1
|
Jin H, Ge W, Li M, Wang Y, Jiang Y, Zhang J, Jing Y, Tong Y, Fu Y. Advances in the development of phage-mediated cyanobacterial cell lysis. Crit Rev Biotechnol 2025; 45:1002-1018. [PMID: 39284762 DOI: 10.1080/07388551.2024.2399530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 04/01/2023] [Accepted: 04/11/2023] [Indexed: 05/23/2025]
Abstract
Cyanobacteria, the only oxygenic photoautotrophs among prokaryotes, are developing as both carbon building blocks and energetic self-supported chassis for the generation of various bioproducts. However, one of the challenges to optimize it as a more sustainable platform is how to release intracellular bioproducts for an easier downstream biorefinery process. To date, the major method used for cyanobacterial cell lysis is based on mechanical force, which is energy-intensive and economically unsustainable. Phage-mediated bacterial cell lysis is species-specific and highly efficient and can be conducted under mild conditions; therefore, it has been intensively studied as a bacterial cell lysis weapon. In contrast to heterotrophic bacteria, biological cell lysis studies in cyanobacteria are lagging behind. In this study, we reviewed cyanobacterial cell envelope features that could affect cell strength and elicited a thorough presentation of the necessary phage lysin components for efficient cell lysis. We then summarized all bioengineering manipulated pipelines for lysin component optimization and further revealed the challenges for each intent-oriented application in cyanobacterial cell lysis. In addition to applied biotechnology usage, the significance of phage-mediated cyanobacterial cell lysis could also advance sophisticated biochemical studies and promote biocontrol of toxic cyanobacteria blooms.
Collapse
Affiliation(s)
- Haojie Jin
- The College of Forestry, Beijing Forestry University, Beijing, PR China
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, Beijing Forestry University, Beijing, PR China
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, PR China
- Ecological Observation and Research Station of Heilongjiang Sanjiang Plain Wetlands, National Forestry and Grassland Administration, Shuangyashan, PR China
| | - Wanzhao Ge
- The College of Forestry, Beijing Forestry University, Beijing, PR China
| | - Mengzhe Li
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, PR China
| | - Yan Wang
- Center of Basic Medical Research, Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, PR China
| | - Yanjing Jiang
- The College of Forestry, Beijing Forestry University, Beijing, PR China
| | - Jiaqi Zhang
- The College of Forestry, Beijing Forestry University, Beijing, PR China
| | - Yike Jing
- The College of Forestry, Beijing Forestry University, Beijing, PR China
| | - Yigang Tong
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, PR China
| | - Yujie Fu
- The College of Forestry, Beijing Forestry University, Beijing, PR China
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, Beijing Forestry University, Beijing, PR China
- Ecological Observation and Research Station of Heilongjiang Sanjiang Plain Wetlands, National Forestry and Grassland Administration, Shuangyashan, PR China
| |
Collapse
|
2
|
Cheng P, Li Z, Liu L, Li R, Zhou J, Luo X, Mu X, Sun J, Ma J, A X. Characterization of the novel cross-genus phage vB_SmaS_QH3 and evaluation of its antibacterial efficacy against Stenotrophomonas maltophilia. Front Microbiol 2025; 16:1570665. [PMID: 40291807 PMCID: PMC12023781 DOI: 10.3389/fmicb.2025.1570665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Accepted: 03/20/2025] [Indexed: 04/30/2025] Open
Abstract
Background Bacteriophages, which are natural bacterial predators, demonstrate potential as safe and effective biological control agents against drug-resistant infections. This study aims to characterize the biological properties of the novel lytic phage vB_SmaS_QH3 and comprehensively evaluate its efficacy in preventing and controlling clinically multidrug resistance Stenotrophomonas maltophilia infections using both in vivo and in vitro models. Methods The phage was isolated from hospital sewage using the multidrug resistant S. maltophilia no. 3738 as the host. Transmission electron microscopy (TEM) was used to observe phage morphology, and the host range was determined via spot assays. Proliferation kinetics, including multiplicity of infection (MOI), adsorption rate, and one-step growth curves, were analyzed. Stability was assessed under various physicochemical conditions. Based on Illumina whole-genome sequencing data, bioinformatics tools were employed for gene annotation, functional prediction, and phylogenetic analysis. Antimicrobial activity was assessed using in vitro and in vivo models. Results A lytic phage vB_SmaS_QH3 was isolated from hospital sewage. TEM revealed that it belongs to the class Caudoviricetes, featuring an icosahedral head (62 ± 3 nm) and a non-contractile long tail (121 ± 5 nm). Although the phage has a narrow host range, it exhibits cross-genus infectivity, lysing S. maltophilia (11/81) and Pseudomonas aeruginosa (3/24). The optimal MOI for phage vB_SmaS_QH3 is 0.01, with an adsorption rate of 49.16% within 20 min, a latent period of 40 min, a lytic period of 50 min, and a burst size of 41.67 plaque-forming units/cell. The phage remained stable at 4-60°C, at pH 3-11, and in chloroform, but it was completely inactivated following 20-min exposure to UV irradiation. Genomic analysis showed a linear double-stranded DNA genome of 43,085 bp with a GC content of 54.2%, containing 54 predicted ORFs, and no virulence or antibiotic resistance genes were detected. In vitro, vB_SmaS_QH3 effectively inhibited bacterial growth within 9 h. In vivo, it significantly improved the survival rate of Galleria mellonella larvae infected with S. maltophilia, regardless of the treatment timing. Conclusion vB_SmaS_QH3 is a narrow host range lytic phage with a safe genome and excellent stability. It exhibits significant antibacterial activity both in vitro and in vivo, making it a promising candidate for therapeutic applications.
Collapse
Affiliation(s)
- Peng Cheng
- Qinghai University, School of Clinical Medicine, Xining, China
- Department of Clinical Laboratory, Qinghai Provincial People's Hospital, Xining, China
| | - Zian Li
- Department of Clinical Laboratory, Qinghai Provincial People's Hospital, Xining, China
| | - Lanmin Liu
- Department of Clinical Laboratory, Qinghai Provincial People's Hospital, Xining, China
| | - Ruizhe Li
- Qinghai University, School of Clinical Medicine, Xining, China
| | - Jianwu Zhou
- Department of Clinical Laboratory, Qinghai Provincial People's Hospital, Xining, China
| | - Xiaoqin Luo
- Qinghai University, School of Clinical Medicine, Xining, China
- Department of Clinical Laboratory, Qinghai Provincial People's Hospital, Xining, China
| | - Xiaoming Mu
- Department of Clinical Laboratory, Qinghai Provincial People's Hospital, Xining, China
| | - Jingwei Sun
- Department of Clinical Laboratory, Qinghai Provincial People's Hospital, Xining, China
| | - Jideng Ma
- Qinghai University, School of Clinical Medicine, Xining, China
- Department of Clinical Laboratory, Qinghai Provincial People's Hospital, Xining, China
| | - Xiangren A
- Department of Clinical Laboratory, Qinghai Provincial People's Hospital, Xining, China
| |
Collapse
|
3
|
Mondal A, Kolomeisky AB. Why Antiholins? Thermodynamic and Kinetic Arguments to Explain the Robustness of Bacteriophage Cell Lysis. J Phys Chem Lett 2025; 16:2920-2926. [PMID: 40071529 DOI: 10.1021/acs.jpclett.5c00420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2025]
Abstract
Cell lysis is one of the most common biological processes in which viruses infect and destroy bacterial cells. It is accomplished by viruses stimulating cell hosts to produce holin proteins that assemble in cellular membranes and break them at specific times. One of the most surprising observations in cell lysis is that antiholin proteins that inhibit membrane permeabilization are also produced. It remains unclear what is the function of antiholins if they do not trigger the membrane lesions. We propose a novel theoretical idea to explain the role of antiholins. We hypothesize that antiholin-holin interactions support the robustness of cell lysis when the external conditions fluctuate. To test this idea, we developed a minimal theoretical model that allows us to investigate the thermodynamic and kinetic properties of the system explicitly. By comparing a two-state system (without antiholins) and a three-state system (with antiholins), we examined how temperature and interaction energies influence the formation of holin dimers, a key determinant of lysis timing. Our results reveal that without antiholins, increasing temperature always decreases holin dimerization, leading to a reduction in the probability and slower rates of cell lysis. However, the presence of antiholins eliminates these effects, increasing the probability and rates of cell lysis. It is argued that this results from a compensatory mechanism that effectively buffers holin dimers from these environmental variations. These findings suggest that antiholins are stabilizing elements that ensure robust cell lysis under fluctuating physiological conditions.
Collapse
Affiliation(s)
- Anupam Mondal
- Center for Theoretical Biological Physics, Rice University, Houston, Texas 77005, United States
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
| | - Anatoly B Kolomeisky
- Center for Theoretical Biological Physics, Rice University, Houston, Texas 77005, United States
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, United States
| |
Collapse
|
4
|
Mondal A, Kolomeisky AB. Microscopic origin of the spatial and temporal precision in biological systems. BIOPHYSICAL REPORTS 2025; 5:100197. [PMID: 39884433 PMCID: PMC11867269 DOI: 10.1016/j.bpr.2025.100197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 01/16/2025] [Accepted: 01/23/2025] [Indexed: 02/01/2025]
Abstract
All living systems display remarkable spatial and temporal precision, despite operating in intrinsically fluctuating environments. It is even more surprising given that biological phenomena are regulated by multiple chemical reactions that are also random. Although the underlying molecular mechanisms of surprisingly high precision in biology remain not well understood, a novel theoretical picture that relies on the coupling of relevant stochastic processes has recently been proposed and applied to explain different phenomena. To illustrate this approach, in this review, we discuss two systems that exhibit precision control: spatial regulation in bacterial cell size and temporal regulation in the timing of cell lysis by λ bacteriophage. In cell-size regulation, it is argued that a balance between stochastic cell growth and cell division processes leads to a narrow distribution of cell sizes. In cell lysis, it is shown that precise timing is due to the coupling of holin protein accumulation and the breakage of the cellular membrane. The stochastic coupling framework also allows us to explicitly evaluate dynamic properties for both biological systems, eliminating the need to utilize the phenomenological concept of thresholds. Excellent agreement with experimental observations is observed, supporting the proposed theoretical ideas. These observations also suggest that the stochastic coupling method captures the important aspects of molecular mechanisms of precise cellular regulation, providing a powerful new tool for more advanced investigations of complex biological phenomena.
Collapse
Affiliation(s)
- Anupam Mondal
- Center for Theoretical Biological Physics, Rice University, Houston, Texas; Department of Chemistry, Rice University, Houston, Texas
| | - Anatoly B Kolomeisky
- Center for Theoretical Biological Physics, Rice University, Houston, Texas; Department of Chemistry, Rice University, Houston, Texas; Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas.
| |
Collapse
|
5
|
Peng X, Chang J, Zhang H, Li X, Zhang C, Jiao S, Lv C, Wang N, Zhao J, Wang B, Zhang W, Zhang Z. Isolation, characterization, and genomic analysis of a novel bacteriophage vB_Kp_XP4 targeting hypervirulent and multidrug-resistant Klebsiella pneumoniae. Front Microbiol 2025; 16:1491961. [PMID: 40124894 PMCID: PMC11925924 DOI: 10.3389/fmicb.2025.1491961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 02/12/2025] [Indexed: 03/25/2025] Open
Abstract
Introduction Hypervirulent and multidrug-resistant Klebsiella pneumoniae (hvKP and MDR-KP) are significant public health threats. This study aimed to isolate a lytic bacteriophage targeting these high-risk strains, systematically characterize its biological properties, genomic features, and therapeutic efficacy, and establish a foundation for clinical phage therapy and novel antimicrobial development. Methods The phage vB_Kp_XP4 was isolated from river water using the double-layer agar plate method with the clinically isolated strain P4 as the host. Morphology was analyzed via transmission electron microscopy (TEM). Host range, pH, and thermal stability were assessed using spot assays and OD630 measurements. One-step growth curves determined the latent period and burst size. Whole-genome sequencing and phylogenetic analysis were performed. Therapeutic efficacy and safety were evaluated in a Galleria mellonella infection model. Results TEM revealed Phage vB_Kp_XP4 as a tailed phage with an icosahedral head and a long, flexible tail. It lysed an hvKP strain (carrying rmp, peg, iuc, iro genes) and an MDR-KP strain (resistant to carbapenems, fluoroquinolones, etc.), with an optimal MOI of 0.1 and latent period <10 minutes. Stability was maintained at pH 4-11 and ≤70°C. Whole-genome sequencing revealed a linear double-stranded DNA genome of 44,344 bp with a G+C content of 53.80%. The genome comprised 54 coding sequences and lacked lysogenic, virulence, or antibiotic resistance genes. Phylogenetic analysis positioned phage vB_Kp_XP4 as a novel species within the genus Drulisvirus, family Autographiviridae. In the Galleria mellonella model, vB_Kp_XP4 prolonged survival of P4-infected larvae (P < 0.001). Conclusion Phage vB_Kp_XP4 exhibits high stability, specificity, potent lytic activity, and no undesirable genes, demonstrating effective in vivo therapeutic efficacy, suggest its potential for clinical applications against Klebsiella pneumoniae infections. The presence of multiple halos during plaque formation further enhances its research value. The complete genome sequence has been submitted to GenBank under accession number PP663283.
Collapse
Affiliation(s)
- Xiaocui Peng
- Department of Postgraduate, Hebei North University, Zhangjiakou, China
- Respiratory and Critical Care Medicine Department, The First Affiliated Hospital of Hebei North University, Zhangjiakou, China
| | - Jianliang Chang
- Department of Postgraduate, Hebei North University, Zhangjiakou, China
- Respiratory and Critical Care Medicine Department, The First Affiliated Hospital of Hebei North University, Zhangjiakou, China
| | - Hongxia Zhang
- Respiratory and Critical Care Medicine Department, The First Affiliated Hospital of Hebei North University, Zhangjiakou, China
| | - Xiaoyu Li
- Department of Postgraduate, Hebei North University, Zhangjiakou, China
- Respiratory and Critical Care Medicine Department, The First Affiliated Hospital of Hebei North University, Zhangjiakou, China
| | - Changhong Zhang
- Respiratory and Critical Care Medicine Department, The First Affiliated Hospital of Hebei North University, Zhangjiakou, China
| | - Shiyan Jiao
- Department of Postgraduate, Hebei North University, Zhangjiakou, China
| | - Chengxiu Lv
- Department of Clinical Laboratory, Zibo First Hospital, Zibo, China
| | - Na Wang
- Central Laboratory, The First Affiliated Hospital of Hebei North University, Zhangjiakou, China
| | - Jun Zhao
- Department of Postgraduate, Hebei North University, Zhangjiakou, China
- Respiratory and Critical Care Medicine Department, The First Affiliated Hospital of Hebei North University, Zhangjiakou, China
| | - Bu Wang
- Respiratory and Critical Care Medicine Department, The First Affiliated Hospital of Hebei North University, Zhangjiakou, China
| | - Wei Zhang
- Central Laboratory, The First Affiliated Hospital of Hebei North University, Zhangjiakou, China
| | - Zhihua Zhang
- Respiratory and Critical Care Medicine Department, The First Affiliated Hospital of Hebei North University, Zhangjiakou, China
| |
Collapse
|
6
|
Chowdhury M, Stansfeld PJ, Sargent F. A lysis less ordinary: The bacterial Type 10 Secretion System. Adv Microb Physiol 2025; 86:175-198. [PMID: 40404269 DOI: 10.1016/bs.ampbs.2025.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2025]
Abstract
Bacteria have evolved several different biochemical pathways to either export proteins of all shapes and sizes out of the cell cytoplasm, or to secrete those proteins into the extracellular environment. Many bacterial protein secretion systems have evolutionary links to systems used by bacteriophage to move macromolecules across membranes. The Type 10 Secretion System (T10SS) was identified in gram-negative bacteria and comprises genes that bear striking sequence similarities to those found within phage lysis cassettes. The minimum components of a T10SS are an integral membrane holin-like protein together with a peptidoglycan hydrolase. Here, we review recent research in Serratia spp., Salmonella spp, Yersinia spp, and gram-positive Clostridioides spp., and consider the evidence for different T10SS mechanisms ranging from a controlled release of proteins into the environment, to stochastic altruistic lysis of specialised populations of cells.
Collapse
Affiliation(s)
- Mechna Chowdhury
- Faculty of Medical Sciences, Newcastle University Biosciences Institute, Newcastle University, Newcastle upon Tyne
| | - Phillip J Stansfeld
- Department of Chemistry, School of Life Sciences, University of Warwick, Coventry
| | - Frank Sargent
- Faculty of Medical Sciences, Newcastle University Biosciences Institute, Newcastle University, Newcastle upon Tyne.
| |
Collapse
|
7
|
Sabur A, Khan A, Borphukan B, Razzak A, Salimullah M, Khatun M. The Unique Capability of Endolysin to Tackle Antibiotic Resistance: Cracking the Barrier. J Xenobiot 2025; 15:19. [PMID: 39997362 PMCID: PMC11856723 DOI: 10.3390/jox15010019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 01/17/2025] [Accepted: 01/18/2025] [Indexed: 02/26/2025] Open
Abstract
The lack of new antibacterial medicines and the rapid rise in bacterial resistance to antibiotics pose a major threat to individuals and healthcare systems. Despite the availability of various antibiotics, bacterial resistance has emerged for almost every antibiotic discovered to date. The increasing prevalence of multidrug-resistant bacterial strains has rendered some infections nearly untreatable, posing severe challenges to health care. Thus, the development of alternatives to conventional antibiotics is critical for the treatment of both humans and food-producing animals. Endolysins, which are peptidoglycan hydrolases encoded by bacteriophages, represent a promising new class of antimicrobials. Preliminary research suggests that endolysins are more effective against Gram-positive bacteria than Gram-negative bacteria when administered exogenously, although they can still damage the cell wall of Gram-negative bacteria. Numerous endolysins have a modular domain structure that divides their binding and catalytic activity into distinct subunits, which helps maximize their bioengineering and potential drug development. Endolysins and endolysin-derived antimicrobials offer several advantages as antibiotic substitutes. They have a unique mechanism of action and efficacy against bacterial persisters (without requiring an active host metabolism); subsequently, they target both Gram-positive and Gram-negative bacteria (including antibiotic-resistant strains), and mycobacteria. Furthermore, there has been limited evidence of endolysin being resistant. Because these enzymes target highly conserved links, resistance may develop more slowly compared to traditional antibiotics. This review provides an overview and insight of the potential applications of endolysins as novel antimicrobials.
Collapse
Affiliation(s)
- Abdus Sabur
- Animal Biotechnology Division, National Institute of Biotechnology, Savar, Dhaka 1349, Bangladesh;
| | - Angkan Khan
- Infectious Diseases Division, International Centre for Diarrheal Disease Research, Bangladesh, Mohakhali, Dhaka 1212, Bangladesh;
| | - B. Borphukan
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA 99163, USA;
| | - Abdur Razzak
- Bioassay Department, Eurofins Biopharma, Columbia, MO 65201, USA;
| | - M. Salimullah
- Molecular Biotechnology Division, National Institute of Biotechnology, Savar, Dhaka 1349, Bangladesh;
| | - Muslima Khatun
- Molecular Biotechnology Division, National Institute of Biotechnology, Savar, Dhaka 1349, Bangladesh;
| |
Collapse
|
8
|
Mondal A, Teimouri H, Kolomeisky AB. Molecular mechanisms of precise timing in cell lysis. Biophys J 2024; 123:3090-3099. [PMID: 38971973 PMCID: PMC11427807 DOI: 10.1016/j.bpj.2024.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/03/2024] [Accepted: 07/02/2024] [Indexed: 07/08/2024] Open
Abstract
Many biological systems exhibit precise timing of events, and one of the most known examples is cell lysis, which is a process of breaking bacterial host cells in the virus infection cycle. However, the underlying microscopic picture of precise timing remains not well understood. We present a novel theoretical approach to explain the molecular mechanisms of effectively deterministic dynamics in biological systems. Our hypothesis is based on the idea of stochastic coupling between relevant underlying biophysical and biochemical processes that lead to noise cancellation. To test this hypothesis, we introduced a minimal discrete-state stochastic model to investigate how holin proteins produced by bacteriophages break the inner membranes of gram-negative bacteria. By explicitly solving this model, the dynamic properties of cell lysis are fully evaluated, and theoretical predictions quantitatively agree with available experimental data for both wild-type and holin mutants. It is found that the observed threshold-like behavior is a result of the balance between holin proteins entering the membrane and leaving the membrane during the lysis. Theoretical analysis suggests that the cell lysis achieves precise timing for wild-type species by maximizing the number of holins in the membrane and narrowing their spatial distribution. In contrast, for mutated species, these conditions are not satisfied. Our theoretical approach presents a possible molecular picture of precise dynamic regulation in intrinsically random biological processes.
Collapse
Affiliation(s)
- Anupam Mondal
- Center for Theoretical Biological Physics, Rice University, Houston, Texas; Department of Chemistry, Rice University, Houston, Texas
| | - Hamid Teimouri
- Center for Theoretical Biological Physics, Rice University, Houston, Texas; Department of Chemistry, Rice University, Houston, Texas
| | - Anatoly B Kolomeisky
- Center for Theoretical Biological Physics, Rice University, Houston, Texas; Department of Chemistry, Rice University, Houston, Texas; Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas.
| |
Collapse
|
9
|
Natarajan SP, Teh SH, Lin LC, Lin NT. In Vitro and In Vivo Assessments of Newly Isolated N4-like Bacteriophage against ST45 K62 Capsular-Type Carbapenem-Resistant Klebsiella pneumoniae: vB_kpnP_KPYAP-1. Int J Mol Sci 2024; 25:9595. [PMID: 39273543 PMCID: PMC11395603 DOI: 10.3390/ijms25179595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/26/2024] [Accepted: 08/31/2024] [Indexed: 09/15/2024] Open
Abstract
The rise of carbapenem-resistant Klebsiella pneumoniae (CRKP) presents a significant global challenge in clinical and healthcare settings, severely limiting treatment options. This study aimed to utilize a bacteriophage as an alternative therapy against carbapenem-resistant K. pneumoniae. A novel lytic N4-like Klebsiella phage, vB_kpnP_KPYAP-1 (KPYAP-1), was isolated from sewage. It demonstrated efficacy against the K62 serotype polysaccharide capsule of blaOXA-48-producing K. pneumoniae. KPYAP-1 forms small, clear plaques, has a latent period of 20 min, and reaches a growth plateau at 35 min, with a burst size of 473 plaque-forming units (PFUs) per infected cell. Phylogenetic analysis places KPYAP-1 in the Schitoviridae family, Enquatrovirinae subfamily, and Kaypoctavirus genus. KPYAP-1 employs an N4-like direct terminal repeat mechanism for genome packaging and encodes a large virion-encapsulated RNA polymerase. It lacks integrase or repressor genes, antibiotic resistance genes, bacterial virulence factors, and toxins, ensuring its safety for therapeutic use. Comparative genome analysis revealed that the KPYAP-1 genome is most similar to the KP8 genome, yet differs in tail fiber protein, indicating variations in host recognition. In a zebrafish infection model, KPYAP-1 significantly improved the survival rate of infected fish by 92% at a multiplicity of infection (MOI) of 10, demonstrating its potential for in vivo treatment. These results highlight KPYAP-1 as a promising candidate for developing phage-based therapies targeting carbapenemase-producing K. pneumoniae.
Collapse
Affiliation(s)
- Shanmuga Priya Natarajan
- Master Program in Biomedical Sciences, School of Medicine, Tzu Chi University, No. 701, Sec. 3, Zhongyang Rd., Hualien 97004, Taiwan
| | - Soon-Hian Teh
- Division of Infectious Diseases, Department of Internal Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, No. 707, Sec. 3, Zhongyang Rd., Hualien 97004, Taiwan
| | - Ling-Chun Lin
- Master Program in Biomedical Sciences, School of Medicine, Tzu Chi University, No. 701, Sec. 3, Zhongyang Rd., Hualien 97004, Taiwan
| | - Nien-Tsung Lin
- Master Program in Biomedical Sciences, School of Medicine, Tzu Chi University, No. 701, Sec. 3, Zhongyang Rd., Hualien 97004, Taiwan
| |
Collapse
|
10
|
Johno D, Zhang Y, Mohammadi TN, Zhao J, Lin Y, Wang C, Lu Y, Abdelaziz MNS, Maung AT, Lin CY, El-Telbany M, Lwin SZC, Damaso CH, Masuda Y, Honjoh KI, Miyamoto T. Characterization of selected phages for biocontrol of food-spoilage pseudomonads. Int Microbiol 2024; 27:1333-1344. [PMID: 38206524 DOI: 10.1007/s10123-023-00479-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 12/20/2023] [Accepted: 12/29/2023] [Indexed: 01/12/2024]
Abstract
Pseudomonas spp., such as P. fluorescens group, P. fragi, and P. putida, are the major psychrophilic spoilage bacteria in the food industry. Bacteriophages (phages) are a promising tool for controlling food-spoilage and food-poisoning bacteria; however, there are few reports on phages effective on food-spoilage bacteria such as Pseudomonas spp. In this study, 12 Pseudomonas phages were isolated from chicken and soil samples. Based on the host range and lytic activity at 30 °C and 4 °C and various combinations of phages, phages vB_PflP-PCS4 and vB_PflP-PCW2 were selected to prepare phage cocktails to control Pseudomonas spp. The phage cocktail consisting of vB_PflP-PCS4 and vB_PflP-PCW2 showed the strongest lytic activity and retarded regrowth of P. fluorescens and P. putida at 30 °C, 8 °C, and 4 °C at a multiplicity of infection of 100. Nucleotide sequence analysis of the genomic DNA indicated that vB_PflP-PCS4 and vB_PflP-PCW2 phages were lytic phages of the Podoviridae family and lacked tRNA, toxin, or virulence genes. A novel endolysin gene was found in the genomic DNA of phage vB_PflP-PCS4. The results of this study suggest that the phage cocktail consisting of vB_PflP-PCS4 and vB_PflP-PCW2 is a promising tool for the biocontrol of psychrophilic food-spoilage pseudomonads during cold storage and distribution.
Collapse
Affiliation(s)
- Daisuke Johno
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 744 Motooka, Nishi-Ku, Fukuoka, 819-0395, Japan
| | - Yu Zhang
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 744 Motooka, Nishi-Ku, Fukuoka, 819-0395, Japan
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Tahir Noor Mohammadi
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 744 Motooka, Nishi-Ku, Fukuoka, 819-0395, Japan
| | - Junxin Zhao
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 744 Motooka, Nishi-Ku, Fukuoka, 819-0395, Japan
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, China
| | - Yunzhi Lin
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 744 Motooka, Nishi-Ku, Fukuoka, 819-0395, Japan
| | - Chen Wang
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 744 Motooka, Nishi-Ku, Fukuoka, 819-0395, Japan
| | - Yuan Lu
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 744 Motooka, Nishi-Ku, Fukuoka, 819-0395, Japan
| | - Marwa Nabil Sayed Abdelaziz
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 744 Motooka, Nishi-Ku, Fukuoka, 819-0395, Japan
| | - Aye Thida Maung
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 744 Motooka, Nishi-Ku, Fukuoka, 819-0395, Japan
| | - Chen-Yu Lin
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 744 Motooka, Nishi-Ku, Fukuoka, 819-0395, Japan
| | - Mohamed El-Telbany
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 744 Motooka, Nishi-Ku, Fukuoka, 819-0395, Japan
| | - Su Zar Chi Lwin
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 744 Motooka, Nishi-Ku, Fukuoka, 819-0395, Japan
| | - Catherine Hofilena Damaso
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 744 Motooka, Nishi-Ku, Fukuoka, 819-0395, Japan
| | - Yoshimitsu Masuda
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 744 Motooka, Nishi-Ku, Fukuoka, 819-0395, Japan
| | - Ken-Ichi Honjoh
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 744 Motooka, Nishi-Ku, Fukuoka, 819-0395, Japan
| | - Takahisa Miyamoto
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 744 Motooka, Nishi-Ku, Fukuoka, 819-0395, Japan.
| |
Collapse
|
11
|
Mondal A, Teimouri H, Kolomeisky AB. Elucidating Physicochemical Features of Holin Proteins Responsible for Bacterial Cell Lysis. J Phys Chem B 2024; 128:7129-7140. [PMID: 38985954 DOI: 10.1021/acs.jpcb.4c03040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
Bacterial resistance to conventional antibiotics stimulated the development of so-called "phage therapies" that rely on cell lysis, which is a process of destroying bacterial cells due to their infections by bacterial viruses. For λ bacteriophages, it is known that the critical role in this process is played by holin proteins that aggregate in cellular membranes before breaking them apart. While multiple experimental studies probed various aspects of cell lysis, the underlying molecular mechanisms remain not well understood. Here we investigate what physicochemical properties of holin proteins are the most relevant for these processes by employing statistical correlation analysis of cell lysis dynamics for different experimentally observed mutant species. Our findings reveal significant correlations between various physicochemical features and cell lysis dynamics. Notably, we uncover a strong inverse correlation between local hydrophobicity and cell lysis times, underscoring the crucial role of hydrophobic interactions in membrane disruption. Stimulated by these observations, a predictive model capable of explicitly estimating cell lysis times for any holin protein mutants based on their mean hydrophobicity values is developed. Our study not only provides important microscopic insights into cell lysis phenomena but also proposes specific routes to optimize medical and biotechnological applications of bacteriophages.
Collapse
Affiliation(s)
- Anupam Mondal
- Center for Theoretical Biological Physics, Rice University, Houston, Texas 77005, United States
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
| | - Hamid Teimouri
- Center for Theoretical Biological Physics, Rice University, Houston, Texas 77005, United States
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
| | - Anatoly B Kolomeisky
- Center for Theoretical Biological Physics, Rice University, Houston, Texas 77005, United States
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, United States
| |
Collapse
|
12
|
Mokhtari S, Li Y, Saris PEJ, Takala TM. Analysis of the cell wall binding domain in bacteriocin-like lysin LysL from Lactococcus lactis LAC460. Arch Microbiol 2024; 206:336. [PMID: 38954047 PMCID: PMC11219366 DOI: 10.1007/s00203-024-04066-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/19/2024] [Accepted: 06/21/2024] [Indexed: 07/04/2024]
Abstract
Wild-type Lactococcus lactis strain LAC460 secretes prophage-encoded bacteriocin-like lysin LysL, which kills some Lactococcus strains, but has no lytic effect on the producer. LysL carries two N-terminal enzymatic active domains (EAD), and an unknown C-terminus without homology to known domains. This study aimed to determine whether the C-terminus of LysL carries a cell wall binding domain (CBD) for target specificity of LysL. The C-terminal putative CBD region of LysL was fused with His-tagged green fluorescent protein (HGFPuv). The HGFPuv_CBDlysL gene fusion was ligated into the pASG-IBA4 vector, and introduced into Escherichia coli. The fusion protein was produced and purified with affinity chromatography. To analyse the binding of HGFPuv_CBDLysL to Lactococcus cells, the protein was mixed with LysL-sensitive and LysL-resistant strains, including the LysL-producer LAC460, and the fluorescence of the cells was analysed. As seen in fluorescence microscope, HGFPuv_CBDLysL decorated the cell surface of LysL-sensitive L. cremoris MG1614 with green fluorescence, whereas the resistant L. lactis strains LM0230 and LAC460 remained unfluorescent. The fluorescence plate reader confirmed the microscopy results detecting fluorescence only from four tested LysL-sensitive strains but not from 11 tested LysL-resistant strains. Specific binding of HGFPuv_CBDLysL onto the LysL-sensitive cells but not onto the LysL-resistant strains indicates that the C-terminus of LysL contains specific CBD. In conclusion, this report presents experimental evidence of the presence of a CBD in a lactococcal phage lysin. Moreover, the inability of HGFPuv_CBDLysL to bind to the LysL producer LAC460 may partly explain the host's resistance to its own prophage lysin.
Collapse
Affiliation(s)
- Samira Mokhtari
- Department of Microbiology, University of Helsinki, P.O. Box 56, 00014, Helsinki, Finland.
| | - Yanru Li
- Department of Microbiology, University of Helsinki, P.O. Box 56, 00014, Helsinki, Finland
| | - Per E J Saris
- Department of Microbiology, University of Helsinki, P.O. Box 56, 00014, Helsinki, Finland
| | - Timo M Takala
- Department of Microbiology, University of Helsinki, P.O. Box 56, 00014, Helsinki, Finland
| |
Collapse
|
13
|
Thöneböhn S, Fischer D, Kreiling V, Kemmler A, Oberheim I, Hager F, Schmid NE, Thormann KM. Identifying components of the Shewanella phage LambdaSo lysis system. J Bacteriol 2024; 206:e0002224. [PMID: 38771038 PMCID: PMC11332162 DOI: 10.1128/jb.00022-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 04/26/2024] [Indexed: 05/22/2024] Open
Abstract
Phage-induced lysis of Gram-negative bacterial hosts usually requires a set of phage lysis proteins, a holin, an endopeptidase, and a spanin system, to disrupt each of the three cell envelope layers. Genome annotations and previous studies identified a gene region in the Shewanella oneidensis prophage LambdaSo, which comprises potential holin- and endolysin-encoding genes but lacks an obvious spanin system. By a combination of candidate approaches, mutant screening, characterization, and microscopy, we found that LambdaSo uses a pinholin/signal-anchor-release (SAR) endolysin system to induce proton leakage and degradation of the cell wall. Between the corresponding genes, we found that two extensively nested open-reading frames encode a two-component spanin module Rz/Rz1. Unexpectedly, we identified another factor strictly required for LambdaSo-induced cell lysis, the phage protein Lcc6. Lcc6 is a transmembrane protein of 65 amino acid residues with hitherto unknown function, which acts at the level of holin in the cytoplasmic membrane to allow endolysin release. Thus, LambdaSo-mediated cell lysis requires at least four protein factors (pinholin, SAR endolysin, spanin, and Lcc6). The findings further extend the known repertoire of phage proteins involved in host lysis and phage egress. IMPORTANCE Lysis of bacteria can have multiple consequences, such as the release of host DNA to foster robust biofilm. Phage-induced lysis of Gram-negative cells requires the disruption of three layers, the outer and inner membranes and the cell wall. In most cases, the lysis systems of phages infecting Gram-negative cells comprise holins to disrupt or depolarize the membrane, thereby releasing or activating endolysins, which then degrade the cell wall. This, in turn, allows the spanins to become active and fuse outer and inner membranes, completing cell envelope disruption and allowing phage egress. Here, we show that the presence of these three components may not be sufficient to allow cell lysis, implicating that also in known phages, further factors may be required.
Collapse
Affiliation(s)
- Svenja Thöneböhn
- Institute of Microbiology and Molecular Biology, Justus-Liebig-Universität Gießen, Gießen, Germany
| | - Dorian Fischer
- Institute of Microbiology and Molecular Biology, Justus-Liebig-Universität Gießen, Gießen, Germany
| | - Vanessa Kreiling
- Institute of Microbiology and Molecular Biology, Justus-Liebig-Universität Gießen, Gießen, Germany
| | - Alina Kemmler
- Institute of Microbiology and Molecular Biology, Justus-Liebig-Universität Gießen, Gießen, Germany
| | - Isabella Oberheim
- Institute of Microbiology and Molecular Biology, Justus-Liebig-Universität Gießen, Gießen, Germany
| | - Fabian Hager
- Institute of Microbiology and Molecular Biology, Justus-Liebig-Universität Gießen, Gießen, Germany
| | - Nicole E. Schmid
- Institute of Microbiology and Molecular Biology, Justus-Liebig-Universität Gießen, Gießen, Germany
| | - Kai M. Thormann
- Institute of Microbiology and Molecular Biology, Justus-Liebig-Universität Gießen, Gießen, Germany
| |
Collapse
|
14
|
Uskudar-Guclu A, Unlu S, Salih-Dogan H, Yalcin S, Basustaoglu A. Biological and genomic characteristics of three novel bacteriophages and a phage-plasmid of Klebsiella pneumoniae. Can J Microbiol 2024; 70:213-225. [PMID: 38447122 DOI: 10.1139/cjm-2023-0188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
Bacteriophages have emerged as promising candidates for the treatment of difficult-to-treat bacterial infections. The aim of this study is to isolate and characterize phages infecting carbapenem-resistant and extended-spectrum beta-lactamase producer Klebsiella pneumoniae isolates. Water samples were taken for the isolation of bacteriophages. One-step growth curve, the optimal multiplicity of infection (MOI), thermal and pH stabilities, transmission electron microscopy and whole-genome sequencing of phages were studied. Four phages were isolated and named Klebsiella phage Kpn02, Kpn17, Kpn74, and Kpn13. The optimal MOI and latent periods of phage Kpn02, Kpn17, Kpn74, and Kpn13 were 10, 1, 0.001, and 100 PFU/CFU and 20, 10, 20, and 30 min, respectively. Burst sizes ranged from 811 to 2363. No known antibiotic resistance and virulence genes were identified. No tRNAs were detected except Klebsiella phage Kpn02 which encodes 24 tRNAs. Interestingly, Klebsiella phage Kpn74 was predicted to be a lysogenic phage whose prophage is a linear plasmid molecule with covalently closed ends. Of the Klebsiella-infecting phages presented in current study, virulent phages suggest that they may represent candidate therapeutic agents against MDR K. pneumoniae, based on short latent period, high burst sizes and no known antibiotic resistance and virulence genes in their genomes.
Collapse
Affiliation(s)
- Aylin Uskudar-Guclu
- Baskent University, Faculty of Medicine, Department of Medical Microbiology, Ankara, Turkiye
| | - Sezin Unlu
- Baskent University, Faculty of Medicine, Department of Medical Microbiology, Ankara, Turkiye
| | - Hanife Salih-Dogan
- Aydin Adnan Menderes University, Recombinant DNA and Recombinant Protein Research Center (REDPROM), Aydin, Turkiye
| | - Suleyman Yalcin
- Ministry of Health General Directorate of Public Health, Microbiology References Laboratory, Ankara, Turkiye
| | - Ahmet Basustaoglu
- Baskent University, Faculty of Medicine, Department of Medical Microbiology, Ankara, Turkiye
| |
Collapse
|
15
|
Zhang Y, Wang R, Hu Q, Lv N, Zhang L, Yang Z, Zhou Y, Wang X. Characterization of Pseudomonas aeruginosa bacteriophages and control hemorrhagic pneumonia on a mice model. Front Microbiol 2024; 15:1396774. [PMID: 38808279 PMCID: PMC11132263 DOI: 10.3389/fmicb.2024.1396774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 04/12/2024] [Indexed: 05/30/2024] Open
Abstract
Pseudomonas aeruginosa is one of the most common pathogens causing hemorrhagic pneumonia in Chinese forest musk deer. Multidrug-resistant P. aeruginosa is frequently isolated from the lungs of affected musk deer in Shaanxi Province, China. With the increasing bacterial drug resistance, commonly used antibiotics have shown limited efficacy against drug-resistant P. aeruginosa. Therefore, phages have garnered attention as a promising alternative to antibiotics among researchers. In this study, phages vB_PaeP_YL1 and vB_PaeP_YL2 (respectively referred to as YL1 and YL2) were isolated from mixed sewage samples from a farm. YL1 and YL2 exhibit an icosahedral head and a non-contractile short tail, belonging to the Podoviridae family. Identification results demonstrate good tolerance to low temperatures and pH levels, with minimal variation in potency within 30 min of UV irradiation. The MOI for both YL1 and YL2 was 0.1, and their one-step growth curve latent periods were 10 min and 20 min, respectively. Moreover, both single phage and phage cocktail effectively inhibited the growth of the host bacteria in vitro, with the phage cocktail showing superior inhibitory effects compared to the single phage. YL1 and YL2 possess double-stranded DNA genomes, with YL1 having a genome size of 72,187 bp and a total G + C content of 55.02%, while YL2 has a genome size of 72,060 bp and a total G + C content of 54.98%. YL1 and YL2 are predicted to have 93 and 92 open reading frames (ORFs), respectively, and no ORFs related to drug resistance or lysogeny were found in both phages. Genome annotation and phylogenetic analysis revealed that YL1 is closely related to vB_PaeP_FBPa1 (ON857943), while YL2 is closely related to vB_PaeP_FBPa1 (ON857943) and Phage26 (NC041907). In a mouse model of hemorrhagic pneumonia, phage cocktail treatment showed better control of the disease and significantly reduced lung bacterial load compared to single phage treatment. Therefore, YL1 and YL2 have the potential for the prevention and treatment of multidrug-resistant P. aeruginosa infections.
Collapse
Affiliation(s)
- Yanjie Zhang
- College of Veterinary Medicine, Northwest A&F University, Xianyang, China
| | - Ruiqing Wang
- College of Veterinary Medicine, Northwest A&F University, Xianyang, China
| | - Qingxia Hu
- College of Veterinary Medicine, Northwest A&F University, Xianyang, China
| | - Ni Lv
- College of Veterinary Medicine, Northwest A&F University, Xianyang, China
| | - Likun Zhang
- College of Veterinary Medicine, Northwest A&F University, Xianyang, China
| | - Zengqi Yang
- College of Veterinary Medicine, Northwest A&F University, Xianyang, China
| | - Yefei Zhou
- Nanjing Xiao Zhuang University, Nanjing, China
| | - Xinglong Wang
- College of Veterinary Medicine, Northwest A&F University, Xianyang, China
| |
Collapse
|
16
|
Feldmüller M, Ericson CF, Afanasyev P, Lien YW, Weiss GL, Wollweber F, Schoof M, Hurst M, Pilhofer M. Stepwise assembly and release of Tc toxins from Yersinia entomophaga. Nat Microbiol 2024; 9:405-420. [PMID: 38316932 PMCID: PMC10847046 DOI: 10.1038/s41564-024-01611-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 01/17/2024] [Indexed: 02/07/2024]
Abstract
Tc toxins are virulence factors of bacterial pathogens. Although their structure and intoxication mechanism are well understood, it remains elusive where this large macromolecular complex is assembled and how it is released. Here we show by an integrative multiscale imaging approach that Yersinia entomophaga Tc (YenTc) toxin components are expressed only in a subpopulation of cells that are 'primed' with several other potential virulence factors, including filaments of the protease M66/StcE. A phage-like lysis cassette is required for YenTc release; however, before resulting in complete cell lysis, the lysis cassette generates intermediate 'ghost' cells, which may serve as assembly compartments and become packed with assembled YenTc holotoxins. We hypothesize that this stepwise mechanism evolved to minimize the number of cells that need to be killed. The occurrence of similar lysis cassettes in diverse organisms indicates a conserved mechanism for Tc toxin release that may apply to other extracellular macromolecular machines.
Collapse
Affiliation(s)
- Miki Feldmüller
- Department of Biology, Institute of Molecular Biology and Biophysics, Eidgenössische Technische Hochschule Zürich, Zürich, Switzerland
| | - Charles F Ericson
- Department of Biology, Institute of Molecular Biology and Biophysics, Eidgenössische Technische Hochschule Zürich, Zürich, Switzerland
| | | | - Yun-Wei Lien
- Department of Biology, Institute of Molecular Biology and Biophysics, Eidgenössische Technische Hochschule Zürich, Zürich, Switzerland
| | - Gregor L Weiss
- Department of Biology, Institute of Molecular Biology and Biophysics, Eidgenössische Technische Hochschule Zürich, Zürich, Switzerland
| | - Florian Wollweber
- Department of Biology, Institute of Molecular Biology and Biophysics, Eidgenössische Technische Hochschule Zürich, Zürich, Switzerland
| | - Marion Schoof
- Bio-Protection Research Centre, Lincoln University, Lincoln, Christchurch, New Zealand
- AgResearch, Resilient Agriculture, Lincoln Research Centre, Christchurch, New Zealand
| | - Mark Hurst
- Bio-Protection Research Centre, Lincoln University, Lincoln, Christchurch, New Zealand
- AgResearch, Resilient Agriculture, Lincoln Research Centre, Christchurch, New Zealand
| | - Martin Pilhofer
- Department of Biology, Institute of Molecular Biology and Biophysics, Eidgenössische Technische Hochschule Zürich, Zürich, Switzerland.
| |
Collapse
|
17
|
Elek CKA, Brown TL, Le Viet T, Evans R, Baker DJ, Telatin A, Tiwari SK, Al-Khanaq H, Thilliez G, Kingsley RA, Hall LJ, Webber MA, Adriaenssens EM. A hybrid and poly-polish workflow for the complete and accurate assembly of phage genomes: a case study of ten przondoviruses. Microb Genom 2023; 9:mgen001065. [PMID: 37463032 PMCID: PMC10438801 DOI: 10.1099/mgen.0.001065] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 06/17/2023] [Indexed: 07/21/2023] Open
Abstract
Bacteriophages (phages) within the genus Przondovirus are T7-like podoviruses belonging to the subfamily Studiervirinae, within the family Autographiviridae, and have a highly conserved genome organisation. The genomes of these phages range from 37 to 42 kb in size, encode 50-60 genes and are characterised by the presence of direct terminal repeats (DTRs) flanking the linear chromosome. These DTRs are often deleted during short-read-only and hybrid assemblies. Moreover, long-read-only assemblies are often littered with sequencing and/or assembly errors and require additional curation. Here, we present the isolation and characterisation of ten novel przondoviruses targeting Klebsiella spp. We describe HYPPA, a HYbrid and Poly-polish Phage Assembly workflow, which utilises long-read assemblies in combination with short-read sequencing to resolve phage DTRs and correcting errors, negating the need for laborious primer walking and Sanger sequencing validation. Our assembly workflow utilised Oxford Nanopore Technologies for long-read sequencing for its accessibility, making it the more relevant long-read sequencing technology at this time, and Illumina DNA Prep for short-read sequencing, representing the most commonly used technologies globally. Our data demonstrate the importance of careful curation of phage assemblies before publication, and prior to using them for comparative genomics.
Collapse
Affiliation(s)
- Claire K. A. Elek
- Quadram Institute Bioscience, Rosalind Franklin Road, Norwich Research Park, Norwich, UK
- University of East Anglia, Norwich Research Park, Norwich, UK
| | - Teagan L. Brown
- Quadram Institute Bioscience, Rosalind Franklin Road, Norwich Research Park, Norwich, UK
| | - Thanh Le Viet
- Quadram Institute Bioscience, Rosalind Franklin Road, Norwich Research Park, Norwich, UK
| | - Rhiannon Evans
- Quadram Institute Bioscience, Rosalind Franklin Road, Norwich Research Park, Norwich, UK
| | - David J. Baker
- Quadram Institute Bioscience, Rosalind Franklin Road, Norwich Research Park, Norwich, UK
| | - Andrea Telatin
- Quadram Institute Bioscience, Rosalind Franklin Road, Norwich Research Park, Norwich, UK
| | - Sumeet K. Tiwari
- Quadram Institute Bioscience, Rosalind Franklin Road, Norwich Research Park, Norwich, UK
| | - Haider Al-Khanaq
- Quadram Institute Bioscience, Rosalind Franklin Road, Norwich Research Park, Norwich, UK
| | - Gaëtan Thilliez
- Quadram Institute Bioscience, Rosalind Franklin Road, Norwich Research Park, Norwich, UK
| | - Robert A. Kingsley
- Quadram Institute Bioscience, Rosalind Franklin Road, Norwich Research Park, Norwich, UK
- University of East Anglia, Norwich Research Park, Norwich, UK
| | - Lindsay J. Hall
- Quadram Institute Bioscience, Rosalind Franklin Road, Norwich Research Park, Norwich, UK
- University of East Anglia, Norwich Research Park, Norwich, UK
- Chair of Intestinal Microbiome, ZIEL—Institute for Food and Health, School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Mark A. Webber
- Quadram Institute Bioscience, Rosalind Franklin Road, Norwich Research Park, Norwich, UK
- University of East Anglia, Norwich Research Park, Norwich, UK
| | | |
Collapse
|
18
|
Transcriptomics-Driven Characterization of LUZ100, a T7-like Pseudomonas Phage with Temperate Features. mSystems 2023; 8:e0118922. [PMID: 36794936 PMCID: PMC10134795 DOI: 10.1128/msystems.01189-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023] Open
Abstract
Autographiviridae is a diverse yet distinct family of bacterial viruses marked by a strictly lytic lifestyle and a generally conserved genome organization. Here, we characterized Pseudomonas aeruginosa phage LUZ100, a distant relative of type phage T7. LUZ100 is a podovirus with a limited host range which likely uses lipopolysaccharide (LPS) as a phage receptor. Interestingly, infection dynamics of LUZ100 indicated moderate adsorption rates and low virulence, hinting at temperate characteristics. This hypothesis was supported by genomic analysis, which showed that LUZ100 shares the conventional T7-like genome organization yet carries key genes associated with a temperate lifestyle. To unravel the peculiar characteristics of LUZ100, ONT-cappable-seq transcriptomics analysis was performed. These data provided a bird's-eye view of the LUZ100 transcriptome and enabled the discovery of key regulatory elements, antisense RNA, and transcriptional unit structures. The transcriptional map of LUZ100 also allowed us to identify new RNA polymerase (RNAP)-promoter pairs that can form the basis for biotechnological parts and tools for new synthetic transcription regulation circuitry. The ONT-cappable-seq data revealed that the LUZ100 integrase and a MarR-like regulator (proposed to be involved in the lytic/lysogeny decision) are actively cotranscribed in an operon. In addition, the presence of a phage-specific promoter transcribing the phage-encoded RNA polymerase raises questions on the regulation of this polymerase and suggests that it is interwoven with the MarR-based regulation. This transcriptomics-driven characterization of LUZ100 supports recent evidence that T7-like phages should not automatically be assumed to have a strictly lytic life cycle. IMPORTANCE Bacteriophage T7, considered the "model phage" of the Autographiviridae family, is marked by a strictly lytic life cycle and conserved genome organization. Recently, novel phages within this clade have emerged which display characteristics associated with a temperate life cycle. Screening for temperate behavior is of utmost importance in fields like phage therapy, where strictly lytic phages are generally required for therapeutic applications. In this study, we applied an omics-driven approach to characterize the T7-like Pseudomonas aeruginosa phage LUZ100. These results led to the identification of actively transcribed lysogeny-associated genes in the phage genome, pointing out that temperate T7-like phages are emerging more frequent than initially thought. In short, the combination of genomics and transcriptomics allowed us to obtain a better understanding of the biology of nonmodel Autographiviridae phages, which can be used to optimize the implementation of phages and their regulatory elements in phage therapy and biotechnological applications, respectively.
Collapse
|
19
|
Genomic analysis and biological characterization of a novel Schitoviridae phage infecting Vibrio alginolyticus. Appl Microbiol Biotechnol 2023; 107:749-768. [PMID: 36520169 DOI: 10.1007/s00253-022-12312-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 11/20/2022] [Accepted: 11/24/2022] [Indexed: 12/23/2022]
Abstract
Vibrio alginolyticus is a Gram-negative bacterium commonly associated with mackerel poisoning. A bacteriophage that specifically targets and lyses this bacterium could be employed as a biocontrol agent for treating the bacterial infection or improving the shelf-life of mackerel products. However, only a few well-characterized V. alginolyticus phages have been reported in the literature. In this study, a novel lytic phage, named ΦImVa-1, specifically infecting V. alginolyticus strain ATCC 17749, was isolated from Indian mackerel. The phage has a short latent period of 15 min and a burst size of approximately 66 particles per infected bacterium. ΦImVa-1 remained stable for 2 h at a wide temperature (27-75 °C) and within a pH range of 5 to 10. Transmission electron microscopy revealed that ΦImVa-1 has an icosahedral head of approximately 60 nm in diameter with a short tail, resembling those in the Schitoviridae family. High throughput sequencing and bioinformatics analysis elucidated that ΦImVa-1 has a linear dsDNA genome of 77,479 base pairs (bp), with a G + C content of ~ 38.72% and 110 predicted gene coding regions (106 open reading frames and four tRNAs). The genome contains an extremely large virion-associated RNA polymerase gene and two smaller non-virion-associated RNA polymerase genes, which are hallmarks of schitoviruses. No antibiotic genes were found in the ΦImVa-1 genome. This is the first paper describing the biological properties, morphology, and the complete genome of a V. alginolyticus-infecting schitovirus. When raw mackerel fish flesh slices were treated with ΦImVa-1, the pathogen loads reduced significantly, demonstrating the potential of the phage as a biocontrol agent for V. alginolyticus strain ATCC 17749 in the food. KEY POINTS: • A novel schitovirus infecting Vibrio alginolyticus ATCC 17749 was isolated from Indian mackerel. • The complete genome of the phage was determined, analyzed, and compared with other phages. • The phage is heat stable making it a potential biocontrol agent in extreme environments.
Collapse
|
20
|
Feiss M, Young R, Ramsey J, Adhya S, Georgopoulos C, Hendrix RW, Hatfull GF, Gilcrease EB, Casjens SR. Hybrid Vigor: Importance of Hybrid λ Phages in Early Insights in Molecular Biology. Microbiol Mol Biol Rev 2022; 86:e0012421. [PMID: 36165780 PMCID: PMC9799177 DOI: 10.1128/mmbr.00124-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Laboratory-generated hybrids between phage λ and related phages played a seminal role in establishment of the λ model system, which, in turn, served to develop many of the foundational concepts of molecular biology, including gene structure and control. Important λ hybrids with phages 21 and 434 were the earliest of such phages. To understand the biology of these hybrids in full detail, we determined the complete genome sequences of phages 21 and 434. Although both genomes are canonical members of the λ-like phage family, they both carry unsuspected bacterial virulence gene types not previously described in this group of phages. In addition, we determined the sequences of the hybrid phages λ imm21, λ imm434, and λ h434 imm21. These sequences show that the replacements of λ DNA by nonhomologous segments of 21 or 434 DNA occurred through homologous recombination in adjacent sequences that are nearly identical in the parental phages. These five genome sequences correct a number of errors in published sequence fragments of the 21 and 434 genomes, and they point out nine nucleotide differences from Sanger's original λ sequence that are likely present in most extant λ strains in laboratory use today. We discuss the historical importance of these hybrid phages in the development of fundamental tenets of molecular biology and in some of the earliest gene cloning vectors. The 434 and 21 genomes reinforce the conclusion that the genomes of essentially all natural λ-like phages are mosaics of sequence modules from a pool of exchangeable segments.
Collapse
Affiliation(s)
- Michael Feiss
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Ryland Young
- Center for Phage Technology, Texas A&M AgriLife Research, College Station, Texas, USA
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, USA
| | - Jolene Ramsey
- Center for Phage Technology, Texas A&M AgriLife Research, College Station, Texas, USA
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, USA
| | - Sankar Adhya
- Laboratory of Molecular Biology, Center for Cancer Research, The National Cancer Institute, Bethesda, Maryland, USA
| | - Costa Georgopoulos
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Roger W. Hendrix
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Pittsburgh Bacteriophage Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Graham F. Hatfull
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Pittsburgh Bacteriophage Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Eddie B. Gilcrease
- Department of Civil and Environmental Engineering, University of Utah, Salt Lake City, Utah, USA
| | - Sherwood R. Casjens
- Division of Microbiology and Immunology, Pathology Department, University of Utah School of Medicine, Salt Lake City, Utah, USA
- School of Biological Sciences, University of Utah, Salt Lake City, Utah, USA
| |
Collapse
|
21
|
Pollenz RS, Bland J, Pope WH. Bioinformatic characterization of endolysins and holin-like membrane proteins in the lysis cassette of phages that infect Gordonia rubripertincta. PLoS One 2022; 17:e0276603. [PMID: 36395171 PMCID: PMC9671378 DOI: 10.1371/journal.pone.0276603] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 10/11/2022] [Indexed: 11/19/2022] Open
Abstract
Holins are bacteriophage-encoded transmembrane proteins that function to control the timing of bacterial lysis event, assist with the destabilization of the membrane proton motive force and in some models, generate large "pores" in the cell membrane to allow the exit of the phage-encoded endolysin so they can access the peptidoglycan components of the cell wall. The lysis mechanism has been rigorously evaluated through biochemical and genetic studies in very few phages, and the results indicate that phages utilize endolysins, holins and accessory proteins to the outer membrane to achieve cell lysis through several distinct operational models. This observation suggests the possibility that phages may evolve novel variations of how the lysis proteins functionally interact in an effort to improve fitness or evade host defenses. To begin to address this hypothesis, the current study utilized a comprehensive bioinformatic approach to systematically identify the proteins encoded by the genes within the lysis cassettes in 16 genetically diverse phages that infect the Gram-positive Gordonia rubripertincta NRLL B-16540 strain. The results show that there is a high level of diversity of the various lysis genes and 16 different genome organizations of the putative lysis cassette, many which have never been described. Thirty-four different genes encoding holin-like proteins were identified as well as a potential holin-major capsid fusion protein. The holin-like proteins contained between 1-4 transmembrane helices, were not shared to a high degree amongst the different phages and are present in the lysis cassette in a wide range of combinations of up to 4 genes in which none are duplicated. Detailed evaluation of the transmembrane domains and predicted membrane topologies of the holin-like proteins show that many have novel structures that have not been previously characterized. These results provide compelling support that there are novel operational lysis models yet to be discovered.
Collapse
Affiliation(s)
- Richard S. Pollenz
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, Florida, United States of America
| | - Jackson Bland
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, Florida, United States of America
| | - Welkin H. Pope
- Science Department, Chatham University, Pittsburgh, Pennsylvania, United States of America
| |
Collapse
|
22
|
Abeysekera GS, Love MJ, Manners SH, Billington C, Dobson RCJ. Bacteriophage-encoded lethal membrane disruptors: Advances in understanding and potential applications. Front Microbiol 2022; 13:1044143. [PMID: 36345304 PMCID: PMC9636201 DOI: 10.3389/fmicb.2022.1044143] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 10/10/2022] [Indexed: 09/09/2023] Open
Abstract
Holins and spanins are bacteriophage-encoded membrane proteins that control bacterial cell lysis in the final stage of the bacteriophage reproductive cycle. Due to their efficient mechanisms for lethal membrane disruption, these proteins are gaining interest in many fields, including the medical, food, biotechnological, and pharmaceutical fields. However, investigating these lethal proteins is challenging due to their toxicity in bacterial expression systems and the resultant low protein yields have hindered their analysis compared to other cell lytic proteins. Therefore, the structural and dynamic properties of holins and spanins in their native environment are not well-understood. In this article we describe recent advances in the classification, purification, and analysis of holin and spanin proteins, which are beginning to overcome the technical barriers to understanding these lethal membrane disrupting proteins, and through this, unlock many potential biotechnological applications.
Collapse
Affiliation(s)
- Gayan S. Abeysekera
- Biomolecular Interaction Centre and School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - Michael J. Love
- Biomolecular Interaction Centre and School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
- Health and Environment Group, Institute of Environmental Science and Research, Christchurch, New Zealand
| | - Sarah H. Manners
- Biomolecular Interaction Centre and School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - Craig Billington
- Health and Environment Group, Institute of Environmental Science and Research, Christchurch, New Zealand
| | - Renwick C. J. Dobson
- Biomolecular Interaction Centre and School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
- Department of Biochemistry and Molecular Biology, University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
23
|
Imaging the Infection Cycle of T7 at the Single Virion Level. Int J Mol Sci 2022; 23:ijms231911252. [PMID: 36232552 PMCID: PMC9569847 DOI: 10.3390/ijms231911252] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/17/2022] [Accepted: 09/21/2022] [Indexed: 11/17/2022] Open
Abstract
T7 phages are E. coli-infecting viruses that find and invade their target with high specificity and efficiency. The exact molecular mechanisms of the T7 infection cycle are yet unclear. As the infection involves mechanical events, single-particle methods are to be employed to alleviate the problems of ensemble averaging. Here we used TIRF microscopy to uncover the spatial dynamics of the target recognition and binding by individual T7 phage particles. In the initial phase, T7 virions bound reversibly to the bacterial membrane via two-dimensional diffusive exploration. Stable bacteriophage anchoring was achieved by tail-fiber complex to receptor binding which could be observed in detail by atomic force microscopy (AFM) under aqueous buffer conditions. The six anchored fibers of a given T7 phage-displayed isotropic spatial orientation. The viral infection led to the onset of an irreversible structural program in the host which occurred in three distinct steps. First, bacterial cell surface roughness, as monitored by AFM, increased progressively. Second, membrane blebs formed on the minute time scale (average ~5 min) as observed by phase-contrast microscopy. Finally, the host cell was lysed in a violent and explosive process that was followed by the quick release and dispersion of the phage progeny. DNA ejection from T7 could be evoked in vitro by photothermal excitation, which revealed that genome release is mechanically controlled to prevent premature delivery of host-lysis genes. The single-particle approach employed here thus provided an unprecedented insight into the details of the complete viral cycle.
Collapse
|
24
|
Han P, Zhang W, Pu M, Li Y, Song L, An X, Li M, Li F, Zhang S, Fan H, Tong Y. Characterization of the Bacteriophage BUCT603 and Therapeutic Potential Evaluation Against Drug-Resistant Stenotrophomonas maltophilia in a Mouse Model. Front Microbiol 2022; 13:906961. [PMID: 35865914 PMCID: PMC9294509 DOI: 10.3389/fmicb.2022.906961] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 06/16/2022] [Indexed: 11/26/2022] Open
Abstract
Stenotrophomonas maltophilia (S. maltophilia) is a common opportunistic pathogen that is resistant to many antibiotics. Bacteriophages are considered to be an effective alternative to antibiotics for the treatment of drug-resistant bacterial infections. In this study, we isolated and characterized a phage, BUCT603, infecting drug-resistant S. maltophilia. Genome sequencing showed BUCT603 genome was composed of 44,912 bp (32.5% G + C content) with 64 predicted open reading frames (ORFs), whereas no virulence-related genes, antibiotic-resistant genes or tRNA were identified. Whole-genome alignments showed BUCT603 shared 1% homology with other phages in the National Center for Biotechnology Information (NCBI) database, and a phylogenetic analysis indicated BUCT603 can be classified as a new member of the Siphoviridae family. Bacteriophage BUCT603 infected 10 of 15 S. maltophilia and used the TonB protein as an adsorption receptor. BUCT603 also inhibited the growth of the host bacterium within 1 h in vitro and effectively increased the survival rate of infected mice in a mouse model. These findings suggest that bacteriophage BUCT603 has potential for development as a candidate treatment of S. maltophilia infection.
Collapse
Affiliation(s)
- Pengjun Han
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Wenjing Zhang
- School of Public Health, Lanzhou University, Lanzhou, China
| | - Mingfang Pu
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Yahao Li
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, China
| | - Lihua Song
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Xiaoping An
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Mengzhe Li
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Fei Li
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
- Clinical Laboratory Center, Taian City Central Hospital, Taian, China
| | - Shuyan Zhang
- Department of Medical Technology Support, Jingdong Medical District of Chinese PLA General Hospital, Beijing, China
- *Correspondence: Shuyan Zhang,
| | - Huahao Fan
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
- Huahao Fan,
| | - Yigang Tong
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, China
- Yigang Tong,
| |
Collapse
|
25
|
Li Z, Wang W, Ma B, Yin J, Hu C, Luo P, Wang Y. Genomic and biological characteristics of a newly isolated lytic bacteriophage PZJ0206 infecting the Enterobacter cloacae. Virus Res 2022; 316:198800. [DOI: 10.1016/j.virusres.2022.198800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 04/26/2022] [Accepted: 05/06/2022] [Indexed: 10/18/2022]
|
26
|
Rathor N, Thakur CK, Das BK, Chaudhry R. An insight into the therapeutic potential of a novel lytic Pseudomonas phage isolated from the river Ganga. J Appl Microbiol 2022; 133:1353-1362. [PMID: 35616159 DOI: 10.1111/jam.15639] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 05/23/2022] [Indexed: 11/28/2022]
Abstract
AIM Bacteriophages are effective natural antimicrobial agents against drug-resistant pathogens. Therefore, identification and detailed characterization of bacteriophages become essential to explore their therapeutic potential. This study aims to isolate and characterize a lytic bacteriophage against drug-resistant Pseudomonas aeruginosa. METHODS AND RESULTS The Pseudomonas phage AIIMS-Pa-A1, isolated from the river Ganga water against drug-resistant P. aeruginosa, showed clear lytic zone on spot assay. The phage revealed icosahedral head (58.20 nm diameter) and small tail (6.83 nm) under transmission electron microscope. The growth kinetics showed adsorption constant of 1.5×10-9 phage particles cell-1 ml-1 minute-1 and latent period of approximately 15 minutes with the burst size of 27 phages per infected cell. The whole genome sequencing depicted a GC-rich genome of 40.97kb having a lysis cassette of holin, endolysin, and Rz protein, with features of the family Autographiviridae. The comparative genome analysis, Ortho-average nucleotide identity value, and phylogenetic analysis indicated the novelty of the phage AIIMS-Pa-A1. CONCLUSIONS The study concludes that the Pseudomonas phage AIIMS-Pa-A1 is a novel member of the Autographiviridae family, truly lytic in nature for drug-resistant P. aeruginosa. SIGNIFICANCE AND IMPACT OF STUDY The Pseudomonas phage AIIMS-Pa-A1 is having promising potential for future therapeutic intervention to treat drug-resistant P. aeruginosa infections.
Collapse
Affiliation(s)
- Nisha Rathor
- Department of Microbiology, All India Institute of Medical Sciences, New Delhi, India
| | - Chandan Kumar Thakur
- Department of Microbiology, All India Institute of Medical Sciences, New Delhi, India
| | - Bimal Kumar Das
- Department of Microbiology, All India Institute of Medical Sciences, New Delhi, India
| | - Rama Chaudhry
- Department of Microbiology, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
27
|
Davis CM, Ruest MK, Cole JH, Dennis JJ. The Isolation and Characterization of a Broad Host Range Bcep22-like Podovirus JC1. Viruses 2022; 14:938. [PMID: 35632679 PMCID: PMC9144972 DOI: 10.3390/v14050938] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 04/25/2022] [Accepted: 04/26/2022] [Indexed: 02/04/2023] Open
Abstract
Bacteriophage JC1 is a Podoviridae phage with a C1 morphotype, isolated on host strain Burkholderia cenocepacia Van1. Phage JC1 is capable of infecting an expansive range of Burkholderia cepacia complex (Bcc) species. The JC1 genome exhibits significant similarity and synteny to Bcep22-like phages and to many Ralstonia phages. The genome of JC1 was determined to be 61,182 bp in length with a 65.4% G + C content and is predicted to encode 76 proteins and 1 tRNA gene. Unlike the other Lessieviruses, JC1 encodes a putative helicase gene in its replication module, and it is in a unique organization not found in previously analyzed phages. The JC1 genome also harbours 3 interesting moron genes, that encode a carbon storage regulator (CsrA), an N-acetyltransferase, and a phosphoadenosine phosphosulfate (PAPS) reductase. JC1 can stably lysogenize its host Van1 and integrates into the 5' end of the gene rimO. This is the first account of stable integration identified for Bcep22-like phages. JC1 has a higher global virulence index at 37 °C than at 30 °C (0.8 and 0.21, respectively); however, infection efficiency and lysogen stability are not affected by a change in temperature, and no observable temperature-sensitive switch between lytic and lysogenic lifestyle appears to exist. Although JC1 can stably lysogenize its host, it possesses some desirable characteristics for use in phage therapy. Phage JC1 has a broad host range and requires the inner core of the bacterial LPS for infection. Bacteria that mutate to evade infection by JC1 may develop a fitness disadvantage as seen in previously characterized LPS mutants lacking inner core.
Collapse
Affiliation(s)
| | | | | | - Jonathan J. Dennis
- Department of Biological Sciences, University of Alberta, CW 405 Biological Sciences Building, Edmonton, AB T6G 2E9, Canada; (C.M.D.); (M.K.R.); (J.H.C.)
| |
Collapse
|
28
|
Functional Dissection of P1 Bacteriophage Holin-like Proteins Reveals the Biological Sense of P1 Lytic System Complexity. Int J Mol Sci 2022; 23:ijms23084231. [PMID: 35457047 PMCID: PMC9025707 DOI: 10.3390/ijms23084231] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 04/01/2022] [Accepted: 04/07/2022] [Indexed: 02/01/2023] Open
Abstract
P1 is a model temperate myovirus. It infects different Enterobacteriaceae and can develop lytically or form lysogens. Only some P1 adaptation strategies to propagate in different hosts are known. An atypical feature of P1 is the number and organization of cell lysis-associated genes. In addition to SAR-endolysin Lyz, holin LydA, and antiholin LydB, P1 encodes other predicted holins, LydC and LydD. LydD is encoded by the same operon as Lyz, LydA and LydB are encoded by an unlinked operon, and LydC is encoded by an operon preceding the lydA gene. By analyzing the phenotypes of P1 mutants in known or predicted holin genes, we show that all the products of these genes cooperate with the P1 SAR-endolysin in cell lysis and that LydD is a pinholin. The contributions of holins/pinholins to cell lysis by P1 appear to vary depending on the host of P1 and the bacterial growth conditions. The pattern of morphological transitions characteristic of SAR-endolysin–pinholin action dominates during lysis by wild-type P1, but in the case of lydC lydD mutant it changes to that characteristic of classical endolysin-pinholin action. We postulate that the complex lytic system facilitates P1 adaptation to various hosts and their growth conditions.
Collapse
|
29
|
Characterisation of Bacteriophage vB_SmaM_Ps15 Infective to Stenotrophomonas maltophilia Clinical Ocular Isolates. Viruses 2022; 14:v14040709. [PMID: 35458438 PMCID: PMC9025141 DOI: 10.3390/v14040709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/18/2022] [Accepted: 03/24/2022] [Indexed: 11/16/2022] Open
Abstract
Recent acknowledgment that multidrug resistant Stenotrophomonas maltophilia strains can cause severe infections has led to increasing global interest in addressing its pathogenicity. While being primarily associated with hospital-acquired respiratory tract infections, this bacterial species is also relevant to ophthalmology, particularly to contact lens-related diseases. In the current study, the capacity of Stenotrophomonas phage vB_SmaM_Ps15 to infect ocular S. maltophilia strains was investigated to explore its future potential as a phage therapeutic. The phage proved to be lytic to a range of clinical isolates collected in Australia from eye swabs, contact lenses and contact lens cases that had previously shown to be resistant to several antibiotics and multipurpose contact lenses disinfectant solutions. Morphological analysis by transmission electron microscopy placed the phage into the Myoviridae family. Its genome size was 161,350 bp with a G + C content of 54.2%, containing 276 putative protein-encoding genes and 24 tRNAs. A detailed comparative genomic analysis positioned vB_SmaM_Ps15 as a new species of the Menderavirus genus, which currently contains six very similar globally distributed members. It was confirmed as a virulent phage, free of known lysogenic and pathogenicity determinants, which supports its potential use for the treatment of S. maltophilia eye infections.
Collapse
|
30
|
Xu H, Bao X, Hong W, Wang A, Wang K, Dong H, Hou J, Govinden R, Deng B, Chenia HY. Biological Characterization and Evolution of Bacteriophage T7-△holin During the Serial Passage Process. Front Microbiol 2021; 12:705310. [PMID: 34408735 PMCID: PMC8365609 DOI: 10.3389/fmicb.2021.705310] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 06/28/2021] [Indexed: 11/21/2022] Open
Abstract
Bacteriophage T7 gene 17.5 coding for the only known holin is one of the components of its lysis system, but the holin activity in T7 is more complex than a single gene, and evidence points to the existence of additional T7 genes with holin activity. In this study, a T7 phage with a gene 17.5 deletion (T7-△holin) was rescued and its biological characteristics and effect on cell lysis were determined. Furthermore, the genomic evolution of mutant phage T7-△holin during serial passage was assessed by whole-genome sequencing analysis. It was observed that deletion of gene 17.5 from phage T7 delays lysis time and enlarges the phage burst size; however, this biological characteristic recovered to normal lysis levels during serial passage. Scanning electron microscopy showed that the two opposite ends of E. coli BL21 cells swell post-T7-△holin infection rather than drilling holes on cell membrane when compared with T7 wild-type infection. No visible progeny phage particle accumulation was observed inside the E. coli BL21 cells by transmission electron microscopy. Following serial passage of T7-△holin from the 1st to 20th generations, the mRNA levels of gene 3.5 and gene 19.5 were upregulated and several mutation sites were discovered, especially two missense mutations in gene 19.5, which indicate a potential contribution to the evolution of the T7-△holin. Although the burst size of T7-△holin increased, high titer cultivation of T7-△holin was not achieved by optimizing the culture process. Accordingly, these results suggest that gene 19.5 is a potential lysis-related component that needs to be studied further and that the T7-△holin strain with its gene 17.5 deletion is not adequate to establish the high-titer phage cultivation process.
Collapse
Affiliation(s)
- Hai Xu
- Jiangsu Key Laboratory for High-Tech Research and Development of Veterinary Biopharmaceuticals, Jiangsu Agri-Animal Husbandry Vocational College, Taizhou, China.,Institute of Veterinary Immunology & Engineering, Jiangsu Academy of Agricultural Science, Nanjing, China.,School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal, Durban, South Africa
| | - Xi Bao
- Institute of Veterinary Immunology & Engineering, Jiangsu Academy of Agricultural Science, Nanjing, China
| | - Weiming Hong
- Jiangsu Key Laboratory for High-Tech Research and Development of Veterinary Biopharmaceuticals, Jiangsu Agri-Animal Husbandry Vocational College, Taizhou, China
| | - Anping Wang
- Jiangsu Key Laboratory for High-Tech Research and Development of Veterinary Biopharmaceuticals, Jiangsu Agri-Animal Husbandry Vocational College, Taizhou, China
| | - Kaimin Wang
- Animal, Plant and Food Test Center of Nanjing Customs, Nanjing, China
| | - Hongyan Dong
- Jiangsu Key Laboratory for High-Tech Research and Development of Veterinary Biopharmaceuticals, Jiangsu Agri-Animal Husbandry Vocational College, Taizhou, China
| | - Jibo Hou
- Institute of Veterinary Immunology & Engineering, Jiangsu Academy of Agricultural Science, Nanjing, China
| | - Roshini Govinden
- School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal, Durban, South Africa
| | - Bihua Deng
- Institute of Veterinary Immunology & Engineering, Jiangsu Academy of Agricultural Science, Nanjing, China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Hafizah Y Chenia
- School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
31
|
Zhang Y, Liao YT, Salvador A, Lavenburg VM, Wu VCH. Characterization of Two New Shiga Toxin-Producing Escherichia coli O103-Infecting Phages Isolated from an Organic Farm. Microorganisms 2021; 9:microorganisms9071527. [PMID: 34361962 PMCID: PMC8303462 DOI: 10.3390/microorganisms9071527] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/12/2021] [Accepted: 07/12/2021] [Indexed: 01/21/2023] Open
Abstract
Shiga toxin-producing Escherichia coli (STEC) O103 strains have been recently attributed to various foodborne outbreaks in the United States. Due to the emergence of antibiotic-resistant strains, lytic phages are considered as alternative biocontrol agents. This study was to biologically and genomically characterize two STEC O103-infecting bacteriophages, vB_EcoP-Ro103C3lw (or Ro103C3lw) and vB_EcoM-Pr103Blw (or Pr103Blw), isolated from an organic farm. Based on genomic and morphological analyses, phages Ro103C3lw and Pr103Blw belonged to Autographiviridae and Myoviridae families, respectively. Ro103C3lw contained a 39,389-bp double-stranded DNA and encoded a unique tail fiber with depolymerase activity, resulting in huge plaques. Pr103Blw had an 88,421-bp double-stranded DNA with 26 predicted tRNAs associated with the enhancement of the phage fitness. Within each phage genome, no virulence, antibiotic-resistant, and lysogenic genes were detected. Additionally, Ro103C3lw had a short latent period (2 min) and a narrow host range, infecting only STEC O103 strains. By contrast, Pr103Blw had a large burst size (152 PFU/CFU) and a broad host range against STEC O103, O26, O111, O157:H7, and Salmonella Javiana strains. Furthermore, both phages showed strong antimicrobial activities against STEC O103:H2 strains. The findings provide valuable insight into these two phages’ genomic features with the potential antimicrobial activities against STEC O103.
Collapse
|
32
|
The Mycobacteriophage Ms6 LysB N-Terminus Displays Peptidoglycan Binding Affinity. Viruses 2021; 13:v13071377. [PMID: 34372584 PMCID: PMC8309991 DOI: 10.3390/v13071377] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/01/2021] [Accepted: 07/12/2021] [Indexed: 11/17/2022] Open
Abstract
Double-stranded DNA bacteriophages end their lytic cycle by disrupting the host cell envelope, which allows the release of the virion progeny. Each phage must synthesize lysis proteins that target each cell barrier to phage release. In addition to holins, which permeabilize the cytoplasmic membrane, and endolysins, which disrupt the peptidoglycan (PG), mycobacteriophages synthesize a specific lysis protein, LysB, capable of detaching the outer membrane from the complex cell wall of mycobacteria. The family of LysB proteins is highly diverse, with many members presenting an extended N-terminus. The N-terminal region of mycobacteriophage Ms6 LysB shows structural similarity to the PG-binding domain (PGBD) of the φKZ endolysin. A fusion of this region with enhanced green fluorescent protein (Ms6LysBPGBD-EGFP) was shown to bind to Mycobacterium smegmatis, Mycobacterium vaccae, Mycobacterium bovis BGC and Mycobacterium tuberculosis H37Ra cells pretreated with SDS or Ms6 LysB. In pulldown assays, we demonstrate that Ms6 LysB and Ms6LysBPGBD-EGFP bind to purified peptidoglycan of M. smegmatis, Escherichia coli, Pseudomonas aeruginosa and Bacillus subtilis, demonstrating affinity to PG of the A1γ chemotype. An infection assay with an Ms6 mutant producing a truncated version of LysB lacking the first 90 amino acids resulted in an abrupt lysis. These results clearly demonstrate that the N-terminus of Ms6 LysB binds to the PG.
Collapse
|
33
|
Šimoliūnienė M, Žukauskienė E, Truncaitė L, Cui L, Hutinet G, Kazlauskas D, Kaupinis A, Skapas M, de Crécy-Lagard V, Dedon PC, Valius M, Meškys R, Šimoliūnas E. Pantoea Bacteriophage vB_PagS_MED16-A Siphovirus Containing a 2'-Deoxy-7-amido-7-deazaguanosine-Modified DNA. Int J Mol Sci 2021; 22:7333. [PMID: 34298953 PMCID: PMC8306585 DOI: 10.3390/ijms22147333] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 06/30/2021] [Accepted: 07/05/2021] [Indexed: 11/16/2022] Open
Abstract
A novel siphovirus, vB_PagS_MED16 (MED16) was isolated in Lithuania using Pantoea agglomerans strain BSL for the phage propagation. The double-stranded DNA genome of MED16 (46,103 bp) contains 73 predicted open reading frames (ORFs) encoding proteins, but no tRNA. Our comparative sequence analysis revealed that 26 of these ORFs code for unique proteins that have no reliable identity when compared to database entries. Based on phylogenetic analysis, MED16 represents a new genus with siphovirus morphology. In total, 35 MED16 ORFs were given a putative functional annotation, including those coding for the proteins responsible for virion morphogenesis, phage-host interactions, and DNA metabolism. In addition, a gene encoding a preQ0 DNA deoxyribosyltransferase (DpdA) is present in the genome of MED16 and the LC-MS/MS analysis indicates 2'-deoxy-7-amido-7-deazaguanosine (dADG)-modified phage DNA, which, to our knowledge, has never been experimentally validated in genomes of Pantoea phages. Thus, the data presented in this study provide new information on Pantoea-infecting viruses and offer novel insights into the diversity of DNA modifications in bacteriophages.
Collapse
Affiliation(s)
- Monika Šimoliūnienė
- Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Life Sciences Centre, Vilnius University, Saulėtekio av. 7, LT-10257 Vilnius, Lithuania; (M.Š.); (E.Ž.); (L.T.); (R.M.)
| | - Emilija Žukauskienė
- Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Life Sciences Centre, Vilnius University, Saulėtekio av. 7, LT-10257 Vilnius, Lithuania; (M.Š.); (E.Ž.); (L.T.); (R.M.)
| | - Lidija Truncaitė
- Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Life Sciences Centre, Vilnius University, Saulėtekio av. 7, LT-10257 Vilnius, Lithuania; (M.Š.); (E.Ž.); (L.T.); (R.M.)
| | - Liang Cui
- Singapore-MIT Alliance for Research and Technology, Antimicrobial Resistance Interdisciplinary Research Group, Campus for Research Excellence and Technological Enterprise, Singapore 138602, Singapore; (L.C.); (P.C.D.)
| | - Geoffrey Hutinet
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611, USA; (G.H.); (V.d.C.-L.)
| | - Darius Kazlauskas
- Department of Bioinformatics, Institute of Biotechnology, Life Sciences Centre, Vilnius University, Saulėtekio av. 7, LT-10257 Vilnius, Lithuania;
| | - Algirdas Kaupinis
- Proteomics Centre, Institute of Biochemistry, Life Sciences Centre, Vilnius University, Saulėtekio av. 7, LT-10257 Vilnius, Lithuania; (A.K.); (M.V.)
| | - Martynas Skapas
- Department of Characterisation of Materials Structure, Center for Physical Sciences and Technology, Saulėtekio av. 3, LT-10257 Vilnius, Lithuania;
| | - Valérie de Crécy-Lagard
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611, USA; (G.H.); (V.d.C.-L.)
- Genetics Institute, University of Florida, Gainesville, FL 32610, USA
| | - Peter C. Dedon
- Singapore-MIT Alliance for Research and Technology, Antimicrobial Resistance Interdisciplinary Research Group, Campus for Research Excellence and Technological Enterprise, Singapore 138602, Singapore; (L.C.); (P.C.D.)
- Department of Biological Engineering and Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Mindaugas Valius
- Proteomics Centre, Institute of Biochemistry, Life Sciences Centre, Vilnius University, Saulėtekio av. 7, LT-10257 Vilnius, Lithuania; (A.K.); (M.V.)
| | - Rolandas Meškys
- Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Life Sciences Centre, Vilnius University, Saulėtekio av. 7, LT-10257 Vilnius, Lithuania; (M.Š.); (E.Ž.); (L.T.); (R.M.)
| | - Eugenijus Šimoliūnas
- Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Life Sciences Centre, Vilnius University, Saulėtekio av. 7, LT-10257 Vilnius, Lithuania; (M.Š.); (E.Ž.); (L.T.); (R.M.)
| |
Collapse
|
34
|
Sui B, Qi X, Wang X, Ren H, Liu W, Zhang C. Characterization of a Novel Bacteriophage swi2 Harboring Two Lysins Can Naturally Lyse Escherichia coli. Front Microbiol 2021; 12:670799. [PMID: 34113331 PMCID: PMC8185280 DOI: 10.3389/fmicb.2021.670799] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 04/22/2021] [Indexed: 11/21/2022] Open
Abstract
The novel virulent Siphoviridae bacteriophage swi2 was isolated from a pig farm, and its biological characteristics, genome architecture, and infection-related properties were characterized. Phage swi2 has a high titer of 1.01 × 1012 PFU/mL with good tolerance to UV rays and remains stable in the pH range of 6–10 and at temperatures less than 50°C. One-step growth analysis revealed that phage swi2 had a 25 min latent period with a large burst size (1,000 PFU/cell). The biological characteristics indicated that swi2 had good host infectivity and effective lytic activities. The genome of phage swi2 is composed of 47,611 bp with a G + C content of 46.50%. Eighty-nine orfs were predicted, and only 18 of them have known functions. No virulence genes or drug resistance genes were found in the genome. Genome sequence comparison of phage swi2 showed that there were a total of 10 homologous phages in the database with low similarity (less than 92.51% nucleotide identity and 66% query coverage). The predicted host lysis-related genes of phage swi2 consist of one holin, two endolysins, and Rz/Rz1 equivalents. Antibacterial activity assays showed that both endolysins could naturally reduce the host Escherichia coli 51 titers by -1 log unit both in vitro and in vivo, EDTA showed no obvious synergistic action, and holin had no lytic effects on the host cell. These results provide necessary information for the development of antibiotic alternatives for the treatment of multidrug-resistant Escherichia coli infection.
Collapse
Affiliation(s)
- Bingrui Sui
- College of Veterinary Medicine, Qingdao Agricultural University, Shandong, China
| | - Xin Qi
- College of Veterinary Medicine, Qingdao Agricultural University, Shandong, China
| | - Xiaoxue Wang
- College of Veterinary Medicine, Qingdao Agricultural University, Shandong, China
| | - Huiying Ren
- College of Veterinary Medicine, Qingdao Agricultural University, Shandong, China
| | - Wenhua Liu
- College of Veterinary Medicine, Qingdao Agricultural University, Shandong, China
| | - Can Zhang
- College of Veterinary Medicine, Qingdao Agricultural University, Shandong, China
| |
Collapse
|
35
|
Pinto G, Sampaio M, Dias O, Almeida C, Azeredo J, Oliveira H. Insights into the genome architecture and evolution of Shiga toxin encoding bacteriophages of Escherichia coli. BMC Genomics 2021; 22:366. [PMID: 34011288 PMCID: PMC8136144 DOI: 10.1186/s12864-021-07685-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 05/07/2021] [Indexed: 11/18/2022] Open
Abstract
Background A total of 179 Shiga toxin-producing Escherichia coli (STEC) complete genomes were analyzed in terms of serotypes, prophage coding regions, and stx gene variants and their distribution. We further examined the genetic diversity of Stx-converting phage genomes (Stx phages), focusing on the lysis-lysogeny decision and lytic cassettes. Results We show that most STEC isolates belong to non-O157 serotypes (73 %), regardless the sources and geographical regions. While the majority of STEC genomes contain a single stx gene (61 %), strains containing two (35 %), three (3 %) and four (1 %) stx genes were also found, being stx2 the most prevalent gene variant. Their location is exclusively found in intact prophage regions, indicating that they are phage-borne. We further demonstrate that Stx phages can be grouped into four clusters (A, B, C and D), three subclusters (A1, A2 and A3) and one singleton, based on their shared gene content. This cluster distribution is in good agreement with their predicted virion morphologies. Stx phage genomes are highly diverse with a vast number of 1,838 gene phamilies (phams) of related sequences (of which 677 are orphams i.e. unique genes) and, although having high mosaicism, they are generally organized into three major transcripts. While the mechanisms that guide lysis–lysogeny decision are complex, there is a strong selective pressure to maintain the stx genes location close to the lytic cassette composed of predicted SAR-endolysin and pin-holin lytic proteins. The evolution of STEC Stx phages seems to be strongly related to acquiring genetic material, probably from horizontal gene transfer events. Conclusions This work provides novel insights on the genetic structure of Stx phages, showing a high genetic diversity throughout the genomes, where the various lysis-lysogeny regulatory systems are in contrast with an uncommon, but conserved, lytic system always adjacent to stx genes. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07685-0.
Collapse
Affiliation(s)
- Graça Pinto
- CEB - Centre of Biological Engineering, University of Minho, 4710-057, Braga, Portugal.,INIAV, IP-National Institute for Agrarian and Veterinary Research, Rua dos Lagidos, Lugar da Madalena, Vairão, Vila do Conde, Portugal
| | - Marta Sampaio
- CEB - Centre of Biological Engineering, University of Minho, 4710-057, Braga, Portugal
| | - Oscar Dias
- CEB - Centre of Biological Engineering, University of Minho, 4710-057, Braga, Portugal
| | - Carina Almeida
- INIAV, IP-National Institute for Agrarian and Veterinary Research, Rua dos Lagidos, Lugar da Madalena, Vairão, Vila do Conde, Portugal
| | - Joana Azeredo
- CEB - Centre of Biological Engineering, University of Minho, 4710-057, Braga, Portugal.
| | - Hugo Oliveira
- CEB - Centre of Biological Engineering, University of Minho, 4710-057, Braga, Portugal.
| |
Collapse
|
36
|
Mandal PK, Ballerin G, Nolan LM, Petty NK, Whitchurch CB. Bacteriophage infection of Escherichia coli leads to the formation of membrane vesicles via both explosive cell lysis and membrane blebbing. MICROBIOLOGY (READING, ENGLAND) 2021; 167:001021. [PMID: 33871329 PMCID: PMC8289217 DOI: 10.1099/mic.0.001021] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 04/01/2021] [Indexed: 12/27/2022]
Abstract
Membrane vesicles (MVs) are membrane-bound spherical nanostructures that prevail in all three domains of life. In Gram-negative bacteria, MVs are thought to be produced through blebbing of the outer membrane and are often referred to as outer membrane vesicles (OMVs). We have recently described another mechanism of MV formation in Pseudomonas aeruginosa that involves explosive cell-lysis events, which shatters cellular membranes into fragments that rapidly anneal into MVs. Interestingly, MVs are often observed within preparations of lytic bacteriophage, however the source of these MVs and their association with bacteriophage infection has not been explored. In this study we aimed to determine if MV formation is associated with lytic bacteriophage infection. Live super-resolution microscopy demonstrated that explosive cell lysis of Escherichia coli cells infected with either bacteriophage T4 or T7, resulted in the formation of MVs derived from shattered membrane fragments. Infection by either bacteriophage was also associated with the formation of membrane blebs on intact bacteria. TEM revealed multiple classes of MVs within phage lysates, consistent with multiple mechanisms of MV formation. These findings suggest that bacteriophage infection may be a major contributor to the abundance of bacterial MVs in nature.
Collapse
Affiliation(s)
- Pappu K. Mandal
- The ithree institute, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Giulia Ballerin
- The ithree institute, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Laura M. Nolan
- National Heart and Lung Institute, Imperial College London, London, SW3 6LR, UK
| | - Nicola K. Petty
- The ithree institute, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Cynthia B. Whitchurch
- The ithree institute, University of Technology Sydney, Ultimo, NSW, 2007, Australia
- Quadram Institute Bioscience, Norwich Research Park, Norwich, NR4 7UQ, UK
- School of Biological Sciences, University of East Anglia, Norwich, NR4 7TJ, UK
| |
Collapse
|
37
|
Grabowski Ł, Łepek K, Stasiłojć M, Kosznik-Kwaśnicka K, Zdrojewska K, Maciąg-Dorszyńska M, Węgrzyn G, Węgrzyn A. Bacteriophage-encoded enzymes destroying bacterial cell membranes and walls, and their potential use as antimicrobial agents. Microbiol Res 2021; 248:126746. [PMID: 33773329 DOI: 10.1016/j.micres.2021.126746] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 03/06/2021] [Accepted: 03/08/2021] [Indexed: 01/22/2023]
Abstract
Appearance of pathogenic bacteria resistant to most, if not all, known antibiotics is currently one of the most significant medical problems. Therefore, development of novel antibacterial therapies is crucial for efficient treatment of bacterial infections in the near future. One possible option is to employ enzymes, encoded by bacteriophages, which cause destruction of bacterial cell membranes and walls. Bacteriophages use such enzymes to destroy bacterial host cells at the final stage of their lytic development, in order to ensure effective liberation of progeny virions. Nevertheless, to use such bacteriophage-encoded proteins in medicine and/or biotechnology, it is crucial to understand details of their biological functions and biochemical properties. Therefore, in this review article, we will present and discuss our current knowledge on the processes of bacteriophage-mediated bacterial cell lysis, with special emphasis on enzymes involved in them. Regulation of timing of the lysis is also discussed. Finally, possibilities of the practical use of these enzymes as antibacterial agents will be underlined and perspectives of this aspect will be presented.
Collapse
Affiliation(s)
- Łukasz Grabowski
- Laboratory of Phage Therapy, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Kładki 24, 80-822, Gdansk, Poland.
| | - Krzysztof Łepek
- Department of Molecular Biology, University of Gdansk, Wita Stwosza 59, 80-308, Gdansk, Poland.
| | - Małgorzata Stasiłojć
- Department of Molecular Biology, University of Gdansk, Wita Stwosza 59, 80-308, Gdansk, Poland.
| | - Katarzyna Kosznik-Kwaśnicka
- Laboratory of Phage Therapy, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Kładki 24, 80-822, Gdansk, Poland.
| | - Karolina Zdrojewska
- Department of Molecular Biology, University of Gdansk, Wita Stwosza 59, 80-308, Gdansk, Poland.
| | - Monika Maciąg-Dorszyńska
- Laboratory of Phage Therapy, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Kładki 24, 80-822, Gdansk, Poland.
| | - Grzegorz Węgrzyn
- Department of Molecular Biology, University of Gdansk, Wita Stwosza 59, 80-308, Gdansk, Poland.
| | - Alicja Węgrzyn
- Laboratory of Phage Therapy, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Kładki 24, 80-822, Gdansk, Poland.
| |
Collapse
|
38
|
Abstract
Most phages of Gram-negative hosts encode spanins for disruption of the outer membrane, the last step in host lysis. However, bioinformatic analysis indicates that ∼15% of these phages lack a spanin gene, suggesting they have an alternate way of disrupting the OM. Here, we show that the T7-like coliphage phiKT causes the explosive cell lysis associated with spanin activity despite not encoding spanins. A putative lysis cassette cloned from the phiKT late gene region includes the hypothetical novel gene 28 located between the holin and endolysin genes and supports inducible lysis in E. coli K-12. Moreover, induction of an isogenic construct lacking gene 28 resulted in divalent cation-stabilized spherical cells rather than lysis, implicating gp28 in OM disruption. Additionally, gp28 was shown to complement the lysis defect of a spanin-null λ lysogen. Gene 28 encodes a 56-amino acid cationic protein with predicted amphipathic helical structure and is membrane-associated after lysis. Urea and KCl washes did not release gp28 from the particulate, suggesting a strong hydrophobic membrane interaction. Fluorescence microscopy supports membrane localization of the gp28 protein prior to lysis. Gp28 is similar in size, charge, predicted fold, and membrane association to the human cathelicidin antimicrobial peptide LL-37. Synthesized gp28 behaved similar to LL-37 in standard assays mixing peptide and cells to measure bactericidal and inhibitory effects. Taken together, these results indicate that phiKT gp28 is a phage-encoded cationic antimicrobial peptide that disrupts bacterial outer membranes during host lysis and thus establishes a new class of phage lysis proteins, the disruptins. Significance We provide evidence that phiKT produces an antimicrobial peptide for outer membrane disruption during lysis. This protein, designated as a disruptin, is a new paradigm for phage lysis and has no similarities to other known lysis genes. Although many mechanisms have been proposed for the function of antimicrobial peptides, there is no consensus on the molecular basis of membrane disruption. Additionally, there is no established genetic system to support such studies. Therefore, the phiKT disruptin may represent the first genetically tractable antimicrobial peptide, facilitating mechanistic analyses.
Collapse
|
39
|
Characterization and Genome Analysis of a Novel Mu-like Phage VW-6B Isolated from the Napahai Plateau Wetland of China. Curr Microbiol 2020; 78:150-158. [PMID: 33150466 DOI: 10.1007/s00284-020-02277-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 10/27/2020] [Indexed: 10/23/2022]
Abstract
Although bacteriophages are more numerous and have smaller genomes than their bacterial hosts, relatively few have their genomes sequenced. Here, we isolated the Pseudomonas fluorescens bacteriophage from Napahai plateau wetland and performed de novo genome sequencing. Based on the previous biological characteristics and bioinformatics analysis, it was determined that VW-6B was a linear double-stranded DNA (dsDNA) phage with 35,306 bp, with 56.76% G+C content and 197 bp tandem repeats. The VW-6B genome contained 46 open-reading frames (ORFs), and no tRNA genes were found. Based on phage genome structure, sequence comparison, and collinear analysis, VW-6B should be classified into the family Siphoviridae and be considered as a member of a new species in the Mu-like phage. The newly isolated bacteriophage can specifically infect P. fluorescens, which further enriches the diversity of known bacteriophages and provides a basis for the subsequent research and application of bacteriophages.
Collapse
|
40
|
Two Distinct Modes of Lysis Regulation in Campylobacter Fletchervirus and Firehammervirus Phages. Viruses 2020; 12:v12111247. [PMID: 33142851 PMCID: PMC7692668 DOI: 10.3390/v12111247] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 10/22/2020] [Accepted: 10/29/2020] [Indexed: 12/31/2022] Open
Abstract
Campylobacter phages are divided into two genera; Fletchervirus and Firehammervirus, showing only limited intergenus homology. Here, we aim to identify the lytic genes of both genera using two representative phages (F352 and F379) from our collection. We performed a detailed in silico analysis searching for conserved protein domains and found that the predicted lytic genes are not organized into lysis cassettes but are conserved within each genus. To verify the function of selected lytic genes, the proteins were expressed in E. coli, followed by lytic assays. Our results show that Fletchervirus phages encode a typical signal peptide (SP) endolysin dependent on the Sec-pathway for translocation and a holin for activation. In contrast, Firehammervirus phages encode a novel endolysin that does not belong to currently described endolysin groups. This endolysin also uses the Sec-pathway for translocation but induces lysis of E. coli after overexpression. Interestingly, co-expression of this endolysin with an overlapping gene delayed and limited cell lysis, suggesting that this gene functions as a lysis inhibitor. These results indicate that Firehammervirus phages regulate lysis timing by a yet undescribed mechanism. In conclusion, we found that the two Campylobacter phage genera control lysis by two distinct mechanisms.
Collapse
|
41
|
Characterization of vB_StuS_MMDA13, a Newly Discovered Bacteriophage Infecting the Agar-Degrading Species Sphingomonas turrisvirgatae. Viruses 2020; 12:v12080894. [PMID: 32824138 PMCID: PMC7472734 DOI: 10.3390/v12080894] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 08/13/2020] [Indexed: 01/21/2023] Open
Abstract
Members of Sphingomonas genus have gained a notable interest for their use in a wide range of biotechnological applications, ranging from bioremediation to the production of valuable compounds of industrial interest. To date, knowledge on phages targeting Sphingomonas spp. are still scarce. Here, we describe and characterize a lytic bacteriophage, named vB_StuS_MMDA13, able to infect the Sphingomonas turrisvirgatae MCT13 type strain. Physiological characterization demonstrated that vB_StuS_MMDA13 has a narrow host range, a long latency period, a low burst size, and it is overall stable to both temperature and pH variations. The phage has a double-stranded DNA genome of 63,743 bp, with 89 open reading frames arranged in two opposite arms separated by a 1186 bp non-coding region and shows a very low global similarity to any other known phages. Interestingly, vB_StuS_MMDA13 is endowed with an original nucleotide modification biosynthetic gene cluster, which greatly differs from those of its most closely related phages of the Nipunavirus genus. vB_StuS_MMDA13 is the first characterized lytic bacteriophage of the Siphoviridae family infecting members of the Sphingomonas genus.
Collapse
|
42
|
Buttimer C, Lynch C, Hendrix H, Neve H, Noben JP, Lavigne R, Coffey A. Isolation and Characterization of Pectobacterium Phage vB_PatM_CB7: New Insights into the Genus Certrevirus. Antibiotics (Basel) 2020; 9:E352. [PMID: 32575906 PMCID: PMC7344957 DOI: 10.3390/antibiotics9060352] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 06/18/2020] [Accepted: 06/19/2020] [Indexed: 12/20/2022] Open
Abstract
To date, Certrevirus is one of two genera of bacteriophage (phage), with phages infecting Pectobacterium atrosepticum, an economically important phytopathogen that causes potato blackleg and soft rot disease. This study provides a detailed description of Pectobacterium phage CB7 (vB_PatM_CB7), which specifically infects P. atrosepticum. Host range, morphology, latent period, burst size and stability at different conditions of temperature and pH were examined. Analysis of its genome (142.8 kbp) shows that the phage forms a new species of Certrevirus, sharing sequence similarity with other members, highlighting conservation within the genus. Conserved elements include a putative early promoter like that of the Escherichia coli sigma70 promoter, which was found to be shared with other genus members. A number of dissimilarities were observed, relating to DNA methylation and nucleotide metabolism. Some members do not have homologues of a cytosine methylase and anaerobic nucleotide reductase subunits NrdD and NrdG, respectively. Furthermore, the genome of CB7 contains one of the largest numbers of homing endonucleases described in a single phage genome in the literature to date, with a total of 23 belonging to the HNH and LAGLIDADG families. Analysis by RT-PCR of the HNH homing endonuclease residing within introns of genes for the large terminase, DNA polymerase, ribonucleotide reductase subunits NrdA and NrdB show that they are splicing competent. Electrospray ionization-tandem mass spectrometry (ESI-MS/MS) was also performed on the virion of CB7, allowing the identification of 26 structural proteins-20 of which were found to be shared with the type phages of the genera of Vequintavirus and Seunavirus. The results of this study provide greater insights into the phages of the Certrevirus genus as well as the subfamily Vequintavirinae.
Collapse
Affiliation(s)
- Colin Buttimer
- Department of Biological Sciences, Cork Institute of Technology, T12 P928 Cork, Ireland; (C.B.); (C.L.)
- APC Microbiome Institute, University College, T12 YT20 Cork, Ireland
| | - Caoimhe Lynch
- Department of Biological Sciences, Cork Institute of Technology, T12 P928 Cork, Ireland; (C.B.); (C.L.)
| | - Hanne Hendrix
- Laboratory of Gene Technology, KU Leuven, 3001 Leuven, Belgium; (H.H.); (R.L.)
| | - Horst Neve
- Department of Microbiology and Biotechnology, Max Rubner-Institut, 24103 Kiel, Germany;
| | - Jean-Paul Noben
- Biomedical Research Institute and Transnational University Limburg, Hasselt University, 3590 Hasselt, Belgium;
| | - Rob Lavigne
- Laboratory of Gene Technology, KU Leuven, 3001 Leuven, Belgium; (H.H.); (R.L.)
| | - Aidan Coffey
- Department of Biological Sciences, Cork Institute of Technology, T12 P928 Cork, Ireland; (C.B.); (C.L.)
- APC Microbiome Institute, University College, T12 YT20 Cork, Ireland
| |
Collapse
|
43
|
Won G, Senevirathne A, Lee JH. Salmonella Enteritidis ghost vaccine carrying the hemagglutinin globular head (HA1) domain from H1N1 virus protects against salmonellosis and influenza in chickens. Vaccine 2020; 38:4387-4394. [PMID: 32402750 DOI: 10.1016/j.vaccine.2020.04.077] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 04/26/2020] [Accepted: 04/29/2020] [Indexed: 01/29/2023]
Abstract
This study evaluated the attenuated Salmonella Enteritidis (SE) ghost strain JOL2114 (Δlon ΔcpxR Δasd), which displays on the bacterial surface the H1N1 hemagglutinin globular head portion (HA1; amino acid residues 63-286) on the bacterial surface for protective efficacy against Salmonella and H1N1 challenge in the chicken model, as the birds are the predominant reservoirs for both diseases. The ghost system enhanced the lysis process by converging two lysis processes found in bacteriophages: bacteriophage PhiX174 lysis gene E and holin-endolysin genes found in bacteriophage λ, complemented with accessory lysis-related proteins Rz/Rz1. The present lysis machinery resulted in complete lysis of host-attenuated SE strains in about 24 hrs of incubation under a non-permissible temperature of 42 °C in the absence of L-arabinose, an antisense inducer that blocks lysis gene expression during the growth phase. SE ghost JOL2114 surface display of HA1 was confirmed by Western blot analysis resulting in an immune-reactive band of 31 kDa in size. Chicken immunization via intramuscular and oral routes yielded both SE and HA1 antigen-specific immune responses. Protective humoral and cell-mediated immune responses were effectively elicited against both Salmonella and influenza challenge. This efficient strategy of ghost generation employs a dual system of phage lysis for biological generation of SE ghosts that preserves the surface antigenic architecture, offering a rapid and effective way to generate vaccines that could be deployed in urgent circumstances to protect against both Salmonella and influenza infection.
Collapse
Affiliation(s)
- Gayeon Won
- College of Veterinary Medicine, Jeonbuk National University, Iksan Campus, Gobong-ro 79, Iksan 54596, Republic of Korea
| | - Amal Senevirathne
- College of Veterinary Medicine, Jeonbuk National University, Iksan Campus, Gobong-ro 79, Iksan 54596, Republic of Korea
| | - John Hwa Lee
- College of Veterinary Medicine, Jeonbuk National University, Iksan Campus, Gobong-ro 79, Iksan 54596, Republic of Korea.
| |
Collapse
|
44
|
Ji X, Cui Z, Xiang Y, Zhang Q, Qin K, Tang B, Wei Y. Complete Genome Sequence Analysis of the Cold-active Siphoviridae Bacteriophage from Pseudomonas fluorescens. Microbiology (Reading) 2020. [DOI: 10.1134/s0026261720030066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
45
|
McNair K, Zhou C, Dinsdale EA, Souza B, Edwards RA. PHANOTATE: a novel approach to gene identification in phage genomes. Bioinformatics 2019; 35:4537-4542. [PMID: 31329826 PMCID: PMC6853651 DOI: 10.1093/bioinformatics/btz265] [Citation(s) in RCA: 159] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 03/07/2019] [Accepted: 04/15/2019] [Indexed: 12/24/2022] Open
Abstract
MOTIVATION Currently there are no tools specifically designed for annotating genes in phages. Several tools are available that have been adapted to run on phage genomes, but due to their underlying design, they are unable to capture the full complexity of phage genomes. Phages have adapted their genomes to be extremely compact, having adjacent genes that overlap and genes completely inside of other longer genes. This non-delineated genome structure makes it difficult for gene prediction using the currently available gene annotators. Here we present PHANOTATE, a novel method for gene calling specifically designed for phage genomes. Although the compact nature of genes in phages is a problem for current gene annotators, we exploit this property by treating a phage genome as a network of paths: where open reading frames are favorable, and overlaps and gaps are less favorable, but still possible. We represent this network of connections as a weighted graph, and use dynamic programing to find the optimal path. RESULTS We compare PHANOTATE to other gene callers by annotating a set of 2133 complete phage genomes from GenBank, using PHANOTATE and the three most popular gene callers. We found that the four programs agree on 82% of the total predicted genes, with PHANOTATE predicting more genes than the other three. We searched for these extra genes in both GenBank's non-redundant protein database and all of the metagenomes in the sequence read archive, and found that they are present at levels that suggest that these are functional protein-coding genes. AVAILABILITY AND IMPLEMENTATION https://github.com/deprekate/PHANOTATE. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Katelyn McNair
- Computational Sciences Research Center, San Diego State University, San Diego, CA 92182, USA
| | - Carol Zhou
- Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
| | | | - Brian Souza
- Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
| | - Robert A Edwards
- Computational Sciences Research Center, San Diego State University, San Diego, CA 92182, USA
- Department of Biology, San Diego State University, San Diego, CA 92182, USA
- Viral Information Institute, San Diego State University, San Diego, CA 92182, USA
| |
Collapse
|
46
|
Valero‐Rello A. Diversity, specificity and molecular evolution of the lytic arsenal of
Pseudomonas
phages:
in silico
perspective. Environ Microbiol 2019; 21:4136-4150. [DOI: 10.1111/1462-2920.14767] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 07/30/2019] [Accepted: 07/31/2019] [Indexed: 01/21/2023]
|
47
|
Complete Genome Sequence of Escherichia coli Myophage Minorna. Microbiol Resour Announc 2019; 8:8/23/e00533-19. [PMID: 31171610 PMCID: PMC6554615 DOI: 10.1128/mra.00533-19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The Gram-negative bacterium Escherichia coli causes many diseases, and antibiotic resistance has become a problem for their treatment. Bacteriophages may present a viable treatment alternative. The Gram-negative bacterium Escherichia coli causes many diseases, and antibiotic resistance has become a problem for their treatment. Bacteriophages may present a viable treatment alternative. Here, the complete genome sequence of E. coli-infecting myophage Minorna is presented. Proteins needed for replication, morphogenesis, and lysis were identified in the Minorna coding sequence.
Collapse
|
48
|
Liao YT, Salvador A, Harden LA, Liu F, Lavenburg VM, Li RW, Wu VCH. Characterization of a Lytic Bacteriophage as an Antimicrobial Agent for Biocontrol of Shiga Toxin-Producing Escherichia coli O145 Strains. Antibiotics (Basel) 2019; 8:E74. [PMID: 31195679 PMCID: PMC6627115 DOI: 10.3390/antibiotics8020074] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Revised: 05/27/2019] [Accepted: 05/31/2019] [Indexed: 02/07/2023] Open
Abstract
Shiga toxin-producing Escherichia coli (STEC) O145 is one of the most prevalent non-O157 serogroups associated with foodborne outbreaks. Lytic phages are a potential alternative to antibiotics in combatting bacterial pathogens. In this study, we characterized a Siphoviridae phage lytic against STEC O145 strains as a novel antimicrobial agent. Escherichia phage vB_EcoS-Ro145clw (Ro145clw) was isolated and purified prior to physiological and genomic characterization. Then, in vitro antimicrobial activity against an outbreak strain, E. coli O145:H28, was evaluated. Ro145clw is a double-stranded DNA phage with a genome 42,031 bp in length. Of the 67 genes identified in the genome, 21 were annotated with functional proteins, none of which were stx genes. Ro145clw had a latent period of 21 min and a burst size of 192 phages per infected cell. The phage could sustain a wide range of pH (pH 3 to pH 10) and temperatures (-80 °C to -73 °C). Ro145clw was able to reduce E. coli O145:H28 in lysogeny broth by approximately 5 log at 37 °C in four hours. These findings indicate that the Ro145clw phage is a promising antimicrobial agent that can be used to control E. coli O145 in adverse pH and temperature conditions.
Collapse
Affiliation(s)
- Yen-Te Liao
- Produce Safety and Microbiology Research Unit, Department of Agriculture (USDA), Agricultural Research Service (ARS), Western Regional Research Center (WRRC), Albany, CA 94710, USA.
| | - Alexandra Salvador
- Produce Safety and Microbiology Research Unit, Department of Agriculture (USDA), Agricultural Research Service (ARS), Western Regional Research Center (WRRC), Albany, CA 94710, USA.
| | - Leslie A Harden
- Produce Safety and Microbiology Research Unit, Department of Agriculture (USDA), Agricultural Research Service (ARS), Western Regional Research Center (WRRC), Albany, CA 94710, USA.
| | - Fang Liu
- Produce Safety and Microbiology Research Unit, Department of Agriculture (USDA), Agricultural Research Service (ARS), Western Regional Research Center (WRRC), Albany, CA 94710, USA.
- College of Food Science and Engineering, Ocean University of China, Qingdao 266100, China.
| | - Valerie M Lavenburg
- Produce Safety and Microbiology Research Unit, Department of Agriculture (USDA), Agricultural Research Service (ARS), Western Regional Research Center (WRRC), Albany, CA 94710, USA.
| | - Robert W Li
- Animal Genomics and Improvement Laboratory, Department of Agriculture (USDA), Agricultural Research Service (ARS), Beltsville, MD 20705, USA.
| | - Vivian C H Wu
- Produce Safety and Microbiology Research Unit, Department of Agriculture (USDA), Agricultural Research Service (ARS), Western Regional Research Center (WRRC), Albany, CA 94710, USA.
| |
Collapse
|
49
|
Bioinformatic analyses of a potential Salmonella-virus-FelixO1 biocontrol phage BPS15S6 and the characterisation and anti-Enterobacteriaceae-pathogen activity of its endolysin LyS15S6. Antonie van Leeuwenhoek 2019; 112:1577-1592. [DOI: 10.1007/s10482-019-01283-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 05/21/2019] [Indexed: 12/18/2022]
|
50
|
Cobaviruses - a new globally distributed phage group infecting Rhodobacteraceae in marine ecosystems. ISME JOURNAL 2019; 13:1404-1421. [PMID: 30718806 PMCID: PMC6775973 DOI: 10.1038/s41396-019-0362-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Revised: 01/15/2019] [Accepted: 01/22/2019] [Indexed: 11/13/2022]
Abstract
Bacteriophages are widely considered to influence bacterial communities, however most phages are still unknown or not studied well enough to understand their ecological roles. We have isolated two phages infecting Lentibacter sp. SH36, affiliated with the marine Roseobacter group, and retrieved similar phage genomes from publicly available metagenomics databases. Phylogenetic analysis placed the new phages within the Cobavirus group, in the here newly proposed genus Siovirus and subfamily Riovirinae of the Podoviridae. Gene composition and presence of direct terminal repeats in cultivated cobaviruses point toward a genome replication and packaging strategy similar to the T7 phage. Investigation of the genomes suggests that viral lysis of the cell proceeds via the canonical holin-endolysin pathway. Cobaviral hosts include members of the genera Lentibacter, Sulfitobacter and Celeribacter of the Roseobacter group within the family Rhodobacteraceae (Alphaproteobacteria). Screening more than 5,000 marine metagenomes, we found cobaviruses worldwide from temperate to tropical waters, in the euphotic zone, mainly in bays and estuaries, but also in the open ocean. The presence of cobaviruses in protist metagenomes as well as the phylogenetic neighborhood of cobaviruses in glutaredoxin and ribonucleotide reductase trees suggest that cobaviruses could infect bacteria associated with phototrophic or grazing protists. With this study, we expand the understanding of the phylogeny, classification, genomic organization, biogeography and ecology of this phage group infecting marine Rhodobacteraceae.
Collapse
|