1
|
Lyonnais S, Sadiq SK, Lorca-Oró C, Dufau L, Nieto-Marquez S, Escribà T, Gabrielli N, Tan X, Ouizougun-Oubari M, Okoronkwo J, Reboud-Ravaux M, Gatell JM, Marquet R, Paillart JC, Meyerhans A, Tisné C, Gorelick RJ, Mirambeau G. The HIV-1 Nucleocapsid Regulates Its Own Condensation by Phase-Separated Activity-Enhancing Sequestration of the Viral Protease during Maturation. Viruses 2021; 13:v13112312. [PMID: 34835118 PMCID: PMC8625067 DOI: 10.3390/v13112312] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/09/2021] [Accepted: 11/11/2021] [Indexed: 02/07/2023] Open
Abstract
A growing number of studies indicate that mRNAs and long ncRNAs can affect protein populations by assembling dynamic ribonucleoprotein (RNP) granules. These phase-separated molecular ‘sponges’, stabilized by quinary (transient and weak) interactions, control proteins involved in numerous biological functions. Retroviruses such as HIV-1 form by self-assembly when their genomic RNA (gRNA) traps Gag and GagPol polyprotein precursors. Infectivity requires extracellular budding of the particle followed by maturation, an ordered processing of ∼2400 Gag and ∼120 GagPol by the viral protease (PR). This leads to a condensed gRNA-NCp7 nucleocapsid and a CAp24-self-assembled capsid surrounding the RNP. The choreography by which all of these components dynamically interact during virus maturation is one of the missing milestones to fully depict the HIV life cycle. Here, we describe how HIV-1 has evolved a dynamic RNP granule with successive weak–strong–moderate quinary NC-gRNA networks during the sequential processing of the GagNC domain. We also reveal two palindromic RNA-binding triads on NC, KxxFxxQ and QxxFxxK, that provide quinary NC-gRNA interactions. Consequently, the nucleocapsid complex appears properly aggregated for capsid reassembly and reverse transcription, mandatory processes for viral infectivity. We show that PR is sequestered within this RNP and drives its maturation/condensation within minutes, this process being most effective at the end of budding. We anticipate such findings will stimulate further investigations of quinary interactions and emergent mechanisms in crowded environments throughout the wide and growing array of RNP granules.
Collapse
Affiliation(s)
- Sébastien Lyonnais
- Infectious Disease & AIDS Research Unit, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Villaroel 170, 08036 Barcelona, Spain; (C.L.-O.); (S.N.-M.); (T.E.); (N.G.); (X.T.); (M.O.-O.); (J.O.); (J.M.G.)
- Centre d’Etudes des Maladies Infectieuses et Pharmacologie Anti-Infectieuse (CEMIPAI), CNRS UAR 3725, Université de Montpellier, 1919 Route de Mende, CEDEX 05, 34293 Montpellier, France
- Correspondence: (S.L.); (S.K.S.); (G.M.)
| | - S. Kashif Sadiq
- Infection Biology Laboratory, Department of Experimental and Health Sciences (DCEXS), Universitat Pompeu Fabra, Carrer Doctor Aiguader 88, 08003 Barcelona, Spain;
- Molecular and Cellular Modeling Group, Heidelberg Institute for Theoretical Studies (HITS), Schloss-Wolfsbrunnenweg 35, 69118 Heidelberg, Germany
- Genome Biology Unit, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany
- Correspondence: (S.L.); (S.K.S.); (G.M.)
| | - Cristina Lorca-Oró
- Infectious Disease & AIDS Research Unit, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Villaroel 170, 08036 Barcelona, Spain; (C.L.-O.); (S.N.-M.); (T.E.); (N.G.); (X.T.); (M.O.-O.); (J.O.); (J.M.G.)
| | - Laure Dufau
- Biological Adaptation and Ageing (B2A), CNRS UMR 8256 & INSERM ERL U1164, Institut de Biologie Paris-Seine (IBPS), Faculté des Sciences et d’Ingénierie (FSI), Sorbonne Université, 7 Quai St Bernard, CEDEX 05, 75252 Paris, France; (L.D.); (M.R.-R.)
| | - Sara Nieto-Marquez
- Infectious Disease & AIDS Research Unit, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Villaroel 170, 08036 Barcelona, Spain; (C.L.-O.); (S.N.-M.); (T.E.); (N.G.); (X.T.); (M.O.-O.); (J.O.); (J.M.G.)
| | - Tuixent Escribà
- Infectious Disease & AIDS Research Unit, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Villaroel 170, 08036 Barcelona, Spain; (C.L.-O.); (S.N.-M.); (T.E.); (N.G.); (X.T.); (M.O.-O.); (J.O.); (J.M.G.)
| | - Natalia Gabrielli
- Infectious Disease & AIDS Research Unit, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Villaroel 170, 08036 Barcelona, Spain; (C.L.-O.); (S.N.-M.); (T.E.); (N.G.); (X.T.); (M.O.-O.); (J.O.); (J.M.G.)
| | - Xiao Tan
- Infectious Disease & AIDS Research Unit, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Villaroel 170, 08036 Barcelona, Spain; (C.L.-O.); (S.N.-M.); (T.E.); (N.G.); (X.T.); (M.O.-O.); (J.O.); (J.M.G.)
- Biological Adaptation and Ageing (B2A), CNRS UMR 8256 & INSERM ERL U1164, Institut de Biologie Paris-Seine (IBPS), Faculté des Sciences et d’Ingénierie (FSI), Sorbonne Université, 7 Quai St Bernard, CEDEX 05, 75252 Paris, France; (L.D.); (M.R.-R.)
| | - Mohamed Ouizougun-Oubari
- Infectious Disease & AIDS Research Unit, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Villaroel 170, 08036 Barcelona, Spain; (C.L.-O.); (S.N.-M.); (T.E.); (N.G.); (X.T.); (M.O.-O.); (J.O.); (J.M.G.)
| | - Josephine Okoronkwo
- Infectious Disease & AIDS Research Unit, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Villaroel 170, 08036 Barcelona, Spain; (C.L.-O.); (S.N.-M.); (T.E.); (N.G.); (X.T.); (M.O.-O.); (J.O.); (J.M.G.)
| | - Michèle Reboud-Ravaux
- Biological Adaptation and Ageing (B2A), CNRS UMR 8256 & INSERM ERL U1164, Institut de Biologie Paris-Seine (IBPS), Faculté des Sciences et d’Ingénierie (FSI), Sorbonne Université, 7 Quai St Bernard, CEDEX 05, 75252 Paris, France; (L.D.); (M.R.-R.)
| | - José Maria Gatell
- Infectious Disease & AIDS Research Unit, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Villaroel 170, 08036 Barcelona, Spain; (C.L.-O.); (S.N.-M.); (T.E.); (N.G.); (X.T.); (M.O.-O.); (J.O.); (J.M.G.)
- Facultat de Medicina y Ciencias de la Salud, Universitat de Barcelona, Carrer de Casanova 143, 08036 Barcelona, Spain
| | - Roland Marquet
- Architecture et Réactivité de l’ARN, CNRS UPR 9002, Université de Strasbourg, 2 Allée Conrad Roentgen, 67000 Strasbourg, France; (R.M.); (J.-C.P.)
| | - Jean-Christophe Paillart
- Architecture et Réactivité de l’ARN, CNRS UPR 9002, Université de Strasbourg, 2 Allée Conrad Roentgen, 67000 Strasbourg, France; (R.M.); (J.-C.P.)
| | - Andreas Meyerhans
- Infection Biology Laboratory, Department of Experimental and Health Sciences (DCEXS), Universitat Pompeu Fabra, Carrer Doctor Aiguader 88, 08003 Barcelona, Spain;
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Passeig de Lluís Companys 23, 08010 Barcelona, Spain
| | - Carine Tisné
- Expression Génétique Microbienne, CNRS UMR 8261, Institut de Biologie Physico-Chimique (IBPC), Université de Paris, 13 Rue Pierre et Marie Curie, 75005 Paris, France;
| | - Robert J. Gorelick
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21701, USA;
| | - Gilles Mirambeau
- Infectious Disease & AIDS Research Unit, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Villaroel 170, 08036 Barcelona, Spain; (C.L.-O.); (S.N.-M.); (T.E.); (N.G.); (X.T.); (M.O.-O.); (J.O.); (J.M.G.)
- Biologie Intégrative des Organismes Marins (BIOM), CNRS UMR 7232, Observatoire Océanologique de Banyuls (OOB), Faculté des Sciences et d’Ingénierie (FSI), Sorbonne Université, 1 Avenue Pierre Fabre, 66650 Banyuls-sur-Mer, France
- Correspondence: (S.L.); (S.K.S.); (G.M.)
| |
Collapse
|
2
|
Jiang K, Humbert N, K K S, Rouzina I, Mely Y, Westerlund F. The HIV-1 nucleocapsid chaperone protein forms locally compacted globules on long double-stranded DNA. Nucleic Acids Res 2021; 49:4550-4563. [PMID: 33872352 PMCID: PMC8096146 DOI: 10.1093/nar/gkab236] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 03/09/2021] [Accepted: 03/22/2021] [Indexed: 01/14/2023] Open
Abstract
The nucleocapsid (NC) protein plays key roles in Human Immunodeficiency Virus 1 (HIV-1) replication, notably by condensing and protecting the viral RNA genome and by chaperoning its reverse transcription into double-stranded DNA (dsDNA). Recent findings suggest that integration of viral dsDNA into the host genome, and hence productive infection, is linked to a small subpopulation of viral complexes where reverse transcription was completed within the intact capsid. Therefore, the synthesized dsDNA has to be tightly compacted, most likely by NC, to prevent breaking of the capsid in these complexes. To investigate NC’s ability to compact viral dsDNA, we here characterize the compaction of single dsDNA molecules under unsaturated NC binding conditions using nanofluidic channels. Compaction is shown to result from accumulation of NC at one or few compaction sites, which leads to small dsDNA condensates. NC preferentially initiates compaction at flexible regions along the dsDNA, such as AT-rich regions and DNA ends. Upon further NC binding, these condensates develop into a globular state containing the whole dsDNA molecule. These findings support NC’s role in viral dsDNA compaction within the mature HIV-1 capsid and suggest a possible scenario for the gradual dsDNA decondensation upon capsid uncoating and NC loss.
Collapse
Affiliation(s)
- Kai Jiang
- Division of Chemical Biology, Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg SE 412 96, Sweden
| | - Nicolas Humbert
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Université de Strasbourg, Faculté de Pharmacie, Illkirch F 67401, France
| | - Sriram K K
- Division of Chemical Biology, Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg SE 412 96, Sweden
| | - Ioulia Rouzina
- Department of Chemistry and Biochemistry, The Ohio State University, Center for Retroviral Research, and Center for RNA Biology, Columbus, OH 43210, USA
| | - Yves Mely
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Université de Strasbourg, Faculté de Pharmacie, Illkirch F 67401, France
| | - Fredrik Westerlund
- Division of Chemical Biology, Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg SE 412 96, Sweden
| |
Collapse
|
3
|
Nucleocapsid Protein Precursors NCp9 and NCp15 Suppress ATP-Mediated Rescue of AZT-Terminated Primers by HIV-1 Reverse Transcriptase. Antimicrob Agents Chemother 2020; 64:AAC.00958-20. [PMID: 32747359 DOI: 10.1128/aac.00958-20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 07/29/2020] [Indexed: 01/20/2023] Open
Abstract
In HIV-1, development of resistance to AZT (3'-azido-3'-deoxythymidine) is mediated by the acquisition of thymidine analogue resistance mutations (TAMs) (i.e., M41L, D67N, K70R, L210W, T215F/Y, and K219E/Q) in the viral reverse transcriptase (RT). Clinically relevant combinations of TAMs, such as M41L/T215Y or D67N/K70R/T215F/K219Q, enhance the ATP-mediated excision of AZT monophosphate (AZTMP) from the 3' end of the primer, allowing DNA synthesis to continue. Additionally, during HIV-1 maturation, the Gag polyprotein is cleaved to release a mature nucleocapsid protein (NCp7) and two intermediate precursors (NCp9 and NCp15). NC proteins interact with the viral genome and facilitate the reverse transcription process. Using wild-type and TAM-containing RTs, we showed that both NCp9 and NCp15 inhibited ATP-mediated rescue of AZTMP-terminated primers annealed to RNA templates but not DNA templates, while NCp7 had no effect on rescue activity. RNase H inactivation by introducing the active-site mutation E478Q led to the loss of the inhibitory effect shown by NCp9. NCp15 had a stimulatory effect on the RT's RNase H activity not observed with NCp7 and NCp9. However, analysis of RNase H cleavage patterns revealed that in the presence of NCp9, RNA/DNA complexes containing duplexes of 12 bp had reduced stability in comparison with those obtained in the absence of NC or with NCp7 or NCp15. These effects are expected to have a strong influence on the inhibitory action of NCp9 and NCp15 by affecting the efficiency of RNA-dependent DNA polymerization after unblocking DNA primers terminated with AZTMP and other nucleotide analogues.
Collapse
|
4
|
Annealing of ssDNA and compaction of dsDNA by the HIV-1 nucleocapsid and Gag proteins visualized using nanofluidic channels. Q Rev Biophys 2019; 52:e2. [DOI: 10.1017/s0033583518000124] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Abstract
The nucleocapsid protein NC is a crucial component in the human immunodeficiency virus type 1 life cycle. It functions both in its processed mature form and as part of the polyprotein Gag that plays a key role in the formation of new viruses. NC can protect nucleic acids (NAs) from degradation by compacting them to a dense coil. Moreover, through its NA chaperone activity, NC can also promote the most stable conformation of NAs. Here, we explore the balance between these activities for NC and Gag by confining DNA–protein complexes in nanochannels. The chaperone activity is visualized as concatemerization and circularization of long DNA via annealing of short single-stranded DNA overhangs. The first ten amino acids of NC are important for the chaperone activity that is almost completely absent for Gag. Gag condenses DNA more efficiently than mature NC, suggesting that additional residues of Gag are involved. Importantly, this is the first single DNA molecule study of full-length Gag and we reveal important differences to the truncated Δ-p6 Gag that has been used before. In addition, the study also highlights how nanochannels can be used to study reactions on ends of long single DNA molecules, which is not trivial with competing single DNA molecule techniques.
Collapse
|
5
|
Quantitative monitoring of the cytoplasmic release of NCp7 proteins from individual HIV-1 viral cores during the early steps of infection. Sci Rep 2019; 9:945. [PMID: 30700731 PMCID: PMC6353972 DOI: 10.1038/s41598-018-37150-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 11/29/2018] [Indexed: 12/15/2022] Open
Abstract
Fluorescence microscopy imaging of individual HIV-1 viruses necessitates a specific labeling of viral structures that minimally perturbs the infection process. Herein, we used HIV-1 pseudoviruses containing NCp7 fused to a tetracystein (TC) tag, labeled by a biarsenical fluorescein derivative (FlAsH) to quantitatively monitor the NCp7 protein concentration in the viral cores during the early stages of infection. Single particle imaging of individual pseudoviruses with defined ratios of TC-tagged to non tagged NCp7 proteins, together with theoretical modeling of energy transfer between FlAsH dyes, showed that the high packaging of TC-tagged proteins in the viral cores causes a strong fluorescence quenching of FlAsH and that the fluorescence intensity of individual viral complexes is an appropriate parameter to monitor changes in the amount of NCp7 molecules within the viral particles during infection. Interestingly, we observed a dramatic fluorescence increase of individual FlAsH-labeled pseudoviruses containing 100% TC-tagged NCp7 proteins in infected cells at 8 and 16 h post-infection. This effect was significantly lower for pseudoviruses expressing TC-tagged integrase. Therefore, this fluorescence increase is likely related to the cytoplasmic viral transformation and the release of NCp7 molecules from the viral complexes. This loss of quenching effect is largely reduced when reverse transcriptase is inhibited, showing that NCp7 release is connected to viral DNA synthesis. A spatial analysis further revealed that NCp7-TC release is more pronounced in the perinuclear space, where capsid disassembly is thought to be completed. Quantification of NCp7-TC content based on fluorescence quenching presented in this study evidences for the first time the cytoplasmic release of NCp7 during the remodeling of HIV-1 viral particles on their journey toward the nucleus. The developed approach can be applied to quantify dye concentrations in a wide range of nano-objects by fluorescence microscopy techniques.
Collapse
|
6
|
Rao S, Cinti A, Temzi A, Amorim R, You JC, Mouland AJ. HIV-1 NC-induced stress granule assembly and translation arrest are inhibited by the dsRNA binding protein Staufen1. RNA (NEW YORK, N.Y.) 2018; 24:219-236. [PMID: 29127210 PMCID: PMC5769749 DOI: 10.1261/rna.064618.117] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 11/08/2017] [Indexed: 06/07/2023]
Abstract
The nucleocapsid (NC) is an N-terminal protein derived from the HIV-1 Gag precursor polyprotein, pr55Gag NC possesses key functions at several pivotal stages of viral replication. For example, an interaction between NC and the host double-stranded RNA-binding protein Staufen1 was shown to regulate several steps in the viral replication cycle, such as Gag multimerization and genomic RNA encapsidation. In this work, we observed that the overexpression of NC leads to the induction of stress granule (SG) assembly. NC-mediated SG assembly was unique as it was resistant to the SG blockade imposed by the HIV-1 capsid (CA), as shown in earlier work. NC also reduced host cell mRNA translation, as judged by a puromycylation assay of de novo synthesized proteins, and this was recapitulated in polysome profile analyses. Virus production was also found to be significantly reduced. Finally, Staufen1 expression completely rescued the blockade to NC-mediated SG assembly, global mRNA translation as well as virus production. NC expression also resulted in the phosphorylation of protein kinase R (PKR) and eIF2α, and this was inhibited with Staufen1 coexpression. This work sheds light on an unexpected function of NC in host cell translation. A comprehensive understanding of the molecular mechanisms by which a fine balance of the HIV-1 structural proteins NC and CA act in concert with host proteins such as Staufen1 to modulate the host stress response will aid in the development of new antiviral therapeutics.
Collapse
Affiliation(s)
- Shringar Rao
- HIV-1 RNA Trafficking Laboratory, Lady Davis Institute at the Jewish General Hospital, Montréal, Québec, H3T 1E2, Canada
- Department of Microbiology and Immunology, McGill University, Montréal, Québec, H3A 2B4, Canada
| | - Alessandro Cinti
- HIV-1 RNA Trafficking Laboratory, Lady Davis Institute at the Jewish General Hospital, Montréal, Québec, H3T 1E2, Canada
- Department of Medicine, McGill University, Montréal, Québec, H3A 0G4, Canada
| | - Abdelkrim Temzi
- HIV-1 RNA Trafficking Laboratory, Lady Davis Institute at the Jewish General Hospital, Montréal, Québec, H3T 1E2, Canada
| | - Raquel Amorim
- HIV-1 RNA Trafficking Laboratory, Lady Davis Institute at the Jewish General Hospital, Montréal, Québec, H3T 1E2, Canada
- Department of Medicine, McGill University, Montréal, Québec, H3A 0G4, Canada
| | - Ji Chang You
- National Research Laboratory of Molecular Virology, Department of Pathology, School of Medicine, The Catholic University of Korea, Seocho-gu Banpo-dong 505, Seoul 137-701, Republic of Korea
| | - Andrew J Mouland
- HIV-1 RNA Trafficking Laboratory, Lady Davis Institute at the Jewish General Hospital, Montréal, Québec, H3T 1E2, Canada
- Department of Microbiology and Immunology, McGill University, Montréal, Québec, H3A 2B4, Canada
- Department of Medicine, McGill University, Montréal, Québec, H3A 0G4, Canada
| |
Collapse
|
7
|
Belfetmi A, Zargarian L, Tisné C, Sleiman D, Morellet N, Lescop E, Maskri O, René B, Mély Y, Fossé P, Mauffret O. Insights into the mechanisms of RNA secondary structure destabilization by the HIV-1 nucleocapsid protein. RNA (NEW YORK, N.Y.) 2016; 22:506-517. [PMID: 26826129 PMCID: PMC4793207 DOI: 10.1261/rna.054445.115] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 12/06/2015] [Indexed: 06/05/2023]
Abstract
The mature HIV-1 nucleocapsid protein NCp7 (NC) plays a key role in reverse transcription facilitating the two obligatory strand transfers. Several properties contribute to its efficient chaperon activity: preferential binding to single-stranded regions, nucleic acid aggregation, helix destabilization, and rapid dissociation from nucleic acids. However, little is known about the relationships between these different properties, which are complicated by the ability of the protein to recognize particular HIV-1 stem-loops, such as SL1, SL2, and SL3, with high affinity and without destabilizing them. These latter properties are important in the context of genome packaging, during which NC is part of the Gag precursor. We used NMR to investigate destabilization of the full-length TAR (trans activating response element) RNA by NC, which is involved in the first strand transfer step of reverse transcription. NC was used at a low protein:nucleotide (nt) ratio of 1:59 in these experiments. NMR data for the imino protons of TAR identified most of the base pairs destabilized by NC. These base pairs were adjacent to the loops in the upper part of the TAR hairpin rather than randomly distributed. Gel retardation assays showed that conversion from the initial TAR-cTAR complex to the fully annealed form occurred much more slowly at the 1:59 ratio than at the higher ratios classically used. Nevertheless, NC significantly accelerated the formation of the initial complex at a ratio of 1:59.
Collapse
Affiliation(s)
- Anissa Belfetmi
- LBPA, ENS de Cachan, CNRS, Université Paris-Saclay, 94235 Cachan Cedex, France
| | - Loussiné Zargarian
- LBPA, ENS de Cachan, CNRS, Université Paris-Saclay, 94235 Cachan Cedex, France
| | - Carine Tisné
- Laboratoire de Cristallographie et RMN biologiques, Université Paris Descartes, CNRS UMR 8015, 75006 Paris Cedex, France
| | - Dona Sleiman
- Laboratoire de Cristallographie et RMN biologiques, Université Paris Descartes, CNRS UMR 8015, 75006 Paris Cedex, France
| | - Nelly Morellet
- Centre de Recherches de Gif, Institut de Chimie des Substances Naturelles, CNRS UPR 2301, 91190 Gif sur Yvette Cedex, France
| | - Ewen Lescop
- Centre de Recherches de Gif, Institut de Chimie des Substances Naturelles, CNRS UPR 2301, 91190 Gif sur Yvette Cedex, France
| | - Ouerdia Maskri
- LBPA, ENS de Cachan, CNRS, Université Paris-Saclay, 94235 Cachan Cedex, France
| | - Brigitte René
- LBPA, ENS de Cachan, CNRS, Université Paris-Saclay, 94235 Cachan Cedex, France
| | - Yves Mély
- Laboratoire de Biophotonique et Pharmacologie, CNRS UMR 7213, Faculté de Pharmacie, Université de Strasbourg, 67401 Illkirch Cedex, France
| | - Philippe Fossé
- LBPA, ENS de Cachan, CNRS, Université Paris-Saclay, 94235 Cachan Cedex, France
| | - Olivier Mauffret
- LBPA, ENS de Cachan, CNRS, Université Paris-Saclay, 94235 Cachan Cedex, France
| |
Collapse
|
8
|
Mori M, Kovalenko L, Lyonnais S, Antaki D, Torbett BE, Botta M, Mirambeau G, Mély Y. Nucleocapsid Protein: A Desirable Target for Future Therapies Against HIV-1. Curr Top Microbiol Immunol 2015; 389:53-92. [PMID: 25749978 PMCID: PMC7122173 DOI: 10.1007/82_2015_433] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The currently available anti-HIV-1 therapeutics is highly beneficial to infected patients. However, clinical failures occur as a result of the ability of HIV-1 to rapidly mutate. One approach to overcome drug resistance is to target HIV-1 proteins that are highly conserved among phylogenetically distant viral strains and currently not targeted by available therapies. In this respect, the nucleocapsid (NC) protein, a zinc finger protein, is particularly attractive, as it is highly conserved and plays a central role in virus replication, mainly by interacting with nucleic acids. The compelling rationale for considering NC as a viable drug target is illustrated by the fact that point mutants of this protein lead to noninfectious viruses and by the inability to select viruses resistant to a first generation of anti-NC drugs. In our review, we discuss the most relevant properties and functions of NC, as well as recent developments of small molecules targeting NC. Zinc ejectors show strong antiviral activity, but are endowed with a low therapeutic index due to their lack of specificity, which has resulted in toxicity. Currently, they are mainly being investigated for use as topical microbicides. Greater specificity may be achieved by using non-covalent NC inhibitors (NCIs) targeting the hydrophobic platform at the top of the zinc fingers or key nucleic acid partners of NC. Within the last few years, innovative methodologies have been developed to identify NCIs. Though the antiviral activity of the identified NCIs needs still to be improved, these compounds strongly support the druggability of NC and pave the way for future structure-based design and optimization of efficient NCIs.
Collapse
Affiliation(s)
- Mattia Mori
- Dipartimento di Biotecnologie Chimica e Farmacia, Università degli Studi di Siena, via A. Moro 2, 53100, Siena, Italy
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Nishida Y, Pachulska-Wieczorek K, Błaszczyk L, Saha A, Gumna J, Garfinkel DJ, Purzycka KJ. Ty1 retrovirus-like element Gag contains overlapping restriction factor and nucleic acid chaperone functions. Nucleic Acids Res 2015; 43:7414-31. [PMID: 26160887 PMCID: PMC4551931 DOI: 10.1093/nar/gkv695] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 06/26/2015] [Indexed: 12/13/2022] Open
Abstract
Ty1 Gag comprises the capsid of virus-like particles and provides nucleic acid chaperone (NAC) functions during retrotransposition in budding yeast. A subgenomic Ty1 mRNA encodes a truncated Gag protein (p22) that is cleaved by Ty1 protease to form p18. p22/p18 strongly inhibits transposition and can be considered an element-encoded restriction factor. Here, we show that only p22 and its short derivatives restrict Ty1 mobility whereas other regions of GAG inhibit mobility weakly if at all. Mutational analyses suggest that p22/p18 is synthesized from either of two closely spaced AUG codons. Interestingly, AUG1p18 and AUG2p18 proteins display different properties, even though both contain a region crucial for RNA binding and NAC activity. AUG1p18 shows highly reduced NAC activity but specific binding to Ty1 RNA, whereas AUG2p18 shows the converse behavior. p22/p18 affects RNA encapsidation and a mutant derivative defective for RNA binding inhibits the RNA chaperone activity of the C-terminal region (CTR) of Gag-p45. Moreover, affinity pulldowns show that p18 and the CTR interact. These results support the idea that one aspect of Ty1 restriction involves inhibition of Gag-p45 NAC functions by p22/p18-Gag interactions.
Collapse
Affiliation(s)
- Yuri Nishida
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | - Katarzyna Pachulska-Wieczorek
- Department of Structural Chemistry and Biology of Nucleic Acids, Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznan, Poland
| | - Leszek Błaszczyk
- Institute of Computing Science, Poznan University of Technology, 60-965 Poznan, Poland
| | - Agniva Saha
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | - Julita Gumna
- Department of Structural Chemistry and Biology of Nucleic Acids, Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznan, Poland
| | - David J Garfinkel
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | - Katarzyna J Purzycka
- Department of Structural Chemistry and Biology of Nucleic Acids, Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznan, Poland
| |
Collapse
|
10
|
Anton H, Taha N, Boutant E, Richert L, Khatter H, Klaholz B, Rondé P, Réal E, de Rocquigny H, Mély Y. Investigating the cellular distribution and interactions of HIV-1 nucleocapsid protein by quantitative fluorescence microscopy. PLoS One 2015; 10:e0116921. [PMID: 25723396 PMCID: PMC4344342 DOI: 10.1371/journal.pone.0116921] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 12/16/2014] [Indexed: 12/12/2022] Open
Abstract
The nucleocapsid protein (NCp7) of the Human immunodeficiency virus type 1 (HIV-1) is a small basic protein containing two zinc fingers. About 2000 NCp7 molecules coat the genomic RNA in the HIV-1 virion. After infection of a target cell, the viral core enters into the cytoplasm, where NCp7 chaperones the reverse transcription of the genomic RNA into the proviral DNA. As a consequence of their much lower affinity for double-stranded DNA as compared to single-stranded RNAs, NCp7 molecules are thought to be released in the cytoplasm and the nucleus of infected cells in the late steps of reverse transcription. Yet, little is known on the cellular distribution of the released NCp7 molecules and on their possible interactions with cell components. Hence, the aim of this study was to identify potential cellular partners of NCp7 and to monitor its intracellular distribution and dynamics by means of confocal fluorescence microscopy, fluorescence lifetime imaging microscopy, fluorescence recovery after photobleaching, fluorescence correlation and cross-correlation spectroscopy, and raster imaging correlation spectroscopy. HeLa cells transfected with eGFP-labeled NCp7 were used as a model system. We found that NCp7-eGFP localizes mainly in the cytoplasm and the nucleoli, where it binds to cellular RNAs, and notably to ribosomal RNAs which are the most abundant. The binding of NCp7 to ribosomes was further substantiated by the intracellular co-diffusion of NCp7 with the ribosomal protein 26, a component of the large ribosomal subunit. Finally, gradient centrifugation experiments demonstrate a direct association of NCp7 with purified 80S ribosomes. Thus, our data suggest that NCp7 molecules released in newly infected cells may primarily bind to ribosomes, where they may exert a new potential role in HIV-1 infection.
Collapse
Affiliation(s)
- Halina Anton
- Laboratoire de Biophotonique et Pharmacologie, UMR 7213 CNRS, Université de Strasbourg, Faculté de Pharmacie, Illkirch, France
- * E-mail: (YM); (HA)
| | - Nedal Taha
- Laboratoire de Biophotonique et Pharmacologie, UMR 7213 CNRS, Université de Strasbourg, Faculté de Pharmacie, Illkirch, France
| | - Emmanuel Boutant
- Laboratoire de Biophotonique et Pharmacologie, UMR 7213 CNRS, Université de Strasbourg, Faculté de Pharmacie, Illkirch, France
| | - Ludovic Richert
- Laboratoire de Biophotonique et Pharmacologie, UMR 7213 CNRS, Université de Strasbourg, Faculté de Pharmacie, Illkirch, France
| | - Heena Khatter
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, UMR 7104 CNRS, U964 Inserm, Université de Strasbourg, Illkirch, France
| | - Bruno Klaholz
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, UMR 7104 CNRS, U964 Inserm, Université de Strasbourg, Illkirch, France
| | - Philippe Rondé
- Laboratoire de Biophotonique et Pharmacologie, UMR 7213 CNRS, Université de Strasbourg, Faculté de Pharmacie, Illkirch, France
| | - Eléonore Réal
- Laboratoire de Biophotonique et Pharmacologie, UMR 7213 CNRS, Université de Strasbourg, Faculté de Pharmacie, Illkirch, France
| | - Hugues de Rocquigny
- Laboratoire de Biophotonique et Pharmacologie, UMR 7213 CNRS, Université de Strasbourg, Faculté de Pharmacie, Illkirch, France
| | - Yves Mély
- Laboratoire de Biophotonique et Pharmacologie, UMR 7213 CNRS, Université de Strasbourg, Faculté de Pharmacie, Illkirch, France
- * E-mail: (YM); (HA)
| |
Collapse
|
11
|
Potempa M, Lee SK, Wolfenden R, Swanstrom R. The triple threat of HIV-1 protease inhibitors. Curr Top Microbiol Immunol 2015; 389:203-41. [PMID: 25778681 DOI: 10.1007/82_2015_438] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Newly released human immunodeficiency virus type 1 (HIV-1) particles obligatorily undergo a maturation process to become infectious. The HIV-1 protease (PR) initiates this step, catalyzing the cleavage of the Gag and Gag-Pro-Pol structural polyproteins. Proper organization of the mature virus core requires that cleavage of these polyprotein substrates proceeds in a highly regulated, specific series of events. The vital role the HIV-1 PR plays in the viral life cycle has made it an extremely attractive target for inhibition and has accordingly fostered the development of a number of highly potent substrate-analog inhibitors. Though the PR inhibitors (PIs) inhibit only the HIV-1 PR, their effects manifest at multiple different stages in the life cycle due to the critical importance of the PR in preparing the virus for these subsequent events. Effectively, PIs masquerade as entry inhibitors, reverse transcription inhibitors, and potentially even inhibitors of post-reverse transcription steps. In this chapter, we review the triple threat of PIs: the intermolecular cooperativity in the form of a cooperative dose-response for inhibition in which the apparent potency increases with increasing inhibition; the pleiotropic effects of HIV-1 PR inhibition on entry, reverse transcription, and post-reverse transcription steps; and their potency as transition state analogs that have the potential for further improvement that could lead to an inability of the virus to evolve resistance in the context of single drug therapy.
Collapse
Affiliation(s)
- Marc Potempa
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC, 27599, USA
| | | | | | | |
Collapse
|
12
|
Wu T, Gorelick RJ, Levin JG. Selection of fully processed HIV-1 nucleocapsid protein is required for optimal nucleic acid chaperone activity in reverse transcription. Virus Res 2014; 193:52-64. [PMID: 24954787 PMCID: PMC4252486 DOI: 10.1016/j.virusres.2014.06.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Revised: 06/09/2014] [Accepted: 06/10/2014] [Indexed: 12/14/2022]
Abstract
The mature HIV-1 nucleocapsid protein (NCp7) is generated by sequential proteolytic cleavage of precursor proteins containing additional C-terminal peptides: NCp15 (NCp7-spacer peptide 2 (SP2)-p6); and NCp9 (NCp7-SP2). Here, we compare the nucleic acid chaperone activities of the three proteins, using reconstituted systems that model the annealing and elongation steps in tRNA(Lys3)-primed (-) strong-stop DNA synthesis and subsequent minus-strand transfer. The maximum levels of annealing are similar for all of the proteins, but there are important differences in their ability to facilitate reverse transcriptase (RT)-catalyzed DNA extension. Thus, at low concentrations, NCp9 has the greatest activity, but with increasing concentrations, DNA synthesis is significantly reduced. This finding reflects NCp9's strong nucleic acid binding affinity (associated with the highly basic SP2 domain) as well as its slow dissociation kinetics, which together limit the ability of RT to traverse the nucleic acid template. NCp15 has the poorest activity of the three proteins due to its acidic p6 domain. Indeed, mutants with alanine substitutions for the acidic residues in p6 have improved chaperone function. Collectively, these data can be correlated with the known biological properties of NCp9 and NCp15 mutant virions and help to explain why mature NC has evolved as the critical cofactor for efficient virus replication and long-term viral fitness.
Collapse
Affiliation(s)
- Tiyun Wu
- Section on Viral Gene Regulation, Program in Genomics of Differentiation, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-2780, USA
| | - Robert J Gorelick
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702-1201, USA
| | - Judith G Levin
- Section on Viral Gene Regulation, Program in Genomics of Differentiation, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-2780, USA.
| |
Collapse
|
13
|
Zargarian L, Tisné C, Barraud P, Xu X, Morellet N, René B, Mély Y, Fossé P, Mauffret O. Dynamics of linker residues modulate the nucleic acid binding properties of the HIV-1 nucleocapsid protein zinc fingers. PLoS One 2014; 9:e102150. [PMID: 25029439 PMCID: PMC4100767 DOI: 10.1371/journal.pone.0102150] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Accepted: 06/16/2014] [Indexed: 01/20/2023] Open
Abstract
The HIV-1 nucleocapsid protein (NC) is a small basic protein containing two zinc fingers (ZF) separated by a short linker. It is involved in several steps of the replication cycle and acts as a nucleic acid chaperone protein in facilitating nucleic acid strand transfers occurring during reverse transcription. Recent analysis of three-dimensional structures of NC-nucleic acids complexes established a new property: the unpaired guanines targeted by NC are more often inserted in the C-terminal zinc finger (ZF2) than in the N-terminal zinc finger (ZF1). Although previous NMR dynamic studies were performed with NC, the dynamic behavior of the linker residues connecting the two ZF domains remains unclear. This prompted us to investigate the dynamic behavior of the linker residues. Here, we collected 15N NMR relaxation data and used for the first time data at several fields to probe the protein dynamics. The analysis at two fields allows us to detect a slow motion occurring between the two domains around a hinge located in the linker at the G35 position. However, the amplitude of motion appears limited in our conditions. In addition, we showed that the neighboring linker residues R29, A30, P31, R32, K33 displayed restricted motion and numerous contacts with residues of ZF1. Our results are fully consistent with a model in which the ZF1-linker contacts prevent the ZF1 domain to interact with unpaired guanines, whereas the ZF2 domain is more accessible and competent to interact with unpaired guanines. In contrast, ZF1 with its large hydrophobic plateau is able to destabilize the double-stranded regions adjacent to the guanines bound by ZF2. The linker residues and the internal dynamics of NC regulate therefore the different functions of the two zinc fingers that are required for an optimal chaperone activity.
Collapse
Affiliation(s)
- Loussiné Zargarian
- Laboratoire de Biologie et Pharmacologie Appliquée, Ecole Normale Supérieure de Cachan, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 8113, Cachan, France
| | - Carine Tisné
- Laboratoire de Cristallographie et RMN Biologiques, Université Paris Descartes, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 8015, Paris, France
| | - Pierre Barraud
- Laboratoire de Cristallographie et RMN Biologiques, Université Paris Descartes, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 8015, Paris, France
| | - Xiaoqian Xu
- Laboratoire de Biologie et Pharmacologie Appliquée, Ecole Normale Supérieure de Cachan, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 8113, Cachan, France
- Department of Life Sciences, East China Normal University, Shanghai, People's Republic of China
| | - Nelly Morellet
- Centre de Recherches de Gif, Institut de Chimie des Substances Naturelles, Centre National de la Recherche Scientifique, Gif sur Yvette, France
| | - Brigitte René
- Laboratoire de Biologie et Pharmacologie Appliquée, Ecole Normale Supérieure de Cachan, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 8113, Cachan, France
| | - Yves Mély
- Laboratoire de Biophotonique et Pharmacologie, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7213, Faculté de Pharmacie, Université de Strasbourg, Illkirch, France
| | - Philippe Fossé
- Laboratoire de Biologie et Pharmacologie Appliquée, Ecole Normale Supérieure de Cachan, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 8113, Cachan, France
| | - Olivier Mauffret
- Laboratoire de Biologie et Pharmacologie Appliquée, Ecole Normale Supérieure de Cachan, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 8113, Cachan, France
- * E-mail:
| |
Collapse
|
14
|
Pachulska-Wieczorek K, Stefaniak AK, Purzycka KJ. Similarities and differences in the nucleic acid chaperone activity of HIV-2 and HIV-1 nucleocapsid proteins in vitro. Retrovirology 2014; 11:54. [PMID: 24992971 PMCID: PMC4227088 DOI: 10.1186/1742-4690-11-54] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Accepted: 06/23/2014] [Indexed: 01/22/2023] Open
Abstract
Background The nucleocapsid domain of Gag and mature nucleocapsid protein (NC) act as nucleic acid chaperones and facilitate folding of nucleic acids at critical steps of retroviral replication cycle. The basic N-terminus of HIV-1 NC protein was shown most important for the chaperone activity. The HIV-2 NC (NCp8) and HIV-1 NC (NCp7) proteins possess two highly conserved zinc fingers, flanked by basic residues. However, the NCp8 N-terminal domain is significantly shorter and contains less positively charged residues. This study characterizes previously unknown, nucleic acid chaperone activity of the HIV-2 NC protein. Results We have comparatively investigated the in vitro nucleic acid chaperone properties of the HIV-2 and HIV-1 NC proteins. Using substrates derived from the HIV-1 and HIV-2 genomes, we determined the ability of both proteins to chaperone nucleic acid aggregation, annealing and strand exchange in duplex structures. Both NC proteins displayed comparable, high annealing activity of HIV-1 TAR DNA and its complementary nucleic acid. Interesting differences between the two NC proteins were discovered when longer HIV substrates, particularly those derived from the HIV-2 genome, were used in chaperone assays. In contrast to NCp7, NCp8 weakly facilitates annealing of HIV-2 TAR RNA to its complementary TAR (−) DNA. NCp8 is also unable to efficiently stimulate tRNALys3 annealing to its respective HIV-2 PBS motif. Using truncated NCp8 peptide, we demonstrated that despite the fact that the N-terminus of NCp8 differs from that of NCp7, this domain is essential for NCp8 activity. Conclusion Our data demonstrate that the HIV-2 NC protein displays reduced nucleic acid chaperone activity compared to that of HIV-1 NC. We found that NCp8 activity is limited by substrate length and stability to a greater degree than that of NCp7. This is especially interesting in light of the fact that the HIV-2 5′UTR is more structured than that of HIV-1. The reduced chaperone activity observed with NCp8 may influence the efficiency of reverse transcription and other key steps of the HIV-2 replication cycle.
Collapse
|
15
|
Retrospective on the all-in-one retroviral nucleocapsid protein. Virus Res 2014; 193:2-15. [PMID: 24907482 PMCID: PMC7114435 DOI: 10.1016/j.virusres.2014.05.011] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Revised: 05/11/2014] [Accepted: 05/11/2014] [Indexed: 01/08/2023]
Abstract
This retrospective reviews 30 years of research on the retroviral nucleocapsid protein (NC) focusing on HIV-1 NC. Originally considered as a non-specific nucleic-acid binding protein, NC has seminal functions in virus replication. Indeed NC turns out to be a all-in-one viral protein that chaperones viral DNA synthesis and integration, and virus formation. As a chaperone NC provides assistance to genetic recombination thus allowing the virus to escape the immune response and antiretroviral therapies against HIV-1.
This review aims at briefly presenting a retrospect on the retroviral nucleocapsid protein (NC), from an unspecific nucleic acid binding protein (NABP) to an all-in-one viral protein with multiple key functions in the early and late phases of the retrovirus replication cycle, notably reverse transcription of the genomic RNA and viral DNA integration into the host genome, and selection of the genomic RNA together with the initial steps of virus morphogenesis. In this context we will discuss the notion that NC protein has a flexible conformation and is thus a member of the growing family of intrinsically disordered proteins (IDPs) where disorder may account, at least in part, for its function as a nucleic acid (NA) chaperone and possibly as a protein chaperone vis-à-vis the viral DNA polymerase during reverse transcription. Lastly, we will briefly review the development of new anti-retroviral/AIDS compounds targeting HIV-1 NC because it represents an ideal target due to its multiple roles in the early and late phases of virus replication and its high degree of conservation.
Collapse
|
16
|
Wang W, Naiyer N, Mitra M, Li J, Williams MC, Rouzina I, Gorelick RJ, Wu Z, Musier-Forsyth K. Distinct nucleic acid interaction properties of HIV-1 nucleocapsid protein precursor NCp15 explain reduced viral infectivity. Nucleic Acids Res 2014; 42:7145-59. [PMID: 24813443 PMCID: PMC4066767 DOI: 10.1093/nar/gku335] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
During human immunodeficiency virus type 1 (HIV-1) maturation, three different forms of nucleocapsid (NC) protein—NCp15 (p9 + p6), NCp9 (p7 + SP2) and NCp7—appear successively. A mutant virus expressing NCp15 shows greatly reduced infectivity. Mature NCp7 is a chaperone protein that facilitates remodeling of nucleic acids (NAs) during reverse transcription. To understand the strict requirement for NCp15 processing, we compared the chaperone function of the three forms of NC. NCp15 anneals tRNA to the primer-binding site at a similar rate as NCp7, whereas NCp9 is the most efficient annealing protein. Assays to measure NA destabilization show a similar trend. Dynamic light scattering studies reveal that NCp15 forms much smaller aggregates relative to those formed by NCp7 and NCp9. Nuclear magnetic resonance studies suggest that the acidic p6 domain of HIV-1 NCp15 folds back and interacts with the basic zinc fingers. Neutralizing the acidic residues in p6 improves the annealing and aggregation activity of NCp15 to the level of NCp9 and increases the protein–NA aggregate size. Slower NCp15 dissociation kinetics is observed by single-molecule DNA stretching, consistent with the formation of electrostatic inter-protein contacts, which likely contribute to the distinct aggregate morphology, irregular HIV-1 core formation and non-infectious virus.
Collapse
Affiliation(s)
- Wei Wang
- Department of Chemistry and Biochemistry, Center for Retrovirus Research and Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA
| | - Nada Naiyer
- Department of Chemistry and Biochemistry, Center for Retrovirus Research and Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA
| | - Mithun Mitra
- Department of Chemistry and Biochemistry, Center for Retrovirus Research and Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA
| | - Jialin Li
- Department of Physics, Northeastern University, Boston, MA 02115, USA
| | - Mark C Williams
- Department of Physics, Northeastern University, Boston, MA 02115, USA
| | - Ioulia Rouzina
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Robert J Gorelick
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Zhengrong Wu
- Department of Chemistry and Biochemistry, Center for Retrovirus Research and Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA
| | - Karin Musier-Forsyth
- Department of Chemistry and Biochemistry, Center for Retrovirus Research and Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
17
|
Wu H, Mitra M, Naufer MN, McCauley MJ, Gorelick RJ, Rouzina I, Musier-Forsyth K, Williams MC. Differential contribution of basic residues to HIV-1 nucleocapsid protein's nucleic acid chaperone function and retroviral replication. Nucleic Acids Res 2013; 42:2525-37. [PMID: 24293648 PMCID: PMC3936775 DOI: 10.1093/nar/gkt1227] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The human immunodeficiency virus type 1 (HIV-1) nucleocapsid (NC) protein contains 15 basic residues located throughout its 55-amino acid sequence, as well as one aromatic residue in each of its two CCHC-type zinc finger motifs. NC facilitates nucleic acid (NA) rearrangements via its chaperone activity, but the structural basis for this activity and its consequences in vivo are not completely understood. Here, we investigate the role played by basic residues in the N-terminal domain, the N-terminal zinc finger and the linker region between the two zinc fingers. We use in vitro ensemble and single-molecule DNA stretching experiments to measure the characteristics of wild-type and mutant HIV-1 NC proteins, and correlate these results with cell-based HIV-1 replication assays. All of the cationic residue mutations lead to NA interaction defects, as well as reduced HIV-1 infectivity, and these effects are most pronounced on neutralizing all five N-terminal cationic residues. HIV-1 infectivity in cells is correlated most strongly with NC’s NA annealing capabilities as well as its ability to intercalate the DNA duplex. Although NC’s aromatic residues participate directly in DNA intercalation, our findings suggest that specific basic residues enhance these interactions, resulting in optimal NA chaperone activity.
Collapse
Affiliation(s)
- Hao Wu
- Department of Physics, Northeastern University, Boston, MA 02115, USA, Department of Chemistry and Biochemistry, Center for RNA Biology, and Center for Retrovirus Research, The Ohio State University, Columbus, OH 43210, USA, AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA and Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Mitra M, Wang W, Vo MN, Rouzina I, Barany G, Musier-Forsyth K. The N-terminal zinc finger and flanking basic domains represent the minimal region of the human immunodeficiency virus type-1 nucleocapsid protein for targeting chaperone function. Biochemistry 2013; 52:8226-36. [PMID: 24144434 DOI: 10.1021/bi401250a] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The human immunodeficiency virus type-1 (HIV-1) nucleocapsid (NC) protein is a chaperone that facilitates nucleic acid conformational changes to produce the most thermodynamically stable arrangement. The critical role of NC in many steps of the viral life cycle makes it an attractive therapeutic target. The chaperone activity of NC depends on its nucleic acid aggregating ability, duplex destabilizing activity, and rapid on-off binding kinetics. During the minus-strand transfer step of reverse transcription, NC chaperones the annealing of highly structured transactivation response region (TAR) RNA to the complementary TAR DNA. In this work, the role of different functional domains of NC in facilitating 59-nucleotide TAR RNA-DNA annealing was probed by using chemically synthesized peptides derived from full-length (55 amino acids) HIV-1 NC: NC(1-14), NC(15-35), NC(1-28), NC(1-35), NC(29-55), NC(36-55), and NC(11-55). Most of these peptides displayed significantly reduced annealing kinetics, even when present at concentrations much higher than that of wild-type (WT) NC. In addition, these truncated NC constructs generally bind more weakly to single-stranded DNA and are less effective nucleic acid aggregating agents than full-length NC, consistent with the loss of both electrostatic and hydrophobic contacts. However, NC(1-35) displayed annealing kinetics, nucleic acid binding, and aggregation activity that were very similar to those of WT NC. Thus, we conclude that the N-terminal zinc finger, flanked by the N-terminus and linker domains, represents the minimal sequence that is necessary and sufficient for chaperone function in vitro. In addition, covalent continuity of the 35 N-terminal amino acids of NC is critical for full activity. Thus, although the hydrophobic pocket formed by residues proximal to the C-terminal zinc finger has been a major focus of recent anti-NC therapeutic strategies, NC(1-35) represents an alternative target for therapeutics aimed at disrupting NC's chaperone function.
Collapse
Affiliation(s)
- Mithun Mitra
- Department of Chemistry and Biochemistry, Center for RNA Biology, and Center for Retrovirus Research, The Ohio State University , Columbus, Ohio 43210, United States
| | | | | | | | | | | |
Collapse
|
19
|
Bell NM, Lever AML. HIV Gag polyprotein: processing and early viral particle assembly. Trends Microbiol 2013; 21:136-44. [PMID: 23266279 DOI: 10.1016/j.tim.2012.11.006] [Citation(s) in RCA: 150] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Revised: 11/22/2012] [Accepted: 11/29/2012] [Indexed: 12/22/2022]
Affiliation(s)
- Neil M Bell
- Department of Medicine, University of Cambridge, Level 5, Addenbrooke's Hospital, Hills Road, Cambridge CB2 2QQ, UK
| | | |
Collapse
|
20
|
Lyonnais S, Gorelick RJ, Heniche-Boukhalfa F, Bouaziz S, Parissi V, Mouscadet JF, Restle T, Gatell JM, Le Cam E, Mirambeau G. A protein ballet around the viral genome orchestrated by HIV-1 reverse transcriptase leads to an architectural switch: from nucleocapsid-condensed RNA to Vpr-bridged DNA. Virus Res 2013; 171:287-303. [PMID: 23017337 PMCID: PMC3552025 DOI: 10.1016/j.virusres.2012.09.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2012] [Revised: 09/13/2012] [Accepted: 09/14/2012] [Indexed: 12/15/2022]
Abstract
HIV-1 reverse transcription is achieved in the newly infected cell before viral DNA (vDNA) nuclear import. Reverse transcriptase (RT) has previously been shown to function as a molecular motor, dismantling the nucleocapsid complex that binds the viral genome as soon as plus-strand DNA synthesis initiates. We first propose a detailed model of this dismantling in close relationship with the sequential conversion from RNA to double-stranded (ds) DNA, focusing on the nucleocapsid protein (NCp7). The HIV-1 DNA-containing pre-integration complex (PIC) resulting from completion of reverse transcription is translocated through the nuclear pore. The PIC nucleoprotein architecture is poorly understood but contains at least two HIV-1 proteins initially from the virion core, namely integrase (IN) and the viral protein r (Vpr). We next present a set of electron micrographs supporting that Vpr behaves as a DNA architectural protein, initiating multiple DNA bridges over more than 500 base pairs (bp). These complexes are shown to interact with NCp7 bound to single-stranded nucleic acid regions that are thought to maintain IN binding during dsDNA synthesis, concurrently with nucleocapsid complex dismantling. This unexpected binding of Vpr conveniently leads to a compacted but filamentous folding of the vDNA that should favor its nuclear import. Finally, nucleocapsid-like aggregates engaged in dsDNA synthesis appear to efficiently bind to F-actin filaments, a property that may be involved in targeting complexes to the nuclear envelope. More generally, this article highlights unique possibilities offered by in vitro reconstitution approaches combined with macromolecular imaging to gain insights into the mechanisms that alter the nucleoprotein architecture of the HIV-1 genome, ultimately enabling its insertion into the nuclear chromatin.
Collapse
MESH Headings
- DNA Packaging
- DNA, Viral/chemistry
- DNA, Viral/genetics
- DNA, Viral/metabolism
- Genome, Viral
- HIV Integrase/genetics
- HIV Integrase/metabolism
- HIV Reverse Transcriptase/genetics
- HIV Reverse Transcriptase/metabolism
- HIV-1/chemistry
- HIV-1/enzymology
- HIV-1/genetics
- HIV-1/metabolism
- Humans
- RNA, Viral/chemistry
- RNA, Viral/genetics
- RNA, Viral/metabolism
- Reverse Transcription
- gag Gene Products, Human Immunodeficiency Virus/genetics
- gag Gene Products, Human Immunodeficiency Virus/metabolism
- vpr Gene Products, Human Immunodeficiency Virus
Collapse
Affiliation(s)
| | - Robert J. Gorelick
- AIDS and Cancer Virus Program; SAIC-Frederick, Inc.; Frederick National Laboratory for Cancer Research; Frederick, MD USA
| | - Fatima Heniche-Boukhalfa
- Maintenance des génomes, Microscopies Moléculaire et Bionanosciences; UMR 8126 CNRS-Université Paris Sud, Villejuif, F-94805, France
| | - Serge Bouaziz
- Laboratoire de Cristallographie et RMN biologiques; UMR 8015 CNRS-Université Paris Descartes; Paris, F-75006, France
| | - Vincent Parissi
- Laboratoire de Microbiologie Fondamentale et Pathogénicité, UMR5234 CNRS-Université Bordeaux Segalen, France
| | | | - Tobias Restle
- Institute of Molecular Medicine, University of Lübeck, Center for Structural and Cell Biology in Medicine (CSCM), D-23538 Lübeck, Germany
| | | | - Eric Le Cam
- Maintenance des génomes, Microscopies Moléculaire et Bionanosciences; UMR 8126 CNRS-Université Paris Sud, Villejuif, F-94805, France
| | - Gilles Mirambeau
- AIDS Research Group; IDIBAPS; E-08036 Barcelona, Spain
- Faculté de Biologie; UPMC Sorbonne Universités; Paris, F-75005, France
| |
Collapse
|
21
|
Role of the SP2 domain and its proteolytic cleavage in HIV-1 structural maturation and infectivity. J Virol 2012; 86:13708-16. [PMID: 23055560 DOI: 10.1128/jvi.01704-12] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
HIV-1 buds as an immature, noninfectious virion. Proteolysis of its main structural component, Gag, is required for morphological maturation and infectivity and leads to release of four functional domains and the spacer peptides SP1 and SP2. The N-terminal cleavages of Gag and the separation of SP1 from CA are all essential for viral infectivity, while the roles of the two C-terminal cleavages and the role of SP2, separating the NC and p6 domains, are less well defined. We have analyzed HIV-1 variants with defective cleavage at either or both sites flanking SP2, or largely lacking SP2, regarding virus production, infectivity, and structural maturation. Neither the presence nor the proteolytic processing of SP2 was required for particle release. Viral infectivity was almost abolished when both cleavage sites were defective and severely reduced when the fast cleavage site between SP2 and p6 was defective. This correlated with an increased proportion of irregular core structures observed by cryo-electron tomography, although processing of CA was unaffected. Mutation of the slow cleavage site between NC and SP2 or deletion of most of SP2 had only a minor effect on infectivity and did not induce major alterations in mature core morphology. We speculate that not only separation of NC and p6 but also the processing kinetics in this region are essential for successful maturation, while SP2 itself is dispensable.
Collapse
|
22
|
Wang H, Musier-Forsyth K, Falk C, Barbara PF. Single-molecule spectroscopic study of dynamic nanoscale DNA bending behavior of HIV-1 nucleocapsid protein. J Phys Chem B 2012; 117:4183-96. [PMID: 22591315 DOI: 10.1021/jp3018259] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
We have studied the conformational dynamics associated with the nanoscale DNA bending induced by human immunodeficiency virus type 1 (HIV-1) nucleocapsid (NC) protein using single-molecule Förster resonance energy transfer (SM-FRET). To gain molecular-level insights into how the HIV-1 NC locally distorts the structures of duplexed DNA segments, the dynamics, reversibility, and sequence specificity of the DNA bending behavior of NC have been systematically studied. We have performed SM-FRET measurements on a series of duplexed DNA segments with varying sequences, lengths, and local structures in the presence of the wide-type HIV-1 NC and NC mutants lacking either the basic N-terminal domain or the zinc fingers. On the basis of the SM-FRET results, we have proposed a possible mechanism for the NC-induced DNA bending in which both NC's zinc fingers and N-terminal domain are found to play crucial roles. The SM-FRET results reported here add new mechanistic insights into the biological behaviors and functions of HIV-1 NC as a retroviral DNA-architectural protein which may play critical roles in the compaction, nuclear import, and integration of the proviral DNA during the retroviral life cycle.
Collapse
Affiliation(s)
- Hui Wang
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, USA.
| | | | | | | |
Collapse
|
23
|
Thomas JA, Shatzer TL, Gorelick RJ. Blocking premature reverse transcription fails to rescue the HIV-1 nucleocapsid-mutant replication defect. Retrovirology 2011; 8:46. [PMID: 21682883 PMCID: PMC3141651 DOI: 10.1186/1742-4690-8-46] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Accepted: 06/17/2011] [Indexed: 02/06/2023] Open
Abstract
Background The nucleocapsid (NC) protein of HIV-1 is critical for viral replication. Mutational analyses have demonstrated its involvement in viral assembly, genome packaging, budding, maturation, reverse transcription, and integration. We previously reported that two conservative NC mutations, His23Cys and His44Cys, cause premature reverse transcription such that mutant virions contain approximately 1,000-fold more DNA than wild-type virus, and are replication defective. In addition, both mutants show a specific defect in integration after infection. Results In the present study we investigated whether blocking premature reverse transcription would relieve the infectivity defects, which we successfully performed by transfecting proviral plasmids into cells cultured in the presence of high levels of reverse transcriptase inhibitors. After subsequent removal of the inhibitors, the resulting viruses showed no significant difference in single-round infective titer compared to viruses where premature reverse transcription did occur; there was no rescue of the infectivity defects in the NC mutants upon reverse transcriptase inhibitor treatment. Surprisingly, time-course endogenous reverse transcription assays demonstrated that the kinetics for both the NC mutants were essentially identical to wild-type when premature reverse transcription was blocked. In contrast, after infection of CD4+ HeLa cells, it was observed that while the prevention of premature reverse transcription in the NC mutants resulted in lower quantities of initial reverse transcripts, the kinetics of reverse transcription were not restored to that of untreated wild-type HIV-1. Conclusions Premature reverse transcription is not the cause of the replication defect but is an independent side-effect of the NC mutations.
Collapse
Affiliation(s)
- James A Thomas
- AIDS and Cancer Virus Program, SAIC-Frederick, Inc,, NCI at Frederick, Frederick, MD 21702, USA
| | | | | |
Collapse
|
24
|
Gallyamov MO. Scanning Force Microscopy as Applied to Conformational Studies in Macromolecular Research. Macromol Rapid Commun 2011; 32:1210-46. [DOI: 10.1002/marc.201100150] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2011] [Revised: 04/06/2011] [Indexed: 01/17/2023]
|
25
|
Bazzi A, Zargarian L, Chaminade F, Boudier C, De Rocquigny H, René B, Mély Y, Fossé P, Mauffret O. Structural insights into the cTAR DNA recognition by the HIV-1 nucleocapsid protein: role of sugar deoxyriboses in the binding polarity of NC. Nucleic Acids Res 2011; 39:3903-16. [PMID: 21227929 PMCID: PMC3089453 DOI: 10.1093/nar/gkq1290] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
An essential step of the reverse transcription of the HIV-1 genome is the first strand transfer that requires the annealing of the TAR RNA hairpin to the cTAR DNA hairpin. HIV-1 nucleocapsid protein (NC) plays a crucial role by facilitating annealing of the complementary hairpins. Using nuclear magnetic resonance and gel retardation assays, we investigated the interaction between NC and the top half of the cTAR DNA (mini-cTAR). We show that NC(11-55) binds the TGG sequence in the lower stem that is destabilized by the adjacent internal loop. The 5′ thymine interacts with residues of the N-terminal zinc knuckle and the 3′ guanine is inserted in the hydrophobic plateau of the C-terminal zinc knuckle. The TGG sequence is preferred relative to the apical and internal loops containing unpaired guanines. Investigation of the DNA–protein contacts shows the major role of hydrophobic interactions involving nucleobases and deoxyribose sugars. A similar network of hydrophobic contacts is observed in the published NC:DNA complexes, whereas NC contacts ribose differently in NC:RNA complexes. We propose that the binding polarity of NC is related to these contacts that could be responsible for the preferential binding to single-stranded nucleic acids.
Collapse
Affiliation(s)
- Ali Bazzi
- LBPA, ENS de Cachan, CNRS, Cachan, Faculté de Pharmacie, Université de Strasbourg, 74 Route du Rhin, 67401 Illkirch, France
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Liu C, Zhang Y. Nucleic acid-mediated protein aggregation and assembly. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2011; 84:1-40. [DOI: 10.1016/b978-0-12-386483-3.00005-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
27
|
Mirambeau G, Lyonnais S, Gorelick RJ. Features, processing states, and heterologous protein interactions in the modulation of the retroviral nucleocapsid protein function. RNA Biol 2010; 7:724-34. [PMID: 21045549 PMCID: PMC3073331 DOI: 10.4161/rna.7.6.13777] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2010] [Revised: 09/14/2010] [Accepted: 09/16/2010] [Indexed: 11/19/2022] Open
Abstract
Retroviral nucleocapsid (NC) is central to viral replication. Nucleic acid chaperoning is a key function for NC through the action of its conserved basic amino acids and zinc-finger structures. NC manipulates genomic RNA from its packaging in the producer cell to reverse transcription into the infected host cell. This chaperone function, in conjunction with NC's aggregating properties, is up-modulated by successive NC processing events, from the Gag precursor to the fully mature protein, resulting in the condensation of the nucleocapsid within the capsid shell. Reverse transcription also depends on NC processing, whereas this process provokes NC dissociation from double-stranded DNA, leading to a preintegration complex (PIC), competent for host chromosomal integration. In addition NC interacts with cellular proteins, some of which are involved in viral budding, and also with several viral proteins. All of these properties are reviewed here, focusing on HIV-1 as a paradigmatic reference and highlighting the plasticity of the nucleocapsid architecture.
Collapse
|
28
|
Wu H, Rouzina I, Williams MC. Single-molecule stretching studies of RNA chaperones. RNA Biol 2010; 7:712-23. [PMID: 21045548 PMCID: PMC3073330 DOI: 10.4161/rna.7.6.13776] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2010] [Revised: 09/15/2010] [Accepted: 09/16/2010] [Indexed: 01/25/2023] Open
Abstract
RNA chaperone proteins play significant roles in diverse biological contexts. The most widely studied RNA chaperones are the retroviral nucleocapsid proteins (NC), also referred to as nucleic acid (NA) chaperones. Surprisingly, the biophysical properties of the NC proteins vary significantly for different viruses, and it appears that HIV-1 NC has optimal NA chaperone activity. In this review we discuss the physical nature of the NA chaperone activity of NC. We conclude that the optimal NA chaperone must saturate NA binding, leading to strong NA aggregation and slight destabilization of all NA duplexes. Finally, rapid kinetics of the chaperone protein interaction with NA is another primary component of its NA chaperone activity. We discuss these characteristics of HIV-1 NC and compare them with those of other NA binding proteins and ligands that exhibit only some characteristics of NA chaperone activity, as studied by single molecule DNA stretching.
Collapse
Affiliation(s)
- Hao Wu
- Department of Physics, Northeastern University, Boston, MA, USA
| | | | | |
Collapse
|
29
|
Jalalirad M, Laughrea M. Formation of immature and mature genomic RNA dimers in wild-type and protease-inactive HIV-1: differential roles of the Gag polyprotein, nucleocapsid proteins NCp15, NCp9, NCp7, and the dimerization initiation site. Virology 2010; 407:225-36. [PMID: 20828778 DOI: 10.1016/j.virol.2010.08.013] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2010] [Revised: 08/06/2010] [Accepted: 08/13/2010] [Indexed: 12/22/2022]
Abstract
Formation of immature genomic RNA (gRNA) dimers is exquisitely nucleocapsid (NC)-dependent in protease-inactive (PR-in) HIV-1. This establishes that Pr55gag/Pr160gag-pol has NC-dependent chaperone activity within intact HIV-1. Mutations in the proximal zinc finger and the linker of the NC sequence of Pr55gag/Pr160gag-pol abolish gRNA dimerization in PR-in HIV-1. In wild type, where the NC of Pr55gag is processed into progressively smaller proteins termed NCp15 (NCp7-p1-p6), NCp9 (NCp7-p1) and NCp7, formation of immature dimers is much swifter than in PR-in HIV-1. NCp7 and NCp15 direct this rapid accumulation. NCp9 is sluggish in this process, but it stimulates the transition from immature to mature gRNA dimer as well as NCp7 and much better than NCp15. The amino-terminus, proximal zinc finger, linker, and distal zinc finger of NCp7 contribute to this maturation event in intact HIV-1. The DIS is a dimerization initiation site for all immature gRNA dimers, irrespective of their mechanism of formation.
Collapse
Affiliation(s)
- Mohammad Jalalirad
- McGill AIDS Center, Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal QC, Canada H3T 1E2
| | | |
Collapse
|
30
|
Wang H, Yeh YS, Barbara PF. HIV-1 nucleocapsid protein bends double-stranded nucleic acids. J Am Chem Soc 2010; 131:15534-43. [PMID: 19919167 DOI: 10.1021/ja9070046] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The human immunodeficiency virus type-1 (HIV-1) nucleocapsid (NC) protein is believed to be unique among the nucleic acid (NA) binding proteins encoded by this retrovirus in being highly multifunctional and relatively nonsequence-specific. Underlying many of NC's putative functions, including for example its chaperon-like activity for various steps of HIV-1 reverse transcription, is NC's ability to partially melt short double-stranded regions of structured NAs, which is essentially a consequence of NC's general binding preference for single-stranded bases. Herein we report a different, previously undiscovered, mode of NC/NA interaction, i.e., NC-induced sharp bending of short segments of fully duplexed DNA/DNA and DNA/RNA. We use single-molecule fluorescence resonance energy transfer (SM-FRET) in vitro to probe NC-induced NA bending and associated heterogeneous conformational dynamics for model NC/NA complexes. NC-induced NA bending may have important biological roles in the previously reported NC-mediated condensation of duplex proviral DNA in the HIV-1 life cycle.
Collapse
Affiliation(s)
- Hui Wang
- Center for Nano and Molecular Science and Technology and Department of Chemistry and Biochemistry, The University of Texas at Austin, Austin, Texas 78712, USA
| | | | | |
Collapse
|
31
|
Qualley DF, Stewart-Maynard KM, Wang F, Mitra M, Gorelick RJ, Rouzina I, Williams MC, Musier-Forsyth K. C-terminal domain modulates the nucleic acid chaperone activity of human T-cell leukemia virus type 1 nucleocapsid protein via an electrostatic mechanism. J Biol Chem 2010; 285:295-307. [PMID: 19887455 PMCID: PMC2804176 DOI: 10.1074/jbc.m109.051334] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2009] [Revised: 10/30/2009] [Indexed: 12/14/2022] Open
Abstract
Retroviral nucleocapsid (NC) proteins are molecular chaperones that facilitate nucleic acid (NA) remodeling events critical in viral replication processes such as reverse transcription. Surprisingly, the NC protein from human T-cell leukemia virus type 1 (HTLV-1) is an extremely poor NA chaperone. Using bulk and single molecule methods, we find that removal of the anionic C-terminal domain (CTD) of HTLV-1 NC results in a protein with chaperone properties comparable with that of other retroviral NCs. Increasing the ionic strength of the solution also improves the chaperone activity of full-length HTLV-1 NC. To determine how the CTD negatively modulates the chaperone activity of HTLV-1 NC, we quantified the thermodynamics and kinetics of wild-type and mutant HTLV-1 NC/NA interactions. The wild-type protein exhibits very slow dissociation kinetics, and removal of the CTD or mutations that eliminate acidic residues dramatically increase the protein/DNA interaction kinetics. Taken together, these results suggest that the anionic CTD interacts with the cationic N-terminal domain intramolecularly when HTLV-1 NC is not bound to nucleic acids, and similar interactions occur between neighboring molecules when NC is NA-bound. The intramolecular N-terminal domain-CTD attraction slows down the association of the HTLV-1 NC with NA, whereas the intermolecular interaction leads to multimerization of HTLV-1 NC on the NA. The latter inhibits both NA/NC aggregation and rapid protein dissociation from single-stranded DNA. These features make HTLV-1 NC a poor NA chaperone, despite its robust duplex destabilizing capability.
Collapse
Affiliation(s)
- Dominic F. Qualley
- From the Departments of Chemistry and Biochemistry, Center for Retrovirus Research, and Center for RNA Biology, Ohio State University, Columbus, Ohio 43210
| | | | - Fei Wang
- the Department of Physics, Northeastern University, Boston, Massachusetts 02115, and
| | - Mithun Mitra
- From the Departments of Chemistry and Biochemistry, Center for Retrovirus Research, and Center for RNA Biology, Ohio State University, Columbus, Ohio 43210
| | - Robert J. Gorelick
- the AIDS and Cancer Virus Program, Science Applications International Corporation-Frederick, Inc., NCI-Frederick, National Institutes of Health, Frederick, Maryland 21702
| | - Ioulia Rouzina
- the Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota 55455
| | - Mark C. Williams
- the Department of Physics, Northeastern University, Boston, Massachusetts 02115, and
| | - Karin Musier-Forsyth
- From the Departments of Chemistry and Biochemistry, Center for Retrovirus Research, and Center for RNA Biology, Ohio State University, Columbus, Ohio 43210
| |
Collapse
|
32
|
Kafaie J, Dolatshahi M, Ajamian L, Song R, Mouland AJ, Rouiller I, Laughrea M. Role of capsid sequence and immature nucleocapsid proteins p9 and p15 in Human Immunodeficiency Virus type 1 genomic RNA dimerization. Virology 2009; 385:233-44. [DOI: 10.1016/j.virol.2008.11.028] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2008] [Revised: 10/18/2008] [Accepted: 11/14/2008] [Indexed: 11/28/2022]
|
33
|
Vo MN, Barany G, Rouzina I, Musier-Forsyth K. HIV-1 nucleocapsid protein switches the pathway of transactivation response element RNA/DNA annealing from loop-loop "kissing" to "zipper". J Mol Biol 2009; 386:789-801. [PMID: 19154737 PMCID: PMC2646174 DOI: 10.1016/j.jmb.2008.12.070] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2008] [Revised: 12/20/2008] [Accepted: 12/29/2008] [Indexed: 11/24/2022]
Abstract
The chaperone activity of HIV-1 (human immunodeficiency virus type 1) nucleocapsid protein (NC) facilitates multiple nucleic acid rearrangements that are critical for reverse transcription of the single-stranded RNA genome into double-stranded DNA. Annealing of the transactivation response element (TAR) RNA hairpin to a complementary TAR DNA hairpin is an essential step in the minus-strand transfer step of reverse transcription. Previously, we used truncated 27-nt mini-TAR RNA and DNA constructs to investigate this annealing reaction pathway in the presence and in the absence of HIV-1 NC. In this work, full-length 59-nt TAR RNA and TAR DNA constructs were used to systematically study TAR hairpin annealing kinetics. In the absence of NC, full-length TAR hairpin annealing is approximately 10-fold slower than mini-TAR annealing. Similar to mini-TAR annealing, the reaction pathway for TAR in the absence of NC involves the fast formation of an unstable "kissing" loop intermediate, followed by a slower conversion to an extended duplex. NC facilitates the annealing of TAR by approximately 10(5)-fold by stabilizing the bimolecular intermediate ( approximately 10(4)-fold) and promoting the subsequent exchange reaction ( approximately 10-fold). In contrast to the mini-TAR annealing pathway, wherein NC-mediated annealing can initiate through both loop-loop kissing and a distinct "zipper" pathway involving nucleation at the 3'-/5'-terminal ends, full-length TAR hairpin annealing switches predominantly to the zipper pathway in the presence of saturated NC.
Collapse
Affiliation(s)
- My-Nuong Vo
- Department of Chemistry and Institute for Molecular Virology, University of Minnesota, Minneapolis, MN 55455
| | - George Barany
- Department of Chemistry and Institute for Molecular Virology, University of Minnesota, Minneapolis, MN 55455
| | - Ioulia Rouzina
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455
| | - Karin Musier-Forsyth
- Departments of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210
| |
Collapse
|
34
|
Stewart-Maynard KM, Cruceanu M, Wang F, Vo MN, Gorelick RJ, Williams MC, Rouzina I, Musier-Forsyth K. Retroviral nucleocapsid proteins display nonequivalent levels of nucleic acid chaperone activity. J Virol 2008; 82:10129-42. [PMID: 18684831 PMCID: PMC2566285 DOI: 10.1128/jvi.01169-08] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2008] [Accepted: 07/29/2008] [Indexed: 12/31/2022] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) nucleocapsid protein (NC) is a nucleic acid chaperone that facilitates the remodeling of nucleic acids during various steps of the viral life cycle. Two main features of NC's chaperone activity are its abilities to aggregate and to destabilize nucleic acids. These functions are associated with NC's highly basic character and with its zinc finger domains, respectively. While the chaperone activity of HIV-1 NC has been extensively studied, less is known about the chaperone activities of other retroviral NCs. In this work, complementary experimental approaches were used to characterize and compare the chaperone activities of NC proteins from four different retroviruses: HIV-1, Moloney murine leukemia virus (MLV), Rous sarcoma virus (RSV), and human T-cell lymphotropic virus type 1 (HTLV-1). The different NCs exhibited significant differences in their overall chaperone activities, as demonstrated by gel shift annealing assays, decreasing in the order HIV-1 approximately RSV > MLV >> HTLV-1. In addition, whereas HIV-1, RSV, and MLV NCs are effective aggregating agents, HTLV-1 NC, which exhibits poor overall chaperone activity, is unable to aggregate nucleic acids. Measurements of equilibrium binding to single- and double-stranded oligonucleotides suggested that all four NC proteins have moderate duplex destabilization capabilities. Single-molecule DNA-stretching studies revealed striking differences in the kinetics of nucleic acid dissociation between the NC proteins, showing excellent correlation between nucleic acid dissociation kinetics and overall chaperone activity.
Collapse
|
35
|
How the HIV-1 nucleocapsid protein binds and destabilises the (-)primer binding site during reverse transcription. J Mol Biol 2008; 383:1112-28. [PMID: 18773912 DOI: 10.1016/j.jmb.2008.08.046] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2008] [Accepted: 08/19/2008] [Indexed: 10/21/2022]
Abstract
The human immunodeficiency virus type 1 nucleocapsid protein (NCp7) plays an important role in the second strand transfer during reverse transcription. It promotes annealing of the 18-nucleotide complementary DNA primer-binding site (PBS) sequences at the 3' ends of (-)DNA and (+)DNA. NMR studies show that NCp7(12-55) and NCp7(1-55) interact at the 5' end of the loop of DeltaP(-)PBS, a (-)PBS derivative without the 3' protruding sequence, in a slow-exchange equilibrium. This interaction is mediated through the binding of the hydrophobic plateau (Val13, Phe16, Thr24, Ala25, Trp37, and Met46) on the zinc finger domain of both peptides to the 5-CTG-7 sequence of DeltaP(-)PBS. The stacking of the Trp37 aromatic ring with the G7 residue likely constitutes the determinant factor of the interaction. Although NCp7(12-55) does not melt the DeltaP(-)PBS stem-loop structure, it opens the loop and weakens the C5.G11 base pair next to the loop. Moreover, NCp7(12-55) was also found to bind but with lower affinity to the 10-CGG-12 sequence in an intermediate-exchange equilibrium on the NMR time scale. The loop modifications may favour a kissing interaction with the complementary (+)PBS loop. Moreover, the weakening of the upper base pair of the stem likely promotes the melting of the stem that is required to convert the kissing complex into the final (+/-)PBS extended duplex.
Collapse
|
36
|
Thomas JA, Gorelick RJ. Nucleocapsid protein function in early infection processes. Virus Res 2008; 134:39-63. [PMID: 18279991 PMCID: PMC2789563 DOI: 10.1016/j.virusres.2007.12.006] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2007] [Revised: 12/13/2007] [Accepted: 12/13/2007] [Indexed: 01/15/2023]
Abstract
The role of nucleocapsid protein (NC) in the early steps of retroviral replication appears largely that of a facilitator for reverse transcription and integration. Using a wide variety of cell-free assay systems, the properties of mature NC proteins (e.g. HIV-1 p7(NC) or MLV p10(NC)) as nucleic acid chaperones have been extensively investigated. The effect of NC on tRNA annealing, reverse transcription initiation, minus-strand-transfer, processivity of reverse transcription, plus-strand-transfer, strand-displacement synthesis, 3' processing of viral DNA by integrase, and integrase-mediated strand-transfer has been determined by a large number of laboratories. Interestingly, these reactions can all be accomplished to varying degrees in the absence of NC; some are facilitated by both viral and non-viral proteins and peptides that may or may not be involved in vivo. What is one to conclude from the observation that NC is not strictly required for these necessary reactions to occur? NC likely enhances the efficiency of each of these steps, thereby vastly improving the productivity of infection. In other words, one of the major roles of NC is to enhance the effectiveness of early infection, thereby increasing the probability of productive replication and ultimately of retrovirus survival.
Collapse
Affiliation(s)
- James A. Thomas
- AIDS Vaccine Program, Basic Sciences Program, SAIC-Frederick, Inc., NCI-Frederick, P.O. Box B, BLDG 535, RM 410, Frederick, MD 21702-1201, U.S.A
| | - Robert J. Gorelick
- AIDS Vaccine Program, Basic Sciences Program, SAIC-Frederick, Inc., NCI-Frederick, P.O. Box B, BLDG 535, RM 410, Frederick, MD 21702-1201, U.S.A
| |
Collapse
|
37
|
Soler N, Justome A, Quevillon-Cheruel S, Lorieux F, Le Cam E, Marguet E, Forterre P. The rolling-circle plasmid pTN1 from the hyperthermophilic archaeon Thermococcus nautilus. Mol Microbiol 2007; 66:357-70. [PMID: 17784911 DOI: 10.1111/j.1365-2958.2007.05912.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The hyperthermophilic archaeon Thermococcus nautilus carries a plasmid, pTN1, which encodes a rolling-circle (RC) replication initiator protein of 74 kDa (Rep74) and an orphan protein of 24 kDa (p24). The Rep74 protein is homologous to the Rep75 protein encoded by the RC plasmid pGT5 from Pyrococcus abyssi. Comparative analysis of Rep74 and Rep75 sequences shows that these proteins correspond to a new family of RC initiators formed by the fusion of a Rep domain with an N-terminal domain of unknown function. Surprisingly, the Rep domain of Rep74/75 is more closely related to transposases encoded by IS elements than to Rep proteins of other RC plasmids. The p24 protein contains a hydrophobic segment, a highly charged region and a zinc finger motif. A recombinant p24 protein lacking the hydrophobic segment binds and condenses both single- and double-stranded DNA, and forms DNA aggregates with extreme compaction at high protein to DNA ratio. In addition to encoding proteins of significant interest, pTN1 is remarkable by being the only characterized plasmid isolated from a Thermococcus strain, thus being useful to develop genetic tools in Thermococcus kodakaraensis for which gene disruption methods became recently available.
Collapse
Affiliation(s)
- Nicolas Soler
- Institut de Génétique et Microbiologie, Univ Paris-Sud, CNRS UMR 8621 and 8619, 91405 Orsay Cedex, France
| | | | | | | | | | | | | |
Collapse
|
38
|
Coren LV, Thomas JA, Chertova E, Sowder RC, Gagliardi TD, Gorelick RJ, Ott DE. Mutational analysis of the C-terminal gag cleavage sites in human immunodeficiency virus type 1. J Virol 2007; 81:10047-54. [PMID: 17634233 PMCID: PMC2045408 DOI: 10.1128/jvi.02496-06] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2006] [Accepted: 07/07/2007] [Indexed: 11/20/2022] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) Gag is expressed as a polyprotein that is cleaved into six proteins by the viral protease in a maturation process that begins during assembly and budding. While processing of the N terminus of Gag is strictly required for virion maturation and infectivity, the necessity for the C-terminal cleavages of Gag is less well defined. To examine the importance of this process, we introduced a series of mutations into the C terminus of Gag that interrupted the cleavage sites that normally produce in the nucleocapsid (NC), spacer 2 (SP2), or p6(Gag) proteins. Protein analysis showed that all of the mutant constructs produced virions efficiently upon transfection of cells and appropriately processed Gag polyprotein at the nonmutated sites. Mutants that produced a p9(NC/SP2) protein exhibited only minor effects on HIV-1 infectivity and replication. In contrast, mutants that produced only the p8(SP2/p6) or p15(NC/SP2/p6) protein had severe defects in infectivity and replication. To identify the key defective step, we quantified reverse transcription and integration products isolated from infected cells by PCR. All mutants tested produced levels of reverse transcription products either similar to or only somewhat lower than that of wild type. In contrast, mutants that failed to cleave the SP2-p6(Gag) site produced drastically less provirus than the wild type. Together, our results show that processing of the SP2-p6(Gag) and not the NC-SP2 cleavage site is important for efficient viral DNA integration during infection in vitro. In turn, this finding suggests an important role for the p9(NC/SP2) species in some aspect of integration.
Collapse
Affiliation(s)
- Lori V Coren
- AIDS Vaccine Program, SAIC-Frederick, Inc., National Cancer Institute at Frederick, Frederick, MD 21702-1201, USA.
| | | | | | | | | | | | | |
Collapse
|
39
|
Mirambeau G, Lyonnais S, Coulaud D, Hameau L, Lafosse S, Jeusset J, Borde I, Reboud-Ravaux M, Restle T, Gorelick RJ, Le Cam E. HIV-1 protease and reverse transcriptase control the architecture of their nucleocapsid partner. PLoS One 2007; 2:e669. [PMID: 17712401 PMCID: PMC1940317 DOI: 10.1371/journal.pone.0000669] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2007] [Accepted: 06/18/2007] [Indexed: 11/18/2022] Open
Abstract
The HIV-1 nucleocapsid is formed during protease (PR)-directed viral maturation, and is transformed into pre-integration complexes following reverse transcription in the cytoplasm of the infected cell. Here, we report a detailed transmission electron microscopy analysis of the impact of HIV-1 PR and reverse transcriptase (RT) on nucleocapsid plasticity, using in vitro reconstitutions. After binding to nucleic acids, NCp15, a proteolytic intermediate of nucleocapsid protein (NC), was processed at its C-terminus by PR, yielding premature NC (NCp9) followed by mature NC (NCp7), through the consecutive removal of p6 and p1. This allowed NC co-aggregation with its single-stranded nucleic-acid substrate. Examination of these co-aggregates for the ability of RT to catalyse reverse transcription showed an effective synthesis of double-stranded DNA that, remarkably, escaped from the aggregates more efficiently with NCp7 than with NCp9. These data offer a compelling explanation for results from previous virological studies that focused on i) Gag processing leading to nucleocapsid condensation, and ii) the disappearance of NCp7 from the HIV-1 pre-integration complexes. We propose that HIV-1 PR and RT, by controlling the nucleocapsid architecture during the steps of condensation and dismantling, engage in a successive nucleoprotein-remodelling process that spatiotemporally coordinates the pre-integration steps of HIV-1. Finally we suggest that nucleoprotein remodelling mechanisms are common features developed by mobile genetic elements to ensure successful replication.
Collapse
Affiliation(s)
- Gilles Mirambeau
- Laboratoire de Microscopie Moléculaire, UMR 8126: Interactions moléculaires et cancer, CNRS, Université Paris Sud-Institut de Cancérologie Gustave Roussy, Villejuif, France
- Division de Biochimie, UFR des Sciences de la Vie, Université Pierre et Marie Curie-Paris, Paris, France
| | - Sébastien Lyonnais
- Laboratoire de Microscopie Moléculaire, UMR 8126: Interactions moléculaires et cancer, CNRS, Université Paris Sud-Institut de Cancérologie Gustave Roussy, Villejuif, France
| | - Dominique Coulaud
- Laboratoire de Microscopie Moléculaire, UMR 8126: Interactions moléculaires et cancer, CNRS, Université Paris Sud-Institut de Cancérologie Gustave Roussy, Villejuif, France
| | - Laurence Hameau
- Laboratoire de Microscopie Moléculaire, UMR 8126: Interactions moléculaires et cancer, CNRS, Université Paris Sud-Institut de Cancérologie Gustave Roussy, Villejuif, France
| | - Sophie Lafosse
- Laboratoire de Microscopie Moléculaire, UMR 8126: Interactions moléculaires et cancer, CNRS, Université Paris Sud-Institut de Cancérologie Gustave Roussy, Villejuif, France
| | - Josette Jeusset
- Laboratoire de Microscopie Moléculaire, UMR 8126: Interactions moléculaires et cancer, CNRS, Université Paris Sud-Institut de Cancérologie Gustave Roussy, Villejuif, France
| | - Isabelle Borde
- Laboratoire Biologie et Multimedia, Université Pierre et Marie Curie-Paris, Paris, France
| | - Michèle Reboud-Ravaux
- Laboratoire d'Enzymologie Moléculaire et Fonctionnelle, CNRS FRE 2852, Institut Jacques Monod, CNRS-Université Pierre et Marie Curie-Paris, Paris, France
| | - Tobias Restle
- Institut für Molekulare Medizin, Universitätsklinikum Schleswig-Holstein and ZMSB, Lübeck, Germany
| | - Robert J. Gorelick
- AIDS Vaccine Program, Basic Research Program, Science Applications International Corporation at Frederick, The National Cancer Institute at Frederick, Frederick, Maryland, United States of America
| | - Eric Le Cam
- Laboratoire de Microscopie Moléculaire, UMR 8126: Interactions moléculaires et cancer, CNRS, Université Paris Sud-Institut de Cancérologie Gustave Roussy, Villejuif, France
| |
Collapse
|
40
|
Sun X, Zhang Q, Al-Hashimi HM. Resolving fast and slow motions in the internal loop containing stem-loop 1 of HIV-1 that are modulated by Mg2+ binding: role in the kissing-duplex structural transition. Nucleic Acids Res 2007; 35:1698-713. [PMID: 17311812 PMCID: PMC1865058 DOI: 10.1093/nar/gkm020] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Stem loop 1 (SL1) is a highly conserved hairpin in the 5'-leader of the human immunodeficiency virus type I that forms a metastable kissing dimer that is converted during viral maturation into a stable duplex with the aid of the nucleocapsid (NC) protein. SL1 contains a highly conserved internal loop that promotes the kissing-duplex transition by a mechanism that remains poorly understood. Using NMR, we characterized internal motions induced by the internal loop in an SL1 monomer that may promote the kissing-duplex transition. This includes micro-to-millisecond secondary structural transitions that cause partial melting of three base-pairs above the internal loop making them key nucleation sites for exchanging strands and nanosecond rigid-body stem motions that can help bring strands into spatial register. We show that while Mg2+ binds to the internal loop and arrests these internal motions, it preserves and/or activates local mobility at internal loop residues G272 and G273 which are implicated in NC binding. By stabilizing SL1 without compromising the accessibility of G272 and G273 for NC binding, Mg2+ may increase the dependence of the kissing-duplex transition on NC binding thus preventing spontaneous transitions from taking place and ensuring that viral RNA and protein maturation occur in concert.
Collapse
|