1
|
Risalvato J, Zengel J, Phillips M, Beavis A, Luo M, He B. A region of mumps virus nucleoprotein affects defective interfering particle production. J Gen Virol 2025; 106:002085. [PMID: 40214656 PMCID: PMC11992363 DOI: 10.1099/jgv.0.002085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Accepted: 02/12/2025] [Indexed: 04/14/2025] Open
Abstract
Mumps virus (MuV) is a negative-sense, single-stranded RNA virus belonging to the family Paramyxoviridae. MuV causes acute infection of the parotid glands, and the infection can result in severe cases of encephalitis, meningitis and deafness in humans. The non-segmented RNA genome of MuV is encapsidated by the nucleocapsid protein (NP), which forms the ribonucleoprotein (RNP) complex that serves as a template for viral RNA synthesis. To make viral genomic RNA accessible to the viral polymerase, a conformational change within NP occurs. Recently, an atomic model of the NP of MuV was developed with cryogenic-electron microscopy (cryo-EM) using PIV5 NP crystal structure as a homology template. To examine NP's structure and function, we performed mutational analysis of MuV NP at region(s) proposed to play a role in accessing viral RNA. The MuV NP mutants containing G185P, A197Q, Q200R and groups denoted as Top (N63G, P139D, A197Q), Tip (P109E, N121G, A124R) and Bottom (G21S, E29T, P43N, R93Q, R304Q) were first tested in a minigenome system. All mutations resulted in reduced reporter gene activities with Q200R and Bottom having the most severe negative effects. Rescuing of recombinant viruses with these mutations was attempted, and only MuV mutants '185 (G185P)', '197 (A197Q)' and 'Top (N63G, P139D, A197A)' were obtained. The 'Top' MuV mutant exhibited normal growth kinetics at low multiplicities of infection (MOIs); however, at high MOIs, the virus had reduced peak litres than low MOIs. Further analysis indicates that production of defective interfering particles (DI particles or DIPs) was enhanced by the mutant virus, indicating that this region, a known alpha-helix hinge region, is important for full-length genome replication, suggesting that it plays a role in maintaining stability of viral RNA-dependent RNA-polymerase on RNP template during MuV viral RNA synthesis. Understanding the production of DI particles will lead to a better understanding of MuV pathogenesis, as well as its replication/transcription process.
Collapse
Affiliation(s)
- Jacquline Risalvato
- Department of Infectious Diseases, University of Georgia College of Veterinary Medicine, Athens, GA 30601, USA
| | - James Zengel
- Department of Infectious Diseases, University of Georgia College of Veterinary Medicine, Athens, GA 30601, USA
| | - Mark Phillips
- Department of Infectious Diseases, University of Georgia College of Veterinary Medicine, Athens, GA 30601, USA
| | - Ashley Beavis
- Department of Infectious Diseases, University of Georgia College of Veterinary Medicine, Athens, GA 30601, USA
| | - Ming Luo
- Department of Chemistry, Georgia State University, Atlanta, GA 30302, USA
- Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30302, USA
| | - Biao He
- Department of Infectious Diseases, University of Georgia College of Veterinary Medicine, Athens, GA 30601, USA
| |
Collapse
|
2
|
Wolf JD, Plemper RK. A three-way interface of the Nipah virus phosphoprotein X-domain coordinates polymerase movement along the viral genome. J Virol 2024; 98:e0098624. [PMID: 39230304 PMCID: PMC11494909 DOI: 10.1128/jvi.00986-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 08/07/2024] [Indexed: 09/05/2024] Open
Abstract
Nipah virus (NiV) is a highly pathogenic paramyxovirus causing frequently lethal encephalitis in humans. The NiV genome is encapsidated by the nucleocapsid (N) protein. RNA synthesis is mediated by the viral RNA-dependent RNA polymerase (RdRP), consisting of the polymerase (L) protein complexed with the homo-tetrameric phosphoprotein (P). The advance of the polymerase along its template requires iterative dissolution and reformation of transient interactions between P and N protomers in a highly regulated process that remains poorly understood. This study applied functional and biochemical NiV polymerase assays to the problem. We mapped three distinct protein interfaces on the C-terminal P-X domain (P-XD), which form a triangular prism and engage L, the C-terminal N tail, and the globular N core, respectively. Transcomplementation assays using NiV L and N-tail binding-deficient mutants revealed that only one XD of a P tetramer binds to L, whereas three must be available for N-binding for efficient polymerase activity. The dissolution of the N-tail complex with P-XD was coordinated by a transient interaction between N-core and the α-1/2 face of this XD but not unoccupied XDs of the P tetramer, creating a timer for coordinated polymerase advance. IMPORTANCE Mononegaviruses comprise major human pathogens such as the Ebola virus, rabies virus, respiratory syncytial virus, measles virus, and Nipah virus (NiV). For replication and transcription, their polymerase complexes must negotiate a protein-encapsidated RNA genome, which requires the highly coordinated continuous formation and resolution of protein-protein interfaces as the polymerase advances along the template. The viral P protein assumes a central role in this process, but the molecular mechanism of ensuring polymerase mobility is poorly understood. Studying NiV polymerase complexes, we applied functional and biochemical assays to map three distinct interfaces in the NiV P XD and identified transient interactions between XD and the nucleocapsid core as instrumental in coordinating polymerase advance. These results define a conserved molecular principle regulating paramyxovirus polymerase dynamics and illuminate a promising druggable target for the structure-guided development of broad-spectrum polymerase inhibitors.
Collapse
Affiliation(s)
- Josef D. Wolf
- Center for Translational Antiviral Research, Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia, USA
| | - Richard K. Plemper
- Center for Translational Antiviral Research, Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia, USA
| |
Collapse
|
3
|
Li T, Liu M, Gu Z, Su X, Liu Y, Lin J, Zhang Y, Shen QT. Structures of the mumps virus polymerase complex via cryo-electron microscopy. Nat Commun 2024; 15:4189. [PMID: 38760379 PMCID: PMC11101452 DOI: 10.1038/s41467-024-48389-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 04/26/2024] [Indexed: 05/19/2024] Open
Abstract
The viral polymerase complex, comprising the large protein (L) and phosphoprotein (P), is crucial for both genome replication and transcription in non-segmented negative-strand RNA viruses (nsNSVs), while structures corresponding to these activities remain obscure. Here, we resolved two L-P complex conformations from the mumps virus (MuV), a typical member of nsNSVs, via cryogenic-electron microscopy. One conformation presents all five domains of L forming a continuous RNA tunnel to the methyltransferase domain (MTase), preferably as a transcription state. The other conformation has the appendage averaged out, which is inaccessible to MTase. In both conformations, parallel P tetramers are revealed around MuV L, which, together with structures of other nsNSVs, demonstrates the diverse origins of the L-binding X domain of P. Our study links varying structures of nsNSV polymerase complexes with genome replication and transcription and points to a sliding model for polymerase complexes to advance along the RNA templates.
Collapse
Affiliation(s)
- Tianhao Li
- School of Life Sciences, Department of Chemical Biology, Southern University of Science and Technology, Shenzhen, 518055, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
- Institute for Biological Electron Microscopy, Southern University of Science and Technology, Shenzhen, 518055, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Mingdong Liu
- School of Life Sciences, Department of Chemical Biology, Southern University of Science and Technology, Shenzhen, 518055, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
- Institute for Biological Electron Microscopy, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Zhanxi Gu
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Key Laboratory of Synthetic Biology, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Xin Su
- School of Life Sciences, Department of Chemical Biology, Southern University of Science and Technology, Shenzhen, 518055, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
- Institute for Biological Electron Microscopy, Southern University of Science and Technology, Shenzhen, 518055, China
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, 200438, China
| | - Yunhui Liu
- School of Life Sciences, Department of Chemical Biology, Southern University of Science and Technology, Shenzhen, 518055, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
- Institute for Biological Electron Microscopy, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Jinzhong Lin
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, 200438, China
| | - Yu Zhang
- Key Laboratory of Synthetic Biology, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Qing-Tao Shen
- School of Life Sciences, Department of Chemical Biology, Southern University of Science and Technology, Shenzhen, 518055, China.
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China.
- Institute for Biological Electron Microscopy, Southern University of Science and Technology, Shenzhen, 518055, China.
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
| |
Collapse
|
4
|
Functional benefit of structural disorder for the replication of measles, Nipah and Hendra viruses. Essays Biochem 2022; 66:915-934. [PMID: 36148633 DOI: 10.1042/ebc20220045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/18/2022] [Accepted: 08/25/2022] [Indexed: 12/24/2022]
Abstract
Measles, Nipah and Hendra viruses are severe human pathogens within the Paramyxoviridae family. Their non-segmented, single-stranded, negative-sense RNA genome is encapsidated by the nucleoprotein (N) within a helical nucleocapsid that is the substrate used by the viral RNA-dependent-RNA-polymerase (RpRd) for transcription and replication. The RpRd is a complex made of the large protein (L) and of the phosphoprotein (P), the latter serving as an obligate polymerase cofactor and as a chaperon for N. Both the N and P proteins are enriched in intrinsically disordered regions (IDRs), i.e. regions devoid of stable secondary and tertiary structure. N possesses a C-terminal IDR (NTAIL), while P consists of a large, intrinsically disordered N-terminal domain (NTD) and a C-terminal domain (CTD) encompassing alternating disordered and ordered regions. The V and W proteins, two non-structural proteins that are encoded by the P gene via a mechanism of co-transcriptional edition of the P mRNA, are prevalently disordered too, sharing with P the disordered NTD. They are key players in the evasion of the host antiviral response and were shown to phase separate and to form amyloid-like fibrils in vitro. In this review, we summarize the available information on IDRs within the N, P, V and W proteins from these three model paramyxoviruses and describe their molecular partnership. We discuss the functional benefit of disorder to virus replication in light of the critical role of IDRs in affording promiscuity, multifunctionality, fine regulation of interaction strength, scaffolding functions and in promoting liquid-liquid phase separation and fibrillation.
Collapse
|
5
|
Bourhis JM, Yabukarski F, Communie G, Schneider R, Volchkova VA, Frénéat M, Gérard F, Ducournau C, Mas C, Tarbouriech N, Ringkjøbing Jensen M, Volchkov VE, Blackledge M, Jamin M. Structural dynamics of the C-terminal X domain of Nipah and Hendra viruses controls the attachment to the C-terminal tail of the nucleocapsid protein. J Mol Biol 2022; 434:167551. [DOI: 10.1016/j.jmb.2022.167551] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 03/01/2022] [Accepted: 03/14/2022] [Indexed: 10/18/2022]
|
6
|
The Nucleocapsid of Paramyxoviruses: Structure and Function of an Encapsidated Template. Viruses 2021; 13:v13122465. [PMID: 34960734 PMCID: PMC8708338 DOI: 10.3390/v13122465] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/07/2021] [Accepted: 12/07/2021] [Indexed: 01/28/2023] Open
Abstract
Viruses of the Paramyxoviridae family share a common and complex molecular machinery for transcribing and replicating their genomes. Their non-segmented, negative-strand RNA genome is encased in a tight homopolymer of viral nucleoproteins (N). This ribonucleoprotein complex, termed a nucleocapsid, is the template of the viral polymerase complex made of the large protein (L) and its co-factor, the phosphoprotein (P). This review summarizes the current knowledge on several aspects of paramyxovirus transcription and replication, including structural and functional data on (1) the architecture of the nucleocapsid (structure of the nucleoprotein, interprotomer contacts, interaction with RNA, and organization of the disordered C-terminal tail of N), (2) the encapsidation of the genomic RNAs (structure of the nucleoprotein in complex with its chaperon P and kinetics of RNA encapsidation in vitro), and (3) the use of the nucleocapsid as a template for the polymerase complex (release of the encased RNA and interaction network allowing the progress of the polymerase complex). Finally, this review presents models of paramyxovirus transcription and replication.
Collapse
|
7
|
Structural Analysis of the Menangle Virus P Protein Reveals a Soft Boundary between Ordered and Disordered Regions. Viruses 2021; 13:v13091737. [PMID: 34578318 PMCID: PMC8472933 DOI: 10.3390/v13091737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/27/2021] [Accepted: 08/28/2021] [Indexed: 11/17/2022] Open
Abstract
The paramyxoviral phosphoprotein (P protein) is the non-catalytic subunit of the viral RNA polymerase, and coordinates many of the molecular interactions required for RNA synthesis. All paramyxoviral P proteins oligomerize via a centrally located coiled-coil that is connected to a downstream binding domain by a dynamic linker. The C-terminal region of the P protein coordinates interactions between the catalytic subunit of the polymerase, and the viral nucleocapsid housing the genomic RNA. The inherent flexibility of the linker is believed to facilitate polymerase translocation. Here we report biophysical and structural characterization of the C-terminal region of the P protein from Menangle virus (MenV), a bat-borne paramyxovirus with zoonotic potential. The MenV P protein is tetrameric but can dissociate into dimers at sub-micromolar protein concentrations. The linker is globally disordered and can be modeled effectively as a worm-like chain. However, NMR analysis suggests very weak local preferences for alpha-helical and extended beta conformation exist within the linker. At the interface between the disordered linker and the structured C-terminal binding domain, a gradual disorder-to-order transition occurs, with X-ray crystallographic analysis revealing a dynamic interfacial structure that wraps the surface of the binding domain.
Collapse
|
8
|
Douglas J, Drummond AJ, Kingston RL. Evolutionary history of cotranscriptional editing in the paramyxoviral phosphoprotein gene. Virus Evol 2021; 7:veab028. [PMID: 34141448 PMCID: PMC8204654 DOI: 10.1093/ve/veab028] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The phosphoprotein gene of the paramyxoviruses encodes multiple protein products. The P, V, and W proteins are generated by transcriptional slippage. This process results in the insertion of non-templated guanosine nucleosides into the mRNA at a conserved edit site. The P protein is an essential component of the viral RNA polymerase and is encoded by a faithful copy of the gene in the majority of paramyxoviruses. However, in some cases, the non-essential V protein is encoded by default and guanosines must be inserted into the mRNA in order to encode P. The number of guanosines inserted into the P gene can be described by a probability distribution, which varies between viruses. In this article, we review the nature of these distributions, which can be inferred from mRNA sequencing data, and reconstruct the evolutionary history of cotranscriptional editing in the paramyxovirus family. Our model suggests that, throughout known history of the family, the system has switched from a P default to a V default mode four times; complete loss of the editing system has occurred twice, the canonical zinc finger domain of the V protein has been deleted or heavily mutated a further two times, and the W protein has independently evolved a novel function three times. Finally, we review the physical mechanisms of cotranscriptional editing via slippage of the viral RNA polymerase.
Collapse
Affiliation(s)
- Jordan Douglas
- Centre for Computational Evolution, University of Auckland, Auckland 1010, New Zealand
- School of Computer Science, University of Auckland, Auckland 1010, New Zealand
| | - Alexei J Drummond
- Centre for Computational Evolution, University of Auckland, Auckland 1010, New Zealand
- School of Biological Sciences, University of Auckland, Auckland 1010, New Zealand
| | - Richard L Kingston
- School of Biological Sciences, University of Auckland, Auckland 1010, New Zealand
| |
Collapse
|
9
|
Almansour I. Mumps Vaccines: Current Challenges and Future Prospects. Front Microbiol 2020; 11:1999. [PMID: 32973721 PMCID: PMC7468195 DOI: 10.3389/fmicb.2020.01999] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Accepted: 07/28/2020] [Indexed: 12/27/2022] Open
Abstract
Five decades have passed since the first mumps vaccine was licensed. Over this period, a resurgence of mumps infections has been recorded worldwide. Although global mumps infections have been controlled through vaccination, outbreaks are still on the rise, including in populations with high vaccination coverage. Several epidemiological studies suggest that this infectious virus continues to be a worldwide public health threat. The development and deployment of an improved, prophylactic mumps vaccine that provides long-lasting protection is indeed a priority. The purpose of this review is to provide an immuno-biological perspective on mumps vaccines. Here, we review the virology of mumps, licensed mumps vaccines, and the typical immune responses elicited following mumps vaccination. Furthermore, we discuss the limitations and challenges of the currently licensed mumps vaccines and provide strategies for the development of an improved mumps vaccine.
Collapse
Affiliation(s)
- Iman Almansour
- Department of Epidemic Diseases Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| |
Collapse
|
10
|
Luo M, Terrell JR, Mcmanus SA. Nucleocapsid Structure of Negative Strand RNA Virus. Viruses 2020; 12:E835. [PMID: 32751700 PMCID: PMC7472042 DOI: 10.3390/v12080835] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 07/23/2020] [Accepted: 07/27/2020] [Indexed: 12/14/2022] Open
Abstract
Negative strand RNA viruses (NSVs) include many important human pathogens, such as influenza virus, Ebola virus, and rabies virus. One of the unique characteristics that NSVs share is the assembly of the nucleocapsid and its role in viral RNA synthesis. In NSVs, the single strand RNA genome is encapsidated in the linear nucleocapsid throughout the viral replication cycle. Subunits of the nucleocapsid protein are parallelly aligned along the RNA genome that is sandwiched between two domains composed of conserved helix motifs. The viral RNA-dependent-RNA polymerase (vRdRp) must recognize the protein-RNA complex of the nucleocapsid and unveil the protected genomic RNA in order to initiate viral RNA synthesis. In addition, vRdRp must continuously translocate along the protein-RNA complex during elongation in viral RNA synthesis. This unique mechanism of viral RNA synthesis suggests that the nucleocapsid may play a regulatory role during NSV replication.
Collapse
Affiliation(s)
- Ming Luo
- Department of Chemistry, Georgia State University, Atlanta, GA 30302, USA; (J.R.T.); (S.A.M.)
| | | | | |
Collapse
|
11
|
Structure of a paramyxovirus polymerase complex reveals a unique methyltransferase-CTD conformation. Proc Natl Acad Sci U S A 2020; 117:4931-4941. [PMID: 32075920 PMCID: PMC7060699 DOI: 10.1073/pnas.1919837117] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Paramyxoviruses are enveloped, nonsegmented, negative-strand RNA viruses that cause a wide spectrum of human and animal diseases. The viral genome, packaged by the nucleoprotein (N), serves as a template for the polymerase complex, composed of the large protein (L) and the homo-tetrameric phosphoprotein (P). The ∼250-kDa L possesses all enzymatic activities necessary for its function but requires P in vivo. Structural information is available for individual P domains from different paramyxoviruses, but how P interacts with L and how that affects the activity of L is largely unknown due to the lack of high-resolution structures of this complex in this viral family. In this study we determined the structure of the L-P complex from parainfluenza virus 5 (PIV5) at 4.3-Å resolution using cryoelectron microscopy, as well as the oligomerization domain (OD) of P at 1.4-Å resolution using X-ray crystallography. P-OD associates with the RNA-dependent RNA polymerase domain of L and protrudes away from it, while the X domain of one chain of P is bound near the L nucleotide entry site. The methyltransferase (MTase) domain and the C-terminal domain (CTD) of L adopt a unique conformation, positioning the MTase active site immediately above the poly-ribonucleotidyltransferase domain and near the likely exit site for the product RNA 5' end. Our study reveals a potential mechanism that mononegavirus polymerases may employ to switch between transcription and genome replication. This knowledge will assist in the design and development of antivirals against paramyxoviruses.
Collapse
|
12
|
Sourimant J, Thakkar VD, Cox RM, Plemper RK. Viral evolution identifies a regulatory interface between paramyxovirus polymerase complex and nucleocapsid that controls replication dynamics. SCIENCE ADVANCES 2020; 6:eaaz1590. [PMID: 32181359 PMCID: PMC7056317 DOI: 10.1126/sciadv.aaz1590] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 12/11/2019] [Indexed: 05/02/2023]
Abstract
Paramyxoviruses are negative-polarity RNA viruses of major clinical importance. The dynamic interaction of the RNA-dependent RNA polymerase (RdRP) complex with the encapsidated RNA genome is mechanistically and structurally poorly understood. Having generated recombinant measles (MeV) and canine distemper (CDV) viruses with truncated nucleocapsid (N) protein showing defects in replication kinetics, we have applied a viral evolution approach to the problem. Passaging of recombinants resulted in long-range compensatory mutations that restored RdRP bioactivity in minigenome assays and efficient replication of engineered viruses. Compensatory mutations clustered at an electronically compatible acidic loop in N-core and a basic face of the phosphoprotein X domain (P-XD). Co-affinity precipitations, biolayer interferometry, and molecular docking revealed an electrostatic-driven transiently forming interface between these domains. The compensatory mutations reduced electrostatic compatibility of these microdomains and lowered coprecipitation efficiency, consistent with a molecular checkpoint function that regulates paramyxovirus polymerase mobility through modulation of conformational stability of the P-XD assembly.
Collapse
Affiliation(s)
- Julien Sourimant
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA
| | - Vidhi D. Thakkar
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA
| | - Robert M. Cox
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA
| | | |
Collapse
|
13
|
Milles S, Salvi N, Blackledge M, Jensen MR. Characterization of intrinsically disordered proteins and their dynamic complexes: From in vitro to cell-like environments. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2018; 109:79-100. [PMID: 30527137 DOI: 10.1016/j.pnmrs.2018.07.001] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Revised: 07/16/2018] [Accepted: 07/16/2018] [Indexed: 05/08/2023]
Abstract
Over the last two decades, it has become increasingly clear that a large fraction of the human proteome is intrinsically disordered or contains disordered segments of significant length. These intrinsically disordered proteins (IDPs) play important regulatory roles throughout biology, underlining the importance of understanding their conformational behavior and interaction mechanisms at the molecular level. Here we review recent progress in the NMR characterization of the structure and dynamics of IDPs in various functional states and environments. We describe the complementarity of different NMR parameters for quantifying the conformational propensities of IDPs in their isolated and phosphorylated states, and we discuss the challenges associated with obtaining structural models of dynamic protein-protein complexes involving IDPs. In addition, we review recent progress in understanding the conformational behavior of IDPs in cell-like environments such as in the presence of crowding agents, in membrane-less organelles and in the complex environment of the human cell.
Collapse
Affiliation(s)
- Sigrid Milles
- Univ. Grenoble Alpes, CNRS, CEA, IBS, F-38000 Grenoble, France
| | - Nicola Salvi
- Univ. Grenoble Alpes, CNRS, CEA, IBS, F-38000 Grenoble, France
| | | | | |
Collapse
|
14
|
The Unstructured Paramyxovirus Nucleocapsid Protein Tail Domain Modulates Viral Pathogenesis through Regulation of Transcriptase Activity. J Virol 2018; 92:JVI.02064-17. [PMID: 29437959 DOI: 10.1128/jvi.02064-17] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 01/28/2018] [Indexed: 02/07/2023] Open
Abstract
The paramyxovirus replication machinery comprises the viral large (L) protein and phosphoprotein (P-protein) in addition to the nucleocapsid (N) protein, which encapsidates the single-stranded RNA genome. Common to paramyxovirus N proteins is a C-terminal tail (Ntail). The mechanistic role and relevance for virus replication of the structurally disordered central Ntail section are unknown. Focusing initially on members of the Morbillivirus genus, a series of measles virus (MeV) and canine distemper virus (CDV) N proteins were generated with internal deletions in the unstructured tail section. N proteins with large tail truncations remained bioactive in mono- and polycistronic minireplicon assays and supported efficient replication of recombinant viruses. Bioactivity of Ntail mutants extended to N proteins derived from highly pathogenic Nipah virus. To probe an effect of Ntail truncations on viral pathogenesis, recombinant CDVs were analyzed in a lethal CDV/ferret model of morbillivirus disease. The recombinant viruses displayed different stages of attenuation ranging from ameliorated clinical symptoms to complete survival of infected animals, depending on the molecular nature of the Ntail truncation. Reinfection of surviving animals with pathogenic CDV revealed robust protection against a lethal challenge. The highly attenuated virus was genetically stable after ex vivo passaging and recovery from infected animals. Mechanistically, gradual viral attenuation coincided with stepwise altered viral transcriptase activity in infected cells. These results identify the central Ntail section as a determinant for viral pathogenesis and establish a novel platform to engineer gradual virus attenuation for next-generation paramyxovirus vaccine design.IMPORTANCE Investigating the role of the paramyxovirus N protein tail domain (Ntail) in virus replication, we demonstrated in this study that the structurally disordered central Ntail region is a determinant for viral pathogenesis. We show that internal deletions in this Ntail region of up to 55 amino acids in length are compatible with efficient replication of recombinant viruses in cell culture but result in gradual viral attenuation in a lethal canine distemper virus (CDV)/ferret model. Mechanistically, we demonstrate a role of the intact Ntail region in the regulation of viral transcriptase activity. Recombinant viruses with Ntail truncations induce protective immunity against lethal challenge of ferrets with pathogenic CDV. This identification of the unstructured central Ntail domain as a nonessential paramyxovirus pathogenesis factor establishes a foundation for harnessing Ntail truncations for vaccine engineering against emerging and reemerging members of the paramyxovirus family.
Collapse
|
15
|
Hausrath AC, Kingston RL. Conditionally disordered proteins: bringing the environment back into the fold. Cell Mol Life Sci 2017; 74:3149-3162. [PMID: 28597298 PMCID: PMC11107710 DOI: 10.1007/s00018-017-2558-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 06/01/2017] [Indexed: 12/19/2022]
Abstract
For many proteins, biological function requires the folding of the polypeptide chain into a unique and persistent tertiary structure. This review concerns proteins that adopt a specific tertiary structure to function, but are otherwise partially or completely disordered. The biological cue for protein folding is environmental perturbation or minor post-translational modification. Hence, we term these proteins conditionally disordered. Many of these proteins recognize and bind other molecules, and conditional disorder has been hypothesized to allow for more nuanced control and regulation of binding processes. However, this remains largely unproven. The sequences of conditionally disordered proteins suggest their propensity to fold; yet, under the standard laboratory conditions, they do not do so, which may appear surprising. We argue that the surprise results from the failure to consider the role of the environment in protein structure formation and that conditional disorder arises as a natural consequence of the marginal stability of the folded state.
Collapse
Affiliation(s)
- Andrew C Hausrath
- School of Biological Sciences, The University of Auckland, Auckland, 1010, New Zealand
| | - Richard L Kingston
- School of Biological Sciences, The University of Auckland, Auckland, 1010, New Zealand.
| |
Collapse
|
16
|
Longhi S, Bloyet LM, Gianni S, Gerlier D. How order and disorder within paramyxoviral nucleoproteins and phosphoproteins orchestrate the molecular interplay of transcription and replication. Cell Mol Life Sci 2017; 74:3091-3118. [PMID: 28600653 PMCID: PMC11107670 DOI: 10.1007/s00018-017-2556-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 06/01/2017] [Indexed: 01/01/2023]
Abstract
In this review, we summarize computational and experimental data gathered so far showing that structural disorder is abundant within paramyxoviral nucleoproteins (N) and phosphoproteins (P). In particular, we focus on measles, Nipah, and Hendra viruses and highlight both commonalities and differences with respect to the closely related Sendai virus. The molecular mechanisms that control the disorder-to-order transition undergone by the intrinsically disordered C-terminal domain (NTAIL) of their N proteins upon binding to the C-terminal X domain (XD) of the homologous P proteins are described in detail. By having a significant residual disorder, NTAIL-XD complexes are illustrative examples of "fuzziness", whose possible functional significance is discussed. Finally, the relevance of N-P interactions as promising targets for innovative antiviral approaches is underscored, and the functional advantages of structural disorder for paramyxoviruses are pinpointed.
Collapse
Affiliation(s)
- Sonia Longhi
- Aix-Marseille Univ, AFMB UMR 7257, 163, avenue de Luminy, Case 932, 13288, Marseille Cedex 09, France.
- CNRS, AFMB UMR 7257, 13288, Marseille, France.
| | - Louis-Marie Bloyet
- CIRI, International Center for Infectiology Research, Université de Lyon, Lyon, France
- INSERM, U1111, Lyon, France
- Ecole Normale Supérieure de Lyon, Lyon, France
- Université Claude Bernard Lyon 1, Centre International de Recherche en Infectiologie, Lyon, France
- CNRS, UMR5308, Lyon, France
| | - Stefano Gianni
- Istituto Pasteur, Fondazione Cenci Bolognetti and Istituto di Biologia e Patologia Molecolari del CNR, Dipartimento di Scienze Biochimiche "A. Rossi Fanelli", Sapienza Università di Roma, 00185, Rome, Italy
| | - Denis Gerlier
- CIRI, International Center for Infectiology Research, Université de Lyon, Lyon, France
- INSERM, U1111, Lyon, France
- Ecole Normale Supérieure de Lyon, Lyon, France
- Université Claude Bernard Lyon 1, Centre International de Recherche en Infectiologie, Lyon, France
- CNRS, UMR5308, Lyon, France
| |
Collapse
|
17
|
Cox RM, Krumm SA, Thakkar VD, Sohn M, Plemper RK. The structurally disordered paramyxovirus nucleocapsid protein tail domain is a regulator of the mRNA transcription gradient. SCIENCE ADVANCES 2017; 3:e1602350. [PMID: 28168220 PMCID: PMC5291697 DOI: 10.1126/sciadv.1602350] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 12/22/2016] [Indexed: 05/18/2023]
Abstract
The paramyxovirus RNA-dependent RNA-polymerase (RdRp) complex loads onto the nucleocapsid protein (N)-encapsidated viral N:RNA genome for RNA synthesis. Binding of the RdRp of measles virus (MeV), a paramyxovirus archetype, is mediated through interaction with a molecular recognition element (MoRE) located near the end of the carboxyl-terminal Ntail domain. The structurally disordered central Ntail section is thought to add positional flexibility to MoRE, but the functional importance of this Ntail region for RNA polymerization is unclear. To address this question, we dissected functional elements of Ntail by relocating MoRE into the RNA-encapsidating Ncore domain. Linker-scanning mutagenesis identified a microdomain in Ncore that tolerates insertions. MoRE relocated to Ncore supported efficient interaction with N, MoRE-deficient Ntails had a dominant-negative effect on bioactivity that was alleviated by insertion of MoRE into Ncore, and recombinant MeV encoding N with relocated MoRE grew efficiently and remained capable of mRNA editing. MoRE in Ncore also restored viability of a recombinant lacking the disordered central Ntail section, but this recombinant was temperature-sensitive, with reduced RdRp loading efficiency and a flattened transcription gradient. These results demonstrate that virus replication requires high-affinity RdRp binding sites in N:RNA, but productive RdRp binding is independent of positional flexibility of MoRE and cis-acting elements in Ntail. Rather, the disordered central Ntail section independent of the presence of MoRE in Ntail steepens the paramyxovirus transcription gradient by promoting RdRp loading and preventing the formation of nonproductive polycistronic viral mRNAs. Disordered Ntails may have evolved as a regulatory element to adjust paramyxovirus gene expression.
Collapse
Affiliation(s)
- Robert M. Cox
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA
| | - Stefanie A. Krumm
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA
| | - Vidhi D. Thakkar
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA
| | - Maximilian Sohn
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Richard K. Plemper
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA
- Corresponding author.
| |
Collapse
|
18
|
Bloyet LM, Brunel J, Dosnon M, Hamon V, Erales J, Gruet A, Lazert C, Bignon C, Roche P, Longhi S, Gerlier D. Modulation of Re-initiation of Measles Virus Transcription at Intergenic Regions by PXD to NTAIL Binding Strength. PLoS Pathog 2016; 12:e1006058. [PMID: 27936158 PMCID: PMC5148173 DOI: 10.1371/journal.ppat.1006058] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 11/12/2016] [Indexed: 12/22/2022] Open
Abstract
Measles virus (MeV) and all Paramyxoviridae members rely on a complex polymerase machinery to ensure viral transcription and replication. Their polymerase associates the phosphoprotein (P) and the L protein that is endowed with all necessary enzymatic activities. To be processive, the polymerase uses as template a nucleocapsid made of genomic RNA entirely wrapped into a continuous oligomer of the nucleoprotein (N). The polymerase enters the nucleocapsid at the 3'end of the genome where are located the promoters for transcription and replication. Transcription of the six genes occurs sequentially. This implies ending and re-initiating mRNA synthesis at each intergenic region (IGR). We explored here to which extent the binding of the X domain of P (XD) to the C-terminal region of the N protein (NTAIL) is involved in maintaining the P/L complex anchored to the nucleocapsid template during the sequential transcription. Amino acid substitutions introduced in the XD-binding site on NTAIL resulted in a wide range of binding affinities as determined by combining protein complementation assays in E. coli and human cells and isothermal titration calorimetry. Molecular dynamics simulations revealed that XD binding to NTAIL involves a complex network of hydrogen bonds, the disruption of which by two individual amino acid substitutions markedly reduced the binding affinity. Using a newly designed, highly sensitive dual-luciferase reporter minigenome assay, the efficiency of re-initiation through the five measles virus IGRs was found to correlate with NTAIL/XD KD. Correlatively, P transcript accumulation rate and F/N transcript ratios from recombinant viruses expressing N variants were also found to correlate with the NTAIL to XD binding strength. Altogether, our data support a key role for XD binding to NTAIL in maintaining proper anchor of the P/L complex thereby ensuring transcription re-initiation at each intergenic region.
Collapse
Affiliation(s)
- Louis-Marie Bloyet
- CIRI, International Center for Infectiology Research, Université de Lyon, Lyon, France
- INSERM, U1111, Lyon, France
- Ecole Normale Supérieure de Lyon, Lyon, France
- Université Claude Bernard Lyon 1, Centre International de Recherche en Infectiologie, Lyon, France
- CNRS, UMR5308, Lyon, France
| | - Joanna Brunel
- CIRI, International Center for Infectiology Research, Université de Lyon, Lyon, France
- INSERM, U1111, Lyon, France
- Ecole Normale Supérieure de Lyon, Lyon, France
- Université Claude Bernard Lyon 1, Centre International de Recherche en Infectiologie, Lyon, France
- CNRS, UMR5308, Lyon, France
| | - Marion Dosnon
- Aix-Marseille University, Architecture et Fonction des Macromolécules Biologiques (AFMB) UMR 7257, Marseille, France
- CNRS, AFMB UMR 7257, Marseille, France
| | - Véronique Hamon
- Aix Marseille University, Institut Paoli-Calmettes, Centre de Recherche en Cancérologie de Marseille (CRCM), Marseille, France
- CNRS, CRCM UMR 7258, Marseille, France
- INSERM, CRCM U1068, Marseille, France
| | - Jenny Erales
- Aix-Marseille University, Architecture et Fonction des Macromolécules Biologiques (AFMB) UMR 7257, Marseille, France
- CNRS, AFMB UMR 7257, Marseille, France
| | - Antoine Gruet
- Aix-Marseille University, Architecture et Fonction des Macromolécules Biologiques (AFMB) UMR 7257, Marseille, France
- CNRS, AFMB UMR 7257, Marseille, France
| | - Carine Lazert
- CIRI, International Center for Infectiology Research, Université de Lyon, Lyon, France
- INSERM, U1111, Lyon, France
- Ecole Normale Supérieure de Lyon, Lyon, France
- Université Claude Bernard Lyon 1, Centre International de Recherche en Infectiologie, Lyon, France
- CNRS, UMR5308, Lyon, France
| | - Christophe Bignon
- Aix-Marseille University, Architecture et Fonction des Macromolécules Biologiques (AFMB) UMR 7257, Marseille, France
- CNRS, AFMB UMR 7257, Marseille, France
| | - Philippe Roche
- Aix Marseille University, Institut Paoli-Calmettes, Centre de Recherche en Cancérologie de Marseille (CRCM), Marseille, France
- CNRS, CRCM UMR 7258, Marseille, France
- INSERM, CRCM U1068, Marseille, France
| | - Sonia Longhi
- Aix-Marseille University, Architecture et Fonction des Macromolécules Biologiques (AFMB) UMR 7257, Marseille, France
- CNRS, AFMB UMR 7257, Marseille, France
| | - Denis Gerlier
- CIRI, International Center for Infectiology Research, Université de Lyon, Lyon, France
- INSERM, U1111, Lyon, France
- Ecole Normale Supérieure de Lyon, Lyon, France
- Université Claude Bernard Lyon 1, Centre International de Recherche en Infectiologie, Lyon, France
- CNRS, UMR5308, Lyon, France
| |
Collapse
|
19
|
Bonetti D, Camilloni C, Visconti L, Longhi S, Brunori M, Vendruscolo M, Gianni S. Identification and Structural Characterization of an Intermediate in the Folding of the Measles Virus X Domain. J Biol Chem 2016; 291:10886-92. [PMID: 27002146 DOI: 10.1074/jbc.m116.721126] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Indexed: 12/14/2022] Open
Abstract
Although most proteins fold by populating intermediates, the transient nature of such states makes it difficult to characterize their structures. In this work we identified and characterized the structure of an intermediate of the X domain of phosphoprotein (P) of measles virus. We obtained this result by a combination of equilibrium and kinetic measurements and NMR chemical shifts used as structural restraints in replica-averaged metadynamics simulations. The structure of the intermediate was then validated by rationally designing four mutational variants predicted to affect the stability of this state. These results provide a detailed view of an intermediate state and illustrate the opportunities offered by a synergistic use of experimental and computational methods to describe non-native states at atomic resolution.
Collapse
Affiliation(s)
- Daniela Bonetti
- From the Istituto Pasteur-Fondazione Cenci Bolognetti and Istituto di Biologia e Patologia Molecolari del CNR, Dipartimento di Scienze Biochimiche "A. Rossi Fanelli," Sapienza Università di Roma, 00185 Rome, Italy
| | - Carlo Camilloni
- Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, United Kingdom, Department of Chemistry and Institute for Advanced Study, Technische Universität München, Lichtenbergstrasse 4, D-85747 Garching, Germany
| | - Lorenzo Visconti
- From the Istituto Pasteur-Fondazione Cenci Bolognetti and Istituto di Biologia e Patologia Molecolari del CNR, Dipartimento di Scienze Biochimiche "A. Rossi Fanelli," Sapienza Università di Roma, 00185 Rome, Italy
| | - Sonia Longhi
- Aix-Marseille Université, Architecture et Fonction des Macromolécules Biologiques (AFMB), CNRS, UMR 7257, 13288 Marseille, France, and CNRS, AFMB UMR 7257, 13288 Marseille, France
| | - Maurizio Brunori
- From the Istituto Pasteur-Fondazione Cenci Bolognetti and Istituto di Biologia e Patologia Molecolari del CNR, Dipartimento di Scienze Biochimiche "A. Rossi Fanelli," Sapienza Università di Roma, 00185 Rome, Italy
| | - Michele Vendruscolo
- Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, United Kingdom
| | - Stefano Gianni
- From the Istituto Pasteur-Fondazione Cenci Bolognetti and Istituto di Biologia e Patologia Molecolari del CNR, Dipartimento di Scienze Biochimiche "A. Rossi Fanelli," Sapienza Università di Roma, 00185 Rome, Italy, Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, United Kingdom,
| |
Collapse
|
20
|
Noval MG, Esperante SA, Molina IG, Chemes LB, Prat-Gay GD. Intrinsic Disorder to Order Transitions in the Scaffold Phosphoprotein P from the Respiratory Syncytial Virus RNA Polymerase Complex. Biochemistry 2016; 55:1441-54. [PMID: 26901160 DOI: 10.1021/acs.biochem.5b01332] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Intrinsic disorder is at the center of biochemical regulation and is particularly overrepresented among the often multifunctional viral proteins. Replication and transcription of the respiratory syncytial virus (RSV) relies on a RNA polymerase complex with a phosphoprotein cofactor P as the structural scaffold, which consists of a four-helix bundle tetramerization domain flanked by two domains predicted to be intrinsically disordered. Because intrinsic disorder cannot be reduced to a defined atomic structure, we tackled the experimental dissection of the disorder-order transitions of P by a domain fragmentation approach. P remains as a tetramer above 70 °C but shows a pronounced reversible secondary structure transition between 10 and 60 °C. While the N-terminal module behaves as a random coil-like IDP in a manner independent of tetramerization, the isolated C-terminal module displays a cooperative and reversible metastable transition. When linked to the tetramerization domain, the C-terminal module becomes markedly more structured and stable, with strong ANS binding. Therefore, the tertiary structure in the C-terminal module is not compact, conferring "late" molten globule-like IDP properties, stabilized by interactions favored by tetramerization. The presence of a folded structure highly sensitive to temperature, reversibly and almost instantly formed and broken, suggests a temperature sensing activity. The marginal stability allows for exposure of protein binding sites, offering a thermodynamic and kinetic fine-tuning in order-disorder transitions, essential for the assembly and function of the RSV RNA polymerase complex.
Collapse
Affiliation(s)
- María G Noval
- Protein Structure-Function and Engineering Laboratory, Fundación Instituto Leloir and IIBBA-CONICET , Av. Patricias Argentinas 435, 1405 Buenos Aires, Argentina
| | - Sebastian A Esperante
- Protein Structure-Function and Engineering Laboratory, Fundación Instituto Leloir and IIBBA-CONICET , Av. Patricias Argentinas 435, 1405 Buenos Aires, Argentina
| | - Ivana G Molina
- Protein Structure-Function and Engineering Laboratory, Fundación Instituto Leloir and IIBBA-CONICET , Av. Patricias Argentinas 435, 1405 Buenos Aires, Argentina
| | - Lucía B Chemes
- Protein Structure-Function and Engineering Laboratory, Fundación Instituto Leloir and IIBBA-CONICET , Av. Patricias Argentinas 435, 1405 Buenos Aires, Argentina
| | - Gonzalo de Prat-Gay
- Protein Structure-Function and Engineering Laboratory, Fundación Instituto Leloir and IIBBA-CONICET , Av. Patricias Argentinas 435, 1405 Buenos Aires, Argentina.,CNPq, Laboratório de Genômica Estrutural, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro , Rio de Janeiro, RJ, Brazil
| |
Collapse
|
21
|
Brgles M, Bonta M, Šantak M, Jagušić M, Forčić D, Halassy B, Allmaier G, Marchetti-Deschmann M. Identification of mumps virus protein and lipid composition by mass spectrometry. Virol J 2016; 13:9. [PMID: 26768080 PMCID: PMC4712546 DOI: 10.1186/s12985-016-0463-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 01/05/2016] [Indexed: 01/19/2023] Open
Abstract
Background Mumps virus is a negative-sense, single stranded RNA virus consisting of a ribonucleocapsid core enveloped by a lipid membrane derived from host cell, which causes mumps disease preventable by vaccination. Since virus lipid envelope and glycosylation pattern are not encoded by the virus but dependent on the host cell at least to some extent, the aim of this work was to analyse L-Zagreb (L-Zg) mumps virus lipids and proteins derived from two cell types; Vero and chicken embryo fibroblasts (CEF). Jeryl Lynn 5 (JL5) mumps strain lipids were also analysed. Methods Virus lipids were isolated by organic phase extraction and subjected to 2D-high performance thin layer chromatography followed by lipid extraction and identification by matrix-assisted laser desorption/ionization mass spectrometry (MALDI MS). Virus samples were also subjected to gel electrophoresis under denaturating conditions and protein bands were excised, in-gel trypsinized and identified by MS as well as tandem MS. Results Results showed that lipids of both mumps virus strains derived from Vero cells contained complex glycolipids with up to five monosaccharide units whereas the lipid pattern of mumps virus derived from CEF was less complex. Mumps virus was found to contain expected structural proteins with exception of fusion (F) protein which was not detected but on the other hand, V protein was detected. Most interesting finding related to the mumps proteins is the detection of several forms of nucleoprotein (NP), some of which appear to be C-terminally truncated. Conclusions Differences found in lipid and protein content of mumps virus demonstrated the importance of detailed biochemical characterization of mumps virus and the methodology described here could provide a means for a more comprehensive quality control in vaccine production. Electronic supplementary material The online version of this article (doi:10.1186/s12985-016-0463-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Marija Brgles
- University of Zagreb, Centre for Research and Knowledge Transfer in Biotechnology, Rockefellerova 10, HR-10000, Zagreb, Croatia. .,Center of Excellence for Viral Immunology and Vaccines, CERVirVac, Rijeka, Zagreb, Croatia.
| | - Maximilian Bonta
- Vienna University of Technology, Institute of Chemical Technologies and Analytics, A-1060, Vienna, Austria.
| | - Maja Šantak
- University of Zagreb, Centre for Research and Knowledge Transfer in Biotechnology, Rockefellerova 10, HR-10000, Zagreb, Croatia. .,Center of Excellence for Viral Immunology and Vaccines, CERVirVac, Rijeka, Zagreb, Croatia.
| | - Maja Jagušić
- University of Zagreb, Centre for Research and Knowledge Transfer in Biotechnology, Rockefellerova 10, HR-10000, Zagreb, Croatia. .,Center of Excellence for Viral Immunology and Vaccines, CERVirVac, Rijeka, Zagreb, Croatia.
| | - Dubravko Forčić
- University of Zagreb, Centre for Research and Knowledge Transfer in Biotechnology, Rockefellerova 10, HR-10000, Zagreb, Croatia. .,Center of Excellence for Viral Immunology and Vaccines, CERVirVac, Rijeka, Zagreb, Croatia.
| | - Beata Halassy
- University of Zagreb, Centre for Research and Knowledge Transfer in Biotechnology, Rockefellerova 10, HR-10000, Zagreb, Croatia. .,Center of Excellence for Viral Immunology and Vaccines, CERVirVac, Rijeka, Zagreb, Croatia.
| | - Günter Allmaier
- Vienna University of Technology, Institute of Chemical Technologies and Analytics, A-1060, Vienna, Austria.
| | | |
Collapse
|
22
|
Stojanovski B, Breydo L, Uversky VN, Ferreira GC. Macromolecular crowders and osmolytes modulate the structural and catalytic properties of alkaline molten globular 5-aminolevulinate synthase. RSC Adv 2016. [DOI: 10.1039/c6ra22533k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Tertiary structure, solvation and kinetic properties of the catalytically active aminolevulinate synthase molten globule are modulated by crowders or osmolytes.
Collapse
Affiliation(s)
- Bosko M. Stojanovski
- Department of Molecular Medicine
- Morsani College of Medicine
- University of South Florida
- Tampa
- USA
| | - Leonid Breydo
- Department of Molecular Medicine
- Morsani College of Medicine
- University of South Florida
- Tampa
- USA
| | - Vladimir N. Uversky
- Department of Molecular Medicine
- Morsani College of Medicine
- University of South Florida
- Tampa
- USA
| | - Gloria C. Ferreira
- Department of Molecular Medicine
- Morsani College of Medicine
- University of South Florida
- Tampa
- USA
| |
Collapse
|
23
|
Insights into the Hendra virus N TAIL –XD complex: Evidence for a parallel organization of the helical MoRE at the XD surface stabilized by a combination of hydrophobic and polar interactions. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2015; 1854:1038-53. [DOI: 10.1016/j.bbapap.2015.04.031] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Revised: 04/27/2015] [Accepted: 04/30/2015] [Indexed: 11/20/2022]
|
24
|
Habchi J, Longhi S. Structural Disorder within Paramyxoviral Nucleoproteins and Phosphoproteins in Their Free and Bound Forms: From Predictions to Experimental Assessment. Int J Mol Sci 2015; 16:15688-726. [PMID: 26184170 PMCID: PMC4519920 DOI: 10.3390/ijms160715688] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Revised: 06/26/2015] [Accepted: 06/29/2015] [Indexed: 01/10/2023] Open
Abstract
We herein review available computational and experimental data pointing to the abundance of structural disorder within the nucleoprotein (N) and phosphoprotein (P) from three paramyxoviruses, namely the measles (MeV), Nipah (NiV) and Hendra (HeV) viruses. We provide a detailed molecular description of the mechanisms governing the disorder-to-order transition that the intrinsically disordered C-terminal domain (NTAIL) of their N proteins undergoes upon binding to the C-terminal X domain (PXD) of the homologous P proteins. We also show that NTAIL-PXD complexes are "fuzzy", i.e., they possess a significant residual disorder, and discuss the possible functional significance of this fuzziness. Finally, we emphasize the relevance of N-P interactions involving intrinsically disordered proteins as promising targets for new antiviral approaches, and end up summarizing the general functional advantages of disorder for viruses.
Collapse
Affiliation(s)
- Johnny Habchi
- Aix-Marseille Université, Architecture et Fonction des Macromolécules Biologiques (AFMB), UMR 7257, 163, Avenue de Luminy, Case 932, 13288 Marseille, France.
- Centre National pour la Recherche Scientifique (CNRS), AFMB UMR 7257, 163, Avenue de Luminy, Case 932, 13288 Marseille, France.
| | - Sonia Longhi
- Aix-Marseille Université, Architecture et Fonction des Macromolécules Biologiques (AFMB), UMR 7257, 163, Avenue de Luminy, Case 932, 13288 Marseille, France.
- Centre National pour la Recherche Scientifique (CNRS), AFMB UMR 7257, 163, Avenue de Luminy, Case 932, 13288 Marseille, France.
| |
Collapse
|
25
|
Longhi S. Structural disorder within paramyxoviral nucleoproteins. FEBS Lett 2015; 589:2649-59. [PMID: 26071376 DOI: 10.1016/j.febslet.2015.05.055] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Revised: 05/28/2015] [Accepted: 05/29/2015] [Indexed: 12/21/2022]
Abstract
In this review I summarize available data pointing to the abundance of structural disorder within the nucleoprotein (N) from three paramyxoviruses, namely the measles (MeV), Nipah (NiV) and Hendra (HeV) viruses. I provide a detailed description of the molecular mechanisms that govern the disorder-to-order transition that the intrinsically disordered C-terminal domain (NTAIL) of their N proteins undergoes upon binding to the C-terminal X domain (XD) of the homologous phosphoproteins. I also show that a significant flexibility persists within NTAIL-XD complexes, which makes them illustrative examples of "fuzziness". Finally, I discuss the functional implications of structural disorder for viral transcription and replication in light of the promiscuity of disordered regions and of the considerable reach they confer to the components of the replicative machinery.
Collapse
Affiliation(s)
- Sonia Longhi
- Aix-Marseille Université, AFMB UMR 7257, 13288 Marseille, France; CNRS, AFMB UMR 7257, 13288 Marseille, France.
| |
Collapse
|
26
|
Cox R, Plemper RK. The paramyxovirus polymerase complex as a target for next-generation anti-paramyxovirus therapeutics. Front Microbiol 2015; 6:459. [PMID: 26029193 PMCID: PMC4428208 DOI: 10.3389/fmicb.2015.00459] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 04/27/2015] [Indexed: 12/04/2022] Open
Abstract
The paramyxovirus family includes major human and animal pathogens, including measles virus, mumps virus, and human respiratory syncytial virus (RSV), as well as the emerging zoonotic Hendra and Nipah viruses. In the U.S., RSV is the leading cause of infant hospitalizations due to viral infectious disease. Despite their clinical significance, effective drugs for the improved management of paramyxovirus disease are lacking. The development of novel anti-paramyxovirus therapeutics is therefore urgently needed. Paramyxoviruses contain RNA genomes of negative polarity, necessitating a virus-encoded RNA-dependent RNA polymerase (RdRp) complex for replication and transcription. Since an equivalent enzymatic activity is absent in host cells, the RdRp complex represents an attractive druggable target, although structure-guided drug development campaigns are hampered by the lack of high-resolution RdRp crystal structures. Here, we review the current structural and functional insight into the paramyxovirus polymerase complex in conjunction with an evaluation of the mechanism of activity and developmental status of available experimental RdRp inhibitors. Our assessment spotlights the importance of the RdRp complex as a premier target for therapeutic intervention and examines how high-resolution insight into the organization of the complex will pave the path toward the structure-guided design and optimization of much-needed next-generation paramyxovirus RdRp blockers.
Collapse
Affiliation(s)
- Robert Cox
- Institute for Biomedical Sciences, Petit Science Center, Georgia State University, Atlanta, GA USA
| | - Richard K Plemper
- Institute for Biomedical Sciences, Petit Science Center, Georgia State University, Atlanta, GA USA
| |
Collapse
|
27
|
Roles of Phosphorylation of the Nucleocapsid Protein of Mumps Virus in Regulating Viral RNA Transcription and Replication. J Virol 2015; 89:7338-47. [PMID: 25948749 DOI: 10.1128/jvi.00686-15] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 05/02/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Mumps virus (MuV) is a paramyxovirus with a negative-sense nonsegmented RNA genome. The viral RNA genome is encapsidated by the nucleocapsid protein (NP) to form the ribonucleoprotein (RNP), which serves as a template for transcription and replication. In this study, we investigated the roles of phosphorylation sites of NP in MuV RNA synthesis. Using radioactive labeling, we first demonstrated that NP was phosphorylated in MuV-infected cells. Using both liquid chromatography-mass spectrometry (LC-MS) and in silico modeling, we identified nine putative phosphorylated residues within NP. We mutated these nine residues to alanine. Mutation of the serine residue at position 439 to alanine (S439A) was found to reduce the phosphorylation of NP in transfected cells by over 90%. The effects of these mutations on the MuV minigenome system were examined. The S439A mutant was found to have higher activity, four mutants had lower activity, and four mutants had similar activity compared to wild-type NP. MuV containing the S439A mutation had 90% reduced phosphorylation of NP and enhanced viral RNA synthesis and viral protein expression at early time points after infection, indicating that S439 is the major phosphorylation site of NP and its phosphorylation plays an important role in downregulating viral RNA synthesis. IMPORTANCE Mumps virus (MuV), a paramyxovirus, is an important human pathogen that is reemerging in human populations. Nucleocapsid protein (NP) of MuV is essential for viral RNA synthesis. We have identified the major phosphorylation site of NP. We have found that phosphorylation of NP plays a critical role in regulating viral RNA synthesis. The work will lead to a better understanding of viral RNA synthesis and possible novel targets for antiviral drug development.
Collapse
|
28
|
D'Urzo A, Konijnenberg A, Rossetti G, Habchi J, Li J, Carloni P, Sobott F, Longhi S, Grandori R. Molecular basis for structural heterogeneity of an intrinsically disordered protein bound to a partner by combined ESI-IM-MS and modeling. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2015; 26:472-481. [PMID: 25510932 DOI: 10.1007/s13361-014-1048-z] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Revised: 11/04/2014] [Accepted: 11/08/2014] [Indexed: 06/04/2023]
Abstract
Intrinsically disordered proteins (IDPs) form biologically active complexes that can retain a high degree of conformational disorder, escaping structural characterization by conventional approaches. An example is offered by the complex between the intrinsically disordered N(TAIL) domain and the phosphoprotein X domain (P(XD)) from measles virus (MeV). Here, distinct conformers of the complex are detected by electrospray ionization-mass spectrometry (ESI-MS) and ion mobility (IM) techniques yielding estimates for the solvent-accessible surface area (SASA) in solution and the average collision cross-section (CCS) in the gas phase. Computational modeling of the complex in solution, based on experimental constraints, provides atomic-resolution structural models featuring different levels of compactness. The resulting models indicate high structural heterogeneity. The intermolecular interactions are predominantly hydrophobic, not only in the ordered core of the complex, but also in the dynamic, disordered regions. Electrostatic interactions become involved in the more compact states. This system represents an illustrative example of a hydrophobic complex that could be directly detected in the gas phase by native mass spectrometry. This work represents the first attempt to modeling the entire N(TAIL) domain bound to P(XD) at atomic resolution.
Collapse
Affiliation(s)
- Annalisa D'Urzo
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126, Milan, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Order and Disorder in the Replicative Complex of Paramyxoviruses. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 870:351-81. [PMID: 26387109 DOI: 10.1007/978-3-319-20164-1_12] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
In this review we summarize available data showing the abundance of structural disorder within the nucleoprotein (N) and phosphoprotein (P) from three paramyxoviruses, namely the measles (MeV), Nipah (NiV) and Hendra (HeV) viruses. We provide a detailed description of the molecular mechanisms that govern the disorder-to-order transition that the intrinsically disordered C-terminal domain (NTAIL) of their N proteins undergoes upon binding to the C-terminal X domain (XD) of the homologous P proteins. We also show that a significant flexibility persists within NTAIL-XD complexes, which therefore provide illustrative examples of "fuzziness". The functional implications of structural disorder for viral transcription and replication are discussed in light of the ability of disordered regions to establish a complex molecular partnership and to confer a considerable reach to the elements of the replicative machinery.
Collapse
|
30
|
Structural studies on the authentic mumps virus nucleocapsid showing uncoiling by the phosphoprotein. Proc Natl Acad Sci U S A 2014; 111:15208-13. [PMID: 25288750 DOI: 10.1073/pnas.1413268111] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Mumps virus (MuV) is a highly contagious pathogen, and despite extensive vaccination campaigns, outbreaks continue to occur worldwide. The virus has a negative-sense, single-stranded RNA genome that is encapsidated by the nucleocapsid protein (N) to form the nucleocapsid (NC). NC serves as the template for both transcription and replication. In this paper we solved an 18-Å-resolution structure of the authentic MuV NC using cryo-electron microscopy. We also observed the effects of phosphoprotein (P) binding on the MuV NC structure. The N-terminal domain of P (PNTD) has been shown to bind NC and appeared to induce uncoiling of the helical NC. Additionally, we solved a 25-Å-resolution structure of the authentic MuV NC bound with the C-terminal domain of P (PCTD). The location of the encapsidated viral genomic RNA was defined by modeling crystal structures of homologous negative strand RNA virus Ns in NC. Both the N-terminal and C-terminal domains of MuV P bind NC to participate in access to the genomic RNA by the viral RNA-dependent-RNA polymerase. These results provide critical insights on the structure-function of the MuV NC and the structural alterations that occur through its interactions with P.
Collapse
|
31
|
Xue B, Blocquel D, Habchi J, Uversky AV, Kurgan L, Uversky VN, Longhi S. Structural disorder in viral proteins. Chem Rev 2014; 114:6880-911. [PMID: 24823319 DOI: 10.1021/cr4005692] [Citation(s) in RCA: 143] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Bin Xue
- Department of Cell Biology, Microbiology and Molecular Biology, College of Fine Arts and Sciences, and ‡Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida , Tampa, Florida 33620, United States
| | | | | | | | | | | | | |
Collapse
|
32
|
Sangeeta Devi Y, Halperin J. Reproductive actions of prolactin mediated through short and long receptor isoforms. Mol Cell Endocrinol 2014; 382:400-410. [PMID: 24060636 DOI: 10.1016/j.mce.2013.09.016] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Revised: 07/20/2013] [Accepted: 09/13/2013] [Indexed: 10/26/2022]
Abstract
Prolactin (PRL) is a polypeptide hormone with a wide range of physiological functions, and is critical for female reproduction. PRL exerts its action by binding to membrane bound receptor isoforms broadly classified as the long form and the short form receptors. Both receptor isoforms are highly expressed in the ovary as well as in the uterus. Although signaling through the long form is believed to be more predominant, it remains unclear whether activation of this isoform alone is sufficient to support reproductive functions or whether both types of receptor are required. The generation of transgenic mice selectively expressing either the short or the long form of PRL receptor has provided insight into the differential signaling mechanisms and physiological functions of these receptors. This review describes the essential finding that both long and short receptor isoforms are crucial for ovarian functions and female fertility, and highlights novel mechanisms of action for these receptors.
Collapse
Affiliation(s)
- Y Sangeeta Devi
- Department of Obstetrics, Gynecology and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, MI-49503, USA.
| | - Julia Halperin
- Centro de Estudios Biomédicos, Biotecnológicos, Ambientales y Diagnóstico (CEBBAD), Universidad Maimónides, Hidalgo 775 6to piso, C1405BCK Ciudad Autónoma de Buenos Aires, Argentina and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Rivadavia 1917, Ciudad Autónoma de Buenos Aires, Argentina.
| |
Collapse
|
33
|
Communie G, Habchi J, Yabukarski F, Blocquel D, Schneider R, Tarbouriech N, Papageorgiou N, Ruigrok RWH, Jamin M, Jensen MR, Longhi S, Blackledge M. Atomic resolution description of the interaction between the nucleoprotein and phosphoprotein of Hendra virus. PLoS Pathog 2013; 9:e1003631. [PMID: 24086133 PMCID: PMC3784471 DOI: 10.1371/journal.ppat.1003631] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Accepted: 08/01/2013] [Indexed: 11/18/2022] Open
Abstract
Hendra virus (HeV) is a recently emerged severe human pathogen that belongs to the Henipavirus genus within the Paramyxoviridae family. The HeV genome is encapsidated by the nucleoprotein (N) within a helical nucleocapsid. Recruitment of the viral polymerase onto the nucleocapsid template relies on the interaction between the C-terminal domain, N(TAIL), of N and the C-terminal X domain, XD, of the polymerase co-factor phosphoprotein (P). Here, we provide an atomic resolution description of the intrinsically disordered N(TAIL) domain in its isolated state and in intact nucleocapsids using nuclear magnetic resonance (NMR) spectroscopy. Using electron microscopy, we show that HeV nucleocapsids form herringbone-like structures typical of paramyxoviruses. We also report the crystal structure of XD of P that consists of a three-helix bundle. We study the interaction between N(TAIL) and XD using NMR titration experiments and provide a detailed mapping of the reciprocal binding sites. We show that the interaction is accompanied by α-helical folding of the molecular recognition element of N(TAIL) upon binding to a hydrophobic patch on the surface of XD. Finally, using solution NMR, we investigate the interaction between intact nucleocapsids and XD. Our results indicate that monomeric XD binds to N(TAIL) without triggering an additional unwinding of the nucleocapsid template. The present results provide a structural description at the atomic level of the protein-protein interactions required for transcription and replication of HeV, and the first direct observation of the interaction between the X domain of P and intact nucleocapsids in Paramyxoviridae.
Collapse
Affiliation(s)
- Guillaume Communie
- Université Grenoble Alpes, Institut de Biologie Structurale (IBS), Grenoble, France
- CEA, DSV, IBS, Grenoble, France
- CNRS, IBS, Grenoble, France
- Université Grenoble Alpes, UVHCI, Grenoble, France
- CNRS, UVHCI, Grenoble, France
- Unit for Virus Host Cell Interactions, Université Grenoble Alpes-EMBL-CNRS, Grenoble, France
| | - Johnny Habchi
- CNRS and Aix-Marseille Université, Architecture et Fonction des Macromolécules Biologiques, UMR 7257, Marseille, France
| | - Filip Yabukarski
- Université Grenoble Alpes, UVHCI, Grenoble, France
- CNRS, UVHCI, Grenoble, France
- Unit for Virus Host Cell Interactions, Université Grenoble Alpes-EMBL-CNRS, Grenoble, France
| | - David Blocquel
- CNRS and Aix-Marseille Université, Architecture et Fonction des Macromolécules Biologiques, UMR 7257, Marseille, France
| | - Robert Schneider
- Université Grenoble Alpes, Institut de Biologie Structurale (IBS), Grenoble, France
- CEA, DSV, IBS, Grenoble, France
- CNRS, IBS, Grenoble, France
| | - Nicolas Tarbouriech
- Université Grenoble Alpes, UVHCI, Grenoble, France
- CNRS, UVHCI, Grenoble, France
- Unit for Virus Host Cell Interactions, Université Grenoble Alpes-EMBL-CNRS, Grenoble, France
| | - Nicolas Papageorgiou
- CNRS and Aix-Marseille Université, Architecture et Fonction des Macromolécules Biologiques, UMR 7257, Marseille, France
| | - Rob W. H. Ruigrok
- Université Grenoble Alpes, UVHCI, Grenoble, France
- CNRS, UVHCI, Grenoble, France
- Unit for Virus Host Cell Interactions, Université Grenoble Alpes-EMBL-CNRS, Grenoble, France
| | - Marc Jamin
- Université Grenoble Alpes, UVHCI, Grenoble, France
- CNRS, UVHCI, Grenoble, France
- Unit for Virus Host Cell Interactions, Université Grenoble Alpes-EMBL-CNRS, Grenoble, France
| | - Malene Ringkjøbing Jensen
- Université Grenoble Alpes, Institut de Biologie Structurale (IBS), Grenoble, France
- CEA, DSV, IBS, Grenoble, France
- CNRS, IBS, Grenoble, France
- * E-mail: (MJ); (SL)
| | - Sonia Longhi
- CNRS and Aix-Marseille Université, Architecture et Fonction des Macromolécules Biologiques, UMR 7257, Marseille, France
- * E-mail: (MJ); (SL)
| | - Martin Blackledge
- Université Grenoble Alpes, Institut de Biologie Structurale (IBS), Grenoble, France
- CEA, DSV, IBS, Grenoble, France
- CNRS, IBS, Grenoble, France
| |
Collapse
|
34
|
Yegambaram K, Bulloch EMM, Kingston RL. Protein domain definition should allow for conditional disorder. Protein Sci 2013; 22:1502-18. [PMID: 23963781 DOI: 10.1002/pro.2336] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 08/04/2013] [Accepted: 08/12/2013] [Indexed: 12/19/2022]
Abstract
Proteins are often classified in a binary fashion as either structured or disordered. However this approach has several deficits. Firstly, protein folding is always conditional on the physiochemical environment. A protein which is structured in some circumstances will be disordered in others. Secondly, it hides a fundamental asymmetry in behavior. While all structured proteins can be unfolded through a change in environment, not all disordered proteins have the capacity for folding. Failure to accommodate these complexities confuses the definition of both protein structural domains and intrinsically disordered regions. We illustrate these points with an experimental study of a family of small binding domains, drawn from the RNA polymerase of mumps virus and its closest relatives. Assessed at face value the domains fall on a structural continuum, with folded, partially folded, and near unstructured members. Yet the disorder present in the family is conditional, and these closely related polypeptides can access the same folded state under appropriate conditions. Any heuristic definition of the protein domain emphasizing conformational stability divides this domain family in two, in a way that makes no biological sense. Structural domains would be better defined by their ability to adopt a specific tertiary structure: a structure that may or may not be realized, dependent on the circumstances. This explicitly allows for the conditional nature of protein folding, and more clearly demarcates structural domains from intrinsically disordered regions that may function without folding.
Collapse
Affiliation(s)
- Kavestri Yegambaram
- School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
| | | | | |
Collapse
|
35
|
Martinez N, Ribeiro EA, Leyrat C, Tarbouriech N, Ruigrok RWH, Jamin M. Structure of the C-terminal domain of lettuce necrotic yellows virus phosphoprotein. J Virol 2013; 87:9569-78. [PMID: 23785215 PMCID: PMC3754093 DOI: 10.1128/jvi.00999-13] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Accepted: 06/14/2013] [Indexed: 12/26/2022] Open
Abstract
Lettuce necrotic yellows virus (LNYV) is a prototype of the plant-adapted cytorhabdoviruses. Through a meta-prediction of disorder, we localized a folded C-terminal domain in the amino acid sequence of its phosphoprotein. This domain consists of an autonomous folding unit that is monomeric in solution. Its structure, solved by X-ray crystallography, reveals a lollipop-shaped structure comprising five helices. The structure is different from that of the corresponding domains of other Rhabdoviridae, Filoviridae, and Paramyxovirinae; only the overall topology of the polypeptide chain seems to be conserved, suggesting that this domain evolved under weak selective pressure and varied in size by the acquisition or loss of functional modules.
Collapse
Affiliation(s)
- Nicolas Martinez
- Université Grenoble Alpes, UVHCI, Grenoble, France
- CNRS, UVHCI, Grenoble, France
- Unit for Virus Host-Cell Interactions, Université Grenoble Alpes-EMBL-CNRS, Grenoble, France
- Institut Laue Langevin, Grenoble, France
| | - Euripedes A. Ribeiro
- Université Grenoble Alpes, UVHCI, Grenoble, France
- CNRS, UVHCI, Grenoble, France
- Unit for Virus Host-Cell Interactions, Université Grenoble Alpes-EMBL-CNRS, Grenoble, France
| | - Cédric Leyrat
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Nicolas Tarbouriech
- Université Grenoble Alpes, UVHCI, Grenoble, France
- CNRS, UVHCI, Grenoble, France
- Unit for Virus Host-Cell Interactions, Université Grenoble Alpes-EMBL-CNRS, Grenoble, France
| | - Rob W. H. Ruigrok
- Université Grenoble Alpes, UVHCI, Grenoble, France
- CNRS, UVHCI, Grenoble, France
- Unit for Virus Host-Cell Interactions, Université Grenoble Alpes-EMBL-CNRS, Grenoble, France
| | - Marc Jamin
- Université Grenoble Alpes, UVHCI, Grenoble, France
- CNRS, UVHCI, Grenoble, France
- Unit for Virus Host-Cell Interactions, Université Grenoble Alpes-EMBL-CNRS, Grenoble, France
| |
Collapse
|
36
|
Blocquel D, Beltrandi M, Erales J, Barbier P, Longhi S. Biochemical and structural studies of the oligomerization domain of the Nipah virus phosphoprotein: evidence for an elongated coiled-coil homotrimer. Virology 2013; 446:162-72. [PMID: 24074578 DOI: 10.1016/j.virol.2013.07.031] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2013] [Revised: 07/08/2013] [Accepted: 07/24/2013] [Indexed: 12/19/2022]
Abstract
Nipah virus (NiV) is a recently emerged severe human pathogen that belongs to the Henipavirus genus within the Paramyxoviridae family. The NiV genome is encapsidated by the nucleoprotein (N) within a helical nucleocapsid that is the substrate used by the polymerase for transcription and replication. The polymerase is recruited onto the nucleocapsid via its cofactor, the phosphoprotein (P). The NiV P protein has a modular organization, with alternating disordered and ordered domains. Among these latter, is the P multimerization domain (PMD) that was predicted to adopt a coiled-coil conformation. Using both biochemical and biophysical approaches, we show that NiV PMD forms a highly stable and elongated coiled-coil trimer, a finding in striking contrast with respect to the PMDs of Paramyxoviridae members investigated so far that were all found to tetramerize. The present results therefore represent the first report of a paramyxoviral P protein forming trimers.
Collapse
Affiliation(s)
- David Blocquel
- CNRS and Aix-Marseille Université, Architecture et Fonction des Macromolécules Biologiques (AFMB), UMR 7257, 13288 Marseille, France
| | | | | | | | | |
Collapse
|
37
|
Abstract
The phosphoprotein (P) is virally encoded by the Rhabdoviridae and Paramyxoviridae in the order Mononegavirales. P is a self-associated oligomer and forms complexes with the large viral polymerase protein (L), the nucleocapsid protein (N), and the assembled nucleocapsid. P from different viruses has shown structural diversities even though their essential functions are the same. We systematically mapped the domains in mumps virus (MuV) P and investigated their interactions with nucleocapsid-like particles (NLPs). Similar to other P proteins, MuV P contains N-terminal, central, and C-terminal domains with flexible linkers between neighboring domains. By pulldown assays, we discovered that in addition to the previously proposed nucleocapsid binding domain (residues 343 to 391), the N-terminal region of MuV P (residues 1 to 194) could also bind NLPs. Further analysis of binding kinetics was conducted using surface plasmon resonance. This is the first observation that both the N- and C-terminal regions of a negative-strand RNA virus P are involved in binding the nucleocapsid. In addition, we defined the oligomerization domain (POD) of MuV P as residues 213 to 277 and determined its crystal structure. The tetrameric MuV POD is formed by one pair of long parallel α-helices with another pair in opposite orientation. Unlike the parallel orientation of each α-helix in the tetramer of Sendai virus POD, this represents a novel orientation of a POD where both the N- and the C-terminal domains are at either end of the tetramer. This is consistent with the observation that both the N- and the C-terminal domains are involved in binding the nucleocapsid.
Collapse
|
38
|
Spínola-Amilibia M, Rivera J, Ortiz-Lombardía M, Romero A, Neira JL, Bravo J. BRMS151-98 and BRMS151-84 are crystal oligomeric coiled coils with different oligomerization states, which behave as disordered protein fragments in solution. J Mol Biol 2013; 425:2147-63. [PMID: 23500495 DOI: 10.1016/j.jmb.2013.03.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Revised: 01/09/2013] [Accepted: 03/05/2013] [Indexed: 01/12/2023]
Abstract
The breast cancer metastasis suppressor 1 (BRMS1) gene suppresses metastasis without affecting the primary tumor growth. Cellular localization of BRMS1 appears to be important for exerting its effects on metastasis inhibition. We recently described a nucleo-cytoplasmic shuttling for BRMS1 and identified a nuclear export signal within the N-terminal coiled coil. The structure of these regions shows an antiparallel coiled coil capable of oligomerizing, which compromises the accessibility to the nuclear export signal consensus residues. We have studied the structural and biophysical features of this region to further understand the contribution of the N-terminal coiled coil to the biological function of BRMS1. We have observed that residues 85 to 98 might be important in defining the oligomerization state of the BRMS1 N-terminal coiled coil. The fragments are mainly disordered in solution, with evidence of residual structure. In addition, we report the presence of a conformational dynamic equilibrium (oligomeric folded species ↔ oligomeric unfolded) in solution in the BRMS1 N-terminal coiled coil that might facilitate the nuclear export of BRMS1 to the cytoplasm.
Collapse
|
39
|
Doyle CM, Rumfeldt JA, Broom HR, Broom A, Stathopulos PB, Vassall KA, Almey JJ, Meiering EM. Energetics of oligomeric protein folding and association. Arch Biochem Biophys 2012; 531:44-64. [PMID: 23246784 DOI: 10.1016/j.abb.2012.12.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Revised: 11/29/2012] [Accepted: 12/05/2012] [Indexed: 12/11/2022]
Abstract
In nature, proteins most often exist as complexes, with many of these consisting of identical subunits. Understanding of the energetics governing the folding and misfolding of such homooligomeric proteins is central to understanding their function and misfunction, in disease or biotechnology. Much progress has been made in defining the mechanisms and thermodynamics of homooligomeric protein folding. In this review, we outline models as well as calorimetric and spectroscopic methods for characterizing oligomer folding, and describe extensive results obtained for diverse proteins, ranging from dimers to octamers and higher order aggregates. To our knowledge, this area has not been reviewed comprehensively in years, and the collective progress is impressive. The results provide evolutionary insights into the development of subunit interfaces, mechanisms of oligomer folding, and contributions of oligomerization to protein stability, function and regulation. Thermodynamic analyses have also proven valuable for understanding protein misfolding and aggregation mechanisms, suggesting new therapeutic avenues. Successful recent designs of novel, functional proteins demonstrate increased understanding of oligomer folding. Further rigorous analyses using multiple experimental and computational approaches are still required, however, to achieve consistent and accurate prediction of oligomer folding energetics. Modeling the energetics remains challenging but is a promising avenue for future advances.
Collapse
Affiliation(s)
- Colleen M Doyle
- Guelph-Waterloo Centre for Graduate Studies in Chemistry and Biochemistry, and Department of Chemistry, University of Waterloo, 200 University Ave. West, Waterloo, ON, Canada
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Karlin D, Belshaw R. Detecting remote sequence homology in disordered proteins: discovery of conserved motifs in the N-termini of Mononegavirales phosphoproteins. PLoS One 2012; 7:e31719. [PMID: 22403617 PMCID: PMC3293882 DOI: 10.1371/journal.pone.0031719] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Accepted: 01/18/2012] [Indexed: 11/19/2022] Open
Abstract
Paramyxovirinae are a large group of viruses that includes measles virus and parainfluenza viruses. The viral Phosphoprotein (P) plays a central role in viral replication. It is composed of a highly variable, disordered N-terminus and a conserved C-terminus. A second viral protein alternatively expressed, the V protein, also contains the N-terminus of P, fused to a zinc finger. We suspected that, despite their high variability, the N-termini of P/V might all be homologous; however, using standard approaches, we could previously identify sequence conservation only in some Paramyxovirinae. We now compared the N-termini using sensitive sequence similarity search programs, able to detect residual similarities unnoticeable by conventional approaches. We discovered that all Paramyxovirinae share a short sequence motif in their first 40 amino acids, which we called soyuz1. Despite its short length (11-16aa), several arguments allow us to conclude that soyuz1 probably evolved by homologous descent, unlike linear motifs. Conservation across such evolutionary distances suggests that soyuz1 plays a crucial role and experimental data suggest that it binds the viral nucleoprotein to prevent its illegitimate self-assembly. In some Paramyxovirinae, the N-terminus of P/V contains a second motif, soyuz2, which might play a role in blocking interferon signaling. Finally, we discovered that the P of related Mononegavirales contain similarly overlooked motifs in their N-termini, and that their C-termini share a previously unnoticed structural similarity suggesting a common origin. Our results suggest several testable hypotheses regarding the replication of Mononegavirales and suggest that disordered regions with little overall sequence similarity, common in viral and eukaryotic proteins, might contain currently overlooked motifs (intermediate in length between linear motifs and disordered domains) that could be detected simply by comparing orthologous proteins.
Collapse
Affiliation(s)
- David Karlin
- Department of Zoology, University of Oxford, Oxford, United Kingdom.
| | | |
Collapse
|
41
|
Habchi J, Longhi S. Structural disorder within paramyxovirus nucleoproteins and phosphoproteins. ACTA ACUST UNITED AC 2012; 8:69-81. [DOI: 10.1039/c1mb05204g] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
42
|
Habchi J, Blangy S, Mamelli L, Jensen MR, Blackledge M, Darbon H, Oglesbee M, Shu Y, Longhi S. Characterization of the interactions between the nucleoprotein and the phosphoprotein of Henipavirus. J Biol Chem 2011; 286:13583-602. [PMID: 21317293 PMCID: PMC3075704 DOI: 10.1074/jbc.m111.219857] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2011] [Revised: 02/10/2011] [Indexed: 01/15/2023] Open
Abstract
The Henipavirus genome is encapsidated by the nucleoprotein (N) within a helical nucleocapsid that recruits the polymerase complex via the phosphoprotein (P). In a previous study, we reported that in henipaviruses, the N-terminal domain of the phosphoprotein and the C-terminal domain of the nucleoprotein (N(TAIL)) are both intrinsically disordered. Here we show that Henipavirus N(TAIL) domains are also disordered in the context of full-length nucleoproteins. We also report the cloning, purification, and characterization of the C-terminal X domains (P(XD)) of Henipavirus phosphoproteins. Using isothermal titration calorimetry, we show that N(TAIL) and P(XD) form a 1:1 stoichiometric complex that is stable under NaCl concentrations as high as 1 M and has a K(D) in the μM range. Using far-UV circular dichroism and nuclear magnetic resonance, we show that P(XD) triggers an increase in the α-helical content of N(TAIL). Using fluorescence spectroscopy, we show that P(XD) has no impact on the chemical environment of a Trp residue introduced at position 527 of the Henipavirus N(TAIL) domain, thus arguing for the lack of stable contacts between the C termini of N(TAIL) and P(XD). Finally, we present a tentative structural model of the N(TAIL)-P(XD) interaction in which a short, order-prone region of N(TAIL) (α-MoRE; amino acids 473-493) adopts an α-helical conformation and is embedded between helices α2 and α3 of P(XD), leading to a relatively small interface dominated by hydrophobic contacts. The present results provide the first detailed experimental characterization of the N-P interaction in henipaviruses and designate the N(TAIL)-P(XD) interaction as a valuable target for rational antiviral approaches.
Collapse
Affiliation(s)
- Johnny Habchi
- From the Laboratoire d' Architecture et Fonction des Macromolécules Biologiques, UMR 6098 CNRS, Aix-Marseille University, Campus de Luminy, 13288 Marseille Cedex 9, France
| | - Stéphanie Blangy
- From the Laboratoire d' Architecture et Fonction des Macromolécules Biologiques, UMR 6098 CNRS, Aix-Marseille University, Campus de Luminy, 13288 Marseille Cedex 9, France
| | - Laurent Mamelli
- From the Laboratoire d' Architecture et Fonction des Macromolécules Biologiques, UMR 6098 CNRS, Aix-Marseille University, Campus de Luminy, 13288 Marseille Cedex 9, France
| | - Malene Ringkjøbing Jensen
- the Protein Dynamics and Flexibility by NMR Group, Institut de Biologie Structurale Jean-Pierre Ebel, UMR 5075, CEA-CNRS-UJF, 41 Rue Jules Horowitz, 38027 Grenoble, France, and
| | - Martin Blackledge
- the Protein Dynamics and Flexibility by NMR Group, Institut de Biologie Structurale Jean-Pierre Ebel, UMR 5075, CEA-CNRS-UJF, 41 Rue Jules Horowitz, 38027 Grenoble, France, and
| | - Hervé Darbon
- From the Laboratoire d' Architecture et Fonction des Macromolécules Biologiques, UMR 6098 CNRS, Aix-Marseille University, Campus de Luminy, 13288 Marseille Cedex 9, France
| | - Michael Oglesbee
- the Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio 43210
| | - Yaoling Shu
- the Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio 43210
| | - Sonia Longhi
- From the Laboratoire d' Architecture et Fonction des Macromolécules Biologiques, UMR 6098 CNRS, Aix-Marseille University, Campus de Luminy, 13288 Marseille Cedex 9, France
| |
Collapse
|
43
|
Yegambaram K, Kingston RL. The feet of the measles virus polymerase bind the viral nucleocapsid protein at a single site. Protein Sci 2010; 19:893-9. [PMID: 20143306 DOI: 10.1002/pro.354] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Measles virus has a single-stranded RNA genome that is organized into a helical complex by the viral N protein. The resulting structure is termed the nucleocapsid and is traversed by the viral polymerase during RNA synthesis. The P protein, the noncatalytic subunit of the polymerase, provides the "legs and feet" that allow the polymerase to walk along its protein-RNA template. The polymerase feet are very simple three-helix bundles, only 50 amino acids in size. Previously, we have shown that these feet grasp the viral N protein during movement by attaching to a short sequence (amino acids 487-503) within the disordered and surface-exposed tail of N, causing it to fold into a helix. The result is a weak-affinity complex with a short lifetime, which would allow the polymerase to take rapid steps forward. The structure of the complex was determined using X-ray crystallography. This simple model of binding was challenged by a paper in this journal, claiming that a downstream sequence in the tail of N (amino acids 517-525) was also critical for the association. Its presence was reported to enhance the overall affinity of the polymerase feet for N by three orders of magnitude. We have, therefore, examined binding of the polymerase foot domain to amino acids 477-525 of N using quantitative biophysical techniques, and compared the results to our previous binding studies, performed using amino acids 477-505 of N. We find no evidence that the sequence downstream of amino acid 505 influences binding, validating the original single-site binding model.
Collapse
Affiliation(s)
- Kavestri Yegambaram
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand
| | | |
Collapse
|
44
|
Habchi J, Mamelli L, Darbon H, Longhi S. Structural disorder within Henipavirus nucleoprotein and phosphoprotein: from predictions to experimental assessment. PLoS One 2010; 5:e11684. [PMID: 20657787 PMCID: PMC2908138 DOI: 10.1371/journal.pone.0011684] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2010] [Accepted: 06/21/2010] [Indexed: 12/30/2022] Open
Abstract
Henipaviruses are newly emerged viruses within the Paramyxoviridae family. Their negative-strand RNA genome is packaged by the nucleoprotein (N) within alpha-helical nucleocapsid that recruits the polymerase complex made of the L protein and the phosphoprotein (P). To date structural data on Henipaviruses are scarce, and their N and P proteins have never been characterized so far. Using both computational and experimental approaches we herein show that Henipaviruses N and P proteins possess large intrinsically disordered regions. By combining several disorder prediction methods, we show that the N-terminal domain of P (PNT) and the C-terminal domain of N (NTAIL) are both mostly disordered, although they contain short order-prone segments. We then report the cloning, the bacterial expression, purification and characterization of Henipavirus PNT and NTAIL domains. By combining gel filtration, dynamic light scattering, circular dichroism and nuclear magnetic resonance, we show that both NTAIL and PNT belong to the premolten globule sub-family within the class of intrinsically disordered proteins. This study is the first reported experimental characterization of Henipavirus P and N proteins. The evidence that their respective N-terminal and C-terminal domains are highly disordered under native conditions is expected to be invaluable for future structural studies by helping to delineate N and P protein domains amenable to crystallization. In addition, following previous hints establishing a relationship between structural disorder and protein interactivity, the present results suggest that Henipavirus PNT and NTAIL domains could be involved in manifold protein-protein interactions.
Collapse
Affiliation(s)
- Johnny Habchi
- Architecture et Fonction des Macromolécules Biologiques, UMR 6098 CNRS et Universités Aix-Marseille I et II, Campus de Luminy, Marseille, France
| | - Laurent Mamelli
- Architecture et Fonction des Macromolécules Biologiques, UMR 6098 CNRS et Universités Aix-Marseille I et II, Campus de Luminy, Marseille, France
| | - Hervé Darbon
- Architecture et Fonction des Macromolécules Biologiques, UMR 6098 CNRS et Universités Aix-Marseille I et II, Campus de Luminy, Marseille, France
| | - Sonia Longhi
- Architecture et Fonction des Macromolécules Biologiques, UMR 6098 CNRS et Universités Aix-Marseille I et II, Campus de Luminy, Marseille, France
| |
Collapse
|
45
|
Gely S, Lowry DF, Bernard C, Jensen MR, Blackledge M, Costanzo S, Bourhis JM, Darbon H, Daughdrill G, Longhi S. Solution structure of the C-terminal X domain of the measles virus phosphoprotein and interaction with the intrinsically disordered C-terminal domain of the nucleoprotein. J Mol Recognit 2010; 23:435-47. [DOI: 10.1002/jmr.1010] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
46
|
Abstract
The nucleocapsid protein (NP) of mumps virus (MuV), a paramyxovirus, was coexpressed with the phosphoprotein (P) in Escherichia coli. The NP and P proteins form a soluble complex containing RNA. Under a transmission electron microscope, the NP-RNA complex appears as a nucleocapsidlike ring that has a diameter of approximately 20 nm with 13 subunits. There is a piece of single-stranded RNA with a length of 78 nucleotides in the NP-RNA ring. Shorter RNA pieces are also visible. The MuV NP protein may provide weaker protection of the RNA than the NP protein of some other negative-strand RNA viruses, reflecting the degree of NP protein association.
Collapse
|