1
|
Loyo CL, Grossman AD. A phage-encoded counter-defense inhibits an NAD-degrading anti-phage defense system. PLoS Genet 2025; 21:e1011551. [PMID: 40173202 PMCID: PMC11984713 DOI: 10.1371/journal.pgen.1011551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 04/10/2025] [Accepted: 03/10/2025] [Indexed: 04/04/2025] Open
Abstract
Bacteria contain a diverse array of genes that provide defense against predation by phages. Anti-phage defense genes are frequently located on mobile genetic elements and spread through horizontal gene transfer. Despite the many anti-phage defense systems that have been identified, less is known about how phages overcome the defenses employed by bacteria. The integrative and conjugative element ICEBs1 in Bacillus subtilis contains a gene, spbK, that confers defense against the temperate phage SPβ through an abortive infection mechanism. Using genetic and biochemical analyses, we found that SpbK is an NADase that is activated by binding to the SPβ phage portal protein YonE. The presence of YonE stimulates NADase activity of the TIR domain of SpbK and causes cell death. We also found that the SPβ-like phage Φ3T has a counter-defense gene that prevents SpbK-mediated abortive infection and enables the phage to produce viable progeny, even in cells expressing spbK. We made SPβ-Φ3T hybrid phages that were resistant to SpbK-mediated defense and identified a single gene in Φ3T (phi3T_120, now called nip for NADase inhibitor from phage) that was both necessary and sufficient to block SpbK-mediated anti-phage defense. We found that Nip binds to the TIR (NADase) domain of SpbK and inhibits NADase activity. Our results provide insight into how phages overcome bacterial immunity by inhibiting enzymatic activity of an anti-phage defense protein.
Collapse
Affiliation(s)
- Christian L. Loyo
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Alan D. Grossman
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| |
Collapse
|
2
|
Lokareddy RK, Hou CFD, Forti F, Iglesias SM, Li F, Pavlenok M, Horner DS, Niederweis M, Briani F, Cingolani G. Integrative structural analysis of Pseudomonas phage DEV reveals a genome ejection motor. Nat Commun 2024; 15:8482. [PMID: 39353939 PMCID: PMC11445570 DOI: 10.1038/s41467-024-52752-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 09/20/2024] [Indexed: 10/03/2024] Open
Abstract
DEV is an obligatory lytic Pseudomonas phage of the N4-like genus, recently reclassified as Schitoviridae. The DEV genome encodes 91 ORFs, including a 3398 amino acid virion-associated RNA polymerase (vRNAP). Here, we describe the complete architecture of DEV, determined using a combination of cryo-electron microscopy localized reconstruction, biochemical methods, and genetic knockouts. We built de novo structures of all capsid factors and tail components involved in host attachment. We demonstrate that DEV long tail fibers are essential for infection of Pseudomonas aeruginosa but dispensable for infecting mutants with a truncated lipopolysaccharide devoid of the O-antigen. We determine that DEV vRNAP is part of a three-gene operon conserved in 191 Schitoviridae genomes. We propose these three proteins are ejected into the host to form a genome ejection motor spanning the cell envelope. We posit that the design principles of the DEV ejection apparatus are conserved in all Schitoviridae.
Collapse
Affiliation(s)
- Ravi K Lokareddy
- Department of Biochemistry and Molecular Genetics, University of Alabama at. Birmingham (UAB), 1825 University Blvd, Birmingham, AL, USA
| | - Chun-Feng David Hou
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Francesca Forti
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milan, Italy
| | - Stephano M Iglesias
- Department of Biochemistry and Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Fenglin Li
- Department of Biochemistry and Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Mikhail Pavlenok
- Department of Microbiology, University of Alabama at Birmingham, 845 19th Street South, Birmingham, AL, USA
| | - David S Horner
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milan, Italy
| | - Michael Niederweis
- Department of Microbiology, University of Alabama at Birmingham, 845 19th Street South, Birmingham, AL, USA
| | - Federica Briani
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milan, Italy.
| | - Gino Cingolani
- Department of Biochemistry and Molecular Genetics, University of Alabama at. Birmingham (UAB), 1825 University Blvd, Birmingham, AL, USA.
| |
Collapse
|
3
|
Iglesias SM, Lokareddy RK, Yang R, Li F, Yeggoni DP, David Hou CF, Leroux MN, Cortines JR, Leavitt JC, Bird M, Casjens SR, White S, Teschke CM, Cingolani G. Molecular Architecture of Salmonella Typhimurium Virus P22 Genome Ejection Machinery. J Mol Biol 2023; 435:168365. [PMID: 37952769 PMCID: PMC10842050 DOI: 10.1016/j.jmb.2023.168365] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/04/2023] [Accepted: 11/07/2023] [Indexed: 11/14/2023]
Abstract
Bacteriophage P22 is a prototypical member of the Podoviridae superfamily. Since its discovery in 1952, P22 has become a paradigm for phage transduction and a model for icosahedral viral capsid assembly. Here, we describe the complete architecture of the P22 tail apparatus (gp1, gp4, gp10, gp9, and gp26) and the potential location and organization of P22 ejection proteins (gp7, gp20, and gp16), determined using cryo-EM localized reconstruction, genetic knockouts, and biochemical analysis. We found that the tail apparatus exists in two equivalent conformations, rotated by ∼6° relative to the capsid. Portal protomers make unique contacts with coat subunits in both conformations, explaining the 12:5 symmetry mismatch. The tail assembles around the hexameric tail hub (gp10), which folds into an interrupted β-propeller characterized by an apical insertion domain. The tail hub connects proximally to the dodecameric portal protein and head-to-tail adapter (gp4), distally to the trimeric tail needle (gp26), and laterally to six trimeric tailspikes (gp9) that attach asymmetrically to gp10 insertion domain. Cryo-EM analysis of P22 mutants lacking the ejection proteins gp7 or gp20 and biochemical analysis of purified recombinant proteins suggest that gp7 and gp20 form a molecular complex associated with the tail apparatus via the portal protein barrel. We identified a putative signal transduction pathway from the tailspike to the tail needle, mediated by three flexible loops in the tail hub, that explains how lipopolysaccharide (LPS) is sufficient to trigger the ejection of the P22 DNA in vitro.
Collapse
Affiliation(s)
- Stephano M Iglesias
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, 1020 Locus Street, Philadelphia, PA 19107, USA
| | - Ravi K Lokareddy
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, 1825 University Blvd, Birmingham, AL 35294, USA
| | - Ruoyu Yang
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, 1020 Locus Street, Philadelphia, PA 19107, USA
| | - Fenglin Li
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, 1020 Locus Street, Philadelphia, PA 19107, USA
| | - Daniel P Yeggoni
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, 1020 Locus Street, Philadelphia, PA 19107, USA
| | - Chun-Feng David Hou
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, 1020 Locus Street, Philadelphia, PA 19107, USA
| | - Makayla N Leroux
- Department of Molecular and Cell Biology, University of Connecticut, 91 N. Eagleville Road, Storrs, CT 06269, USA
| | - Juliana R Cortines
- Department of Molecular and Cell Biology, University of Connecticut, 91 N. Eagleville Road, Storrs, CT 06269, USA; Departamento de Virologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21590-902, Brazil
| | - Justin C Leavitt
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| | - Mary Bird
- Department of Molecular and Cell Biology, University of Connecticut, 91 N. Eagleville Road, Storrs, CT 06269, USA
| | - Sherwood R Casjens
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| | - Simon White
- Department of Molecular and Cell Biology, University of Connecticut, 91 N. Eagleville Road, Storrs, CT 06269, USA
| | - Carolyn M Teschke
- Department of Molecular and Cell Biology, University of Connecticut, 91 N. Eagleville Road, Storrs, CT 06269, USA; Department of Chemistry, University of Connecticut, 91 N. Eagleville Road, Storrs, CT 06269, USA
| | - Gino Cingolani
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, 1020 Locus Street, Philadelphia, PA 19107, USA; Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, 1825 University Blvd, Birmingham, AL 35294, USA.
| |
Collapse
|
4
|
Sonani RR, Esteves NC, Horton AA, Kelly RJ, Sebastian AL, Wang F, Kreutzberger MAB, Leiman PG, Scharf BE, Egelman EH. Neck and capsid architecture of the robust Agrobacterium phage Milano. Commun Biol 2023; 6:921. [PMID: 37684529 PMCID: PMC10491603 DOI: 10.1038/s42003-023-05292-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023] Open
Abstract
Large gaps exist in our understanding of how bacteriophages, the most abundant biological entities on Earth, assemble and function. The structure of the "neck" region, where the DNA-filled capsid is connected to the host-recognizing tail remains poorly understood. We describe cryo-EM structures of the neck, the neck-capsid and neck-tail junctions, and capsid of the Agrobacterium phage Milano. The Milano neck 1 protein connects the 12-fold symmetrical neck to a 5-fold vertex of the icosahedral capsid. Comparison of Milano neck 1 homologs leads to four proposed classes, likely evolved from the simplest one in siphophages to more complex ones in myo- and podophages. Milano neck is surrounded by the atypical collar, which covalently crosslinks the tail sheath to neck 1. The Milano capsid is decorated with three types of proteins, a minor capsid protein (mCP) and two linking proteins crosslinking the mCP to the major capsid protein. The extensive network of disulfide bonds within and between neck, collar, capsid and tail provides an exceptional structural stability to Milano.
Collapse
Affiliation(s)
- Ravi R Sonani
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA, 22903, USA
| | - Nathaniel C Esteves
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Abigail A Horton
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Rebecca J Kelly
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Amanda L Sebastian
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Fengbin Wang
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA, 22903, USA
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL, 35233, USA
| | - Mark A B Kreutzberger
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA, 22903, USA
| | - Petr G Leiman
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, 77555, USA.
| | - Birgit E Scharf
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, 24061, USA.
| | - Edward H Egelman
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA, 22903, USA.
| |
Collapse
|
5
|
Li F, Hou CFD, Lokareddy RK, Yang R, Forti F, Briani F, Cingolani G. High-resolution cryo-EM structure of the Pseudomonas bacteriophage E217. Nat Commun 2023; 14:4052. [PMID: 37422479 PMCID: PMC10329688 DOI: 10.1038/s41467-023-39756-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 06/27/2023] [Indexed: 07/10/2023] Open
Abstract
E217 is a Pseudomonas phage used in an experimental cocktail to eradicate cystic fibrosis-associated Pseudomonas aeruginosa. Here, we describe the structure of the whole E217 virion before and after DNA ejection at 3.1 Å and 4.5 Å resolution, respectively, determined using cryogenic electron microscopy (cryo-EM). We identify and build de novo structures for 19 unique E217 gene products, resolve the tail genome-ejection machine in both extended and contracted states, and decipher the complete architecture of the baseplate formed by 66 polypeptide chains. We also determine that E217 recognizes the host O-antigen as a receptor, and we resolve the N-terminal portion of the O-antigen-binding tail fiber. We propose that E217 design principles presented in this paper are conserved across PB1-like Myoviridae phages of the Pbunavirus genus that encode a ~1.4 MDa baseplate, dramatically smaller than the coliphage T4.
Collapse
Affiliation(s)
- Fenglin Li
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, 1020 Locust Street, Philadelphia, PA, 19107, USA
| | - Chun-Feng David Hou
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, 1020 Locust Street, Philadelphia, PA, 19107, USA
| | - Ravi K Lokareddy
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, 1020 Locust Street, Philadelphia, PA, 19107, USA
| | - Ruoyu Yang
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, 1020 Locust Street, Philadelphia, PA, 19107, USA
| | - Francesca Forti
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milan, Italy
| | - Federica Briani
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milan, Italy.
| | - Gino Cingolani
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, 1020 Locust Street, Philadelphia, PA, 19107, USA.
| |
Collapse
|
6
|
Bohmer M, Bhullar AS, Weitao T, Zhang L, Lee JH, Guo P. Revolving hexameric ATPases as asymmetric motors to translocate double-stranded DNA genome along one strand. iScience 2023; 26:106922. [PMID: 37305704 PMCID: PMC10250835 DOI: 10.1016/j.isci.2023.106922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023] Open
Abstract
DsDNA translocation through nanoscale pores is generally accomplished by ATPase biomotors. The discovery of the revolving dsDNA translocation mechanism, as opposed to rotation, in bacteriophage phi29 elucidated how ATPase motors move dsDNA. Revolution-driven, hexameric dsDNA motors have been reported in herpesvirus, bacterial FtsK, Streptomyces TraB, and T7 phage. This review explores the common relationship between their structure and mechanisms. Commonalities include moving along the 5'→3' strand, inchworm sequential action leading to an asymmetrical structure, channel chirality, channel size, and 3-step channel gating for controlling motion direction. The revolving mechanism and contact with one of the dsDNA strands addresses the historic controversy of dsDNA packaging using nicked, gapped, hybrid, or chemically modified DNA. These controversies surrounding dsDNA packaging activity using modified materials can be answered by whether the modification was introduced into the 3'→5' or 5'→3' strand. Perspectives concerning solutions to the controversy of motor structure and stoichiometry are also discussed.
Collapse
Affiliation(s)
- Margaret Bohmer
- Center for RNA Nanobiotechnology and Nanomedicine, The Ohio State University, Columbus, OH, USA
- College of Pharmacy, Division of Pharmaceutics and Pharmacology, The Ohio State University, Columbus, OH, USA
- College of Medicine, Dorothy M. Davis Heart and Lung Research Institute and James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Abhjeet S. Bhullar
- Center for RNA Nanobiotechnology and Nanomedicine, The Ohio State University, Columbus, OH, USA
- College of Pharmacy, Division of Pharmaceutics and Pharmacology, The Ohio State University, Columbus, OH, USA
- College of Medicine, Dorothy M. Davis Heart and Lung Research Institute and James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
- Interdisciplinary Biophysics Graduate Program, College of Art and Science, The Ohio State University, Columbus, OH 43210, USA
| | - Tao Weitao
- Center for the Genetics of Host Defense UT Southwestern Medical Center, Dallas, TX, USA
| | - Long Zhang
- Center for RNA Nanobiotechnology and Nanomedicine, The Ohio State University, Columbus, OH, USA
- College of Pharmacy, Division of Pharmaceutics and Pharmacology, The Ohio State University, Columbus, OH, USA
- College of Medicine, Dorothy M. Davis Heart and Lung Research Institute and James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Jing-Huei Lee
- Department of Biomedical Engineering, College of Engineering and Applied Science, University of Cincinnati, Cincinnati, OH, USA
| | - Peixuan Guo
- Center for RNA Nanobiotechnology and Nanomedicine, The Ohio State University, Columbus, OH, USA
- College of Pharmacy, Division of Pharmaceutics and Pharmacology, The Ohio State University, Columbus, OH, USA
- College of Medicine, Dorothy M. Davis Heart and Lung Research Institute and James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
- Interdisciplinary Biophysics Graduate Program, College of Art and Science, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
7
|
Li F, Hou CFD, Yang R, Whitehead R, Teschke CM, Cingolani G. High-resolution cryo-EM structure of the Shigella virus Sf6 genome delivery tail machine. SCIENCE ADVANCES 2022; 8:eadc9641. [PMID: 36475795 PMCID: PMC9728967 DOI: 10.1126/sciadv.adc9641] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 11/02/2022] [Indexed: 06/17/2023]
Abstract
Sf6 is a bacterial virus that infects the human pathogen Shigella flexneri. Here, we describe the cryo-electron microscopy structure of the Sf6 tail machine before DNA ejection, which we determined at a 2.7-angstrom resolution. We built de novo structures of all tail components and resolved four symmetry-mismatched interfaces. Unexpectedly, we found that the tail exists in two conformations, rotated by ~6° with respect to the capsid. The two tail conformers are identical in structure but differ solely in how the portal and head-to-tail adaptor carboxyl termini bond with the capsid at the fivefold vertex, similar to a diamond held over a five-pronged ring in two nonidentical states. Thus, in the mature Sf6 tail, the portal structure does not morph locally to accommodate the symmetry mismatch but exists in two energetic minima rotated by a discrete angle. We propose that the design principles of the Sf6 tail are conserved across P22-like Podoviridae.
Collapse
Affiliation(s)
- Fenglin Li
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, 1020 Locust Street, Philadelphia, PA 19107, USA
| | - Chun-Feng David Hou
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, 1020 Locust Street, Philadelphia, PA 19107, USA
| | - Ruoyu Yang
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, 1020 Locust Street, Philadelphia, PA 19107, USA
| | - Richard Whitehead
- Department of Molecular and Cell Biology, Department of Chemistry, University of Connecticut, 91 N Eagleville Road, Storrs, CT 06269, USA
| | - Carolyn M. Teschke
- Department of Molecular and Cell Biology, Department of Chemistry, University of Connecticut, 91 N Eagleville Road, Storrs, CT 06269, USA
| | - Gino Cingolani
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, 1020 Locust Street, Philadelphia, PA 19107, USA
| |
Collapse
|
8
|
Woodbury BM, Motwani T, Leroux MN, Barnes LF, Lyktey NA, Banerjee S, Dedeo CL, Jarrold MF, Teschke CM. Tryptophan Residues Are Critical for Portal Protein Assembly and Incorporation in Bacteriophage P22. Viruses 2022; 14:1400. [PMID: 35891382 PMCID: PMC9320234 DOI: 10.3390/v14071400] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/13/2022] [Accepted: 06/23/2022] [Indexed: 11/16/2022] Open
Abstract
The oligomerization and incorporation of the bacteriophage P22 portal protein complex into procapsids (PCs) depends upon an interaction with scaffolding protein, but the region of the portal protein that interacts with scaffolding protein has not been defined. In herpes simplex virus 1 (HSV-1), conserved tryptophan residues located in the wing domain are required for portal-scaffolding protein interactions. In this study, tryptophan residues (W) present at positions 41, 44, 207 and 211 within the wing domain of the bacteriophage P22 portal protein were mutated to both conserved and non-conserved amino acids. Substitutions at each of these positions were shown to impair portal function in vivo, resulting in a lethal phenotype by complementation. The alanine substitutions caused the most severe defects and were thus further characterized. An analysis of infected cell lysates for the W to A mutants revealed that all the portal protein variants except W211A, which has a temperature-sensitive incorporation defect, were successfully recruited into procapsids. By charge detection mass spectrometry, all W to A mutant portal proteins were shown to form stable dodecameric rings except the variant W41A, which dissociated readily to monomers. Together, these results suggest that for P22 conserved tryptophan, residues in the wing domain of the portal protein play key roles in portal protein oligomerization and incorporation into procapsids, ultimately affecting the functionality of the portal protein at specific stages of virus assembly.
Collapse
Affiliation(s)
- Brianna M. Woodbury
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269, USA; (B.M.W.); (T.M.); (M.N.L.); (S.B.); (C.L.D.)
| | - Tina Motwani
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269, USA; (B.M.W.); (T.M.); (M.N.L.); (S.B.); (C.L.D.)
| | - Makayla N. Leroux
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269, USA; (B.M.W.); (T.M.); (M.N.L.); (S.B.); (C.L.D.)
| | - Lauren F. Barnes
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, IN 47405, USA; (L.F.B.); (N.A.L.); (M.F.J.)
| | - Nicholas A. Lyktey
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, IN 47405, USA; (L.F.B.); (N.A.L.); (M.F.J.)
| | - Sanchari Banerjee
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269, USA; (B.M.W.); (T.M.); (M.N.L.); (S.B.); (C.L.D.)
| | - Corynne L. Dedeo
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269, USA; (B.M.W.); (T.M.); (M.N.L.); (S.B.); (C.L.D.)
| | - Martin F. Jarrold
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, IN 47405, USA; (L.F.B.); (N.A.L.); (M.F.J.)
| | - Carolyn M. Teschke
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269, USA; (B.M.W.); (T.M.); (M.N.L.); (S.B.); (C.L.D.)
- Department of Chemistry, University of Connecticut, Storrs, CT 06269, USA
| |
Collapse
|
9
|
David Hou CF, Swanson NA, Li F, Yang R, Lokareddy RK, Cingolani G. Cryo-EM structure of a kinetically trapped dodecameric portal protein from the Pseudomonas-phage PaP3. J Mol Biol 2022; 434:167537. [DOI: 10.1016/j.jmb.2022.167537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/09/2022] [Accepted: 03/04/2022] [Indexed: 10/18/2022]
|
10
|
Niazi M, Florio TJ, Yang R, Lokareddy RK, Swanson NA, Gillilan RE, Cingolani G. Biophysical analysis of Pseudomonas-phage PaP3 small terminase suggests a mechanism for sequence-specific DNA-binding by lateral interdigitation. Nucleic Acids Res 2020; 48:11721-11736. [PMID: 33125059 PMCID: PMC7672466 DOI: 10.1093/nar/gkaa866] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 09/19/2020] [Accepted: 10/21/2020] [Indexed: 12/17/2022] Open
Abstract
The genome packaging motor of tailed bacteriophages and herpesviruses is a powerful nanomachine built by several copies of a large (TerL) and a small (TerS) terminase subunit. The motor assembles transiently at the portal vertex of an empty precursor capsid (or procapsid) to power genome encapsidation. Terminase subunits have been studied in-depth, especially in classical bacteriophages that infect Escherichia coli or Salmonella, yet, less is known about the packaging motor of Pseudomonas-phages that have increasing biomedical relevance. Here, we investigated the small terminase subunit from three Podoviridae phages that infect Pseudomonas aeruginosa. We found TerS is polymorphic in solution but assembles into a nonamer in its high-affinity heparin-binding conformation. The atomic structure of Pseudomonas phage PaP3 TerS, the first complete structure for a TerS from a cos phage, reveals nine helix-turn-helix (HTH) motifs asymmetrically arranged around a β-stranded channel, too narrow to accommodate DNA. PaP3 TerS binds DNA in a sequence-specific manner in vitro. X-ray scattering and molecular modeling suggest TerS adopts an open conformation in solution, characterized by dynamic HTHs that move around an oligomerization core, generating discrete binding crevices for DNA. We propose a model for sequence-specific recognition of packaging initiation sites by lateral interdigitation of DNA.
Collapse
Affiliation(s)
- Marzia Niazi
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, 1020 Locust Street, Philadelphia, PA 19107, USA
| | - Tyler J Florio
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, 1020 Locust Street, Philadelphia, PA 19107, USA
| | - Ruoyu Yang
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, 1020 Locust Street, Philadelphia, PA 19107, USA
| | - Ravi K Lokareddy
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, 1020 Locust Street, Philadelphia, PA 19107, USA
| | - Nicholas A Swanson
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, 1020 Locust Street, Philadelphia, PA 19107, USA
| | - Richard E Gillilan
- Macromolecular Diffraction Facility, Cornell High Energy Synchrotron Source (MacCHESS), Cornell University, 161 Synchrotron Drive, Ithaca, NY 14853, USA
| | - Gino Cingolani
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, 1020 Locust Street, Philadelphia, PA 19107, USA
| |
Collapse
|
11
|
Lokareddy RK, Ko YH, Hong N, Doll SG, Paduch M, Niederweis M, Kossiakoff AA, Cingolani G. Recognition of an α-helical hairpin in P22 large terminase by a synthetic antibody fragment. Acta Crystallogr D Struct Biol 2020; 76:876-888. [PMID: 32876063 PMCID: PMC7466751 DOI: 10.1107/s2059798320009912] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 07/20/2020] [Indexed: 11/10/2022] Open
Abstract
The genome-packaging motor of tailed bacteriophages and herpesviruses is a multisubunit protein complex formed by several copies of a large (TerL) and a small (TerS) terminase subunit. The motor assembles transiently at the portal protein vertex of an empty precursor capsid to power the energy-dependent packaging of viral DNA. Both the ATPase and nuclease activities associated with genome packaging reside in TerL. Structural studies of TerL from bacteriophage P22 have been hindered by the conformational flexibility of this enzyme and its susceptibility to proteolysis. Here, an unbiased, synthetic phage-display Fab library was screened and a panel of high-affinity Fabs against P22 TerL were identified. This led to the discovery of a recombinant antibody fragment, Fab4, that binds a 33-amino-acid α-helical hairpin at the N-terminus of TerL with an equilibrium dissociation constant Kd of 71.5 nM. A 1.51 Å resolution crystal structure of Fab4 bound to the TerL epitope (TLE) together with a 1.15 Å resolution crystal structure of the unliganded Fab4, which is the highest resolution ever achieved for a Fab, elucidate the principles governing the recognition of this novel helical epitope. TLE adopts two different conformations in the asymmetric unit and buries as much as 1250 Å2 of solvent-accessible surface in Fab4. TLE recognition is primarily mediated by conformational changes in the third complementarity-determining region of the Fab4 heavy chain (CDR H3) that take place upon epitope binding. It is demonstrated that TLE can be introduced genetically at the N-terminus of a target protein, where it retains high-affinity binding to Fab4.
Collapse
Affiliation(s)
- Ravi K. Lokareddy
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, 1020 Locust Street, JAH-4E, Philadelphia, PA 19107, USA
| | - Ying-Hui Ko
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, 1020 Locust Street, JAH-4E, Philadelphia, PA 19107, USA
| | - Nathaniel Hong
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, 1020 Locust Street, JAH-4E, Philadelphia, PA 19107, USA
| | - Steven G. Doll
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, 1020 Locust Street, JAH-4E, Philadelphia, PA 19107, USA
| | - Marcin Paduch
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL 60637, USA
| | - Michael Niederweis
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Anthony A. Kossiakoff
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL 60637, USA
- Institute for Biophysical Dynamics, University of Chicago, Chicago, IL 60637, USA
| | - Gino Cingolani
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, 1020 Locust Street, JAH-4E, Philadelphia, PA 19107, USA
| |
Collapse
|
12
|
Dedeo CL, Cingolani G, Teschke CM. Portal Protein: The Orchestrator of Capsid Assembly for the dsDNA Tailed Bacteriophages and Herpesviruses. Annu Rev Virol 2019; 6:141-160. [PMID: 31337287 PMCID: PMC6947915 DOI: 10.1146/annurev-virology-092818-015819] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Tailed, double-stranded DNA bacteriophages provide a well-characterized model system for the study of viral assembly, especially for herpesviruses and adenoviruses. A wealth of genetic, structural, and biochemical work has allowed for the development of assembly models and an understanding of the DNA packaging process. The portal complex is an essential player in all aspects of bacteriophage and herpesvirus assembly. Despite having low sequence similarity, portal structures across bacteriophages share the portal fold and maintain a conserved function. Due to their dynamic role, portal proteins are surprisingly plastic, and their conformations change for each stage of assembly. Because the maturation process is dependent on the portal protein, researchers have been working to validate this protein as a potential antiviral drug target. Here we review recent work on the role of portal complexes in capsid assembly, including DNA packaging, as well as portal ring assembly and incorporation and analysis of portal structures.
Collapse
Affiliation(s)
- Corynne L Dedeo
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut 06269, USA;
| | - Gino Cingolani
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | - Carolyn M Teschke
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut 06269, USA;
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269, USA
| |
Collapse
|
13
|
McNulty R, Cardone G, Gilcrease EB, Baker TS, Casjens SR, Johnson JE. Cryo-EM Elucidation of the Structure of Bacteriophage P22 Virions after Genome Release. Biophys J 2019; 114:1295-1301. [PMID: 29590587 DOI: 10.1016/j.bpj.2018.01.026] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 12/24/2017] [Accepted: 01/17/2018] [Indexed: 11/19/2022] Open
Abstract
Genome ejection proteins are required to facilitate transport of bacteriophage P22 double-stranded DNA safely through membranes of Salmonella. The structures and locations of all proteins in the context of the mature virion are known, with the exception of three ejection proteins. Furthermore, the changes that occur to the proteins residing in the mature virion upon DNA release are not fully understood. We used cryogenic electron microscopy to obtain what is, to our knowledge, the first asymmetric reconstruction of mature bacteriophage P22 after double-stranded DNA has been extruded from the capsid-a state representative of one step during viral infection. Results of icosahedral and asymmetric reconstructions at estimated resolutions of 7.8 and 12.5 Å resolutions, respectively, are presented. The reconstruction shows tube-like protein density extending from the center of the tail assembly. The portal protein does not revert to the more contracted, procapsid state, but instead maintains an extended and splayed barrel structure. These structural details contribute to our understanding of the molecular mechanism of P22 phage infection and also set the foundation for future exploitation serving engineering purposes.
Collapse
Affiliation(s)
- Reginald McNulty
- Laboratory of Gene Regulation and Signal Transduction, Department of Pharmacology, School of Medicine, University of California, San Diego, La Jolla, California.
| | - Giovanni Cardone
- Department of Chemistry and BiochemistryUniversity of California, San Diego, La Jolla, California
| | - Eddie B Gilcrease
- Division of Microbiology and Immunology, Pathology Department, University of Utah School of Medicine, Salt Lake City, Utah
| | - Timothy S Baker
- Department of Chemistry and BiochemistryUniversity of California, San Diego, La Jolla, California; Division of Biological Sciences, University of California, San Diego, La Jolla, California
| | - Sherwood R Casjens
- Division of Microbiology and Immunology, Pathology Department, University of Utah School of Medicine, Salt Lake City, Utah
| | - John E Johnson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California.
| |
Collapse
|
14
|
Iwasaki T, Yamashita E, Nakagawa A, Enomoto A, Tomihara M, Takeda S. Three-dimensional structures of bacteriophage neck subunits are shared inPodoviridae,SiphoviridaeandMyoviridae. Genes Cells 2018; 23:528-536. [DOI: 10.1111/gtc.12594] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 04/10/2018] [Indexed: 12/22/2022]
Affiliation(s)
- Takuma Iwasaki
- Faculty of Science and Technology; Division of Molecular Science; Gunma University; Kiryu Gunma Japan
| | - Eiki Yamashita
- Institute for Protein Research; Osaka University; Suita Osaka Japan
| | - Atsushi Nakagawa
- Institute for Protein Research; Osaka University; Suita Osaka Japan
| | - Atsushi Enomoto
- Faculty of Science and Technology; Division of Molecular Science; Gunma University; Kiryu Gunma Japan
| | - Masashi Tomihara
- Faculty of Science and Technology; Division of Molecular Science; Gunma University; Kiryu Gunma Japan
| | - Shigeki Takeda
- Faculty of Science and Technology; Division of Molecular Science; Gunma University; Kiryu Gunma Japan
| |
Collapse
|
15
|
Breaking Symmetry in Viral Icosahedral Capsids as Seen through the Lenses of X-ray Crystallography and Cryo-Electron Microscopy. Viruses 2018; 10:v10020067. [PMID: 29414851 PMCID: PMC5850374 DOI: 10.3390/v10020067] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Revised: 01/26/2018] [Accepted: 01/31/2018] [Indexed: 12/19/2022] Open
Abstract
The majority of viruses on Earth form capsids built by multiple copies of one or more types of a coat protein arranged with 532 symmetry, generating an icosahedral shell. This highly repetitive structure is ideal to closely pack identical protein subunits and to enclose the nucleic acid genomes. However, the icosahedral capsid is not merely a passive cage but undergoes dynamic events to promote packaging, maturation and the transfer of the viral genome into the host. These essential processes are often mediated by proteinaceous complexes that interrupt the shell’s icosahedral symmetry, providing a gateway through the capsid. In this review, we take an inventory of molecular structures observed either internally, or at the 5-fold vertices of icosahedral DNA viruses that infect bacteria, archea and eukaryotes. Taking advantage of the recent revolution in cryo-electron microscopy (cryo-EM) and building upon a wealth of crystallographic structures of individual components, we review the design principles of non-icosahedral structural components that interrupt icosahedral symmetry and discuss how these macromolecules play vital roles in genome packaging, ejection and host receptor-binding.
Collapse
|
16
|
Abstract
Many icosahedral viruses use a specialized portal vertex for genome encapsidation in the viral capsid (or head). This structure then controls release of the viral genetic information to the host cell at the beginning of infection. In tailed bacteriophages, the portal system is connected to a tail device that delivers their genome to the bacterial cytoplasm. The head-to-tail interface is a multiprotein complex that locks the viral DNA inside the phage capsid correctly positioned for egress and that controls its ejection when the viral particle interacts with the host cell receptor. Here we review the molecular mechanisms how this interface is assembled and how it carries out those two critical steps in the life cycle of tailed phages.
Collapse
Affiliation(s)
- Paulo Tavares
- Department of Virology, Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France.
| |
Collapse
|
17
|
High-resolution structure of podovirus tail adaptor suggests repositioning of an octad motif that mediates the sequential tail assembly. Proc Natl Acad Sci U S A 2017; 115:313-318. [PMID: 29279385 DOI: 10.1073/pnas.1706846115] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The sophisticated tail structures of DNA bacteriophages play essential roles in life cycles. Podoviruses P22 and Sf6 have short tails consisting of multiple proteins, among which is a tail adaptor protein that connects the portal protein to the other tail proteins. Assembly of the tail has been shown to occur in a sequential manner to ensure proper molecular interactions, but the underlying mechanism remains to be understood. Here, we report the high-resolution structure of the tail adaptor protein gp7 from phage Sf6. The structure exhibits distinct distribution of opposite charges on two sides of the molecule. A gp7 dodecameric ring model shows an entirely negatively charged surface, suggesting that the assembly of the dodecamer occurs through head-to-tail interactions of the bipolar monomers. The N-terminal helix-loop structure undergoes rearrangement compared with that of the P22 homolog complexed with the portal, which is achieved by repositioning of two consecutive repeats of a conserved octad sequence motif. We propose that the conformation of the N-terminal helix-loop observed in the Sf6-gp7 and P22 portal:gp4 complex represents the pre- and postassembly state, respectively. Such motif repositioning may serve as a conformational switch that creates the docking site for the tail nozzle only after the assembly of adaptor protein to the portal. In addition, the C-terminal portion of gp7 shows conformational flexibility, indicating an induced fit on binding to the portal. These results provide insight into the mechanistic role of the adaptor protein in mediating the sequential assembly of the phage tail.
Collapse
|
18
|
Portal protein functions akin to a DNA-sensor that couples genome-packaging to icosahedral capsid maturation. Nat Commun 2017; 8:14310. [PMID: 28134243 PMCID: PMC5290284 DOI: 10.1038/ncomms14310] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Accepted: 12/14/2016] [Indexed: 11/24/2022] Open
Abstract
Tailed bacteriophages and herpesviruses assemble infectious particles via an empty precursor capsid (or ‘procapsid') built by multiple copies of coat and scaffolding protein and by one dodecameric portal protein. Genome packaging triggers rearrangement of the coat protein and release of scaffolding protein, resulting in dramatic procapsid lattice expansion. Here, we provide structural evidence that the portal protein of the bacteriophage P22 exists in two distinct dodecameric conformations: an asymmetric assembly in the procapsid (PC-portal) that is competent for high affinity binding to the large terminase packaging protein, and a symmetric ring in the mature virion (MV-portal) that has negligible affinity for the packaging motor. Modelling studies indicate the structure of PC-portal is incompatible with DNA coaxially spooled around the portal vertex, suggesting that newly packaged DNA triggers the switch from PC- to MV-conformation. Thus, we propose the signal for termination of ‘Headful Packaging' is a DNA-dependent symmetrization of portal protein. Tailed bacteriophages assemble empty precursor capsids known as procapsids that are subsequently filled with viral DNA by a genome-packaging motor. Here the authors present a structure-based analysis that suggests the signal for termination of genome packaging is achieved through a DNA-dependent symmetrization of portal protein.
Collapse
|
19
|
Bhardwaj A, Sankhala RS, Olia AS, Brooke D, Casjens SR, Taylor DJ, Prevelige PE, Cingolani G. Structural Plasticity of the Protein Plug That Traps Newly Packaged Genomes in Podoviridae Virions. J Biol Chem 2015; 291:215-26. [PMID: 26574546 DOI: 10.1074/jbc.m115.696260] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Indexed: 02/05/2023] Open
Abstract
Bacterial viruses of the P22-like family encode a specialized tail needle essential for genome stabilization after DNA packaging and implicated in Gram-negative cell envelope penetration. The atomic structure of P22 tail needle (gp26) crystallized at acidic pH reveals a slender fiber containing an N-terminal "trimer of hairpins" tip. Although the length and composition of tail needles vary significantly in Podoviridae, unexpectedly, the amino acid sequence of the N-terminal tip is exceptionally conserved in more than 200 genomes of P22-like phages and prophages. In this paper, we used x-ray crystallography and EM to investigate the neutral pH structure of three tail needles from bacteriophage P22, HK620, and Sf6. In all cases, we found that the N-terminal tip is poorly structured, in stark contrast to the compact trimer of hairpins seen in gp26 crystallized at acidic pH. Hydrogen-deuterium exchange mass spectrometry, limited proteolysis, circular dichroism spectroscopy, and gel filtration chromatography revealed that the N-terminal tip is highly dynamic in solution and unlikely to adopt a stable trimeric conformation at physiological pH. This is supported by the cryo-EM reconstruction of P22 mature virion tail, where the density of gp26 N-terminal tip is incompatible with a trimer of hairpins. We propose the tail needle N-terminal tip exists in two conformations: a pre-ejection extended conformation, which seals the portal vertex after genome packaging, and a postejection trimer of hairpins, which forms upon its release from the virion. The conformational plasticity of the tail needle N-terminal tip is built in the amino acid sequence, explaining its extraordinary conservation in nature.
Collapse
Affiliation(s)
- Anshul Bhardwaj
- From the Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| | - Rajeshwer S Sankhala
- From the Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| | - Adam S Olia
- the Department of Biochemistry & Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Dewey Brooke
- the Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama 35294
| | - Sherwood R Casjens
- the Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, Utah 84112
| | - Derek J Taylor
- the Department of Pharmacology, Case Western Reserve University, School of Medicine, Cleveland, Ohio 44106, and
| | - Peter E Prevelige
- the Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama 35294
| | - Gino Cingolani
- From the Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, the Institute of Biomembranes and Bioenergetics, National Research Council, 70126 Bari, Italy
| |
Collapse
|
20
|
McNulty R, Lokareddy RK, Roy A, Yang Y, Lander GC, Heck AJR, Johnson JE, Cingolani G. Architecture of the Complex Formed by Large and Small Terminase Subunits from Bacteriophage P22. J Mol Biol 2015; 427:3285-3299. [PMID: 26301600 DOI: 10.1016/j.jmb.2015.08.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 08/14/2015] [Accepted: 08/15/2015] [Indexed: 11/27/2022]
Abstract
Packaging of viral genomes inside empty procapsids is driven by a powerful ATP-hydrolyzing motor, formed in many double-stranded DNA viruses by a complex of a small terminase (S-terminase) subunit and a large terminase (L-terminase) subunit, transiently docked at the portal vertex during genome packaging. Despite recent progress in elucidating the structure of individual terminase subunits and their domains, little is known about the architecture of an assembled terminase complex. Here, we describe a bacterial co-expression system that yields milligram quantities of the S-terminase:L-terminase complex of the Salmonella phage P22. In vivo assembled terminase complex was affinity-purified and stabilized by addition of non-hydrolyzable ATP, which binds specifically to the ATPase domain of L-terminase. Mapping studies revealed that the N-terminus of L-terminase ATPase domain (residues 1-58) contains a minimal S-terminase binding domain sufficient for stoichiometric association with residues 140-162 of S-terminase, the L-terminase binding domain. Hydrodynamic analysis by analytical ultracentrifugation sedimentation velocity and native mass spectrometry revealed that the purified terminase complex consists predominantly of one copy of the nonameric S-terminase bound to two equivalents of L-terminase (1S-terminase:2L-terminase). Direct visualization of this molecular assembly in negative-stained micrographs yielded a three-dimensional asymmetric reconstruction that resembles a "nutcracker" with two L-terminase protomers projecting from the C-termini of an S-terminase ring. This is the first direct visualization of a purified viral terminase complex analyzed in the absence of DNA and procapsid.
Collapse
Affiliation(s)
- Reginald McNulty
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA.
| | - Ravi Kumar Lokareddy
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, 233 South 10th Street Philadelphia, PA 19107, USA
| | - Ankoor Roy
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, 233 South 10th Street Philadelphia, PA 19107, USA
| | - Yang Yang
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Centre for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Netherlands Proteomics Center, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Gabriel C Lander
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Albert J R Heck
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Centre for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Netherlands Proteomics Center, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - John E Johnson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Gino Cingolani
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, 233 South 10th Street Philadelphia, PA 19107, USA.
| |
Collapse
|
21
|
Bhardwaj A, Casjens SR, Cingolani G. Exploring the atomic structure and conformational flexibility of a 320 Å long engineered viral fiber using X-ray crystallography. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2014; 70:342-53. [PMID: 24531468 PMCID: PMC3940195 DOI: 10.1107/s1399004713027685] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Accepted: 10/09/2013] [Indexed: 11/10/2022]
Abstract
Protein fibers are widespread in nature, but only a limited number of high-resolution structures have been determined experimentally. Unlike globular proteins, fibers are usually recalcitrant to form three-dimensional crystals, preventing single-crystal X-ray diffraction analysis. In the absence of three-dimensional crystals, X-ray fiber diffraction is a powerful tool to determine the internal symmetry of a fiber, but it rarely yields atomic resolution structural information on complex protein fibers. An 85-residue-long minimal coiled-coil repeat unit (MiCRU) was previously identified in the trimeric helical core of tail needle gp26, a fibrous protein emanating from the tail apparatus of the bacteriophage P22 virion. Here, evidence is provided that an MiCRU can be inserted in frame inside the gp26 helical core to generate a rationally extended fiber (gp26-2M) which, like gp26, retains a trimeric quaternary structure in solution. The 2.7 Å resolution crystal structure of this engineered fiber, which measures ∼320 Å in length and is only 20-35 Å wide, was determined. This structure, the longest for a trimeric protein fiber to be determined to such a high resolution, reveals the architecture of 22 consecutive trimerization heptads and provides a framework to decipher the structural determinants for protein fiber assembly, stability and flexibility.
Collapse
Affiliation(s)
- Anshul Bhardwaj
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, 233 South 10th Street, Philadelphia, PA 19107, USA
| | - Sherwood R. Casjens
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Gino Cingolani
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, 233 South 10th Street, Philadelphia, PA 19107, USA
| |
Collapse
|
22
|
Bhardwaj A, Olia AS, Cingolani G. Architecture of viral genome-delivery molecular machines. Curr Opin Struct Biol 2013; 25:1-8. [PMID: 24878339 DOI: 10.1016/j.sbi.2013.10.005] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Accepted: 10/21/2013] [Indexed: 12/27/2022]
Abstract
From the abyss of the ocean to the human gut, bacterial viruses (or bacteriophages) have colonized all ecosystems of the planet earth and evolved in sync with their bacterial hosts. Over 95% of bacteriophages have a tail that varies greatly in length and complexity. The tail complex interrupts the icosahedral capsid symmetry and provides both an entry for viral genome-packaging during replication and an exit for genome-ejection during infection. Here, we review recent progress in deciphering the structure, assembly and conformational dynamics of viral genome-delivery tail machines. We focus on the bacteriophages P22 and T7, two well-studied members of the Podoviridae family that use short, non-contractile tails to infect Gram-negative bacteria. The structure of specialized tail fibers and their putative role in host anchoring, cell-surface penetration and genome-ejection is discussed.
Collapse
Affiliation(s)
- Anshul Bhardwaj
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, 233 South 10th Street, Philadelphia, PA 19107, USA
| | - Adam S Olia
- Program in Gene Expression and Regulation, The Wistar Institute, Philadelphia, PA 19104, USA
| | - Gino Cingolani
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, 233 South 10th Street, Philadelphia, PA 19107, USA.
| |
Collapse
|
23
|
Leavitt JC, Gogokhia L, Gilcrease EB, Bhardwaj A, Cingolani G, Casjens SR. The tip of the tail needle affects the rate of DNA delivery by bacteriophage P22. PLoS One 2013; 8:e70936. [PMID: 23951045 PMCID: PMC3741392 DOI: 10.1371/journal.pone.0070936] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Accepted: 06/25/2013] [Indexed: 02/01/2023] Open
Abstract
The P22-like bacteriophages have short tails. Their virions bind to their polysaccharide receptors through six trimeric tailspike proteins that surround the tail tip. These short tails also have a trimeric needle protein that extends beyond the tailspikes from the center of the tail tip, in a position that suggests that it should make first contact with the host’s outer membrane during the infection process. The base of the needle serves as a plug that keeps the DNA in the virion, but role of the needle during adsorption and DNA injection is not well understood. Among the P22-like phages are needle types with two completely different C-terminal distal tip domains. In the phage Sf6-type needle, unlike the other P22-type needle, the distal tip folds into a “knob” with a TNF-like fold, similar to the fiber knobs of bacteriophage PRD1 and Adenovirus. The phage HS1 knob is very similar to that of Sf6, and we report here its crystal structure which, like the Sf6 knob, contains three bound L-glutamate molecules. A chimeric P22 phage with a tail needle that contains the HS1 terminal knob efficiently infects the P22 host, Salmonella enterica, suggesting the knob does not confer host specificity. Likewise, mutations that should abrogate the binding of L-glutamate to the needle do not appear to affect virion function, but several different other genetic changes to the tip of the needle slow down potassium release from the host during infection. These findings suggest that the needle plays a role in phage P22 DNA delivery by controlling the kinetics of DNA ejection into the host.
Collapse
Affiliation(s)
- Justin C. Leavitt
- Biology Department, University of Utah, Salt Lake City, Utah, United States of America
| | - Lasha Gogokhia
- Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Eddie B. Gilcrease
- Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Anshul Bhardwaj
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Gino Cingolani
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Sherwood R. Casjens
- Biology Department, University of Utah, Salt Lake City, Utah, United States of America
- Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
- * E-mail:
| |
Collapse
|
24
|
Cuervo A, Pulido-Cid M, Chagoyen M, Arranz R, González-García VA, Garcia-Doval C, Castón JR, Valpuesta JM, van Raaij MJ, Martín-Benito J, Carrascosa JL. Structural characterization of the bacteriophage T7 tail machinery. J Biol Chem 2013; 288:26290-26299. [PMID: 23884409 DOI: 10.1074/jbc.m113.491209] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Most bacterial viruses need a specialized machinery, called "tail," to inject their genomes inside the bacterial cytoplasm without disrupting the cellular integrity. Bacteriophage T7 is a well characterized member of the Podoviridae family infecting Escherichia coli, and it has a short noncontractile tail that assembles sequentially on the viral head after DNA packaging. The T7 tail is a complex of around 2.7 MDa composed of at least four proteins as follows: the connector (gene product 8, gp8), the tail tubular proteins gp11 and gp12, and the fibers (gp17). Using cryo-electron microscopy and single particle image reconstruction techniques, we have determined the precise topology of the tail proteins by comparing the structure of the T7 tail extracted from viruses and a complex formed by recombinant gp8, gp11, and gp12 proteins. Furthermore, the order of assembly of the structural components within the complex was deduced from interaction assays with cloned and purified tail proteins. The existence of common folds among similar tail proteins allowed us to obtain pseudo-atomic threaded models of gp8 (connector) and gp11 (gatekeeper) proteins, which were docked into the corresponding cryo-EM volumes of the tail complex. This pseudo-atomic model of the connector-gatekeeper interaction revealed the existence of a common molecular architecture among viruses belonging to the three tailed bacteriophage families, strongly suggesting that a common molecular mechanism has been favored during evolution to coordinate the transition between DNA packaging and tail assembly.
Collapse
Affiliation(s)
- Ana Cuervo
- From the Structure of Macromolecules and
| | | | - Mónica Chagoyen
- Systems Biology Departments, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Darwin 3 and
| | | | | | | | | | | | | | | | - José L Carrascosa
- From the Structure of Macromolecules and; the Instituto Madrileño de Estudios Avanzados en Nanociencia, Cantoblanco, 28049 Madrid, Spain.
| |
Collapse
|
25
|
Fiedler JD, Higginson C, Hovlid ML, Kislukhin AA, Castillejos A, Manzenrieder F, Campbell MG, Voss NR, Potter CS, Carragher B, Finn M. Engineered mutations change the structure and stability of a virus-like particle. Biomacromolecules 2012; 13:2339-48. [PMID: 22830650 PMCID: PMC3432585 DOI: 10.1021/bm300590x] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The single-coat protein (CP) of bacteriophage Qβ self-assembles into T = 3 icosahedral virus-like particles (VLPs), of interest for a wide range of applications. These VLPs are very stable, but identification of the specific molecular determinants of this stability is lacking. To investigate these determinants along with manipulations that confer more capabilities to our VLP material, we manipulated the CP primary structure to test the importance of various putative stabilizing interactions. Optimization of a procedure to incorporate fused CP subunits allowed for good control over the average number of covalent dimers in each VLP. We confirmed that the disulfide linkages are the most important stabilizing elements for the capsid and that acidic conditions significantly enhance the resistance of VLPs to thermal degradation. Interdimer interactions were found to be less important for VLP assembly than intradimer interactions. Finally, a single point mutation in the CP resulted in a population of smaller VLPs in three distinct structural forms.
Collapse
Affiliation(s)
- Jason D. Fiedler
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA
| | - Cody Higginson
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA
| | - Marisa L. Hovlid
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA
| | - Alexander A. Kislukhin
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA
| | - Alexandra Castillejos
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA
| | - Florian Manzenrieder
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA
| | - Melody G. Campbell
- Department of Cell Biology and the National Resource for Automated Molecular Spectroscopy, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA
| | - Neil R. Voss
- Department of Cell Biology and the National Resource for Automated Molecular Spectroscopy, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA
| | - Clinton S. Potter
- Department of Cell Biology and the National Resource for Automated Molecular Spectroscopy, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA
| | - Bridget Carragher
- Department of Cell Biology and the National Resource for Automated Molecular Spectroscopy, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA
| | - M.G. Finn
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA
| |
Collapse
|
26
|
Feiss M, Rao VB. The Bacteriophage DNA Packaging Machine. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 726:489-509. [DOI: 10.1007/978-1-4614-0980-9_22] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
27
|
Casjens SR, Molineux IJ. Short noncontractile tail machines: adsorption and DNA delivery by podoviruses. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 726:143-79. [PMID: 22297513 DOI: 10.1007/978-1-4614-0980-9_7] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Tailed dsDNA bacteriophage virions bind to susceptible cells with the tips of their tails and then deliver their DNA through the tail into the cells to initiate infection. This chapter discusses what is known about this process in the short-tailed phages (Podoviridae). Their short tails require that many of these virions adsorb to the outer layers of the cell and work their way down to the outer membrane surface before releasing their DNA. Interestingly, the receptor-binding protein of many short-tailed phages (and some with long tails) has an enzymatic activity that cleaves their polysaccharide receptors. Reversible adsorption and irreversible adsorption to primary and secondary receptors are discussed, including how sequence divergence in tail fiber and tailspike proteins leads to different host specificities. Upon reaching the outer membrane of Gram-negative cells, some podoviral tail machines release virion proteins into the cell that help the DNA efficiently traverse the outer layers of the cell and/or prepare the cell cytoplasm for phage genome arrival. Podoviruses utilize several rather different variations on this theme. The virion DNA is then released into the cell; the energetics of this process is discussed. Phages like T7 and N4 deliver their DNA relatively slowly, using enzymes to pull the genome into the cell. At least in part this mechanism ensures that genes in late-entering DNA are not expressed at early times. On the other hand, phages like P22 probably deliver their DNA more rapidly so that it can be circularized before the cascade of gene expression begins.
Collapse
Affiliation(s)
- Sherwood R Casjens
- Pathology Department, University of Utah School of Medicine, Salt Lake City, UT 84112, USA.
| | | |
Collapse
|
28
|
Tavares P, Zinn-Justin S, Orlova EV. Genome gating in tailed bacteriophage capsids. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 726:585-600. [PMID: 22297531 DOI: 10.1007/978-1-4614-0980-9_25] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Tailed bacteriophages use a portal system for genome entry and exit from viral capsids. Here, we review the mechanisms how these movements are controlled by the genome gatekeeper that assembles at the portal structure. Phage DNA is packaged at high pressure inside the viral capsid by a powerful motor. The viral genome is translocated through the central channel of the portal protein found at a single vertex of the capsid. Packaging is normally terminated by endonucleolytic cleavage of the substrate DNA followed by disassembly of the packaging motor and closure of the portal system, preventing leakage of the viral genome. This can be achieved either by conformational changes in the portal protein or by sequential addition of proteins that extend the portal channel (adaptors) and physically close it preventing DNA exit (stoppers). The resulting connector structure provides the interface for assembly of short tails (podoviruses) or for attachment of preformed long tails (siphoviruses and myoviruses). The connector maintains the viral DNA correctly positioned for ejection that is triggered by interaction of the phage particle with bacterial receptors. Recent exciting advances are providing new molecular insights on the mechanisms that ensure precise coordination of these critical steps required both for stable viral genome packaging and for its efficient release to initiate infection.
Collapse
Affiliation(s)
- Paulo Tavares
- Unité de Virologie Moléculaire et Structurale, Gif-sur-Yvette, France.
| | | | | |
Collapse
|
29
|
Häuser R, Blasche S, Dokland T, Haggård-Ljungquist E, von Brunn A, Salas M, Casjens S, Molineux I, Uetz P. Bacteriophage protein-protein interactions. Adv Virus Res 2012; 83:219-98. [PMID: 22748812 PMCID: PMC3461333 DOI: 10.1016/b978-0-12-394438-2.00006-2] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Bacteriophages T7, λ, P22, and P2/P4 (from Escherichia coli), as well as ϕ29 (from Bacillus subtilis), are among the best-studied bacterial viruses. This chapter summarizes published protein interaction data of intraviral protein interactions, as well as known phage-host protein interactions of these phages retrieved from the literature. We also review the published results of comprehensive protein interaction analyses of Pneumococcus phages Dp-1 and Cp-1, as well as coliphages λ and T7. For example, the ≈55 proteins encoded by the T7 genome are connected by ≈43 interactions with another ≈15 between the phage and its host. The chapter compiles published interactions for the well-studied phages λ (33 intra-phage/22 phage-host), P22 (38/9), P2/P4 (14/3), and ϕ29 (20/2). We discuss whether different interaction patterns reflect different phage lifestyles or whether they may be artifacts of sampling. Phages that infect the same host can interact with different host target proteins, as exemplified by E. coli phage λ and T7. Despite decades of intensive investigation, only a fraction of these phage interactomes are known. Technical limitations and a lack of depth in many studies explain the gaps in our knowledge. Strategies to complete current interactome maps are described. Although limited space precludes detailed overviews of phage molecular biology, this compilation will allow future studies to put interaction data into the context of phage biology.
Collapse
Affiliation(s)
- Roman Häuser
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Karlsruhe, Germany
- Deutsches Krebsforschungszentrum, Heidelberg, Germany
| | - Sonja Blasche
- Deutsches Krebsforschungszentrum, Heidelberg, Germany
| | - Terje Dokland
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | | | - Albrecht von Brunn
- Max-von-Pettenkofer-Institut, Lehrstuhl Virologie, Ludwig-Maximilians-Universität, München, Germany
| | - Margarita Salas
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Cantoblanco, Madrid, Spain
| | - Sherwood Casjens
- Division of Microbiology and Immunology, Pathology Department, University of Utah School of Medicine, Salt Lake City, Utah
| | - Ian Molineux
- Molecular Genetics and Microbiology, Institute for Cell and Molecular Biology, University of Texas–Austin, Austin, Texas, USA
| | - Peter Uetz
- Center for the Study of Biological Complexity, Virginia Commonwealth University, Richmond, Virginia, USA
| |
Collapse
|
30
|
Bhardwaj A, Molineux IJ, Casjens SR, Cingolani G. Atomic structure of bacteriophage Sf6 tail needle knob. J Biol Chem 2011; 286:30867-30877. [PMID: 21705802 PMCID: PMC3162447 DOI: 10.1074/jbc.m111.260877] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Revised: 06/22/2011] [Indexed: 11/06/2022] Open
Abstract
Podoviridae are double-stranded DNA bacteriophages that use short, non-contractile tails to adsorb to the host cell surface. Within the tail apparatus of P22-like phages, a dedicated fiber known as the "tail needle" likely functions as a cell envelope-penetrating device to promote ejection of viral DNA inside the host. In Sf6, a P22-like phage that infects Shigella flexneri, the tail needle presents a C-terminal globular knob. This knob, absent in phage P22 but shared in other members of the P22-like genus, represents the outermost exposed tip of the virion that contacts the host cell surface. Here, we report a crystal structure of the Sf6 tail needle knob determined at 1.0 Å resolution. The structure reveals a trimeric globular domain of the TNF fold structurally superimposable with that of the tail-less phage PRD1 spike protein P5 and the adenovirus knob, domains that in both viruses function in receptor binding. However, P22-like phages are not known to utilize a protein receptor and are thought to directly penetrate the host surface. At 1.0 Å resolution, we identified three equivalents of l-glutamic acid (l-Glu) bound to each subunit interface. Although intimately bound to the protein, l-Glu does not increase the structural stability of the trimer nor it affects its ability to self-trimerize in vitro. In analogy to P22 gp26, we suggest the tail needle of phage Sf6 is ejected through the bacterial cell envelope during infection and its C-terminal knob is threaded through peptidoglycan pores formed by glycan strands.
Collapse
Affiliation(s)
- Anshul Bhardwaj
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| | - Ian J Molineux
- Section of Molecular Genetics and Microbiology, University of Texas at Austin, Austin, Texas 78712
| | - Sherwood R Casjens
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, Utah 84112
| | - Gino Cingolani
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107.
| |
Collapse
|
31
|
Abstract
Tailed bacteriophages use nanomotors, or molecular machines that convert chemical energy into physical movement of molecules, to insert their double-stranded DNA genomes into virus particles. These viral nanomotors are powered by ATP hydrolysis and pump the DNA into a preformed protein container called a procapsid. As a result, the virions contain very highly compacted chromosomes. Here, I review recent progress in obtaining structural information for virions, procapsids and the individual motor protein components, and discuss single-molecule in vitro packaging reactions, which have yielded important new information about the mechanism by which these powerful molecular machines translocate DNA.
Collapse
|
32
|
Olia AS, Prevelige PE, Johnson JE, Cingolani G. Three-dimensional structure of a viral genome-delivery portal vertex. Nat Struct Mol Biol 2011; 18:597-603. [PMID: 21499245 PMCID: PMC3087855 DOI: 10.1038/nsmb.2023] [Citation(s) in RCA: 133] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2010] [Accepted: 01/31/2011] [Indexed: 12/15/2022]
Abstract
DNA viruses such as bacteriophages and herpesviruses deliver their genome into and out of the capsid through large proteinaceous assemblies, known as portal proteins. Here we report two snapshots of the dodecameric portal protein of bacteriophage P22. The 3.25 Å resolution structure of the portal protein core bound to twelve copies of gp4 reveals a ~1.1 MDa assembly formed by 24 proteins. Unexpectedly, a lower resolution structure of the full length portal protein unveils the unique topology of the C-terminal domain, which forms a ~200 Å long, α-helical barrel. This domain inserts deeply into the virion and is highly conserved in the Podoviridae family. We propose that the barrel domain facilitates genome spooling onto the interior surface of the capsid during genome packaging and, in analogy to a rifle barrel, increases the accuracy of genome ejection into the host cell.
Collapse
Affiliation(s)
- Adam S Olia
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, USA
| | | | | | | |
Collapse
|
33
|
Casjens SR, Thuman-Commike PA. Evolution of mosaically related tailed bacteriophage genomes seen through the lens of phage P22 virion assembly. Virology 2011; 411:393-415. [PMID: 21310457 DOI: 10.1016/j.virol.2010.12.046] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2010] [Revised: 12/20/2010] [Accepted: 12/23/2010] [Indexed: 01/06/2023]
Abstract
The mosaic composition of the genomes of dsDNA tailed bacteriophages (Caudovirales) is well known. Observations of this mosaicism have generally come from comparisons of small numbers of often rather distantly related phages, and little is known about the frequency or detailed nature of the processes that generate this kind of diversity. Here we review and examine the mosaicism within fifty-seven clusters of virion assembly genes from bacteriophage P22 and its "close" relatives. We compare these orthologous gene clusters, discuss their surprising diversity and document horizontal exchange of genetic information between subgroups of the P22-like phages as well as between these phages and other phage types. We also point out apparent restrictions in the locations of mosaic sequence boundaries in this gene cluster. The relatively large sample size and the fact that phage P22 virion structure and assembly are exceptionally well understood make the conclusions especially informative and convincing.
Collapse
Affiliation(s)
- Sherwood R Casjens
- Pathology Department, University of Utah School of Medicine, Salt Lake City, UT 84112, USA.
| | | |
Collapse
|
34
|
Roy A, Bhardwaj A, Cingolani G. Crystallization of the nonameric small terminase subunit of bacteriophage P22. Acta Crystallogr Sect F Struct Biol Cryst Commun 2011; 67:104-10. [PMID: 21206037 PMCID: PMC3079985 DOI: 10.1107/s174430911004697x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2010] [Accepted: 11/12/2010] [Indexed: 11/11/2022]
Abstract
The packaging of viral genomes into preformed empty procapsids is powered by an ATP-dependent genome-translocating motor. This molecular machine is formed by a heterodimer consisting of large terminase (L-terminase) and small terminase (S-terminase) subunits, which is assembled into a complex of unknown stoichiometry, and a dodecameric portal protein. There is considerable confusion in the literature regarding the biologically relevant oligomeric state of terminases, which, like portal proteins, form ring-like structures. The number of subunits in a hollow oligomeric protein defines the internal diameter of the central channel and the ability to fit DNA inside. Thus, knowledge of the exact stoichiometry of terminases is critical to decipher the mechanisms of terminase-dependent DNA translocation. Here, the gene encoding bacteriophage P22 S-terminase in Escherichia coli has been overexpressed and the protein purified under native conditions. In the absence of detergents and/or denaturants that may cause disassembly of the native oligomer and formation of aberrant rings, it was found that P22 S-terminase assembles into a concentration-independent nonamer of ∼168 kDa. Nonameric S-terminase was crystallized in two different crystal forms at neutral pH. Crystal form I belonged to space group P2(1)2(1)2, with unit-cell parameters a=144.2, b=144.2, c=145.3 Å, and diffracted to 3.0 Å resolution. Crystal form II belonged to space group P2(1), with unit-cell parameters a=76.48, b=100.9, c=89.95 Å, β=93.73°, and diffracted to 1.75 Å resolution. Preliminary crystallographic analysis of crystal form II confirms that the S-terminase crystals contain a nonamer in the asymmetric unit and are suitable for high-resolution structure determination.
Collapse
Affiliation(s)
- Ankoor Roy
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, 233 South 10th Street, Philadelphia, PA 19107, USA
| | | | | |
Collapse
|
35
|
Campanacci V, Veesler D, Lichière J, Blangy S, Sciara G, Moineau S, van Sinderen D, Bron P, Cambillau C. Solution and electron microscopy characterization of lactococcal phage baseplates expressed in Escherichia coli. J Struct Biol 2010; 172:75-84. [PMID: 20153432 DOI: 10.1016/j.jsb.2010.02.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2009] [Revised: 02/04/2010] [Accepted: 02/07/2010] [Indexed: 10/19/2022]
Abstract
We report here the characterization of several large structural protein complexes forming the baseplates (or part of them) of Siphoviridae phages infecting Lactococcus lactis: TP901-1, Tuc2009 and p2. We revisited a "block cloning" expression strategy and extended this approach to genomic fragments encoding proteins whose interacting partners have not yet been clearly identified. Biophysical characterization of some of these complexes using circular dichroism and size exclusion chromatography, coupled with on-line light scattering and refractometry, demonstrated that the over-produced recombinant proteins interact with each other to form large (up to 1.9MDa) and stable baseplate assemblies. Some of these complexes were characterized by electron microscopy confirming their structural homogeneity as well as providing a picture of their overall molecular shapes and symmetry. Finally, using these results, we were able to highlight similarities and differences with the well characterized much larger baseplate of the myophage T4.
Collapse
Affiliation(s)
- Valérie Campanacci
- Architecture et Fonction des Macromolécules Biologiques (AFMB), UMR 6098 CNRS and Universités Aix-Marseille I & II, Campus de Luminy, Case 932, Marseille Cedex 09, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Lander GC, Khayat R, Li R, Prevelige PE, Potter CS, Carragher B, Johnson JE. The P22 tail machine at subnanometer resolution reveals the architecture of an infection conduit. Structure 2009; 17:789-99. [PMID: 19523897 DOI: 10.1016/j.str.2009.04.006] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2009] [Revised: 04/07/2009] [Accepted: 04/11/2009] [Indexed: 01/03/2023]
Abstract
The portal channel is a key component in the life cycle of bacteriophages and herpesviruses. The bacteriophage P22 portal is a 1 megadalton dodecameric oligomer of gp1 that plays key roles in capsid assembly, DNA packaging, assembly of the infection machinery, and DNA ejection. The portal is the nucleation site for the assembly of 39 additional subunits generated from multiple copies of four gene products (gp4, gp10, gp9, and gp26), which together form the multifunctional tail machine. These components are organized with a combination of 12-fold (gp1, gp4), 6-fold (gp10, trimers of gp9), and 3-fold (gp26, gp9) symmetry. Here we present the 3-dimensional structures of the P22 assembly-naive portal formed from expressed subunits (gp1) and the intact tail machine purified from infectious virions. The assembly-naive portal structure exhibits a striking structural similarity to the structures of the portal proteins of SPP1 and phi29 derived from X-ray crystallography.
Collapse
Affiliation(s)
- Gabriel C Lander
- National Resource for Automated Molecular Microscopy, The Scripps Institute, La Jolla, CA 92037, USA
| | | | | | | | | | | | | |
Collapse
|
37
|
The molecular basis for the regulation of the cap-binding complex by the importins. Nat Struct Mol Biol 2009; 16:930-7. [PMID: 19668212 PMCID: PMC2782468 DOI: 10.1038/nsmb.1649] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2009] [Accepted: 07/02/2009] [Indexed: 11/23/2022]
Abstract
The binding of capped RNAs to the cap-binding complex (CBC) in the nucleus, and their dissociation from the CBC in the cytosol, represent essential steps in RNA-processing. Here we show how the nucleocytoplasmic transport proteins, importin-α and importin-β, play key roles in regulating these events. As a first step toward understanding the molecular basis for this regulation, we determined a 2.2 Å resolution x-ray structure for a CBC-importin-α complex that provides a detailed picture for how importin-α binds to the CBP80 subunit of the CBC. Through a combination of biochemical studies, x-ray crystallographic information, and small-angle scattering experiments, we then determined how importin-β binds to the CBC through its CBP20 subunit. Together, these studies enable us to propose a model describing how importin-β stimulates the dissociation of capped RNA from the CBC in the cytosol following its nuclear export.
Collapse
|
38
|
A virus DNA gate: zipping and unzipping the packed viral genome. Proc Natl Acad Sci U S A 2009; 106:8403-4. [PMID: 19451632 DOI: 10.1073/pnas.0903670106] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
39
|
Olia AS, Casjens S, Cingolani G. Structural plasticity of the phage P22 tail needle gp26 probed with xenon gas. Protein Sci 2009; 18:537-48. [PMID: 19241380 PMCID: PMC2760360 DOI: 10.1002/pro.53] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The tail needle, gp26, is a highly stable homo-trimeric fiber found in the tail apparatus of bacteriophage P22. In the mature virion, gp26 is responsible for plugging the DNA exit channel, and likely plays an important role in penetrating the host cell envelope. In this article, we have determined the 1.98 A resolution crystal structure of gp26 bound to xenon gas. The structure led us to identify a calcium and a chloride ion intimately bound at the interior of alpha-helical core, as well as seven small cavities occupied by xenon atoms. The two ions engage in buried polar interactions with gp26 side chains that provide specificity and register to gp26 helical core, thus enhancing its stability. Conversely, the distribution of xenon accessible cavities correlates well with the flexibility of the fiber observed in solution and in the crystal structure. We suggest that small internal cavities in gp26 between the helical core and the C-terminal tip allow for flexible swinging of the latter, without affecting the overall stability of the protein. The C-terminal tip may be important in scanning the bacterial surface in search of a cell-envelope penetration site, or for recognition of a yet unidentified receptor on the surface of the host.
Collapse
Affiliation(s)
- Adam S Olia
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical UniversitySyracuse, New York 13210
| | - Sherwood Casjens
- Department of Pathology, University of Utah School of MedicineSalt Lake City, Utah 84112
| | - Gino Cingolani
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical UniversitySyracuse, New York 13210,*Correspondence to: Gino Cingolani, Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, New York 13210. E-mail:
| |
Collapse
|
40
|
Forrey C, Muthukumar M. Electrostatics of capsid-induced viral RNA organization. J Chem Phys 2009. [DOI: 10.1063/1.3216550] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
41
|
A conformational switch in bacteriophage p22 portal protein primes genome injection. Mol Cell 2008; 29:376-83. [PMID: 18280242 PMCID: PMC3936403 DOI: 10.1016/j.molcel.2007.11.034] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2007] [Revised: 10/08/2007] [Accepted: 11/16/2007] [Indexed: 11/20/2022]
Abstract
Double-stranded DNA (dsDNA) viruses such as herpesviruses and bacteriophages infect by delivering their genetic material into cells, a task mediated by a DNA channel called "portal protein." We have used electron cryomicroscopy to determine the structure of bacteriophage P22 portal protein in both the procapsid and mature capsid conformations. We find that, just as the viral capsid undergoes major conformational changes during virus maturation, the portal protein switches conformation from a procapsid to a mature phage state upon binding of gp4, the factor that initiates tail assembly. This dramatic conformational change traverses the entire length of the DNA channel, from the outside of the virus to the inner shell, and erects a large dome domain directly above the DNA channel that binds dsDNA inside the capsid. We hypothesize that this conformational change primes dsDNA for injection and directly couples completion of virus morphogenesis to a new cycle of infection.
Collapse
|
42
|
Lorenzen K, Olia AS, Uetrecht C, Cingolani G, Heck AJR. Determination of stoichiometry and conformational changes in the first step of the P22 tail assembly. J Mol Biol 2008; 379:385-96. [PMID: 18448123 DOI: 10.1016/j.jmb.2008.02.017] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2007] [Revised: 02/08/2008] [Accepted: 02/11/2008] [Indexed: 11/16/2022]
Abstract
Large oligomeric portal assemblies have a central role in the life-cycles of bacteriophages and herpesviruses. The stoichiometry of in vitro assembled portal proteins has been a subject of debate for several years. The intrinsic polymorphic oligomerization of ectopically expressed portal proteins makes it possible to form rings of diverse stoichiometry (e.g., 11-mer, 12-mer, 13-mer, etc.) in solution. In this study, we have investigated the stoichiometry of the in vitro-assembled portal protein of bacteriophage P22 and characterized its association with the tail factor gp4. Using native mass spectrometry, we show for the first time that the reconstituted portal protein (assembled in vitro using a modified purification and assembly protocol) is exclusively dodecameric. Under the conditions used here, 12 copies of tail factor gp4 bind to the portal ring, in a cooperative fashion, to form a 12:12 complex of 1.050 MDa. We applied tandem mass spectrometry to the complete assembly and found an unusual dimeric dissociation pattern of gp4, suggesting a dimeric sub-organization of gp4 when assembled with the portal ring. Furthermore, native and ion mobility mass spectrometry reveal a major conformational change in the portal upon binding of gp4. We propose that the gp4-induced conformational change in the portal ring initiates a cascade of events assisting in the stabilization of newly filled P22 particles, which marks the end of phage morphogenesis.
Collapse
Affiliation(s)
- Kristina Lorenzen
- Biomolecular Mass Spectrometry and Proteomics Group, Bijvoet Center for Biomolecular Research, Utrecht Institute for Chemistry, Utrecht University, Sorbonnelaan 16, 3584 CA Utrecht, The Netherlands
| | | | | | | | | |
Collapse
|
43
|
Mitrousis G, Olia AS, Walker-Kopp N, Cingolani G. Molecular basis for the recognition of snurportin 1 by importin beta. J Biol Chem 2008; 283:7877-84. [PMID: 18187419 DOI: 10.1074/jbc.m709093200] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The nuclear import of uridine-rich ribonucleoproteins is mediated by the transport adaptor snurportin 1 (SNP1). Similar to importin alpha, SNP1 uses an N-terminal importin beta binding (sIBB) domain to recruit the receptor importin beta and gain access to the nucleus. In this study, we demonstrate that the sIBB domain has a bipartite nature, which contains two distinct binding determinants for importin beta. The first determinant spans residues 25-65 and includes the previously identified importin alpha IBB (alphaIBB) region of homology. The second binding determinant encompasses residues 1-24 and resembles region 1011-1035 of the nucleoporin 153 (Nup153). The two binding determinants synergize within the sIBB domain to confer a low nanomolar binding affinity for importin beta (K(d) approximately 2 nm) in an interaction that, in vitro, is displaced by RanGTP. We propose that in vivo the synergy of Nup153 and nuclear RanGTP promotes translocation of uridine-rich ribonucleoproteins into the nucleus.
Collapse
Affiliation(s)
- Gregory Mitrousis
- Department of Biochemistry and Molecular Biology, State University of New York (SUNY) Upstate Medical University, Syracuse, New York 13210, USA
| | | | | | | |
Collapse
|
44
|
Okhrimenko O, Jelesarov I. A survey of the year 2006 literature on applications of isothermal titration calorimetry. J Mol Recognit 2008; 21:1-19. [DOI: 10.1002/jmr.859] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
45
|
Bhardwaj A, Olia AS, Walker-Kopp N, Cingolani G. Domain organization and polarity of tail needle GP26 in the portal vertex structure of bacteriophage P22. J Mol Biol 2007; 371:374-87. [PMID: 17574574 DOI: 10.1016/j.jmb.2007.05.051] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2007] [Revised: 05/11/2007] [Accepted: 05/17/2007] [Indexed: 10/23/2022]
Abstract
The attachment of tailed bacteriophages to the host cell wall as well as the penetration and injection of the viral genome into the host is mediated by the virion tail complex. In phage P22, a member of the Podoviridae family that infects Salmonella enterica, the tail contains an approximately 220 A elongated protein needle, previously identified as tail accessory factor gp26. Together with tail factors gp4 and gp10, gp26 is critical to close the portal protein channel and retain the viral DNA inside the capsid. By virtue of its topology and position in the virion, the tail needle gp26 is thought to function as a penetrating device to perforate the Salmonella cell wall. Here, we define the domain organization of gp26, characterize the structural determinants for its stability, and define the polarity of the gp26 assembly into the phage portal vertex structure. We have found that the N-terminal 27 residues of gp26 form a functional domain that, although not required for gp26 trimerization and overall stability, is essential for the correct attachment to gp10, which is thought to plug the portal vertex structure. The region downstream of domain I, domain II, folds into helical core, which exhibits four trimerization octad repeats with consensus Ile-xx-Leu-xxx-Val/Tyr. We demonstrate that in vitro, domain II represents the main self-assembling, highly stable trimerization core of gp26, which retains a folded conformation both in an anhydrous environment and in the presence of 10% SDS. The C terminus of gp26, immediately downstream of domain II, contains a beta-sheet-rich region, domain III, and a short coiled coil, domain IV, which, although not required for gp26 trimerization, enhance its thermodynamic stability. We propose that domains III and IV of the tail needle form the tip utilized by the phage to penetrate the host cell wall.
Collapse
Affiliation(s)
- Anshul Bhardwaj
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, 750, E. Adams Street, Syracuse, NY 13210, USA
| | | | | | | |
Collapse
|