reviewed to understand their in silico interactions with the receptor or their enzyme inhibition potential. The structural diversity and wide array of substituents indicate the scope of the research into developing varied analogs and providing valuable information for the purpose of modifying reported inhibitors of other multidrug-resistant microorganisms. Therefore, this provides an opportunity to expand the arsenal against Mtb and overcome multidrug-resistant tuberculosis.
Collapse
|
20
|
A novel milk-derived peptide effectively inhibits Staphylococcus aureus: Interferes with cell wall synthesis, peptidoglycan biosynthesis disruption reaction mechanism, and its application in real milk system. Food Control 2023. [DOI: 10.1016/j.foodcont.2022.109374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
21
|
Shoaib M, Shehzadi I, Asif MU, Shen Y, Ni J. Identification of fungus-growing termite-associated halogenated-PKS maduralactomycin a as a potential inhibitor of MurF protein of multidrug-resistant Acinetobacter baumannii. Front Mol Biosci 2023; 10:1183073. [PMID: 37152898 PMCID: PMC10160657 DOI: 10.3389/fmolb.2023.1183073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 04/13/2023] [Indexed: 05/09/2023] Open
Abstract
Multidrug-resistant Acinetobacter baumannii infections have become a major public health concern globally. Inhibition of its essential MurF protein has been proposed as a potential target for broad-spectrum drugs. This study aimed to evaluate the potential of a novel ecological niche of 374 fungus-growing termite associated Natural Products (NPs). The molecular docking and computational pharmacokinetics screened four compounds, i.e., Termstrin B, Fridamycin A, Maduralactomycin A, and Natalenamide C, as potential compounds that have higher binding affinities and favourable protein-ligand interactions. The compound Maduralactomycin A induced more stability based on its lowest average RMSD value (2.31 Å) and low standard deviation (0.35) supported by the consistent flexibility and β-factor during the protein's time-dependent motion. While hydrogen bond analysis indicated that Termstrin B has formed the strongest intra-protein interaction, solvent accessibility was in good agreement with Maduralactomycin A compactness. Maduralactomycin A has the strongest binding energy among all the compounds (-348.48 kcal/mol) followed by Termstrin B (-321.19 kcal/mol). Since these findings suggest Maduralactomycin A and Termstrin B as promising candidates for inhibition of MurF protein, the favourable binding energies of Maduralactomycin A make it a more important compound to warrant further investigation. However, experimental validation using animal models and clinical trials is recommended before reaching any final conclusions.
Collapse
Affiliation(s)
- Muhammad Shoaib
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, Shandong, China
| | | | | | - Yulong Shen
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, Shandong, China
- *Correspondence: Yulong Shen, ; Jinfeng Ni,
| | - Jinfeng Ni
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, Shandong, China
- *Correspondence: Yulong Shen, ; Jinfeng Ni,
| |
Collapse
|
22
|
Ortiz-Ramírez JA, Cuéllar-Cruz M, López-Romero E. Cell compensatory responses of fungi to damage of the cell wall induced by Calcofluor White and Congo Red with emphasis on Sporothrix schenckii and Sporothrix globosa. A review. Front Cell Infect Microbiol 2022; 12:976924. [PMID: 36211971 PMCID: PMC9539796 DOI: 10.3389/fcimb.2022.976924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 09/05/2022] [Indexed: 12/01/2022] Open
Abstract
The cell wall (CW) of fungi exhibits a complex structure and a characteristic chemical composition consisting almost entirely of interacting crystalline and amorphous polysaccharides. These are synthesized by a number of sugar polymerases and depolymerases encoded by a high proportion of the fungal genome (for instance, 20% in Saccharomyces cerevisiae). These enzymes act in an exquisitely coordinated process to assemble the tridimensional and the functional structure of the wall. Apart from playing a critical role in morphogenesis, cell protection, viability and pathogenesis, the CW represents a potential target for antifungals as most of its constituents do not exist in humans. Chitin, β-glucans and cellulose are the most frequent crystalline polymers found in the fungal CW. The hexosamine biosynthesis pathway (HBP) is critical for CW elaboration. Also known as the Leloir pathway, this pathway ends with the formation of UDP-N-GlcNAc after four enzymatic steps that start with fructose-6-phosphate and L-glutamine in a short deviation of glycolysis. This activated aminosugar is used for the synthesis of a large variety of biomacromolecules in a vast number of organisms including bacteria, fungi, insects, crustaceans and mammalian cells. The first reaction of the HBP is catalyzed by GlcN-6-P synthase (L-glutamine:D-fructose-6-phosphate amidotransferase; EC 2.6.1.16), a critical enzyme that has been considered as a potential target for antifungals. The enzyme regulates the amount of cell UDP-N-GlcNAc and in eukaryotes is feedback inhibited by the activated aminosugar and other factors. The native and recombinant forms of GlcN-6-P synthase has been purified and characterized from both prokaryotic and eukaryotic organisms and demonstrated its critical role in CW remodeling and morphogenesis after exposure of some fungi to agents that stress the cell surface by interacting with wall polymers. This review deals with some of the cell compensatory responses of fungi to wall damage induced by Congo Red and Calcofluor White.
Collapse
|
23
|
Subedi BP, Schofield LR, Carbone V, Wolf M, Martin WF, Ronimus RS, Sutherland-Smith AJ. Structural characterisation of methanogen pseudomurein cell wall peptide ligases homologous to bacterial MurE/F murein peptide ligases. MICROBIOLOGY (READING, ENGLAND) 2022; 168. [PMID: 36178458 DOI: 10.1099/mic.0.001235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Archaea have diverse cell wall types, yet none are identical to bacterial peptidoglycan (murein). Methanogens Methanobacteria and Methanopyrus possess cell walls of pseudomurein, a structural analogue of murein. Pseudomurein differs from murein in containing the unique archaeal sugar N-acetyltalosaminuronic acid instead of N-acetylmuramic acid, β-1,3 glycosidic bonds in place of β-1,4 bonds and only l-amino acids in the peptide cross-links. We have determined crystal structures of methanogen pseudomurein peptide ligases (termed pMurE) from Methanothermus fervidus (Mfer762) and Methanothermobacter thermautotrophicus (Mth734) that are structurally most closely related to bacterial MurE peptide ligases. The homology of the archaeal pMurE and bacterial MurE enzymes is clear both in the overall structure and at the level of each of the three domains. In addition, we identified two UDP-binding sites in Mfer762 pMurE, one at the exterior surface of the interface of the N-terminal and middle domains, and a second site at an inner surface continuous with the highly conserved interface of the three domains. Residues involved in ATP binding in MurE are conserved in pMurE, suggesting that a similar ATP-binding pocket is present at the interface of the middle and the C-terminal domains of pMurE. The presence of pMurE ligases in members of the Methanobacteriales and Methanopyrales, that are structurally related to bacterial MurE ligases, supports the idea that the biosynthetic origins of archaeal pseudomurein and bacterial peptidoglycan cell walls are evolutionarily related.
Collapse
Affiliation(s)
- Bishwa P Subedi
- AgResearch Ltd, Grasslands, Tennent Drive, Palmerston North, 4442, New Zealand.,School of Natural Sciences, Massey University, Palmerston North 4442, New Zealand.,Present address: Faculty of Medicine, Nursing and Health Sciences, Monash Biomedicine Discovery Institute, Monash University, Victoria 3800, Australia
| | - Linley R Schofield
- AgResearch Ltd, Grasslands, Tennent Drive, Palmerston North, 4442, New Zealand
| | - Vincenzo Carbone
- AgResearch Ltd, Grasslands, Tennent Drive, Palmerston North, 4442, New Zealand
| | - Maximilian Wolf
- AgResearch Ltd, Grasslands, Tennent Drive, Palmerston North, 4442, New Zealand.,Present address: Molecular Enzyme Technology and Biochemistry, Environmental Microbiology and Biotechnology, Centre for Water and Environmental Research, University of Duisburg-Essen, 45141 Essen, Germany
| | - William F Martin
- Institute for Molecular Evolution, Heinrich-Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Ron S Ronimus
- AgResearch Ltd, Grasslands, Tennent Drive, Palmerston North, 4442, New Zealand
| | | |
Collapse
|
24
|
Structural bases for aspartate recognition and polymerization efficiency of cyanobacterial cyanophycin synthetase. Nat Commun 2022; 13:5097. [PMID: 36042318 PMCID: PMC9427784 DOI: 10.1038/s41467-022-32834-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 08/08/2022] [Indexed: 11/23/2022] Open
Abstract
Cyanophycin is a natural biopolymer consisting of equimolar amounts of aspartate and arginine as the backbone and branched sidechain, respectively. It is produced by a single enzyme, cyanophycin synthetase (CphA1), and accumulates as a nitrogen reservoir during N2 fixation by most cyanobacteria. A recent structural study showed that three constituent domains of CphA1 function as two distinct catalytic sites and an oligomerization interface in cyanophycin synthesis. However, it remains unclear how the ATP-dependent addition of aspartate to cyanophycin is initiated at the catalytic site of the glutathione synthetase-like domain. Here, we report the cryogenic electron microscopy structures of CphA1, including a complex with aspartate, cyanophycin primer peptide, and ATP analog. These structures reveal the aspartate binding mode and phosphate-binding loop movement to the active site required for the reaction. Furthermore, structural and mutational data show a potential role of protein dynamics in the catalytic efficiency of the arginine condensation reaction. CphA1 catalyzes the synthesis of cyanophycin polypeptide consisting of equimolar amounts of aspartate and arginine as a fixed nitrogen reservoir in cyanobacteria. Here, the authors solve the cryo-EM structures of CphA1, revealing the aspartate binding mode and protein dynamics required for cyanophycin elongation.
Collapse
|
25
|
Characterization of ampicillin-resistant genes in Vibrio parahaemolyticus. Microb Pathog 2022; 168:105573. [PMID: 35588966 DOI: 10.1016/j.micpath.2022.105573] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 04/28/2022] [Accepted: 05/07/2022] [Indexed: 12/29/2022]
Abstract
Vibrio parahaemolyticus is strongly resistant to ampicillin (AMP). In this study, AMP-resistant genes in V. parahaemolyticus ATCC33846 were characterized. Transcriptomic analysis of V. parahaemolyticus exposed to AMP revealed 4608 differentially transcribed genes, including 670 significantly up-regulated genes and 655 significantly down-regulated genes. Based on the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses, significantly modulated genes in ATCC33846 under AMP stimulation were observed in the following categories: microbial metabolism in diverse environments, metabolic pathways, bacterial secretion system, citrate cycle, biofilm formation, oxidative phosphorylation, ribosome, citrate cycle, pyruvate metabolism, carbon metabolism, nitrogen metabolism, fatty acid metabolism and tryptophan metabolism. The genes VPA0510, VPA0252, VPA0699, VPA0768, VPA0320, VP0636, VPA1096, VPA0947 and VP1775 were significantly up-regulated at the similar level to blaA in V. parahaemolyticus under AMP stimulation, and their overexpression in V. parahaemolyticus could increase its resistance to AMP. These results indicate that AMP has a global influence on V. parahaemolyticus cells. The findings would provide new insights into the resistant mechanism of V. parahaemolyticus to AMP, which would be helpful for developing novel drugs for treating V. parahaemolyticus infection.
Collapse
|
26
|
Wingen LM, Braun C, Rausch M, Gross H, Schneider T, Menche D. Versatile synthesis of pathogen specific bacterial cell wall building blocks. RSC Adv 2022; 12:15046-15069. [PMID: 35702425 PMCID: PMC9115884 DOI: 10.1039/d2ra01915a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 05/05/2022] [Indexed: 11/21/2022] Open
Abstract
Full details on the design, strategies and tactics for development of a novel synthetic sequence to farnesyl lipid I and II analogs is reported. The modular route was based on a three coupling strategy involving an efficient solid phase synthesis of the elaborate peptide fragment, which proceeded with excellent yield and stereoselectivity and was efficiently applied for the convergent synthesis of 3-lipid I and II. Furthermore, the generality of this route was demonstrated by synthesis of 3-lipid I congeners that are characteristic for S. aureus and E. faecalis. All 3-lipid I and II building blocks were obtained in high purity revealing high spectroscopic resolution. A modular three coupling strategy involving a versatile solid phase peptide synthesis enables access to pathogen specific lipid analogs in high yield, revealing high spectroscopic resolution of these key bacterial cell wall building blocks.![]()
Collapse
Affiliation(s)
- Lukas Martin Wingen
- Kekulé Institute of Organic Chemistry and Biochemistry, University of Bonn, D-53121 Bonn, Germany
| | - Christina Braun
- Kekulé Institute of Organic Chemistry and Biochemistry, University of Bonn, D-53121 Bonn, Germany
| | - Marvin Rausch
- Institute for Pharmaceutical Microbiology, University Clinic Bonn, University of Bonn, D-53115 Bonn, Germany
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, Germany
| | - Harald Gross
- Pharmaceutical Institute, Dept. of Pharmaceutical Biology, University of Tübingen, D-72076 Tübingen, Germany
| | - Tanja Schneider
- Institute for Pharmaceutical Microbiology, University Clinic Bonn, University of Bonn, D-53115 Bonn, Germany
| | - Dirk Menche
- Kekulé Institute of Organic Chemistry and Biochemistry, University of Bonn, D-53121 Bonn, Germany
| |
Collapse
|
27
|
Nowak MG, Skwarecki AS, Milewska MJ. Amino Acid Based Antimicrobial Agents - Synthesis and Properties. ChemMedChem 2021; 16:3513-3544. [PMID: 34596961 PMCID: PMC9293202 DOI: 10.1002/cmdc.202100503] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/02/2021] [Indexed: 12/20/2022]
Abstract
Structures of several dozen of known antibacterial, antifungal or antiprotozoal agents are based on the amino acid scaffold. In most of them, the amino acid skeleton is of a crucial importance for their antimicrobial activity, since very often they are structural analogs of amino acid intermediates of different microbial biosynthetic pathways. Particularly, some aminophosphonate or aminoboronate analogs of protein amino acids are effective enzyme inhibitors, as structural mimics of tetrahedral transition state intermediates. Synthesis of amino acid antimicrobials is a particular challenge, especially in terms of the need for enantioselective methods, including the asymmetric synthesis. All these issues are addressed in this review, summing up the current state‐of‐the‐art and presenting perspectives fur further progress.
Collapse
Affiliation(s)
- Michał G Nowak
- Department of Organic Chemistry and BioTechMed Center, Gdańsk University of Technology, 11/12 Gabriela Narutowicza Street, 80-233, Gdańsk, Poland
| | - Andrzej S Skwarecki
- Department of Pharmaceutical Technology and Biochemistry and BioTechMed Center, Gdańsk University of Technology, 11/12 Gabriela Narutowicza Street, 80-233, Gdańsk, Poland
| | - Maria J Milewska
- Department of Organic Chemistry and BioTechMed Center, Gdańsk University of Technology, 11/12 Gabriela Narutowicza Street, 80-233, Gdańsk, Poland
| |
Collapse
|
28
|
Parisot N, Vargas-Chávez C, Goubert C, Baa-Puyoulet P, Balmand S, Beranger L, Blanc C, Bonnamour A, Boulesteix M, Burlet N, Calevro F, Callaerts P, Chancy T, Charles H, Colella S, Da Silva Barbosa A, Dell'Aglio E, Di Genova A, Febvay G, Gabaldón T, Galvão Ferrarini M, Gerber A, Gillet B, Hubley R, Hughes S, Jacquin-Joly E, Maire J, Marcet-Houben M, Masson F, Meslin C, Montagné N, Moya A, Ribeiro de Vasconcelos AT, Richard G, Rosen J, Sagot MF, Smit AFA, Storer JM, Vincent-Monegat C, Vallier A, Vigneron A, Zaidman-Rémy A, Zamoum W, Vieira C, Rebollo R, Latorre A, Heddi A. The transposable element-rich genome of the cereal pest Sitophilus oryzae. BMC Biol 2021; 19:241. [PMID: 34749730 PMCID: PMC8576890 DOI: 10.1186/s12915-021-01158-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 09/27/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND The rice weevil Sitophilus oryzae is one of the most important agricultural pests, causing extensive damage to cereal in fields and to stored grains. S. oryzae has an intracellular symbiotic relationship (endosymbiosis) with the Gram-negative bacterium Sodalis pierantonius and is a valuable model to decipher host-symbiont molecular interactions. RESULTS We sequenced the Sitophilus oryzae genome using a combination of short and long reads to produce the best assembly for a Curculionidae species to date. We show that S. oryzae has undergone successive bursts of transposable element (TE) amplification, representing 72% of the genome. In addition, we show that many TE families are transcriptionally active, and changes in their expression are associated with insect endosymbiotic state. S. oryzae has undergone a high gene expansion rate, when compared to other beetles. Reconstruction of host-symbiont metabolic networks revealed that, despite its recent association with cereal weevils (30 kyear), S. pierantonius relies on the host for several amino acids and nucleotides to survive and to produce vitamins and essential amino acids required for insect development and cuticle biosynthesis. CONCLUSIONS Here we present the genome of an agricultural pest beetle, which may act as a foundation for pest control. In addition, S. oryzae may be a useful model for endosymbiosis, and studying TE evolution and regulation, along with the impact of TEs on eukaryotic genomes.
Collapse
Affiliation(s)
- Nicolas Parisot
- Univ Lyon, INSA Lyon, INRAE, BF2I, UMR 203, 69621 Villeurbanne, France
| | - Carlos Vargas-Chávez
- Univ Lyon, INSA Lyon, INRAE, BF2I, UMR 203, 69621 Villeurbanne, France
- Institute for Integrative Systems Biology (I2SySBio), Universitat de València and Spanish Research Council (CSIC), València, Spain
- Present Address: Institute of Evolutionary Biology (IBE), CSIC-Universitat Pompeu Fabra, Barcelona, Spain
| | - Clément Goubert
- Laboratoire de Biométrie et Biologie Evolutive, UMR5558, Université Lyon 1, Université Lyon, Villeurbanne, France
- Department of Molecular Biology and Genetics, Cornell University, 526 Campus Rd, Ithaca, New York, 14853, USA
- Present Address: Human Genetics, McGill University, Montreal, QC, Canada
| | | | - Séverine Balmand
- Univ Lyon, INSA Lyon, INRAE, BF2I, UMR 203, 69621 Villeurbanne, France
| | - Louis Beranger
- Univ Lyon, INSA Lyon, INRAE, BF2I, UMR 203, 69621 Villeurbanne, France
| | - Caroline Blanc
- Univ Lyon, INSA Lyon, INRAE, BF2I, UMR 203, 69621 Villeurbanne, France
| | - Aymeric Bonnamour
- Univ Lyon, INSA Lyon, INRAE, BF2I, UMR 203, 69621 Villeurbanne, France
| | - Matthieu Boulesteix
- Laboratoire de Biométrie et Biologie Evolutive, UMR5558, Université Lyon 1, Université Lyon, Villeurbanne, France
| | - Nelly Burlet
- Laboratoire de Biométrie et Biologie Evolutive, UMR5558, Université Lyon 1, Université Lyon, Villeurbanne, France
| | - Federica Calevro
- Univ Lyon, INSA Lyon, INRAE, BF2I, UMR 203, 69621 Villeurbanne, France
| | - Patrick Callaerts
- Department of Human Genetics, Laboratory of Behavioral and Developmental Genetics, KU Leuven, University of Leuven, B-3000, Leuven, Belgium
| | - Théo Chancy
- Univ Lyon, INSA Lyon, INRAE, BF2I, UMR 203, 69621 Villeurbanne, France
| | - Hubert Charles
- Univ Lyon, INSA Lyon, INRAE, BF2I, UMR 203, 69621 Villeurbanne, France
- ERABLE European Team, INRIA, Rhône-Alpes, France
| | - Stefano Colella
- Univ Lyon, INSA Lyon, INRAE, BF2I, UMR 203, 69621 Villeurbanne, France
- Present Address: LSTM, Laboratoire des Symbioses Tropicales et Méditerranéennes, IRD, CIRAD, INRAE, SupAgro, Univ Montpellier, Montpellier, France
| | - André Da Silva Barbosa
- INRAE, Sorbonne Université, CNRS, IRD, UPEC, Université de Paris, Institute of Ecology and Environmental Sciences of Paris, Versailles, France
| | - Elisa Dell'Aglio
- Univ Lyon, INSA Lyon, INRAE, BF2I, UMR 203, 69621 Villeurbanne, France
| | - Alex Di Genova
- Laboratoire de Biométrie et Biologie Evolutive, UMR5558, Université Lyon 1, Université Lyon, Villeurbanne, France
- ERABLE European Team, INRIA, Rhône-Alpes, France
- Instituto de Ciencias de la Ingeniería, Universidad de O'Higgins, Rancagua, Chile
| | - Gérard Febvay
- Univ Lyon, INSA Lyon, INRAE, BF2I, UMR 203, 69621 Villeurbanne, France
| | - Toni Gabaldón
- Life Sciences, Barcelona Supercomputing Centre (BSC-CNS), Barcelona, Spain
- Mechanisms of Disease, Institute for Research in Biomedicine (IRB), Barcelona, Spain
- Institut Catalan de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | | | - Alexandra Gerber
- Laboratório de Bioinformática, Laboratório Nacional de Computação Científica, Petrópolis, Brazil
| | - Benjamin Gillet
- Institut de Génomique Fonctionnelle de Lyon (IGFL), Université de Lyon, Ecole Normale Supérieure de Lyon, CNRS UMR 5242, Lyon, France
| | | | - Sandrine Hughes
- Institut de Génomique Fonctionnelle de Lyon (IGFL), Université de Lyon, Ecole Normale Supérieure de Lyon, CNRS UMR 5242, Lyon, France
| | - Emmanuelle Jacquin-Joly
- INRAE, Sorbonne Université, CNRS, IRD, UPEC, Université de Paris, Institute of Ecology and Environmental Sciences of Paris, Versailles, France
| | - Justin Maire
- Univ Lyon, INSA Lyon, INRAE, BF2I, UMR 203, 69621 Villeurbanne, France
- Present Address: School of BioSciences, The University of Melbourne, Parkville, VIC, 3010, Australia
| | | | - Florent Masson
- Univ Lyon, INSA Lyon, INRAE, BF2I, UMR 203, 69621 Villeurbanne, France
- Present Address: Global Health Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Camille Meslin
- INRAE, Sorbonne Université, CNRS, IRD, UPEC, Université de Paris, Institute of Ecology and Environmental Sciences of Paris, Versailles, France
| | - Nicolas Montagné
- INRAE, Sorbonne Université, CNRS, IRD, UPEC, Université de Paris, Institute of Ecology and Environmental Sciences of Paris, Versailles, France
| | - Andrés Moya
- Institute for Integrative Systems Biology (I2SySBio), Universitat de València and Spanish Research Council (CSIC), València, Spain
- Foundation for the Promotion of Sanitary and Biomedical Research of Valencian Community (FISABIO), València, Spain
| | | | - Gautier Richard
- IGEPP, INRAE, Institut Agro, Université de Rennes, Domaine de la Motte, 35653, Le Rheu, France
| | - Jeb Rosen
- Institute for Systems Biology, Seattle, WA, USA
| | - Marie-France Sagot
- Laboratoire de Biométrie et Biologie Evolutive, UMR5558, Université Lyon 1, Université Lyon, Villeurbanne, France
- ERABLE European Team, INRIA, Rhône-Alpes, France
| | | | | | | | - Agnès Vallier
- Univ Lyon, INSA Lyon, INRAE, BF2I, UMR 203, 69621 Villeurbanne, France
| | - Aurélien Vigneron
- Univ Lyon, INSA Lyon, INRAE, BF2I, UMR 203, 69621 Villeurbanne, France
- Present Address: Department of Evolutionary Ecology, Institute for Organismic and Molecular Evolution, Johannes Gutenberg University, 55128, Mainz, Germany
| | - Anna Zaidman-Rémy
- Univ Lyon, INSA Lyon, INRAE, BF2I, UMR 203, 69621 Villeurbanne, France
| | - Waël Zamoum
- Univ Lyon, INSA Lyon, INRAE, BF2I, UMR 203, 69621 Villeurbanne, France
| | - Cristina Vieira
- Laboratoire de Biométrie et Biologie Evolutive, UMR5558, Université Lyon 1, Université Lyon, Villeurbanne, France.
- ERABLE European Team, INRIA, Rhône-Alpes, France.
| | - Rita Rebollo
- Univ Lyon, INSA Lyon, INRAE, BF2I, UMR 203, 69621 Villeurbanne, France.
| | - Amparo Latorre
- Institute for Integrative Systems Biology (I2SySBio), Universitat de València and Spanish Research Council (CSIC), València, Spain.
- Foundation for the Promotion of Sanitary and Biomedical Research of Valencian Community (FISABIO), València, Spain.
| | - Abdelaziz Heddi
- Univ Lyon, INSA Lyon, INRAE, BF2I, UMR 203, 69621 Villeurbanne, France.
| |
Collapse
|
29
|
Bio-Mechanism of Catechin as Pheromone Signal Inhibitor: Prediction of Antibacterial Agent Action Mode by In Vitro and In Silico Study. Molecules 2021; 26:molecules26216381. [PMID: 34770790 PMCID: PMC8587927 DOI: 10.3390/molecules26216381] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/13/2021] [Accepted: 10/19/2021] [Indexed: 11/24/2022] Open
Abstract
The utilization of medicinal plants has long been explored for the discovery of antibacterial agents and the most effective mechanisms or new targets that can prevent and control the spread of antibiotic resistance. One kind of bacterial cell wall inhibition is the inactivation of the MurA enzyme that contributes to the formation of peptidoglycan. Another approach is to interfere with the cell–cell communication of bacteria called the Quorum sensing (QS) system. The blocking of auto-inducer such as gelatinase biosynthesis-activating pheromone (GBAP) can also suppress the virulence factors of gelatinase and serine protease. This research, in particular, aims to analyze lead compounds as antibacterial and anti-QS agents from Gambir (Uncaria gambir Roxburgh) through protein inhibition by in silico study. Antibacterial agents were isolated by bioactivity-guided isolation using a combination of chromatographic methods, and their chemical structures were determined by spectroscopic analysis methods. The in vitro antibacterial activity was evaluated by disc diffusion methods to determine inhibitory values. Meanwhile, in the in silico analysis, the compound of Uncaria gambir was used as ligand and compared with fosfomycin, ambuic acid, quercetin, and taxifolin as the standard ligand. These ligands were attached to MurA, GBAP, gelatinase, and serine proteases using Autodock Vina in PyRx 0.8 followed by PYMOL for combining the ligand conformation and proteins. plus programs to explore the complex, and visualized by Discovery Studio 2020 Client program. The antibacterial agent was identified as catechin that showed inhibitory activity against Enterococcus faecalis ATCC 29212 with inhibition zones of 11.70 mm at 10%, together with MIC and MBC values of 0.63 and 1.25 μg/mL, respectively. In the in silico study, the molecular interaction of catechin with MurA, GBAP, and gelatinase proteins showed good binding energy compared with two positive controls, namely fosfomycin and ambuic acid. It is better to use catechin–MurA (−8.5 Kcal/mol) and catechin–gelatinase (−7.8 Kcal/mol), as they have binding energies which are not marginally different from quercetin and taxifolin. On the other hand, the binding energy of serine protease is lower than quercetin, taxifolin, and ambuic acid. Based on the data, catechin has potency as an antibacterial through the inhibition of GBAP proteins, gelatinase, and serine protease that play a role in the QS system. This is the first discovery of the potential of catechin as an alternative antibacterial agent with an effective mechanism to prevent and control oral disease affected by antibiotic resistance.
Collapse
|
30
|
Wan J, He M, Hou Q, Zou L, Yang Y, Wei Y, Chen X. Cell wall associated immunity in plants. STRESS BIOLOGY 2021; 1:3. [PMID: 37676546 PMCID: PMC10429498 DOI: 10.1007/s44154-021-00003-4] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 07/13/2021] [Indexed: 09/08/2023]
Abstract
The plant cell wall is the first physical and defensive barrier against pathogens. The plant cell wall usually undergoes dynamic remodeling as an immune response to prevent infection by pathogens. In this review, we summarize advances on relationship between cell wall and immunity in plants. In particular, we outline current progresses regarding the regulation of the cell wall components, including cellulose, hemicellulose, pectin and lignin, on plant disease resistance. We also discuss the impacts of cell wall-derived cellodextrin, oligogalacturonic acid and xyloglucan/xylan oligosaccharides as potent elicitors or signal molecules to trigger plant immune response. We further propose future studies on dissecting the molecular regulation of cell wall on plant immunity, which have potentials in practical application of crop breeding aiming at improvement of plant disease resistance.
Collapse
Affiliation(s)
- Jiangxue Wan
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University at Wenjiang, Chengdu, 611130, Sichuan, China
| | - Min He
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University at Wenjiang, Chengdu, 611130, Sichuan, China
| | - Qingqing Hou
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University at Wenjiang, Chengdu, 611130, Sichuan, China
| | - Lijuan Zou
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University at Wenjiang, Chengdu, 611130, Sichuan, China
- Ecological Security and Protection Key Laboratory of Sichuan Province, Mianyang Normal University, Mianyang, 621000, Sichuan, China
| | - Yihua Yang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University at Wenjiang, Chengdu, 611130, Sichuan, China
| | - Yan Wei
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University at Wenjiang, Chengdu, 611130, Sichuan, China
| | - Xuewei Chen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University at Wenjiang, Chengdu, 611130, Sichuan, China.
| |
Collapse
|
31
|
Sharon I, Haque AS, Grogg M, Lahiri I, Seebach D, Leschziner AE, Hilvert D, Schmeing TM. Structures and function of the amino acid polymerase cyanophycin synthetase. Nat Chem Biol 2021; 17:1101-1110. [PMID: 34385683 DOI: 10.1038/s41589-021-00854-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 07/08/2021] [Indexed: 12/13/2022]
Abstract
Cyanophycin is a natural biopolymer produced by a wide range of bacteria, consisting of a chain of poly-L-Asp residues with L-Arg residues attached to the β-carboxylate sidechains by isopeptide bonds. Cyanophycin is synthesized from ATP, aspartic acid and arginine by a homooligomeric enzyme called cyanophycin synthetase (CphA1). CphA1 has domains that are homologous to glutathione synthetases and muramyl ligases, but no other structural information has been available. Here, we present cryo-electron microscopy and X-ray crystallography structures of cyanophycin synthetases from three different bacteria, including cocomplex structures of CphA1 with ATP and cyanophycin polymer analogs at 2.6 Å resolution. These structures reveal two distinct tetrameric architectures, show the configuration of active sites and polymer-binding regions, indicate dynamic conformational changes and afford insight into catalytic mechanism. Accompanying biochemical interrogation of substrate binding sites, catalytic centers and oligomerization interfaces combine with the structures to provide a holistic understanding of cyanophycin biosynthesis.
Collapse
Affiliation(s)
- Itai Sharon
- Department of Biochemistry and Centre de Recherche en Biologie Structurale, McGill University, Montréal, Quebec, Canada
| | - Asfarul S Haque
- Department of Biochemistry and Centre de Recherche en Biologie Structurale, McGill University, Montréal, Quebec, Canada
| | - Marcel Grogg
- Laboratory of Organic Chemistry, ETH Zürich, Zürich, Switzerland
| | - Indrajit Lahiri
- Department of Cellular and Molecular Medicine, and Section of Molecular Biology, Division of Biological Sciences, University of California San Diego (UCSD), La Jolla, CA, USA
| | - Dieter Seebach
- Laboratory of Organic Chemistry, ETH Zürich, Zürich, Switzerland
| | - Andres E Leschziner
- Department of Cellular and Molecular Medicine, and Section of Molecular Biology, Division of Biological Sciences, University of California San Diego (UCSD), La Jolla, CA, USA
| | - Donald Hilvert
- Laboratory of Organic Chemistry, ETH Zürich, Zürich, Switzerland
| | - T Martin Schmeing
- Department of Biochemistry and Centre de Recherche en Biologie Structurale, McGill University, Montréal, Quebec, Canada.
| |
Collapse
|
32
|
Saio T, Hiramatsu S, Asada M, Nakagawa H, Shimizu K, Kumeta H, Nakamura T, Ishimori K. Conformational ensemble of a multidomain protein explored by Gd 3+ electron paramagnetic resonance. Biophys J 2021; 120:2943-2951. [PMID: 34242587 DOI: 10.1016/j.bpj.2021.06.033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 06/07/2021] [Accepted: 06/28/2021] [Indexed: 10/20/2022] Open
Abstract
Despite their importance in function, the conformational state of proteins and its changes are often poorly understood, mainly because of the lack of an efficient tool. MurD, a 47-kDa protein enzyme responsible for peptidoglycan biosynthesis, is one of those proteins whose conformational states and changes during their catalytic cycle are not well understood. Although it has been considered that MurD takes a single conformational state in solution as shown by a crystal structure, the solution nuclear magnetic resonance (NMR) study suggested the existence of multiple conformational state of apo MurD in solution. However, the conformational distribution has not been evaluated. In this work, we investigate the conformational states of MurD by the use of electron paramagnetic resonance (EPR), especially intergadolinium distance measurement using double electron-electron resonance (DEER) measurement. The gadolinium ions are fixed on specific positions on MurD via a rigid double-arm paramagnetic lanthanide tag that has been originally developed for paramagnetic NMR. The combined use of NMR and EPR enables accurate interpretation of the DEER distance information to the structural information of MurD. The DEER distance measurement for apo MurD shows a broad distance distribution, whereas the presence of the inhibitor narrows the distance distribution. The results suggest that MurD exists in a wide variety of conformational states in the absence of ligands, whereas binding of the inhibitor eliminates variation in conformational states. The multiple conformational states of MurD were previously implied by NMR experiments, but our DEER data provided structural characterization of the conformational variety of MurD.
Collapse
Affiliation(s)
- Tomohide Saio
- Division of Molecular Life Science, Institute of Advanced Medical Sciences, Tokushima University, Tokushima, Japan.
| | - Soya Hiramatsu
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo, Japan
| | - Mizue Asada
- Instrument Center, Institute for Molecular Science, Okazaki, Japan
| | - Hiroshi Nakagawa
- Materials Sciences Research CenterTokai, Ibaraki, Japan; J-PARC Center, Japan Atomic Energy Agency, Tokai, Ibaraki, Japan
| | - Kazumi Shimizu
- Faculty of Education and Integrated Arts and Sciences, Waseda University, Tokyo, Japan
| | | | | | - Koichiro Ishimori
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo, Japan; Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, Japan.
| |
Collapse
|
33
|
Jung KH, Kwon S, Kim CM, Lee JH, Park HH. Putative hexameric glycosyltransferase functional unit revealed by the crystal structure of Acinetobacter baumannii MurG. IUCRJ 2021; 8:574-583. [PMID: 34258006 PMCID: PMC8256705 DOI: 10.1107/s2052252521003729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 04/07/2021] [Indexed: 06/13/2023]
Abstract
Lipid II, the main component of the bacterial cell wall, is synthesized by the addition of UDP-N-acetylglucosamine to the UDP-N-acetylmuramic acid pentapeptide catalyzed by the glycosyltransferase MurG. Owing to its critical role in cell-wall biosynthesis, MurG is considered to be an attractive target for antibacterial agents. Although the Mur family ligases have been extensively studied, the molecular mechanism of the oligomeric scaffolding assembly of MurG remains unclear. In this study, MurG from Acinetobacter baumannii (abMurG), a human pathogen, was characterized and its hexameric crystal structure was unveiled; this is the first homo-oligomeric structure to be described in the MurG family and the Mur family. Homogeneous protein samples were produced for structural studies using size-exclusion chromatography, the absolute molecular mass was calculated via multi-angle light scattering, and protein-protein interactions were analyzed using the PDBePISA server. abMurG was found to form homo-oligomeric complexes in solution, which might serve as functional units for the scaffolding activity of MurG. Furthermore, analysis of this structure revealed the molecular assembly mechanism of MurG. This structural and biochemical study elucidated the homo-oligomerization mechanism of MurG and suggests a new potential antibiotic target on MurG.
Collapse
Affiliation(s)
- Kyoung Ho Jung
- College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Sunghark Kwon
- Department of Biotechnology, Konkuk University, Chungju, Chungbuk 27478, Republic of Korea
| | - Chang Min Kim
- College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Jun Hyuck Lee
- Research Unit of Cryogenic Novel Material, Korea Polar Research Institute, Incheon 21990, Republic of Korea
- Department of Polar Sciences, University of Science and Technology, Incheon 21990, Republic of Korea
| | - Hyun Ho Park
- College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea
| |
Collapse
|
34
|
Evangelina IA, Herdiyati Y, Laviana A, Rikmasari R, Zubaedah C, Anisah, Kurnia D. Bio-Mechanism Inhibitory Prediction of β-Sitosterol from Kemangi ( Ocimum basilicum L.) as an Inhibitor of MurA Enzyme of Oral Bacteria: In vitro and in silico Study. Adv Appl Bioinform Chem 2021; 14:103-115. [PMID: 34188494 PMCID: PMC8236250 DOI: 10.2147/aabc.s301488] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 04/20/2021] [Indexed: 11/23/2022] Open
Abstract
Background Dental caries is a widespread disease that causes dental tissue destruction and leads to local and general complications. Gram-positive bacteria including Streptococcus mutans, Streptococcus sanguinis, and Enterococcus faecalis take part in dental caries formation. Gram-positive bacteria have cell walls that consistof a thick layer of peptidoglycan which maintains the strength and rigidity of the bacteria, as well as bacteria guard from internal osmotic pressure. The biosynthesis of peptidoglycan involves many enzymes, including the Mur family, penicillin binding protein (PBP), and sortases. Purpose This research has the intention to screen and examine the antibacterial compound of edible plant Kemangi (Ocimum basilicum L.) in terms of how it fights against some oral pathogenic bacteria of E. faecalis ATCC 29212, S. mutans ATCC 25175, and S. sanguinis ATCC 10566. Materials and Methods The O. basilicum L. was macerated by several organic solvents to obtain the extracts, before then being purified using several combinations of chromatography methods and the compound was discovered via spectroscopic methods. For the assay against bacteria, the extracts and compounds were tested using agar well diffusion and microdilution assay. Results The isolated compound was identified as β-sitosterol. The compound activity against bacteria was evaluated by in vitro assay against S. sanguinis ATCC 10566 and E. faecalis ATCC 29212 with the MIC and MBC value of 25,000 and 50,000 ppm, respectively. The compound was also tested by in silico study using the molecular docking method. The molecular interaction between β-sitosterol and the protein target showed a lower binding affinity value than the native ligand and other positive controls for each protein. Based on the amino acid residue bound to the ligands, β-sitosterol on MurA and SrtA is not competitive to the positive control, showing potential as a natural antibacterial agent. Meanwhile, on the MurB and PBP, β-sitosterol and positive control do compete with each other. Conclusion The compound, isolated from O. basilicum L. leaf, was determined as β-sitosterol, which has the molecular formula C29H50O. The antibacterial activity of β-sitosterol by in vitro assay showed weak antibacterial activity, yet exhibited the potential to inhibit the biosynthesis of peptidoglycan and prevent bacteria cell wall formation by inhibiting MurA and SrtA activity via docking simulation.
Collapse
Affiliation(s)
- Ida Ayu Evangelina
- Department of Orthodontics, Faculty of Dentistry - Universitas Padjadjaran, Bandung, Indonesia
| | - Yetty Herdiyati
- Department of Pediatric Dentistry, Faculty of Dentistry - Universitas Padjadjaran, Bandung, Indonesia
| | - Avi Laviana
- Department of Orthodontics, Faculty of Dentistry - Universitas Padjadjaran, Bandung, Indonesia
| | - Rasmi Rikmasari
- Department of Prosthodontics, Faculty of Dentistry - Universitas Padjadjaran, Bandung, Indonesia
| | - Cucu Zubaedah
- Department of Dental Public Health, Faculty of Dentistry - Universitas Padjadjaran, Bandung, Indonesia
| | - Anisah
- Department of Chemistry, Faculty of Mathematics and Natural Science - Universitas Padjadjaran, Sumedang, Indonesia
| | - Dikdik Kurnia
- Department of Chemistry, Faculty of Mathematics and Natural Science - Universitas Padjadjaran, Sumedang, Indonesia
| |
Collapse
|
35
|
Hottmann I, Borisova M, Schäffer C, Mayer C. Peptidoglycan Salvage Enables the Periodontal Pathogen Tannerella forsythia to Survive within the Oral Microbial Community. Microb Physiol 2021; 31:123-134. [PMID: 34107471 DOI: 10.1159/000516751] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 04/22/2021] [Indexed: 11/19/2022]
Abstract
Tannerella forsythia is an anaerobic, fusiform Gram-negative oral pathogen strongly associated with periodontitis, a multibacterial inflammatory disease that leads to the destruction of the teeth-supporting tissue, ultimately causing tooth loss. To survive in the oral habitat, T. forsythia depends on cohabiting bacteria for the provision of nutrients. For axenic growth under laboratory conditions, it specifically relies on the external supply of N-acetylmuramic acid (MurNAc), which is an essential constituent of the peptidoglycan (PGN) of bacterial cell walls. T. forsythia comprises a typical Gram-negative PGN; however, as evidenced by genome sequence analysis, the organism lacks common enzymes required for the de novo synthesis of precursors of PGN, which rationalizes its MurNAc auxotrophy. Only recently insights were obtained into how T. forsythia gains access to MurNAc in its oral habitat, enabling synthesis of the own PGN cell wall. This report summarizes T. forsythia's strategies to survive in the oral habitat by means of PGN salvage pathways, including recovery of exogenous MurNAc and PGN-derived fragments but also polymeric PGN, which are all derived from cohabiting bacteria either via cell wall turnover or decay of cells. Salvage of polymeric PGN presumably requires the removal of peptides from PGN by an unknown amidase, concomitantly with the translocation of the polymer across the outer membrane. Two recently identified exo-lytic N-acetylmuramidases (Tf_NamZ1 and Tf_NamZ2) specifically cleave the peptide-free, exogenous (nutrition source) PGN in the periplasm and release the MurNAc and disaccharide substrates for the transporters Tf_MurT and Tf_AmpG, respectively, whereas the peptide-containing, endogenous (the self-cell wall) PGN stays unattached. This review also outlines how T. forsythia synthesises the PGN precursors UDP-MurNAc and UDP-N-acetylglucosamine (UDP-GlcNAc), involving homologs of the Pseudomonas sp. recycling enzymes AmgK/MurU and a monofunctional uridylyl transferase (named Tf_GlmU*), respectively.
Collapse
Affiliation(s)
- Isabel Hottmann
- Interfaculty Institute of Microbiology and Infection Medicine, Organismic Interactions/Glycobiology, Eberhard Karls Universität Tübingen, Tübingen, Germany
| | - Marina Borisova
- Interfaculty Institute of Microbiology and Infection Medicine, Organismic Interactions/Glycobiology, Eberhard Karls Universität Tübingen, Tübingen, Germany
| | - Christina Schäffer
- Department of NanoBiotechnology, NanoGlycobiology Unit, Universität für Bodenkultur Wien, Vienna, Austria
| | - Christoph Mayer
- Interfaculty Institute of Microbiology and Infection Medicine, Organismic Interactions/Glycobiology, Eberhard Karls Universität Tübingen, Tübingen, Germany
| |
Collapse
|
36
|
Tangyu M, Fritz M, Aragao-Börner R, Ye L, Bogicevic B, Bolten CJ, Wittmann C. Genome-based selection and application of food-grade microbes for chickpea milk fermentation towards increased L-lysine content, elimination of indigestible sugars, and improved flavour. Microb Cell Fact 2021; 20:109. [PMID: 34049541 PMCID: PMC8161961 DOI: 10.1186/s12934-021-01595-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 05/15/2021] [Indexed: 01/01/2023] Open
Abstract
Background Plant-based milk alternatives are more popular than ever, and chickpea-based milks are among the most commercially relevant products. Unfortunately, limited nutritional value because of low levels of the essential amino acid l-lysine, low digestibility and unpleasant taste are challenges that must be addressed to improve product quality and meet consumer expectations. Results Using in-silico screening and food safety classifications, 31 strains were selected as potential l-lysine producers from approximately 2,500 potential candidates. Beneficially, 30% of the isolates significantly accumulated amino acids (up to 1.4 mM) during chickpea milk fermentation, increasing the natural level by up to 43%. The best-performing strains, B. amyloliquefaciens NCC 156 and L. paracasei subsp. paracasei NCC 2511, were tested further. De novo lysine biosynthesis was demonstrated in both strains by 13C metabolic pathway analysis. Spiking small amounts of citrate into the fermentation significantly activated l-lysine biosynthesis in NCC 156 and stimulated growth. Both microbes revealed additional benefits in eliminating indigestible sugars such as stachyose and raffinose and converting off-flavour aldehydes into the corresponding alcohols and acids with fruity and sweet notes. Conclusions B. amyloliquefaciens NCC 156 and L. paracasei subsp. paracasei NCC 2511 emerged as multi-benefit microbes for chickpea milk fermentation with strong potential for industrial processing of the plant material. Given the high number of l-lysine-producing isolates identified in silico, this concept appears promising to support strain selection for food fermentation. Supplementary Information The online version contains supplementary material available at 10.1186/s12934-021-01595-2.
Collapse
Affiliation(s)
- Muzi Tangyu
- Institute of Systems Biotechnology, Saarland University, Saarbrücken, Germany
| | - Michel Fritz
- Institute of Systems Biotechnology, Saarland University, Saarbrücken, Germany
| | | | - Lijuan Ye
- Nestlé Research Center, Lausanne, Switzerland
| | | | | | - Christoph Wittmann
- Institute of Systems Biotechnology, Saarland University, Saarbrücken, Germany.
| |
Collapse
|
37
|
Seo PW, Park SY, Hofmann A, Kim JS. Crystal structures of UDP-N-acetylmuramic acid L-alanine ligase (MurC) from Mycobacterium bovis with and without UDP-N-acetylglucosamine. ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY 2021; 77:618-627. [PMID: 33950018 DOI: 10.1107/s2059798321002199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 02/24/2021] [Indexed: 08/30/2023]
Abstract
Peptidoglycan comprises repeating units of N-acetylmuramic acid, N-acetylglucosamine and short cross-linking peptides. After the conversion of UDP-N-acetylglucosamine (UNAG) to UDP-N-acetylmuramic acid (UNAM) by the MurA and MurB enzymes, an amino acid is added to UNAM by UDP-N-acetylmuramic acid L-alanine ligase (MurC). As peptidoglycan is an essential component of the bacterial cell wall, the enzymes involved in its biosynthesis represent promising targets for the development of novel antibacterial drugs. Here, the crystal structure of Mycobacterium bovis MurC (MbMurC) is reported, which exhibits a three-domain architecture for the binding of UNAM, ATP and an amino acid as substrates, with a nickel ion at the domain interface. The ATP-binding loop adopts a conformation that is not seen in other MurCs. In the UNAG-bound structure of MbMurC, the substrate mimic interacts with the UDP-binding domain of MbMurC, which does not invoke rearrangement of the three domains. Interestingly, the glycine-rich loop of the UDP-binding domain of MbMurC interacts through hydrogen bonds with the glucose moiety of the ligand, but not with the pyrophosphate moiety. These findings suggest that UNAG analogs might serve as potential candidates for neutralizing the catalytic activity of bacterial MurC.
Collapse
Affiliation(s)
- Pil Won Seo
- Department of Chemistry, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Suk Youl Park
- Pohang Accelerator Laboratory, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Andreas Hofmann
- Griffith Institute for Drug Discovery, Griffith University, Nathan, Queensland 4111, Australia
| | - Jeong Sun Kim
- Department of Chemistry, Chonnam National University, Gwangju 61186, Republic of Korea
| |
Collapse
|
38
|
Kumari M, Subbarao N. Identification of novel multitarget antitubercular inhibitors against mycobacterial peptidoglycan biosynthetic Mur enzymes by structure-based virtual screening. J Biomol Struct Dyn 2021; 40:8185-8196. [PMID: 33826470 DOI: 10.1080/07391102.2021.1908913] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Current therapeutic strategies for several diseases, including Mycobacterium tuberculosis infection, have evolved from an initial single-target treatment to a multitarget one. A multitarget antitubercular drugs targeting different mycobacterial proteins are more effective at suppressing bacterial growth. In this study, a high throughput virtual screening was performed to identify hits to the potential antitubercular multitarget: murA, murB, murC, murD, murE, murF, murG and murI from M. tuberculosis that is involved in peptidoglycan biosynthesis. In the virtual screening, we were docked 56,400 compounds of the ChEMBL antimycobacterial library and re-scored and identified the top 10 ranked compounds as antitubercular drug candidates. Further, the best common docked complex CHEMBL446262 was subjected to molecular dynamics simulation to understand the molecule's stability in the presence of an active site environment. After that, we have calculated binding free energy the top-ranked docked complexes using the MM/PBSA method. These ligands exhibited the highest binding affinity; find out novel drug-likeness might show the M. tuberculosis effect's inhibitor by interacting with multitarget Mur enzymes. New antitubercular therapies that include multitarget drugs may have higher efficacy than single-target medicines and provide a more straightforward antitubercular therapy regimen.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Madhulata Kumari
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Naidu Subbarao
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
39
|
Hrast M, Frlan R, Knez D, Zdovc I, Barreteau H, Gobec S. Mur ligases inhibitors with azastilbene scaffold: Expanding the structure-activity relationship. Bioorg Med Chem Lett 2021; 40:127966. [PMID: 33744441 DOI: 10.1016/j.bmcl.2021.127966] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 03/06/2021] [Accepted: 03/10/2021] [Indexed: 11/28/2022]
Abstract
Antibiotic resistance represents one of the biggest public health challenges in the last few years. Mur ligases (MurC-MurF) are involved in the synthesis of UDP-N-acetylmuramyl-pentapeptide, the main building block of bacterial peptidoglycan polymer. They are essential for the survival of bacteria and therefore important antibacterial targets. We report herein the synthesis and structure-activity relationships of Mur ligases inhibitors with an azastilbene scaffold. Several compounds showed promising inhibitory potencies against multiple ligases and one compound also possessed moderate antibacterial activity. These results represent a solid ground for further development and optimization of structurally novel antimicrobial agents to combat the rising bacterial resistance.
Collapse
Affiliation(s)
- Martina Hrast
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, SI-1000 Ljubljana, Slovenia.
| | - Rok Frlan
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, SI-1000 Ljubljana, Slovenia
| | - Damijan Knez
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, SI-1000 Ljubljana, Slovenia
| | - Irena Zdovc
- Veterinary Faculty, University of Ljubljana, Gerbičeva ulica 60, SI-1000 Ljubljana, Slovenia
| | - Hélène Barreteau
- Bacterial Cell Envelopes and Antibiotics Group, Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, 91198 Gif-sur-Yvette cedex, France
| | - Stanislav Gobec
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, SI-1000 Ljubljana, Slovenia.
| |
Collapse
|
40
|
Design, synthesis and molecular modelling of phenoxyacetohydrazide derivatives as Staphylococcus aureus MurD inhibitors. CHEMICAL PAPERS 2021. [DOI: 10.1007/s11696-020-01380-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
41
|
Jung KH, Kim YG, Kim CM, Ha HJ, Lee CS, Lee JH, Park HH. Wide-open conformation of UDP-MurNc-tripeptide ligase revealed by the substrate-free structure of MurE from Acinetobacter baumannii. FEBS Lett 2020; 595:275-283. [PMID: 33230844 DOI: 10.1002/1873-3468.14007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 10/22/2020] [Accepted: 11/20/2020] [Indexed: 12/13/2022]
Abstract
MurE ligase catalyzes the attachment of meso-diaminopimelic acid to the UDP-MurNAc-l -Ala-d -Glu using ATP and producing UDP-MurNAc-l -Ala-d -Glu-meso-A2 pm during bacterial cell wall biosynthesis. Owing to the critical role of this enzyme, MurE is considered an attractive target for antibacterial drugs. Despite extensive studies on MurE ligase, the structural dynamics of its conformational changes are still elusive. In this study, we present the substrate-free structure of MurE from Acinetobacter baumannii, which is an antibiotic-resistant superbacterium that has threatened global public health. The structure revealed that MurE has a wide-open conformation and undergoes wide-open, intermediately closed, and fully closed dynamic conformational transition. Unveiling structural dynamics of MurE will help to understand the working mechanism of this ligase and to design next-generation antibiotics targeting MurE.
Collapse
Affiliation(s)
- Kyoung Ho Jung
- Department of Global Innovative Drugs, Graduate School of Chung-Ang University, Seoul, Korea.,College of Pharmacy, Chung-Ang University, Seoul, Korea
| | - Yeon-Gil Kim
- Pohang Accelerator Laboratory, Pohang University of Science and Technology, Korea
| | - Chang Min Kim
- Department of Global Innovative Drugs, Graduate School of Chung-Ang University, Seoul, Korea.,College of Pharmacy, Chung-Ang University, Seoul, Korea
| | - Hyun Ji Ha
- Department of Global Innovative Drugs, Graduate School of Chung-Ang University, Seoul, Korea.,College of Pharmacy, Chung-Ang University, Seoul, Korea
| | - Chang Sup Lee
- College of Pharmacy and Research Institute of Pharmaceutical Science, Gyeongsang National University, Jinju, Korea
| | - Jun Hyuck Lee
- Unit of Research for Practical Application, Korea Polar Research Institute, Incheon, Korea.,Department of Polar Sciences, University of Science and Technology, Incheon, Korea
| | - Hyun Ho Park
- Department of Global Innovative Drugs, Graduate School of Chung-Ang University, Seoul, Korea.,College of Pharmacy, Chung-Ang University, Seoul, Korea
| |
Collapse
|
42
|
Utter DR, He X, Cavanaugh CM, McLean JS, Bor B. The saccharibacterium TM7x elicits differential responses across its host range. THE ISME JOURNAL 2020; 14:3054-3067. [PMID: 32839546 PMCID: PMC7784981 DOI: 10.1038/s41396-020-00736-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 07/01/2020] [Accepted: 08/03/2020] [Indexed: 12/28/2022]
Abstract
Host range is a fundamental component of symbiotic interactions, yet it remains poorly characterized for the prevalent yet enigmatic subcategory of bacteria/bacteria symbioses. The recently characterized obligate bacterial epibiont Candidatus Nanosynbacter lyticus TM7x with its bacterial host Actinomyces odontolyticus XH001 offers an ideal system to study such a novel relationship. In this study, the host range of TM7x was investigated by coculturing TM7x with various related Actinomyces strains and characterizing their growth dynamics from initial infection through subsequent co-passages. Of the twenty-seven tested Actinomyces, thirteen strains, including XH001, could host TM7x, and further classified into "permissive" and "nonpermissive" based on their varying initial responses to TM7x. Ten permissive strains exhibited growth/crash/recovery phases following TM7x infection, with crash timing and extent dependent on initial TM7x dosage. Meanwhile, three nonpermissive strains hosted TM7x without a growth-crash phase despite high TM7x dosage. The physical association of TM7x with all hosts, including nonpermissive strains, was confirmed by microscopy. Comparative genomic analyses revealed distinguishing genomic features between permissive and nonpermissive hosts. Our results expand the concept of host range beyond a binary to a wider spectrum, and the varying susceptibility of Actinomyces strains to TM7x underscores how small genetic differences between hosts can underly divergent selective trajectories.
Collapse
Affiliation(s)
- Daniel R Utter
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Xuesong He
- Department of Microbiology, The Forsyth Institute, Cambridge, MA, 02142, USA
- Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, MA, 02115, USA
| | - Colleen M Cavanaugh
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Jeffrey S McLean
- Department of Periodontics, University of Washington, Seattle, WA, 98119, USA
| | - Batbileg Bor
- Department of Microbiology, The Forsyth Institute, Cambridge, MA, 02142, USA.
- Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, MA, 02115, USA.
| |
Collapse
|
43
|
Design and Synthesis of Various 5'-Deoxy-5'-(4-Substituted-1,2,3-Triazol-1-yl)-Uridine Analogues as Inhibitors of Mycobacterium tuberculosis Mur Ligases. Molecules 2020; 25:molecules25214953. [PMID: 33114668 PMCID: PMC7663697 DOI: 10.3390/molecules25214953] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 10/17/2020] [Accepted: 10/19/2020] [Indexed: 01/06/2023] Open
Abstract
The synthesis of hitherto unknown 5′-deoxy-5′-(4-substituted-1,2,3-triazol-1-yl)-uridine and its evaluation, through an one-pot screening assay, against MurA-F enzymes involved in Mycobacterium tuberculosis (Mtb), are described. Starting from UDP-N-acetylmuramic acid (UDP-MurNAc), the natural substrate involved in the peptidoglycan biosynthesis, our strategy was to substitute the diphosphate group of UDP-MurNAc by a 1,2,3-triazolo spacer under copper-catalyzed azide-alkyne cycloaddition conditions. The structure-activity relationship was discussed and among the 23 novel compounds developed, N-acetylglucosamine analogues 11c and 11e emerged as the best inhibitors against the Mtb MurA-F enzymes reconstruction pathway with an inhibitory effect of 56% and 50%, respectively, at 100 μM. Both compounds are selective inhibitors of Mtb MurE, the molecular docking and molecular dynamic simulation suggesting that 11c and 11e are occupying the active site of Mtb MurE ligase.
Collapse
|
44
|
Motta Nascimento B, Nair NU. Characterization of a membrane enzymatic complex for heterologous production of poly-γ-glutamate in E. coli. Metab Eng Commun 2020; 11:e00144. [PMID: 32963960 PMCID: PMC7490850 DOI: 10.1016/j.mec.2020.e00144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/10/2020] [Accepted: 08/20/2020] [Indexed: 11/06/2022] Open
Abstract
Poly-γ-glutamic acid (PGA) produced by many Bacillus species is a polymer with many distinct and desirable characteristics. However, the multi-subunit enzymatic complex responsible for its synthesis, PGA Synthetase (PGS), has not been well characterized yet, in native nor in recombinant contexts. Elucidating structural and functional properties are crucial for future engineering efforts aimed at altering the catalytic properties of this enzyme. This study focuses on expressing the enzyme heterologously in the Escherichia coli membrane and characterizing localization, orientation, and activity of this heterooligomeric enzyme complex. In E. coli, we were able to produce high molecular weight PGA polymers with minimal degradation at titers of approximately 13 mg/L in deep-well microtiter batch cultures. Using fusion proteins, we observed, for the first time, the association and orientation of the different subunits with the inner cell membrane. These results provide fundamental structural information on this poorly studied enzyme complex and will aid future fundamental studies and engineering efforts. Successfully expressed active poly-γ-glutamate synthetase (PGS) in E. coli. Confirmed PGS localization at inner membrane of E. coli. Elucidated topology of PGS components in E. coli membrane. Culture and expression in microplates might allow future screening of a high number of samples. Faster production of poly-γ-glutamate in E. coli supernatant compared to B. subtilis.
Collapse
Affiliation(s)
- Bruno Motta Nascimento
- Department of Chemical and Biological Engineering, Tufts University, Medford, MA, 02155, USA
| | - Nikhil U Nair
- Department of Chemical and Biological Engineering, Tufts University, Medford, MA, 02155, USA
| |
Collapse
|
45
|
MurE inhibitors as antibacterial agents: a review. J INCL PHENOM MACRO 2020. [DOI: 10.1007/s10847-020-01018-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
46
|
Maitra A, Munshi T, Healy J, Martin LT, Vollmer W, Keep NH, Bhakta S. Cell wall peptidoglycan in Mycobacterium tuberculosis: An Achilles' heel for the TB-causing pathogen. FEMS Microbiol Rev 2020; 43:548-575. [PMID: 31183501 PMCID: PMC6736417 DOI: 10.1093/femsre/fuz016] [Citation(s) in RCA: 115] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 06/07/2019] [Indexed: 02/06/2023] Open
Abstract
Tuberculosis (TB), caused by the intracellular pathogen Mycobacterium tuberculosis, remains one of the leading causes of mortality across the world. There is an urgent requirement to build a robust arsenal of effective antimicrobials, targeting novel molecular mechanisms to overcome the challenges posed by the increase of antibiotic resistance in TB. Mycobacterium tuberculosis has a unique cell envelope structure and composition, containing a peptidoglycan layer that is essential for maintaining cellular integrity and for virulence. The enzymes involved in the biosynthesis, degradation, remodelling and recycling of peptidoglycan have resurfaced as attractive targets for anti-infective drug discovery. Here, we review the importance of peptidoglycan, including the structure, function and regulation of key enzymes involved in its metabolism. We also discuss known inhibitors of ATP-dependent Mur ligases, and discuss the potential for the development of pan-enzyme inhibitors targeting multiple Mur ligases.
Collapse
Affiliation(s)
- Arundhati Maitra
- Mycobacteria Research Laboratory, Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck, University of London, Malet Street, London WC1E 7HX, UK
| | - Tulika Munshi
- Mycobacteria Research Laboratory, Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck, University of London, Malet Street, London WC1E 7HX, UK
| | - Jess Healy
- Department of Pharmaceutical and Biological Chemistry, UCL School of Pharmacy, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Liam T Martin
- Mycobacteria Research Laboratory, Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck, University of London, Malet Street, London WC1E 7HX, UK
| | - Waldemar Vollmer
- The Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Richardson Road, Newcastle upon Tyne, NE2 4AX, UK
| | - Nicholas H Keep
- Mycobacteria Research Laboratory, Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck, University of London, Malet Street, London WC1E 7HX, UK
| | - Sanjib Bhakta
- Mycobacteria Research Laboratory, Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck, University of London, Malet Street, London WC1E 7HX, UK
| |
Collapse
|
47
|
Structural and conformational behavior of MurE ligase from Salmonella enterica serovar Typhi at different temperature and pH conditions. Int J Biol Macromol 2020; 150:389-399. [DOI: 10.1016/j.ijbiomac.2020.01.306] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 01/30/2020] [Accepted: 01/31/2020] [Indexed: 11/20/2022]
|
48
|
Jupudi S, Azam MA, Wadhwani A. Synthesis, molecular docking, binding free energy calculation and molecular dynamics simulation studies of benzothiazol-2-ylcarbamodithioates as Staphylococcus aureus MurD inhibitors. J Recept Signal Transduct Res 2020; 39:283-293. [PMID: 31538846 DOI: 10.1080/10799893.2019.1663538] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
A new series of benzothiazol-2-ylcarbamodithioate functional compounds 5a-f has been designed, synthesized and characterized by spectral data. These compounds were screened for their in vitro antibacterial activity against strains of Staphylococcus aureus (NCIM 5021, NCIM 5022 and methicillin-resistant isolate 43300), Bacillus subtilis (NCIM 2545), Escherichia coli (NCIM 2567), Klebsiella pneumoniae (NCIM 2706) and Psudomonas aeruginosa (NCIM 2036). Compounds 5a and 5d exhibited significant activity against all the tested bacterial strains. Specifically, compounds 5a and 5d showed potent activity against K. pneumoniae (NCIM 2706), while compound 5a also displayed potent activity against S. aureus (NCIM 5021). Compound 5d showed minimum IC50 value of 13.37 μM against S. aureus MurD enzyme. Further, the binding interactions of compounds 5a-f in the catalytic pocket have been investigated using the extra-precision molecular docking and binding free energy calculation by MM-GBSA approach. A 30 ns molecular dynamics simulation of 5d/modeled S. aureus MurD enzyme was performed to determine the stability of the predicted binding conformation.
Collapse
Affiliation(s)
- Srikanth Jupudi
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy , Ooty , India
| | - Mohammed Afzal Azam
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy , Ooty , India
| | - Ashish Wadhwani
- Department of Biotechnology, JSS College of Pharmacy , Ooty , India
| |
Collapse
|
49
|
Sapkota M, Marreddy RKR, Wu X, Kumar M, Hurdle JG. The early stage peptidoglycan biosynthesis Mur enzymes are antibacterial and antisporulation drug targets for recurrent Clostridioides difficile infection. Anaerobe 2019; 61:102129. [PMID: 31760080 DOI: 10.1016/j.anaerobe.2019.102129] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 10/02/2019] [Accepted: 11/21/2019] [Indexed: 11/30/2022]
Abstract
Sporulation during Clostridioides difficile infection (CDI) contributes to recurrent disease. Cell division and sporulation both require peptidoglycan biosynthesis. We show C. difficile growth and sporulation is attenuated by antisenses to murA and murC or the MurA inhibitor fosfomycin. Thus, targeting the early steps of peptidoglycan biosynthesis might reduce the onset of recurrent CDI.
Collapse
Affiliation(s)
- Madhab Sapkota
- University of Texas at Arlington, Department of Biology, Arlington, TX, 76019, United States
| | - Ravi K R Marreddy
- Texas A & M University Health Science Center, Biosciences and Technology, Houston, TX, 77030, United States
| | - Xiaoqian Wu
- Texas A & M University Health Science Center, Biosciences and Technology, Houston, TX, 77030, United States
| | - Manish Kumar
- University of Texas at Arlington, Department of Biology, Arlington, TX, 76019, United States
| | - Julian G Hurdle
- Texas A & M University Health Science Center, Biosciences and Technology, Houston, TX, 77030, United States.
| |
Collapse
|
50
|
Role of MurT C-Terminal Domain in the Amidation of Staphylococcus aureus Peptidoglycan. Antimicrob Agents Chemother 2019; 63:AAC.00957-19. [PMID: 31358586 DOI: 10.1128/aac.00957-19] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 07/20/2019] [Indexed: 11/20/2022] Open
Abstract
Glutamate amidation, a secondary modification of the peptidoglycan, was first identified in Staphylococcus aureus It is catalyzed by the protein products of the murT and gatD genes, which are conserved and colocalized in the genomes of most sequenced Gram-positive bacterial species. The MurT-GatD complex is required for cell viability, full resistance to β-lactam antibiotics, and resistance to human lysozyme and is recognized as an attractive target for new antimicrobials. Great effort has been invested in the study of this step, culminating recently in three independent reports addressing the structural elucidation of the MurT-GatD complex. In this work, we demonstrate through the use of nonstructural approaches the critical and multiple roles of the C-terminal domain of MurT, annotated as DUF1727, in the MurT-GatD enzymatic complex. This domain provides the physical link between the two enzymatic activities and is essential for the amidation reaction. Copurification of recombinant MurT and GatD proteins and bacterial two-hybrid assays support the observation that the MurT-GatD interaction occurs through this domain. Most importantly, we provide in vivo evidence of the effect of substitutions at specific residues in DUF1727 on cell wall peptidoglycan amidation and on the phenotypes of oxacillin resistance and bacterial growth.
Collapse
|