1
|
Chen Y, Anderson MT, Payne N, Santori FR, Ivanova NB. Nuclear Receptors and the Hidden Language of the Metabolome. Cells 2024; 13:1284. [PMID: 39120315 PMCID: PMC11311682 DOI: 10.3390/cells13151284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/16/2024] [Accepted: 07/22/2024] [Indexed: 08/10/2024] Open
Abstract
Nuclear hormone receptors (NHRs) are a family of ligand-regulated transcription factors that control key aspects of development and physiology. The regulation of NHRs by ligands derived from metabolism or diet makes them excellent pharmacological targets, and the mechanistic understanding of how NHRs interact with their ligands to regulate downstream gene networks, along with the identification of ligands for orphan NHRs, could enable innovative approaches for cellular engineering, disease modeling and regenerative medicine. We review recent discoveries in the identification of physiologic ligands for NHRs. We propose new models of ligand-receptor co-evolution, the emergence of hormonal function and models of regulation of NHR specificity and activity via one-ligand and two-ligand models as well as feedback loops. Lastly, we discuss limitations on the processes for the identification of physiologic NHR ligands and emerging new methodologies that could be used to identify the natural ligands for the remaining 17 orphan NHRs in the human genome.
Collapse
Affiliation(s)
- Yujie Chen
- Center for Molecular Medicine, University of Georgia, Athens, GA 30602, USA; (Y.C.); (M.T.A.); (N.P.)
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | - Matthew Tom Anderson
- Center for Molecular Medicine, University of Georgia, Athens, GA 30602, USA; (Y.C.); (M.T.A.); (N.P.)
| | - Nathaniel Payne
- Center for Molecular Medicine, University of Georgia, Athens, GA 30602, USA; (Y.C.); (M.T.A.); (N.P.)
| | - Fabio R. Santori
- Center for Molecular Medicine, University of Georgia, Athens, GA 30602, USA; (Y.C.); (M.T.A.); (N.P.)
| | - Natalia B. Ivanova
- Center for Molecular Medicine, University of Georgia, Athens, GA 30602, USA; (Y.C.); (M.T.A.); (N.P.)
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
2
|
Gomatou G, Karachaliou A, Veloudiou OZ, Karvela A, Syrigos N, Kotteas E. The Role of REV-ERB Receptors in Cancer Pathogenesis. Int J Mol Sci 2023; 24:ijms24108980. [PMID: 37240325 DOI: 10.3390/ijms24108980] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 05/10/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
REV-ERB receptors are members of the nuclear receptor superfamily of proteins, which act as both intracellular receptors and transcription factors, therefore modulating the expression of target genes. REV-ERBs act as transcription repressors because of their unique structure. Their predominant role involves the control of peripheral circadian rhythmicity by participating in a transcription-translation feedback loop with other major clock genes. Regarding their role in cancer pathogenesis, recent studies in various cancerous tissues have revealed that their expression was downregulated in the majority of the cases. Dysregulation of their expression was also implicated in cancer-associated cachexia. The pharmacological restoration of their effects is feasible with synthetic agonists, which have been explored in preclinical studies but with scarce data. There is a need for further investigation, primarily with mechanistic studies, on the effect of the REV-ERB-induced circadian rhythm deregulation in carcinogenesis and cancer-related systemic effects, such as cachexia, in order to address the potential of relevant therapeutic implications.
Collapse
Affiliation(s)
- Georgia Gomatou
- Oncology Unit, Third Department of Medicine, "Sotiria" General Hospital for Diseases of the Chest, National and Kapodistrian University of Athens, 115 27 Athens, Greece
| | - Anastasia Karachaliou
- Oncology Unit, Third Department of Medicine, "Sotiria" General Hospital for Diseases of the Chest, National and Kapodistrian University of Athens, 115 27 Athens, Greece
| | - Orsalia-Zoi Veloudiou
- Oncology Unit, Third Department of Medicine, "Sotiria" General Hospital for Diseases of the Chest, National and Kapodistrian University of Athens, 115 27 Athens, Greece
| | - Alexandra Karvela
- Oncology Unit, Third Department of Medicine, "Sotiria" General Hospital for Diseases of the Chest, National and Kapodistrian University of Athens, 115 27 Athens, Greece
| | - Nikolaos Syrigos
- Oncology Unit, Third Department of Medicine, "Sotiria" General Hospital for Diseases of the Chest, National and Kapodistrian University of Athens, 115 27 Athens, Greece
| | - Elias Kotteas
- Oncology Unit, Third Department of Medicine, "Sotiria" General Hospital for Diseases of the Chest, National and Kapodistrian University of Athens, 115 27 Athens, Greece
| |
Collapse
|
3
|
Murray MH, Valfort AC, Koelblen T, Ronin C, Ciesielski F, Chatterjee A, Veerakanellore GB, Elgendy B, Walker JK, Hegazy L, Burris TP. Structural basis of synthetic agonist activation of the nuclear receptor REV-ERB. Nat Commun 2022; 13:7131. [PMID: 36414641 PMCID: PMC9681850 DOI: 10.1038/s41467-022-34892-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 11/10/2022] [Indexed: 11/23/2022] Open
Abstract
The nuclear receptor REV-ERB plays an important role in a range of physiological processes. REV-ERB behaves as a ligand-dependent transcriptional repressor and heme has been identified as a physiological agonist. Our current understanding of how ligands bind to and regulate transcriptional repression by REV-ERB is based on the structure of heme bound to REV-ERB. However, porphyrin (heme) analogues have been avoided as a source of synthetic agonists due to the wide range of heme binding proteins and potential pleotropic effects. How non-porphyrin synthetic agonists bind to and regulate REV-ERB has not yet been defined. Here, we characterize a high affinity synthetic REV-ERB agonist, STL1267, and describe its mechanism of binding to REV-ERB as well as the method by which it recruits transcriptional corepressor both of which are unique and distinct from that of heme-bound REV-ERB.
Collapse
Affiliation(s)
- Meghan H Murray
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, St. Louis, MO, 63104, USA
- Center for Clinical Pharmacology, Washington University School of Medicine, University of Health Sciences & Pharmacy, St. Louis, MO, 63110, USA
| | | | - Thomas Koelblen
- University of Florida Genetics Institute, Gainesville, FL, 32610, USA
| | | | | | - Arindam Chatterjee
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, St. Louis, MO, 63104, USA
| | - Giri Babu Veerakanellore
- Center for Clinical Pharmacology, Washington University School of Medicine, University of Health Sciences & Pharmacy, St. Louis, MO, 63110, USA
- Department of Pharmaceutical and Administrative Sciences, University of Health Sciences & Pharmacy, St. Louis, MO, 63110, USA
| | - Bahaa Elgendy
- Center for Clinical Pharmacology, Washington University School of Medicine, University of Health Sciences & Pharmacy, St. Louis, MO, 63110, USA
- Department of Pharmaceutical and Administrative Sciences, University of Health Sciences & Pharmacy, St. Louis, MO, 63110, USA
| | - John K Walker
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, St. Louis, MO, 63104, USA
| | - Lamees Hegazy
- Center for Clinical Pharmacology, Washington University School of Medicine, University of Health Sciences & Pharmacy, St. Louis, MO, 63110, USA.
- Department of Pharmaceutical and Administrative Sciences, University of Health Sciences & Pharmacy, St. Louis, MO, 63110, USA.
| | - Thomas P Burris
- University of Florida Genetics Institute, Gainesville, FL, 32610, USA.
| |
Collapse
|
4
|
Fleischhacker AS, Sarkar A, Liu L, Ragsdale SW. Regulation of protein function and degradation by heme, heme responsive motifs, and CO. Crit Rev Biochem Mol Biol 2022; 57:16-47. [PMID: 34517731 PMCID: PMC8966953 DOI: 10.1080/10409238.2021.1961674] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Heme is an essential biomolecule and cofactor involved in a myriad of biological processes. In this review, we focus on how heme binding to heme regulatory motifs (HRMs), catalytic sites, and gas signaling molecules as well as how changes in the heme redox state regulate protein structure, function, and degradation. We also relate these heme-dependent changes to the affected metabolic processes. We center our discussion on two HRM-containing proteins: human heme oxygenase-2, a protein that binds and degrades heme (releasing Fe2+ and CO) in its catalytic core and binds Fe3+-heme at HRMs located within an unstructured region of the enzyme, and the transcriptional regulator Rev-erbβ, a protein that binds Fe3+-heme at an HRM and is involved in CO sensing. We will discuss these and other proteins as they relate to cellular heme composition, homeostasis, and trafficking. In addition, we will discuss the HRM-containing family of proteins and how the stability and activity of these proteins are regulated in a dependent manner through the HRMs. Then, after reviewing CO-mediated protein regulation of heme proteins, we turn our attention to the involvement of heme, HRMs, and CO in circadian rhythms. In sum, we stress the importance of understanding the various roles of heme and the distribution of the different heme pools as they relate to the heme redox state, CO, and heme binding affinities.
Collapse
Affiliation(s)
- Angela S. Fleischhacker
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Anindita Sarkar
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Liu Liu
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Stephen W. Ragsdale
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI, USA
| |
Collapse
|
5
|
Structural overview and perspectives of the nuclear receptors, a major family as the direct targets for small-molecule drugs. Acta Biochim Biophys Sin (Shanghai) 2021; 54:12-24. [PMID: 35130630 PMCID: PMC9909358 DOI: 10.3724/abbs.2021001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The nuclear receptors (NRs) are an evolutionarily related family of transcription factors, which share certain common structural characteristics and regulate the expressions of various genes by recognizing different response elements. NRs play important roles in cell differentiation, proliferation, survival and apoptosis, rendering them indispensable in many physiological activities including growth and metabolism. As a result, dysfunctions of NRs are closely related to a variety of diseases, such as diabetes, obesity, infertility, inflammation, the Alzheimer's disease, cardiovascular diseases, prostate and breast cancers. Meanwhile, small-molecule drugs directly targeting NRs have been widely used in the treatment of above diseases. Here we summarize recent progress in the structural biology studies of NR family proteins. Compared with the dozens of structures of isolated DNA-binding domains (DBDs) and the striking more than a thousand of structures of isolated ligand-binding domains (LBDs) accumulated in the Protein Data Bank (PDB) over thirty years, by now there are only a small number of multi-domain NR complex structures, which reveal the integration of different NR domains capable of the allosteric signal transduction, or the detailed interactions between NR and various coregulator proteins. On the other hand, the structural information about several orphan NRs is still totally unavailable, hindering the further understanding of their functions. The fast development of new technologies in structural biology will certainly help us gain more comprehensive information of NR structures, inspiring the discovery of novel NR-targeting drugs with a new binding site beyond the classic LBD pockets and/or a new mechanism of action.
Collapse
|
6
|
Tao LJ, Seo DE, Jackson B, Ivanova NB, Santori FR. Nuclear Hormone Receptors and Their Ligands: Metabolites in Control of Transcription. Cells 2020; 9:cells9122606. [PMID: 33291787 PMCID: PMC7762034 DOI: 10.3390/cells9122606] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 11/30/2020] [Accepted: 12/01/2020] [Indexed: 12/23/2022] Open
Abstract
Nuclear hormone receptors are a family of transcription factors regulated by small molecules derived from the endogenous metabolism or diet. There are forty-eight nuclear hormone receptors in the human genome, twenty of which are still orphans. In this review, we make a brief historical journey from the first observations by Berthold in 1849 to the era of orphan receptors that began with the sequencing of the Caenorhabditis elegans genome in 1998. We discuss the evolution of nuclear hormone receptors and the putative ancestral ligands as well as how the ligand universe has expanded over time. This leads us to define four classes of metabolites-fatty acids, terpenoids, porphyrins and amino acid derivatives-that generate all known ligands for nuclear hormone receptors. We conclude by discussing the ongoing efforts to identify new classes of ligands for orphan receptors.
Collapse
Affiliation(s)
- Lian Jing Tao
- Department of Genetics, Center for Molecular Medicine, University of Georgia, Athens, GA 30602, USA
| | - Dong Eun Seo
- Department of Genetics, Center for Molecular Medicine, University of Georgia, Athens, GA 30602, USA
| | - Benjamin Jackson
- Department of Genetics, Center for Molecular Medicine, University of Georgia, Athens, GA 30602, USA
| | - Natalia B Ivanova
- Department of Genetics, Center for Molecular Medicine, University of Georgia, Athens, GA 30602, USA
| | | |
Collapse
|
7
|
Determination of genetic changes of Rev-erb beta and Rev-erb alpha genes in Type 2 diabetes mellitus by next-generation sequencing. Gene 2020; 763:145058. [PMID: 32798635 DOI: 10.1016/j.gene.2020.145058] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 07/07/2020] [Accepted: 08/12/2020] [Indexed: 12/30/2022]
Abstract
BACKGROUND The nuclear receptors Rev-erb alpha and Rev-erb beta are transcription factors that regulate the function of genes in glucose and lipid metabolism, and they also form a link between circadian rhythm and metabolism. We evaluated the variations in Rev-erb alpha and Rev-erb beta genes together with biochemical parameters as risk factors in type 2 diabetic (T2DM) patients. METHODS Molecular analyses of Rev-erb alpha and Rev-erb beta genes were performed on genomic DNA by using next-generation sequencing in 42 T2DM patients (21 obese and 21 non-obese) and 66 healthy controls. RESULTS We found 26 rare mutations in the study groups, including 13 missense mutations, 9 silent mutations, 3 5'UTR variations, and a 3'UTR variation, of which 9 were novel variations (5 missense and 3 silent and 1 5'UTR). Six common variations were also found in the Rev-erb genes; Rev-erb beta Chr3:24003765 A > G, Rev-erb beta rs924403442 (Chr3:24006717) G > T, Rev-erb alpha Chr17:38253751 T > C, Rev-erb alpha rs72836608 C > A, Rev-erb alpha rs2314339 C > T and Rev-erb alpha rs2102928 C > T. Of these, Rev-erb beta Chr3:24003765 A > G was a novel missense mutation (p.Q197R), while others were identified as intronic variants. T2DM patients with Rev-erb beta rs924403442 T allele had lower body surface area (BSA) than noncarriers (GG genotype) (p = 0.039). Rev-erb alpha rs72836608 A allele and Rev-erb alpha rs2314339 CC genotype were associated with decreased serum HDL-cholesterol levels in T2DM patients (p = 0.025 and p = 0.027, respectively). In our study, different effects of Rev-erbs polymorphisms were found according to gender and presence of obesity. Rev-erb alpha rs72836608 (C > A) and rs2314339 (C > T) and Rev-erb alpha rs2102928 (C > T) were associated with low HDL-C levels in male T2DM patients. In female patients, Rev-erb alpha rs2102928 (C > T) was associated with high microalbuminuria and Rev-erb beta rs9244403442 G > T was associated with low HDL and high BSA values. In addition, Rev-erb alpha Chr17: 38,253,751 (T > C), rs72836608 (C > A), and rs2314339 (C > T) and Rev-erb beta Chr3:24003765 (A > G) were associated with increased serum GGT levels in obese T2DM patients. In non-obese patients, Rev-erbs SNPs had no effect on serum GGT levels. CONCLUSION Our findings indicate that variations in the Rev-erb alpha and Rev-erb beta genes can affect metabolic changes in T2DM and these effects may vary depending on gender and obesity.
Collapse
|
8
|
Borba TKF, Toscano AE, Costa de Santana BJR, Silva SCDA, Lagranha CJ, Guzmán Quevedo O, Manhães-de-Castro R. Central administration of REV-ERBα agonist promotes opposite responses on energy balance in fasted and fed states. J Neuroendocrinol 2020; 32:e12833. [PMID: 31957097 DOI: 10.1111/jne.12833] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 01/15/2020] [Accepted: 01/15/2020] [Indexed: 11/29/2022]
Abstract
The REV-ERBα receptor has a recognised role in the regulation of the circadian rhythm system. However, recent evidence suggests that it also contributes to energy balance regulation. Both expression and function of REV-ERBα can be influenced by the energy status of the body. Considering the possibility of the involvement of REV-ERBα in the regulation of energy balance, which is critically regulated by the hypothalamus, and based on the impact of intermittent fasting, the present study evaluated the effects of central administration of REV-ERBα agonist on energy balance in rats exposed to 24 hours of fasting or ad lib. feeding conditions. Initially, 24-hour fasted rats received an acute i.c.v. administration of agonist at doses of 1, 5, 10 or 15 μg per rat and feed efficiency was evaluated. Because 10 μg was a sufficient dose to affect feed efficiency, subsequent experiments used this dose to assess effects of agonist on the following parameters: energy expenditure induced by physical activity and locomotor activity, time spent in physical activity over 24 hours, and glucose and insulin tolerance. In fasted rats, the agonist promoted increased food intake and feed efficiency, with a greater body weight gain associated with less time spent in locomotor activity, suggesting a reduction in energy expenditure induced by physical activity. Furthermore, a reduction in glucose tolerance was noted. By contrast, free-fed rats exhibited reduced food intake and feed efficiency with decreased body weight gain along with an increase in locomotor activity and physical activity-dependent energy expenditure. Thus, i.c.v. administration of REV-ERBα agonist regulates energy balance depending on the energy status of the organism; that is, it promotes a positive energy balance in the fasted state and a negative energy balance in the fed state. These results may be useful in understanding the underlying mechanisms of energy balance disorders and intermittent fasting for body weight control.
Collapse
Affiliation(s)
- Tássia Karin Ferreira Borba
- Post-Graduation in Neuropsychiatry and Behavioral Sciences, Health Sciences Center, Federal University of Pernambuco, Recife, Brazil
| | - Ana Elisa Toscano
- Department of Nursing, CAV, Federal University of Pernambuco, Vitória de Santo Antão, Brazil
- Unit of Studies in Nutrition and Phenotypic Plasticity, Department of Nutrition, Federal University of Pernambuco, Recife, Brazil
| | - Bárbara Juacy Rodrigues Costa de Santana
- Post-Graduation in Neuropsychiatry and Behavioral Sciences, Health Sciences Center, Federal University of Pernambuco, Recife, Brazil
- Unit of Studies in Nutrition and Phenotypic Plasticity, Department of Nutrition, Federal University of Pernambuco, Recife, Brazil
| | - Severina Cassia de Andrade Silva
- Post-Graduation in Neuropsychiatry and Behavioral Sciences, Health Sciences Center, Federal University of Pernambuco, Recife, Brazil
| | - Claudia Jacques Lagranha
- Post-Graduation in Neuropsychiatry and Behavioral Sciences, Health Sciences Center, Federal University of Pernambuco, Recife, Brazil
| | | | - Raul Manhães-de-Castro
- Unit of Studies in Nutrition and Phenotypic Plasticity, Department of Nutrition, Federal University of Pernambuco, Recife, Brazil
| |
Collapse
|
9
|
Abstract
T helper 17 (Th17) cells produce interleukin-17 (IL-17) cytokines and drive inflammatory responses in autoimmune diseases such as multiple sclerosis. The differentiation of Th17 cells is dependent on the retinoic acid receptor-related orphan nuclear receptor RORγt. Here, we identify REV-ERBα (encoded by Nr1d1), a member of the nuclear hormone receptor family, as a transcriptional repressor that antagonizes RORγt function in Th17 cells. REV-ERBα binds to ROR response elements (RORE) in Th17 cells and inhibits the expression of RORγt-dependent genes including Il17a and Il17f Furthermore, elevated REV-ERBα expression or treatment with a synthetic REV-ERB agonist significantly delays the onset and impedes the progression of experimental autoimmune encephalomyelitis (EAE). These results suggest that modulating REV-ERBα activity may be used to manipulate Th17 cells in autoimmune diseases.
Collapse
|
10
|
Abstract
Circadian oscillators are networks of biochemical feedback loops that generate 24-hour rhythms in organisms from bacteria to animals. These periodic rhythms result from a complex interplay among clock components that are specific to the organism, but share molecular mechanisms across kingdoms. A full understanding of these processes requires detailed knowledge, not only of the biochemical properties of clock proteins and their interactions, but also of the three-dimensional structure of clockwork components. Posttranslational modifications and protein–protein interactions have become a recent focus, in particular the complex interactions mediated by the phosphorylation of clock proteins and the formation of multimeric protein complexes that regulate clock genes at transcriptional and translational levels. This review covers the structural aspects of circadian oscillators, and serves as a primer for this exciting realm of structural biology.
Collapse
Affiliation(s)
- Reena Saini
- Center for Biocrystallographic Research, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland.,Max-Planck-Institut für Pflanzenzüchtungsforschung, Cologne, Germany
| | - Mariusz Jaskolski
- Center for Biocrystallographic Research, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland.,Department of Crystallography, Faculty of Chemistry, A. Mickiewicz University, Poznan, Poland
| | - Seth J Davis
- Max-Planck-Institut für Pflanzenzüchtungsforschung, Cologne, Germany. .,Department of Biology, University of York, York, UK.
| |
Collapse
|
11
|
Windshügel B. Structural insights into ligand-binding pocket formation in Nurr1 by molecular dynamics simulations. J Biomol Struct Dyn 2019; 37:4651-4657. [PMID: 30582418 DOI: 10.1080/07391102.2018.1559099] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The nuclear receptor Nurr1 (NR4A2) has been identified as a potential target for the treatment of Parkinson's disease. In contrast to most other nuclear receptors, the X-ray crystal structure of the Nurr1 ligand-binding domain (LBD) lacks any ligand-binding pocket (LBP). However, NMR spectroscopy measurements have revealed that the known Nurr1 agonist docosahexaenoic acid (DHA) binds to a region within the LBD that corresponds to the classical NR ligand-binding pocket (LBP). In order to investigate the structural dynamics of the Nurr1 LBD and to study potential LBP formation, the conformational space of the receptor was sampled using a molecular dynamics (MD) simulation. Docking of DHA into 50,000 LBD structures extracted from the simulation revealed the existence of a transient LBP that is capable to fully harbor the compound. The location of the identified pocket overlaps with the ligand-binding site suggested by NMR experiments. Structural analysis of the protein-ligand complex showed that only modest structural rearrangements within the Nurr1 LBD are required for LBP formation. These findings may support structure-based drug discovery campaigns for the development of receptor-specific agonists.
Collapse
Affiliation(s)
- Björn Windshügel
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, ScreeningPort , Hamburg , Germany
| |
Collapse
|
12
|
Yuan X, Dong D, Li Z, Wu B. Rev-erbα activation down-regulates hepatic Pck1 enzyme to lower plasma glucose in mice. Pharmacol Res 2019; 141:310-318. [PMID: 30639375 DOI: 10.1016/j.phrs.2019.01.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 11/05/2018] [Accepted: 01/04/2019] [Indexed: 01/28/2023]
Abstract
REV-ERBα (NR1D1) is a nuclear heme receptor that controls many cellular processes including cell differentiation, lipid metabolism, and inflammatory responses. Although REV-ERBα has been also implicated in regulation of glucose homeostasis, the mechanism for this regulation remains unclear. Here we investigate a potential role of REV-ERBα in regulation of PCK1 (phosphoenolpyruvate carboxykinase 1), a rate-limiting enzyme in gluconeogenesis. Hepatoma cells (Hepa-1c1c7 and HepG2 cells), wild-type mice and streptozotocin-induced diabetic mice were treated with SR9009, a specific REV-ERBα agonist. The relative mRNA and protein levels of enzymes in the cells or mouse livers were determined by qPCR and Western blotting, respectively. The fasting plasma glucose test was performed to determine the effects of Rev-erbα on glucose homeostasis. Transcriptional regulation of Pck1 by Rev-erbα was investigated using a combination of luciferase reporter, mobility shift, and chromatin immunoprecipitation (ChIP) assays. SR9009 treatment significantly decreased the mRNA level of Pck1 in mouse hepatoma Hepa-1c1c7 cells, whereas other major enzymes involved in gluconeogenesis (pyruvate carboxylase, glucose-6-phosphatase, fructose bisphosphatase and Pck2) and in glycolysis (phosphofructokinase and hexokinase-1) were unaffected. Consistent with the mRNA change, the protein level of Pck1 was down-regulated. Similarly, a repressive action of REV-ERBα on PCK1 expression was observed in human HepG2 hepatoma cells. SR9009 administration to wild-type or diabetic mice significantly reduced the level of fasting plasma glucose. This coincided with decreased mRNA and protein levels of Pck1 in the liver. In addition, the diabetic mice showed an improvement in glucose tolerability after SR9009 treatment. Promoter analysis, mobility shift, and ChIP assays revealed that Rev-erbα trans-repressed Pck1 through direct binding to -325 to -320 bp region (a RevRE site) in the gene promoter. In conclusion, Rev-erbα activation down-regulates hepatic Pck1 to lower plasma glucose.
Collapse
Affiliation(s)
- Xue Yuan
- Research Center for Biopharmaceutics and Pharmacokinetics, College of Pharmacy, Jinan University, Guangzhou, China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou, China
| | - Dong Dong
- International Ocular Surface Research Centre and Institute of Ophthalmology, School of Medicine, Jinan University, Guangzhou, China
| | - Zhijie Li
- International Ocular Surface Research Centre and Institute of Ophthalmology, School of Medicine, Jinan University, Guangzhou, China
| | - Baojian Wu
- Research Center for Biopharmaceutics and Pharmacokinetics, College of Pharmacy, Jinan University, Guangzhou, China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou, China.
| |
Collapse
|
13
|
Fleischhacker AS, Carter EL, Ragsdale SW. Redox Regulation of Heme Oxygenase-2 and the Transcription Factor, Rev-Erb, Through Heme Regulatory Motifs. Antioxid Redox Signal 2018; 29:1841-1857. [PMID: 28990415 PMCID: PMC6217750 DOI: 10.1089/ars.2017.7368] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
SIGNIFICANCE Heme binds to and serves as a cofactor for a myriad of proteins that are involved in diverse biological processes. Hemoproteins also exhibit varying modes of heme binding, suggesting that the protein environment contributes to the functional versatility of this prosthetic group. The subject of this review is a subset of hemoproteins that contain at least one heme regulatory motif (HRM), which is a short sequence containing a Cys-Pro core that, in many cases, binds heme with the Cys acting as an axial ligand. Recent Advances: As more details about HRM-containing proteins are uncovered, some underlying commonalities are emerging, including a role in regulating protein stability. Further, the cysteines of some HRMs have been shown to form disulfide bonds. Because the cysteines must be in the reduced, dithiol form to act as a heme axial ligand, heme binds at these sites in a redox-regulated manner, as demonstrated for heme oxygenase-2 (HO2) and Rev-erbβ. CRITICAL ISSUES HRM-containing proteins have wide variations in heme affinity, utilize different axial ligand schemes, and exhibit differences in the ability to act as a redox sensor-all while having a wide variety of biological functions. Here, we highlight HO2 and Rev-erbβ to illustrate the similarities and differences between two hemoproteins that contain HRMs acting as redox sensors. FUTURE DIRECTIONS HRMs acting as redox sensors may be applicable to other HRM-containing proteins as many contain multiple HRMs and/or other cysteine residues, which may become more evident as the functional significance of HRMs is probed in additional proteins.
Collapse
Affiliation(s)
| | - Eric L Carter
- Department of Biological Chemistry, University of Michigan , Ann Arbor, Michigan
| | - Stephen W Ragsdale
- Department of Biological Chemistry, University of Michigan , Ann Arbor, Michigan
| |
Collapse
|
14
|
de Vera IMS, Munoz-Tello P, Zheng J, Dharmarajan V, Marciano DP, Matta-Camacho E, Giri PK, Shang J, Hughes TS, Rance M, Griffin PR, Kojetin DJ. Defining a Canonical Ligand-Binding Pocket in the Orphan Nuclear Receptor Nurr1. Structure 2018; 27:66-77.e5. [PMID: 30416039 DOI: 10.1016/j.str.2018.10.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 08/17/2018] [Accepted: 10/05/2018] [Indexed: 01/12/2023]
Abstract
Nuclear receptor-related 1 protein (Nurr1/NR4A2) is an orphan nuclear receptor (NR) that is considered to function without a canonical ligand-binding pocket (LBP). A crystal structure of the Nurr1 ligand-binding domain (LBD) revealed no physical space in the conserved region where other NRs with solvent accessible apo-protein LBPs bind synthetic and natural ligands. Using solution nuclear magnetic resonance spectroscopy, hydrogen/deuterium exchange mass spectrometry, and molecular dynamics simulations, we show that the putative canonical Nurr1 LBP is dynamic with high solvent accessibility, exchanges between two or more conformations on the microsecond-to-millisecond timescale, and can expand from the collapsed crystallized conformation to allow binding of unsaturated fatty acids. These findings should stimulate future studies to probe the ligandability and druggability of Nurr1 for both endogenous and synthetic ligands, which could lead to new therapeutics for Nurr1-related diseases, including Parkinson's disease and schizophrenia.
Collapse
Affiliation(s)
- Ian Mitchelle S de Vera
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Paola Munoz-Tello
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Jie Zheng
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL 33458, USA
| | | | - David P Marciano
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL 33458, USA; Skaggs Graduate School of Chemical and Biological Sciences, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Edna Matta-Camacho
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Pankaj Kumar Giri
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Jinsai Shang
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Travis S Hughes
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Mark Rance
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Patrick R Griffin
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, Jupiter, FL 33458, USA; Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Douglas J Kojetin
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, Jupiter, FL 33458, USA; Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL 33458, USA.
| |
Collapse
|
15
|
Gong Y, Cao R, Ding G, Hong S, Zhou W, Lu W, Damle M, Fang B, Wang CC, Qian J, Lie N, Lanzillotta C, Rabinowitz JD, Sun Z. Integrated omics approaches to characterize a nuclear receptor corepressor-associated histone deacetylase in mouse skeletal muscle. Mol Cell Endocrinol 2018; 471:22-32. [PMID: 28554803 PMCID: PMC5702591 DOI: 10.1016/j.mce.2017.05.024] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 05/09/2017] [Accepted: 05/23/2017] [Indexed: 12/22/2022]
Abstract
Nuclear receptors regulate gene expression by differentially binding to coactivators or corepressors in a ligand-dependent manner, which further recruits a set of epigenome-modifying enzymes that remodel chromatin conformation. Histone acetylation is a major epigenomic change controlled by histone acetyltransferases (HATs) and histone deacetylases (HDACs). HDAC3 is the only HDAC that confers the enzymatic activity to the complexes nucleated by nuclear receptor corepressors NCoR and SMRT. To address the metabolic function of HDAC3, we have deleted it specifically in mouse skeletal muscles. We have performed the following omics profiling in skeletal muscles of these mice: (1) RNA-seq profiling of total RNA; (2) Global nuclear run-on (GRO-seq) analysis of nascent RNAs; (3) Chromatin immuno-precipitation (ChIP-seq) of HDAC3 at both early evening and early morning; (4) proteomics profiling with mass spectrometry; (5) snap-shot metabolomics profiling of water-soluble metabolites at the basal condition; (6) snap-shot metabolomics profiling of lipid species at the basal condition; (7) kinetic fluxomics analysis of glucose utilization using 13C6-glucose In vivo during treadmill running exercise. These approaches have provided several novel insights into how nuclear receptors regulate circadian rhythm of skeletal muscle fuel metabolism, which has been published elsewhere. Here we present the original datasets and technical details during the execution, analysis, and interpretation of these omics studies.
Collapse
Affiliation(s)
- Yingyun Gong
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, United States
| | - Rui Cao
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, United States
| | - Guolian Ding
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, United States
| | - Sungguan Hong
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, United States
| | - Wenjun Zhou
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, United States
| | - Wenyun Lu
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, United States
| | - Manashree Damle
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, The Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Bin Fang
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, The Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Chuhan C Wang
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, United States
| | - Justin Qian
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, United States
| | - Natasha Lie
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, United States
| | - Cristina Lanzillotta
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, The Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Joshua D Rabinowitz
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, United States
| | - Zheng Sun
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, United States.
| |
Collapse
|
16
|
Jaiswal B, Gupta A. Modulation of Nuclear Receptor Function by Chromatin Modifying Factor TIP60. Endocrinology 2018; 159:2199-2215. [PMID: 29420715 DOI: 10.1210/en.2017-03190] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 01/31/2018] [Indexed: 02/07/2023]
Abstract
Nuclear receptors (NRs) are transcription factors that bind to specific DNA sequences known as hormone response elements located upstream of their target genes. Transcriptional activity of NRs can be modulated by binding of the compatible ligand and transient interaction with cellular coregulators, functioning either as coactivators or as corepressors. Many coactivator proteins possess intrinsic histone acetyltransferase (HAT) activity that catalyzes the acetylation of specific lysine residues in histone tails and loosens the histone-DNA interaction, thereby facilitating access of transcriptional factors to the regulatory sequences of the DNA. Tat interactive protein 60 (TIP60), a member of the Mof-Ybf2-Sas2-TIP60 family of HAT protein, is a multifunctional coregulator that controls a number of physiological processes including apoptosis, DNA damage repair, and transcriptional regulation. Over the last two decades or so, TIP60 has been extensively studied for its role as NR coregulator, controlling various aspect of steroid receptor functions. The aim of this review is to summarize the findings on the role of TIP60 as a coregulator for different classes of NRs and its overall functional implications. We also discuss the latest studies linking TIP60 to NR-associated metabolic disorders and cancers for its potential use as a therapeutic drug target in future.
Collapse
Affiliation(s)
- Bharti Jaiswal
- Department of Life Sciences, Shiv Nadar University, Greater Noida, Uttar Pradesh, India
| | - Ashish Gupta
- Department of Life Sciences, Shiv Nadar University, Greater Noida, Uttar Pradesh, India
| |
Collapse
|
17
|
Binding mode prediction and MD/MMPBSA-based free energy ranking for agonists of REV-ERBα/NCoR. J Comput Aided Mol Des 2017; 31:755-775. [PMID: 28712038 DOI: 10.1007/s10822-017-0040-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 07/06/2017] [Indexed: 12/28/2022]
Abstract
The knowledge of the free energy of binding of small molecules to a macromolecular target is crucial in drug design as is the ability to predict the functional consequences of binding. We highlight how a molecular dynamics (MD)-based approach can be used to predict the free energy of small molecules, and to provide priorities for the synthesis and the validation via in vitro tests. Here, we study the dynamics and energetics of the nuclear receptor REV-ERBα with its co-repressor NCoR and 35 novel agonists. Our in silico approach combines molecular docking, molecular dynamics (MD), solvent-accessible surface area (SASA) and molecular mechanics poisson boltzmann surface area (MMPBSA) calculations. While docking yielded initial hints on the binding modes, their stability was assessed by MD. The SASA calculations revealed that the presence of the ligand led to a higher exposure of hydrophobic REV-ERB residues for NCoR recruitment. MMPBSA was very successful in ranking ligands by potency in a retrospective and prospective manner. Particularly, the prospective MMPBSA ranking-based validations for four compounds, three predicted to be active and one weakly active, were confirmed experimentally.
Collapse
|
18
|
de Vera IMS, Giri PK, Munoz-Tello P, Brust R, Fuhrmann J, Matta-Camacho E, Shang J, Campbell S, Wilson HD, Granados J, Gardner WJ, Creamer TP, Solt LA, Kojetin DJ. Identification of a Binding Site for Unsaturated Fatty Acids in the Orphan Nuclear Receptor Nurr1. ACS Chem Biol 2016; 11:1795-9. [PMID: 27128111 DOI: 10.1021/acschembio.6b00037] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Nurr1/NR4A2 is an orphan nuclear receptor, and currently there are no known natural ligands that bind Nurr1. A recent metabolomics study identified unsaturated fatty acids, including arachidonic acid and docosahexaenoic acid (DHA), that interact with the ligand-binding domain (LBD) of a related orphan receptor, Nur77/NR4A1. However, the binding location and whether these ligands bind other NR4A receptors were not defined. Here, we show that unsaturated fatty acids also interact with the Nurr1 LBD, and solution NMR spectroscopy reveals the binding epitope of DHA at its putative ligand-binding pocket. Biochemical assays reveal that DHA-bound Nurr1 interacts with high affinity with a peptide derived from PIASγ, a protein that interacts with Nurr1 in cellular extracts, and DHA also affects cellular Nurr1 transactivation. This work is the first structural report of a natural ligand binding to a canonical NR4A ligand-binding pocket and indicates a natural ligand can bind and affect Nurr1 function.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Trevor P. Creamer
- Center
for Structural Biology, Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky 40536, United States
| | | | | |
Collapse
|
19
|
Carter EL, Gupta N, Ragsdale SW. High Affinity Heme Binding to a Heme Regulatory Motif on the Nuclear Receptor Rev-erbβ Leads to Its Degradation and Indirectly Regulates Its Interaction with Nuclear Receptor Corepressor. J Biol Chem 2015; 291:2196-222. [PMID: 26670607 DOI: 10.1074/jbc.m115.670281] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Indexed: 01/11/2023] Open
Abstract
Rev-erbα and Rev-erbβ are heme-binding nuclear receptors (NR) that repress the transcription of genes involved in regulating metabolism, inflammation, and the circadian clock. Previous gene expression and co-immunoprecipitation studies led to a model in which heme binding to Rev-erbα recruits nuclear receptor corepressor 1 (NCoR1) into an active repressor complex. However, in contradiction, biochemical and crystallographic studies have shown that heme decreases the affinity of the ligand-binding domain of Rev-erb NRs for NCoR1 peptides. One explanation for this discrepancy is that the ligand-binding domain and NCoR1 peptides used for in vitro studies cannot replicate the key features of the full-length proteins used in cellular studies. However, the combined in vitro and cellular results described here demonstrate that heme does not directly promote interactions between full-length Rev-erbβ (FLRev-erbβ) and an NCoR1 construct encompassing all three NR interaction domains. NCoR1 tightly binds both apo- and heme-replete FLRev-erbβ·DNA complexes; furthermore, heme, at high concentrations, destabilizes the FLRev-erbβ·NCoR1 complex. The interaction between FLRev-erbβ and NCoR1 as well as Rev-erbβ repression at the Bmal1 promoter appear to be modulated by another cellular factor(s), at least one of which is related to the ubiquitin-proteasome pathway. Our studies suggest that heme is involved in regulating the degradation of Rev-erbβ in a manner consistent with its role in circadian rhythm maintenance. Finally, the very slow rate constant (10(-6) s(-1)) of heme dissociation from Rev-erbβ rules out a prior proposal that Rev-erbβ acts as an intracellular heme sensor.
Collapse
Affiliation(s)
- Eric L Carter
- From the Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109
| | - Nirupama Gupta
- From the Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109
| | - Stephen W Ragsdale
- From the Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109
| |
Collapse
|
20
|
Vaissière A, Berger S, Harrus D, Dacquet C, Le Maire A, Boutin JA, Ferry G, Royer CA. Molecular mechanisms of transcriptional control by Rev-erbα: An energetic foundation for reconciling structure and binding with biological function. Protein Sci 2015; 24:1129-46. [PMID: 25969949 DOI: 10.1002/pro.2701] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Revised: 04/17/2015] [Accepted: 04/20/2015] [Indexed: 11/12/2022]
Abstract
Rev-erbα and β are nuclear receptors that function as transcriptional repressors of genes involved in regulating circadian rhythms, glucose, and cholesterol metabolism and the inflammatory response. Given these key functions, Rev-erbs are important drug targets for treatment of a number of human pathologies, including cancer, heart disease, and type II diabetes. Transcriptional repression by the Rev-erbs involves direct competition with transcriptional activators for target sites, but also recruitment by the Rev-erbs of the NCoR corepressor protein. Interestingly, Rev-erbs do not appear to interact functionally with a very similar corepressor, Smrt. Transcriptional repression by Rev-erbs is thought to occur in response to the binding of heme, although structural, and ligand binding studies in vitro show that heme and corepressor binding are antagonistic. We carried out systematic studies of the ligand and corepressor interactions to address the molecular basis for corepressor specificity and the energetic consequences of ligand binding using a variety of biophysical approaches. Highly quantitative fluorescence anisotropy assays in competition mode revealed that the Rev-erb specificity for the NCoR corepressor lies in the first two residues of the β-strand in Interaction Domain 1 of NCoR. Our studies confirmed and quantitated the strong antagonism of heme and corepressor binding and significant stabilization of the corepressor complex by a synthetic ligand in vitro. We propose a model which reconciles the contradictory observations concerning the effects of heme binding in vitro and in live cells.
Collapse
Affiliation(s)
- Anaïs Vaissière
- Centre de Biochimie Structurale CNRS UMR 5048, INSERM UMR 1054, Université de Montpellier, 34090, Montpellier Cedex, France
| | - Sylvie Berger
- Biotechnologie, Pharmacologie Moléculaire et Cellulaire, PEX BCB, Institut de Recherches SERVIER, 125 Chemin de Ronde, 78290, Croissy-sur-Seine, France
| | - Deborah Harrus
- Centre de Biochimie Structurale CNRS UMR 5048, INSERM UMR 1054, Université de Montpellier, 34090, Montpellier Cedex, France
| | - Catherine Dacquet
- Pole d'Innovation Thérapeutique, Recherche et Découverte Métabolisme, Institut de Recherches SERVIER, 11, rue des Moulineaux, 92150, Suresnes, France
| | - Albane Le Maire
- Centre de Biochimie Structurale CNRS UMR 5048, INSERM UMR 1054, Université de Montpellier, 34090, Montpellier Cedex, France
| | - Jean A Boutin
- Biotechnologie, Pharmacologie Moléculaire et Cellulaire, PEX BCB, Institut de Recherches SERVIER, 125 Chemin de Ronde, 78290, Croissy-sur-Seine, France
| | - Gilles Ferry
- Biotechnologie, Pharmacologie Moléculaire et Cellulaire, PEX BCB, Institut de Recherches SERVIER, 125 Chemin de Ronde, 78290, Croissy-sur-Seine, France
| | - Catherine A Royer
- Centre de Biochimie Structurale CNRS UMR 5048, INSERM UMR 1054, Université de Montpellier, 34090, Montpellier Cedex, France
| |
Collapse
|
21
|
Smith AT, Pazicni S, Marvin KA, Stevens DJ, Paulsen KM, Burstyn JN. Functional divergence of heme-thiolate proteins: a classification based on spectroscopic attributes. Chem Rev 2015; 115:2532-58. [PMID: 25763468 DOI: 10.1021/cr500056m] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Aaron T Smith
- †Department of Molecular Biosciences, Northwestern University, 2205 Tech Drive, Evanston, Illinois 60208, United States
| | - Samuel Pazicni
- ‡Department of Chemistry, University of New Hampshire, 23 Academic Way, Durham, New Hampshire 03824, United States
| | - Katherine A Marvin
- §Department of Chemistry, Hendrix College, 1600 Washington Avenue, Conway, Arkansas 72032, United States
| | - Daniel J Stevens
- ∥Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Katherine M Paulsen
- ∥Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Judith N Burstyn
- ∥Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| |
Collapse
|
22
|
Gallastegui N, Mackinnon JAG, Fletterick RJ, Estébanez-Perpiñá E. Advances in our structural understanding of orphan nuclear receptors. Trends Biochem Sci 2014; 40:25-35. [PMID: 25499868 DOI: 10.1016/j.tibs.2014.11.002] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Revised: 10/31/2014] [Accepted: 11/03/2014] [Indexed: 12/24/2022]
Abstract
Nuclear receptors (NRs) are key players in the regulation of gene expression, coordinating protein assemblies upon their surfaces. NRs are regulated by ligand binding, which remodels the interaction surfaces and subsequently influences macromolecular complex formation. Structural biology has been instrumental in the discovery of some of these ligands, but there are still orphan NRs (ONRs) whose bona fide ligands have yet to be identified. Over the past decade, fundamental structural and functional breakthroughs have led to a deeper understanding of ONR actions and their multidomain organization. Here, we summarize the structural advances in ONRs with implications for the therapeutic treatment of diseases such as metabolic syndrome and cancer.
Collapse
Affiliation(s)
- Nerea Gallastegui
- The Institute of Biomedicine of the University of Barcelona (IBUB), Department of Biochemistry and Molecular Biology, University of Barcelona (UB), Baldiri Reixac 15-21, 08028 Barcelona, Spain
| | - Jonathan A G Mackinnon
- The Institute of Biomedicine of the University of Barcelona (IBUB), Department of Biochemistry and Molecular Biology, University of Barcelona (UB), Baldiri Reixac 15-21, 08028 Barcelona, Spain
| | - Robert J Fletterick
- The Department of Biochemistry and Biophysics, University of California San Francisco (UCSF), San Francisco, CA, USA
| | - Eva Estébanez-Perpiñá
- The Institute of Biomedicine of the University of Barcelona (IBUB), Department of Biochemistry and Molecular Biology, University of Barcelona (UB), Baldiri Reixac 15-21, 08028 Barcelona, Spain.
| |
Collapse
|
23
|
Marciano DP, Chang MR, Corzo CA, Goswami D, Lam VQ, Pascal BD, Griffin PR. The therapeutic potential of nuclear receptor modulators for treatment of metabolic disorders: PPARγ, RORs, and Rev-erbs. Cell Metab 2014; 19:193-208. [PMID: 24440037 DOI: 10.1016/j.cmet.2013.12.009] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Nuclear receptors (NRs) play central roles in metabolic syndrome, making them attractive drug targets despite the challenge of achieving functional selectivity. For instance, members of the thiazolidinedione class of insulin sensitizers offer robust efficacy but have been limited due to adverse effects linked to activation of genes not involved in insulin sensitization. Studies reviewed here provide strategies for targeting subsets of PPARγ target genes, enabling development of next-generation modulators with improved therapeutic index. Additionally, emerging evidence suggests that targeting the NRs ROR and Rev-erb holds promise for treating metabolic syndrome based on their involvement in circadian rhythm and metabolism.
Collapse
Affiliation(s)
- David P Marciano
- Department of Molecular Therapeutics, The Scripps Research Institute, Scripps Florida, Jupiter, FL 33458, USA
| | - Mi Ra Chang
- Department of Molecular Therapeutics, The Scripps Research Institute, Scripps Florida, Jupiter, FL 33458, USA
| | - Cesar A Corzo
- Department of Molecular Therapeutics, The Scripps Research Institute, Scripps Florida, Jupiter, FL 33458, USA
| | - Devrishi Goswami
- Department of Molecular Therapeutics, The Scripps Research Institute, Scripps Florida, Jupiter, FL 33458, USA
| | - Vinh Q Lam
- Department of Molecular Therapeutics, The Scripps Research Institute, Scripps Florida, Jupiter, FL 33458, USA
| | - Bruce D Pascal
- Department of Molecular Therapeutics, The Scripps Research Institute, Scripps Florida, Jupiter, FL 33458, USA
| | - Patrick R Griffin
- Department of Molecular Therapeutics, The Scripps Research Institute, Scripps Florida, Jupiter, FL 33458, USA.
| |
Collapse
|
24
|
Tan MHE, Zhou XE, Soon FF, Li X, Li J, Yong EL, Melcher K, Xu HE. The crystal structure of the orphan nuclear receptor NR2E3/PNR ligand binding domain reveals a dimeric auto-repressed conformation. PLoS One 2013; 8:e74359. [PMID: 24069298 PMCID: PMC3771917 DOI: 10.1371/journal.pone.0074359] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Accepted: 07/31/2013] [Indexed: 01/20/2023] Open
Abstract
Photoreceptor-specific nuclear receptor (PNR, NR2E3) is a key transcriptional regulator of human photoreceptor differentiation and maintenance. Mutations in the NR2E3-encoding gene cause various retinal degenerations, including Enhanced S-cone syndrome, retinitis pigmentosa, and Goldman-Favre disease. Although physiological ligands have not been identified, it is believed that binding of small molecule agonists, receptor desumoylation, and receptor heterodimerization may switch NR2E3 from a transcriptional repressor to an activator. While these features make NR2E3 a potential therapeutic target for the treatment of retinal diseases, there has been a clear lack of structural information for the receptor. Here, we report the crystal structure of the apo NR2E3 ligand binding domain (LBD) at 2.8 Å resolution. Apo NR2E3 functions as transcriptional repressor in cells and the structure of its LBD is in a dimeric auto-repressed conformation. In this conformation, the putative ligand binding pocket is filled with bulky hydrophobic residues and the activation-function-2 (AF2) helix occupies the canonical cofactor binding site. Mutations designed to disrupt either the AF2/cofactor-binding site interface or the dimer interface compromised the transcriptional repressor activity of this receptor. Together, these results reveal several conserved structural features shared by related orphan nuclear receptors, suggest that most disease-causing mutations affect the receptor's structural integrity, and allowed us to model a putative active conformation that can accommodate small ligands in its pocket.
Collapse
Affiliation(s)
- M. H. Eileen Tan
- Laboratory of Structural Sciences, Van Andel Research Institute, Grand Rapids, Michigan, United States of America
- Department of Obstetrics & Gynecology, National University Hospital, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - X. Edward Zhou
- Laboratory of Structural Sciences, Van Andel Research Institute, Grand Rapids, Michigan, United States of America
| | - Fen-Fen Soon
- Laboratory of Structural Sciences, Van Andel Research Institute, Grand Rapids, Michigan, United States of America
- Department of Obstetrics & Gynecology, National University Hospital, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Xiaodan Li
- Laboratory of Structural Sciences, Van Andel Research Institute, Grand Rapids, Michigan, United States of America
- Key Laboratory of Regenerative Biology, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Jun Li
- Department of Obstetrics & Gynecology, National University Hospital, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Eu-Leong Yong
- Department of Obstetrics & Gynecology, National University Hospital, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Karsten Melcher
- Laboratory of Structural Sciences, Van Andel Research Institute, Grand Rapids, Michigan, United States of America
| | - H. Eric Xu
- Laboratory of Structural Sciences, Van Andel Research Institute, Grand Rapids, Michigan, United States of America
- Van Andel Research Institute/Shanghai Institute of Materia Medica Center, Chinese Academy of Sciences-Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
25
|
Abstract
Rev-erbα, a component of the circadian clock, has also been known as a nuclear receptor that lacks activation function domain 2, functioning as a ligand-dependent transcriptional repressor. However, we recently reported that Rev-erbα activates connexin43 transcription by forming a complex with Sp1. Here we show that heme, a REV-ERB ligand, is dispensable for this novel mechanism and that Rev-erbβ, having homologies with Rev-erbα, does not activate connexin43, but competes with the Rev-erbα/Sp1. The A/B region of Rev-erbα, which is not conserved in Rev-erbβ, is a crucial activating domain, while the ligand binding domain, conserved in Rev-erbβ, functions as a competitor.
Collapse
|
26
|
Spyrakis* F, Barril* X, Luque* FJ. Molecular Dynamics: a Tool to Understand Nuclear Receptors. COMPUTATIONAL APPROACHES TO NUCLEAR RECEPTORS 2012. [DOI: 10.1039/9781849735353-00060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
27
|
Aicart-Ramos C, Valhondo Falcón M, Ortiz de Montellano PR, Rodriguez-Crespo I. Covalent attachment of heme to the protein moiety in an insect E75 nitric oxide sensor. Biochemistry 2012; 51:7403-16. [PMID: 22946928 DOI: 10.1021/bi300848x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
We have recombinantly expressed and purified the ligand binding domains (LBDs) of four insect nuclear receptors of the E75 family. The Drosophila melanogaster and Bombyx mori nuclear receptors were purified as ferric hemoproteins with Soret maxima at 424 nm, whereas their ferrous forms had a Soret maximum at 425 nm that responds to (•)NO and CO binding. In contrast, the purified LBD of Oncopeltus fasciatus displayed a Soret maximum at 415 nm for the ferric protein that shifted to 425 nm in its ferrous state. Binding of (•)NO to the heme moiety of the D. melanogaster and B. mori E75 LBD resulted in the appearance of a peak at 385 nm, whereas this peak appeared at 416 nm in the case of the O. fasciatus hemoprotein, resembling the behavior displayed by its human homologue, Rev-erbβ. High-performance liquid chromatography analysis revealed that, unlike the D. melanogaster and B. mori counterparts, the heme group of O. fasciatus is covalently attached to the protein through the side chains of two amino acids. The high degree of sequence homology with O. fasciatus E75 led us to clone and express the LBD of Blattella germanica, which established that its spectral properties closely resemble those of O. fasciatus and that it also has the heme group covalently bound to the protein. Hence, (•)NO/CO regulation of the transcriptional activity of these nuclear receptors might be differently controlled among various insect species. In addition, covalent heme binding provides strong evidence that at least some of these nuclear receptors function as diatomic gas sensors rather than heme sensors. Finally, our findings expand the classes of hemoproteins in which the heme group is normally covalently attached to the polypeptide chain.
Collapse
Affiliation(s)
- Clara Aicart-Ramos
- Departamento de Bioquímica y Biología Molecular I, Universidad Complutense, 28040 Madrid, Spain
| | | | | | | |
Collapse
|
28
|
Bugge A, Feng D, Everett LJ, Briggs ER, Mullican SE, Wang F, Jager J, Lazar MA. Rev-erbα and Rev-erbβ coordinately protect the circadian clock and normal metabolic function. Genes Dev 2012; 26:657-67. [PMID: 22474260 DOI: 10.1101/gad.186858.112] [Citation(s) in RCA: 404] [Impact Index Per Article: 31.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The nuclear receptor Rev-erbα regulates circadian rhythm and metabolism, but its effects are modest and it has been considered to be a secondary regulator of the cell-autonomous clock. Here we report that depletion of Rev-erbα together with closely related Rev-erbβ has dramatic effects on the cell-autonomous clock as well as hepatic lipid metabolism. Mouse embryonic fibroblasts were rendered arrhythmic by depletion of both Rev-erbs. In mouse livers, Rev-erbβ mRNA and protein levels oscillate with a diurnal pattern similar to that of Rev-erbα, and both Rev-erbs are recruited to a remarkably similar set of binding sites across the genome, enriched near metabolic genes. Depletion of both Rev-erbs in liver synergistically derepresses several metabolic genes as well as genes that control the positive limb of the molecular clock. Moreover, deficiency of both Rev-erbs causes marked hepatic steatosis, in contrast to relatively subtle changes upon loss of either subtype alone. These findings establish the two Rev-erbs as major regulators of both clock function and metabolism, displaying a level of subtype collaboration that is unusual among nuclear receptors but common among core clock proteins, protecting the organism from major perturbations in circadian and metabolic physiology.
Collapse
Affiliation(s)
- Anne Bugge
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Department of Genetics, The Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Yang ZM, Chen WW, Wang YF. Gene expression profiling in gastric mucosa from Helicobacter pylori-infected and uninfected patients undergoing chronic superficial gastritis. PLoS One 2012; 7:e33030. [PMID: 22438889 PMCID: PMC3306372 DOI: 10.1371/journal.pone.0033030] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2011] [Accepted: 02/09/2012] [Indexed: 12/13/2022] Open
Abstract
Helicobacter pylori infection reprograms host gene expression and influences various cellular processes, which have been investigated by cDNA microarray using in vitro culture cells and in vivo gastric biopsies from patients of the Chronic Abdominal Complaint. To further explore the effects of H. pylori infection on host gene expression, we have collected the gastric antral mucosa samples from 6 untreated patients with gastroscopic and pathologic confirmation of chronic superficial gastritis. Among them three patients were infected by H. pylori and the other three patients were not. These samples were analyzed by a microarray chip which contains 14,112 cloned cDNAs, and microarray data were analyzed via BRB ArrayTools software and Ingenuity Pathways Analysis (IPA) website. The results showed 34 genes of 38 differentially expressed genes regulated by H. pylori infection had been annotated. The annotated genes were involved in protein metabolism, inflammatory and immunological reaction, signal transduction, gene transcription, trace element metabolism, and so on. The 82% of these genes (28/34) were categorized in three molecular interaction networks involved in gene expression, cancer progress, antigen presentation and inflammatory response. The expression data of the array hybridization was confirmed by quantitative real-time PCR assays. Taken together, these data indicated that H. pylori infection could alter cellular gene expression processes, escape host defense mechanism, increase inflammatory and immune responses, activate NF-κB and Wnt/β-catenin signaling pathway, disturb metal ion homeostasis, and induce carcinogenesis. All of these might help to explain H. pylori pathogenic mechanism and the gastroduodenal pathogenesis induced by H. pylori infection.
Collapse
Affiliation(s)
- Ze-Min Yang
- Pi-Wei Institute, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
- School of Basic Courses, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Wei-Wen Chen
- Pi-Wei Institute, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
- E-Institute of Traditional Chinese Medicine Internal Medicine, Shanghai Municipal Education Committee, Shanghai, China
- * E-mail:
| | - Ying-Fang Wang
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| |
Collapse
|
30
|
Yoo J, Ko S, Kim H, Sampson H, Yun JH, Choe KM, Chang I, Arrowsmith CH, Krause HM, Cho HS, Lee W. Crystal structure of Fushi tarazu factor 1 ligand binding domain/Fushi tarazu peptide complex identifies new class of nuclear receptors. J Biol Chem 2011; 286:31225-31. [PMID: 21775434 DOI: 10.1074/jbc.m111.252916] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The interaction between the orphan nuclear receptor FTZ-F1 (Fushi tarazu factor 1) and the segmentation gene protein FTZ is critical for specifying alternate parasegments in the Drosophila embryo. Here, we have determined the structure of the FTZ-F1 ligand-binding domain (LBD)·FTZ peptide complex using x-ray crystallography. Strikingly, the ligand-binding pocket of the FTZ-F1 LBD is completely occupied by helix 6 (H6) of the receptor, whereas the cofactor FTZ binds the co-activator cleft site of the FTZ-F1 LBD. Our findings suggest that H6 is essential for transcriptional activity of FTZ-F1; this is further supported by data from mutagenesis and activity assays. These data suggest that FTZ-F1 might belong to a novel class of ligand-independent nuclear receptors. Our findings are intriguing given that the highly homologous human steroidogenic factor-1 and liver receptor homolog-1 LBDs exhibit sizable ligand-binding pockets occupied by putative ligand molecules.
Collapse
Affiliation(s)
- Jiho Yoo
- Department of Biology, College of Life Science and Biotechnology, Yonsei University, Shinchon-dong, Seodaemun-gu 134, Seoul 120-749, Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Solt LA, Kojetin DJ, Burris TP. The REV-ERBs and RORs: molecular links between circadian rhythms and lipid homeostasis. Future Med Chem 2011; 3:623-38. [PMID: 21526899 PMCID: PMC3134326 DOI: 10.4155/fmc.11.9] [Citation(s) in RCA: 128] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Research efforts spanning the past two decades have established a clear link between nuclear receptor function, regulation of the circadian clock and lipid homeostasis. As such, this family of receptors represents an important area of research. Recent advances in the field have identified two nuclear receptor subfamilies, the REV-ERBs and the 'retinoic acid receptor-related orphan receptors' (RORs), as critical regulators of the circadian clock with significant roles in lipid homeostasis. In this review, the latest information garnered from cutting-edge research on these two nuclear receptor subfamilies will be discussed. Through direct targeting of the REV-ERBs and RORs with synthetic ligands, generation of novel tools aimed at characterizing their function in vivo have been developed, which may lead to novel therapeutics for the treatment of metabolic disorders.
Collapse
Affiliation(s)
- Laura A Solt
- The Scripps Research Institute, Jupiter, FL 33458, USA
| | | | | |
Collapse
|
32
|
ElBakry O, Ahmad MO, Swamy MNS. Identification of differentially expressed genes for time-course microarray data based on modified RM ANOVA. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2011; 9:451-466. [PMID: 21464508 DOI: 10.1109/tcbb.2011.65] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The regulation of gene expression is a dynamic process, hence it is of vital interest to identify and characterize changes in gene expression over time. We present here a general statistical method for detecting changes in microarray expression over time within a single biological group and is based on repeated measures (RM) ANOVA. In this method, unlike the classical F-statistic, statistical significance is determined taking into account the time dependency of the microarray data. A correction factor for this RM F-statistic is introduced leading to a higher sensitivity as well as high specificity. We investigate the two approaches that exist in the literature for calculating the p-values using resampling techniques of gene-wise p-values and pooled p-values. It is shown that the pooled p-values method compared to the method of the gene-wise p-values is more powerful, and computationally less expensive, and hence is applied along with the introduced correction factor to various synthetic data sets and a real data set. These results show that the proposed technique outperforms the current methods. The real data set results are consistent with the existing knowledge concerning the presence of the genes. The algorithms presented are implemented in R and are freely available upon request.
Collapse
|
33
|
Nuclear Receptors: Small Molecule Sensors that Coordinate Growth, Metabolism and Reproduction. Subcell Biochem 2011; 52:123-53. [PMID: 21557081 DOI: 10.1007/978-90-481-9069-0_6] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
One of the largest groups of metazoan transcription factors (TFs), the Nuclear Receptor superfamily, regulates genes required for virtually all aspects of development, reproduction and metabolism. Together, these master regulators can be thought of as a fundamental operating system for metazoan life. Their most distinguishing feature is a structurally conserved domain that acts as a switch, powered by the presence of small diffusible ligands. This ligand-responsive regulation has allowed the Nuclear Receptors to help their hosts adapt to a wide variety of physiological niches and roles, making them one of the most evolutionarily successful TF families. Originally discovered as receptors for steroid hormones, the Nuclear Receptor field has grown to encompass much more than traditional endocrinology. For example, recent work has highlighted the role of Nuclear Receptors as major regulators of metabolism and biological clocks. By monitoring endogenous metabolites and absorbed xenobiotics, these receptors also coordinate rapid, system-wide responses to changing metabolic and environmental states. While many new Nuclear Receptor ligands have been discovered in the past couple of decades, approximately half of the 48 human receptors are still orphans, with a significantly higher percentage of orphans in other organisms. The discovery of new ligands has led to the elucidation of new regulatory mechanisms, target genes, pathways and functions. This review will highlight both the common as well as newly emerging traits and functions that characterize this particularly unique and important TF family.
Collapse
|
34
|
Zhou XE, Suino-Powell KM, Xu Y, Chan CW, Tanabe O, Kruse SW, Reynolds R, Engel JD, Xu HE. The orphan nuclear receptor TR4 is a vitamin A-activated nuclear receptor. J Biol Chem 2010; 286:2877-85. [PMID: 21068381 DOI: 10.1074/jbc.m110.168740] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Testicular receptors 2 and 4 (TR2/4) constitute a subgroup of orphan nuclear receptors that play important roles in spermatogenesis, lipid and lipoprotein regulation, and the development of the central nervous system. Currently, little is known about the structural features and the ligand regulation of these receptors. Here we report the crystal structure of the ligand-free TR4 ligand binding domain, which reveals an autorepressed conformation. The ligand binding pocket of TR4 is filled by the C-terminal half of helix 10, and the cofactor binding site is occupied by the AF-2 helix, thus preventing ligand-independent activation of the receptor. However, TR4 exhibits constitutive transcriptional activity on multiple promoters, which can be further potentiated by nuclear receptor coactivators. Mutations designed to disrupt cofactor binding, dimerization, or ligand binding substantially reduce the transcriptional activity of this receptor. Importantly, both retinol and retinoic acid are able to promote TR4 to recruit coactivators and to activate a TR4-regulated reporter. These findings demonstrate that TR4 is a ligand-regulated nuclear receptor and suggest that retinoids might have a much wider regulatory role via activation of orphan receptors such as TR4.
Collapse
Affiliation(s)
- X Edward Zhou
- Laboratory of Structural Sciences and Drug Discovery, Van Andel Research Institute, Grand Rapids, Michigan 49503, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Jin L, Li Y. Structural and functional insights into nuclear receptor signaling. Adv Drug Deliv Rev 2010; 62:1218-26. [PMID: 20723571 DOI: 10.1016/j.addr.2010.08.007] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2010] [Revised: 08/08/2010] [Accepted: 08/10/2010] [Indexed: 01/14/2023]
Abstract
Nuclear receptors are important transcriptional factors that share high sequence identity and conserved domains, including a DNA-binding domain (DBD) and a ligand-binding domain (LBD). The LBD plays a crucial role in ligand-mediated nuclear receptor activity. Hundreds of different crystal structures of nuclear receptors have revealed a general mechanism for the molecular basis of ligand binding and ligand-mediated regulation of nuclear receptors. Despite the conserved fold of nuclear receptor LBDs, the ligand-binding pocket is the least conserved region among different nuclear receptor LBDs. Structural comparison and analysis show that several features of the pocket, like the size and also the shape, have contributed to the ligand binding affinity and specificity. In addition, the plastic nature of the ligand-binding pockets in many nuclear receptors provides greater flexibility to further accommodate specific ligands with a variety of conformations. Nuclear receptor coactivators usually contain multiple LXXLL motifs that are used to interact with nuclear receptors. The nuclear receptors respond differently to distinct ligands and readily exchange their ligands in different environments. The conformational flexibility of the AF-2 helix allows the nuclear receptor to sense the presence of the bound ligands, either an agonist or an antagonist, and to recruit the coactivators or corepressors that ultimately determine the transcriptional activation or repression of nuclear receptors.
Collapse
|
36
|
Grant D, Yin L, Collins JL, Parks DJ, Orband-Miller LA, Wisely GB, Joshi S, Lazar MA, Willson TM, Zuercher WJ. GSK4112, a small molecule chemical probe for the cell biology of the nuclear heme receptor Rev-erbα. ACS Chem Biol 2010; 5:925-32. [PMID: 20677822 DOI: 10.1021/cb100141y] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The identification of nonporphyrin ligands for the orphan nuclear receptor Rev-erbα will enable studies of its role as a heme sensor and regulator of metabolic and circadian signaling. We describe the development of a biochemical assay measuring the interaction between Rev-erbα and a peptide from the nuclear receptor corepressor-1 (NCoR). The assay was utilized to identify a small molecule ligand for Rev-erbα, GSK4112 (1), that was competitive with heme. In cells, 1 profiled as a Rev-erbα agonist in cells to inhibit expression of the circadian target gene bmal1. In addition, 1 repressed the expression of gluconeogenic genes in liver cells and reduced glucose output in primary hepatocytes. Therefore, 1 is useful as a chemical tool to probe the function of Rev-erbα in transcriptional repression, regulation of circadian biology, and metabolic pathways. Additionally, 1 may serve as a starting point for design of Rev-erbα chemical probes with in vivo pharmacological activity.
Collapse
Affiliation(s)
- Daniel Grant
- GlaxoSmithKline, Research Triangle Park, North Carolina, 27707
| | - Lei Yin
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine and Department of Genetics, and The Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104
| | - Jon L. Collins
- GlaxoSmithKline, Research Triangle Park, North Carolina, 27707
| | - Derek J. Parks
- GlaxoSmithKline, Research Triangle Park, North Carolina, 27707
| | | | - G. Bruce Wisely
- GlaxoSmithKline, Research Triangle Park, North Carolina, 27707
| | - Shree Joshi
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine and Department of Genetics, and The Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104
| | - Mitchell A. Lazar
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine and Department of Genetics, and The Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104
| | | | | |
Collapse
|
37
|
Structure of Rev-erbalpha bound to N-CoR reveals a unique mechanism of nuclear receptor-co-repressor interaction. Nat Struct Mol Biol 2010; 17:808-14. [PMID: 20581824 PMCID: PMC3719173 DOI: 10.1038/nsmb.1860] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2010] [Accepted: 05/20/2010] [Indexed: 01/07/2023]
Abstract
Repression of gene transcription by the nuclear receptor Rev-erbalpha plays an integral role in the core molecular circadian clock. We report the crystal structure of a nuclear receptor-co-repressor (N-CoR) interaction domain 1 (ID1) peptide bound to truncated human Rev-erbalpha ligand-binding domain (LBD). The ID1 peptide forms an unprecedented antiparallel beta-sheet with Rev-erbalpha, as well as an alpha-helix similar to that seen in nuclear receptor ID2 crystal structures but out of register by four residues. Comparison with the structure of Rev-erbbeta bound to heme indicates that ID1 peptide and heme induce substantially different conformational changes in the LBD. Although heme is involved in Rev-erb repression, the structure suggests that Rev-erbalpha could also mediate repression via ID1 binding in the absence of heme. The previously uncharacterized secondary structure induced by ID1 peptide binding advances our understanding of nuclear receptor-co-repressor interactions.
Collapse
|
38
|
Huang P, Chandra V, Rastinejad F. Structural overview of the nuclear receptor superfamily: insights into physiology and therapeutics. Annu Rev Physiol 2010; 72:247-72. [PMID: 20148675 DOI: 10.1146/annurev-physiol-021909-135917] [Citation(s) in RCA: 371] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
As ligand-regulated transcription factors, the nuclear hormone receptors are nearly ideal drug targets, with internal pockets that bind to hydrophobic, drug-like molecules and well-characterized ligand-induced conformational changes that recruit transcriptional coregulators to promoter elements. Yet, due to the multitude of genes under the control of a single receptor, the major challenge has been the identification of ligands with gene-selective actions, impacting disease outcomes through a narrow subset of target genes and not across their entire gene-regulatory repertoire. Here, we summarize the concepts and work to date underlying the development of steroidal and nonsteroidal receptor ligands, including the use of crystal structures, high-throughput screens, and rational design approaches for finding useful therapeutic molecules. Difficulties in finding selective receptor modulators require a more complete understanding of receptor interdomain communications, posttranslational modifications, and receptor-protein interactions that could be exploited for target gene selectivity.
Collapse
Affiliation(s)
- Pengxiang Huang
- Department of Pharmacology, and Center for Molecular Design, University of Virginia Health System, Charlottesville, VA 22908, USA.
| | | | | |
Collapse
|
39
|
Schmutz I, Ripperger JA, Baeriswyl-Aebischer S, Albrecht U. The mammalian clock component PERIOD2 coordinates circadian output by interaction with nuclear receptors. Genes Dev 2010; 24:345-57. [PMID: 20159955 DOI: 10.1101/gad.564110] [Citation(s) in RCA: 283] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Mammalian circadian clocks provide a temporal framework to synchronize biological functions. To obtain robust rhythms with a periodicity of about a day, these clocks use molecular oscillators consisting of two interlocked feedback loops. The core loop generates rhythms by transcriptional repression via the Period (PER) and Cryptochrome (CRY) proteins, whereas the stabilizing loop establishes roughly antiphasic rhythms via nuclear receptors. Nuclear receptors also govern many pathways that affect metabolism and physiology. Here we show that the core loop component PER2 can coordinate circadian output with the circadian oscillator. PER2 interacts with nuclear receptors including PPARalpha and REV-ERBalpha and serves as a coregulator of nuclear receptor-mediated transcription. Consequently, PER2 is rhythmically bound at the promoters of nuclear receptor target genes in vivo. In this way, the circadian oscillator can modulate the expression of nuclear receptor target genes like Bmal1, Hnf1alpha, and Glucose-6-phosphatase. The concept that PER2 may propagate clock information to metabolic pathways via nuclear receptors adds an important facet to the clock-dependent regulation of biological networks.
Collapse
Affiliation(s)
- Isabelle Schmutz
- Department of Medicine, Unit of Biochemistry, University of Fribourg, 1700 Fribourg, Switzerland
| | | | | | | |
Collapse
|
40
|
Wohlfahrt G, Sipilä J, Pietilä LO. Field-based comparison of ligand and coactivator binding sites of nuclear receptors. Biopolymers 2009; 91:884-94. [DOI: 10.1002/bip.21273] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
41
|
Marvin KA, Reinking JL, Lee AJ, Pardee KM, Krause HM, Burstyn JN. Nuclear receptors homo sapiens Rev-erbbeta and Drosophila melanogaster E75 are thiolate-ligated heme proteins which undergo redox-mediated ligand switching and bind CO and NO. Biochemistry 2009; 48:7056-71. [PMID: 19405475 PMCID: PMC2849663 DOI: 10.1021/bi900697c] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Nuclear receptors E75, which regulates development in Drosophila melanogaster, and Rev-erbbeta, which regulates circadian rhythm in humans, bind heme within their ligand binding domains (LBD). The heme-bound ligand binding domains of E75 and Rev-erbbeta were studied using electronic absorption, MCD, resonance Raman, and EPR spectroscopies. Both proteins undergo redox-dependent ligand switching and CO- and NO-induced ligand displacement. In the Fe(III) oxidation state, the nuclear receptor hemes are low spin and 6-coordinate with cysteine(thiolate) as one of the two axial heme ligands. The sixth ligand is a neutral donor, presumably histidine. When the heme is reduced to the Fe(II) oxidation state, the cysteine(thiolate) is replaced by a different neutral donor ligand, whose identity is not known. CO binds to the Fe(II) heme in both E75(LBD) and Rev-erbbeta(LBD) opposite a sixth neutral ligand, plausibly the same histidine that served as the sixth ligand in the Fe(III) state. NO binds to the heme of both proteins; however, the NO-heme is 5-coordinate in E75 and 6-coordinate in Rev-erbbeta. These nuclear receptors exhibit coordination characteristics that are similar to other known redox and gas sensors, suggesting that E75 and Rev-erbbeta may function in heme-, redox-, or gas-regulated control of cellular function.
Collapse
Affiliation(s)
- Katherine A. Marvin
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave., Madison, Wisconsin, 53706 USA
| | - Jeffrey L. Reinking
- Banting and Best Department of Molecular Genetics, and the Terrence Donnelly Centre for Cellular & Biomolecular Research, University of Toronto, Toronto, CANADA
- Department of Biology, State University of New York at New Paltz, 1 Hawk Drive, New Paltz, New York, 12561 USA
| | - Andrea J. Lee
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave., Madison, Wisconsin, 53706 USA
| | - Keith M. Pardee
- Banting and Best Department of Molecular Genetics, and the Terrence Donnelly Centre for Cellular & Biomolecular Research, University of Toronto, Toronto, CANADA
| | - Henry M. Krause
- Banting and Best Department of Molecular Genetics, and the Terrence Donnelly Centre for Cellular & Biomolecular Research, University of Toronto, Toronto, CANADA
| | - Judith N. Burstyn
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave., Madison, Wisconsin, 53706 USA
| |
Collapse
|
42
|
Pardee KI, Xu X, Reinking J, Schuetz A, Dong A, Liu S, Zhang R, Tiefenbach J, Lajoie G, Plotnikov AN, Botchkarev A, Krause HM, Edwards A. The structural basis of gas-responsive transcription by the human nuclear hormone receptor REV-ERBbeta. PLoS Biol 2009; 7:e43. [PMID: 19243223 PMCID: PMC2652392 DOI: 10.1371/journal.pbio.1000043] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2008] [Accepted: 01/12/2009] [Indexed: 01/07/2023] Open
Abstract
Heme is a ligand for the human nuclear receptors (NR) REV-ERBalpha and REV-ERBbeta, which are transcriptional repressors that play important roles in circadian rhythm, lipid and glucose metabolism, and diseases such as diabetes, atherosclerosis, inflammation, and cancer. Here we show that transcription repression mediated by heme-bound REV-ERBs is reversed by the addition of nitric oxide (NO), and that the heme and NO effects are mediated by the C-terminal ligand-binding domain (LBD). A 1.9 A crystal structure of the REV-ERBbeta LBD, in complex with the oxidized Fe(III) form of heme, shows that heme binds in a prototypical NR ligand-binding pocket, where the heme iron is coordinately bound by histidine 568 and cysteine 384. Under reducing conditions, spectroscopic studies of the heme-REV-ERBbeta complex reveal that the Fe(II) form of the LBD transitions between penta-coordinated and hexa-coordinated structural states, neither of which possess the Cys384 bond observed in the oxidized state. In addition, the Fe(II) LBD is also able to bind either NO or CO, revealing a total of at least six structural states of the protein. The binding of known co-repressors is shown to be highly dependent upon these various liganded states. REV-ERBs are thus highly dynamic receptors that are responsive not only to heme, but also to redox and gas. Taken together, these findings suggest new mechanisms for the systemic coordination of molecular clocks and metabolism. They also raise the possibility for gas-based therapies for the many disorders associated with REV-ERB biological functions.
Collapse
Affiliation(s)
- Keith I Pardee
- Banting and Best Department of Medical Research, The Department of Molecular Genetics, University of Toronto, Toronto, Canada
- Terrence Donnelly Centre for Cellular & Biomolecular Research, University of Toronto, Toronto, Canada
| | - Xiaohui Xu
- Banting and Best Department of Medical Research, The Department of Molecular Genetics, University of Toronto, Toronto, Canada
- Terrence Donnelly Centre for Cellular & Biomolecular Research, University of Toronto, Toronto, Canada
- Midwest Center for Structural Genomics, University of Toronto, Toronto, Canada
| | - Jeff Reinking
- Banting and Best Department of Medical Research, The Department of Molecular Genetics, University of Toronto, Toronto, Canada
- Terrence Donnelly Centre for Cellular & Biomolecular Research, University of Toronto, Toronto, Canada
- Department of Biology, State University of New York at New Paltz, New Paltz, New York, United States of America
| | - Anja Schuetz
- Structural Genomics Consortium, University of Toronto, Toronto, Canada
| | - Aiping Dong
- Structural Genomics Consortium, University of Toronto, Toronto, Canada
| | - Suya Liu
- Department of Biochemistry, University of Western Ontario, London, Ontario, Canada
| | - Rongguang Zhang
- Midwest Center for Structural Genomics, Argonne National Lab, Argonne, Illinois, United States of America
| | - Jens Tiefenbach
- Banting and Best Department of Medical Research, The Department of Molecular Genetics, University of Toronto, Toronto, Canada
- Terrence Donnelly Centre for Cellular & Biomolecular Research, University of Toronto, Toronto, Canada
| | - Gilles Lajoie
- Department of Biochemistry, University of Western Ontario, London, Ontario, Canada
| | | | - Alexey Botchkarev
- Structural Genomics Consortium, University of Toronto, Toronto, Canada
| | - Henry M Krause
- Banting and Best Department of Medical Research, The Department of Molecular Genetics, University of Toronto, Toronto, Canada
- Terrence Donnelly Centre for Cellular & Biomolecular Research, University of Toronto, Toronto, Canada
- * To whom correspondence should be addressed. E-mail: (AE); (HMK)
| | - Aled Edwards
- Banting and Best Department of Medical Research, The Department of Molecular Genetics, University of Toronto, Toronto, Canada
- Terrence Donnelly Centre for Cellular & Biomolecular Research, University of Toronto, Toronto, Canada
- Midwest Center for Structural Genomics, University of Toronto, Toronto, Canada
- Structural Genomics Consortium, University of Toronto, Toronto, Canada
- * To whom correspondence should be addressed. E-mail: (AE); (HMK)
| |
Collapse
|
43
|
Burris TP. Nuclear hormone receptors for heme: REV-ERBalpha and REV-ERBbeta are ligand-regulated components of the mammalian clock. Mol Endocrinol 2008; 22:1509-20. [PMID: 18218725 DOI: 10.1210/me.2007-0519] [Citation(s) in RCA: 129] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The nuclear hormone receptors (NHRs), REV-ERBalpha and REV-ERBbeta, regulate a number of physiological functions including the circadian rhythm, lipid metabolism, and cellular differentiation. These two receptors lack the activation function-2 region that is associated with the ability of NHRs to recruit coactivators and activate target gene transcription. These NHRs have been characterized as constitutive repressors of transcription due to their lack of an identified ligand and their strong ability to recruit the corepressor, nuclear receptor corepressor. Recently, the porphyrin heme was demonstrated to function as a ligand for both REV-ERBs. Heme binds directly to the ligand-binding domain and regulates the ability of these NHRs to recruit nuclear receptor corepressor to target gene promoters. This review focuses on the physiological roles that these two receptors play and the implications of heme functioning as their ligand. The prospect that these NHRs, now known to be regulated by small molecule ligands, may be targets for development of drugs for treatment of diseases associated with aberrant circadian rhythms including metabolic and psychiatric disorders as well as cancer is also addressed.
Collapse
Affiliation(s)
- Thomas P Burris
- Nuclear Receptor Biology Laboratory, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA 70808, USA.
| |
Collapse
|