1
|
Ropón-Palacios G, Pérez-Silva J, Gervacio-Villarreal E, Sancho C, Olivos-Ramirez GE, Chenet-Zuta ME, Tapayuri-Rengifo K, Cárdenas-Cárdenas RG, Navarro Del Aguila I, Sosa-Amay F, De la Cruz-Flores M, Moussa N, Casillas-Muñoz F, Camps I. Structural basis of the tarocystatin inhibitory mechanism against papain. Int J Biol Macromol 2025; 308:142647. [PMID: 40158580 DOI: 10.1016/j.ijbiomac.2025.142647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 03/24/2025] [Accepted: 03/27/2025] [Indexed: 04/02/2025]
Abstract
Plant pathogens pose a severe threat to global food security by compromising the availability, quality, and safety of crops for human and animal consumption. Given the urgent need for alternatives to chemical pesticides, natural inhibitors of phytopathogenic proteases represent promising biopesticides. Tarocystatin has been characterized in Colocasia esculenta as a defense protein against phytopathogenic nematodes and fungi. Despite its biotechnological potential, few studies describe its mechanical, structural, and energetic properties. In this study, we characterized the inhibitory mechanism of tarocystatin against papain using a computational biophysics approach. Through extensive molecular dynamics (MD) and steered molecular dynamics (SMD) simulations, we explored the dynamic, energetic, structural, and mechanical basis of tarocystatin and its specific binding to papain. Our results suggest that the stability of the complex is characterized by a lack of conformational rearrangements, showing invariability in its secondary structure across all MD replicas. Additionally, electrostatic analysis revealed a high complementarity of the tarocystatin-papain complex, which was later corroborated by the hydrogen-bond network established at the complex interface, explaining its strong inhibitory capacity. Moreover, we determined that the substrate-competitive inhibitory mechanism is due to the binding ability of conserved motifs in tarocystatin, which efficiently interact with the catalytic active site of papain. This was also confirmed through SMD, where we observed that the N-terminal region acts as a spring to prevent the dissociation of the complex under external pulling forces. Overall, our study is the first to provide a comprehensive exploration of the biophysical properties of the tarocystatin-papain complex, offering insights into the tarocystatin's inhibition mechanism. These results lay the foundation for future development of tarocystatin-based antifungal alternatives, as well as for exploring its inhibitory activity in other pathogens or enhancing its efficacy through molecular engineering.
Collapse
Affiliation(s)
- G Ropón-Palacios
- Laboratório de Modelagem Computacional - LaModel, Instituto de Ciências Exatas - ICEx, Universidade Federal de Alfenas - UNIFAL-, MG, Alfenas Minas Gerais, Brazil
| | - J Pérez-Silva
- Laboratório de Modelagem Computacional - LaModel, Instituto de Ciências Exatas - ICEx, Universidade Federal de Alfenas - UNIFAL-, MG, Alfenas Minas Gerais, Brazil
| | - E Gervacio-Villarreal
- Laboratório de Modelagem Computacional - LaModel, Instituto de Ciências Exatas - ICEx, Universidade Federal de Alfenas - UNIFAL-, MG, Alfenas Minas Gerais, Brazil
| | - C Sancho
- Laboratório de Modelagem Computacional - LaModel, Instituto de Ciências Exatas - ICEx, Universidade Federal de Alfenas - UNIFAL-, MG, Alfenas Minas Gerais, Brazil
| | - G E Olivos-Ramirez
- Laboratório de Modelagem Computacional - LaModel, Instituto de Ciências Exatas - ICEx, Universidade Federal de Alfenas - UNIFAL-, MG, Alfenas Minas Gerais, Brazil; Department of Biosystems and Soft Matter, Institute of Fundamental Technological Research, Polish Academy of Sciences, ul. Pawińskiego 5B, 02-106 Warsaw, Poland
| | | | - K Tapayuri-Rengifo
- Laboratório de Modelagem Computacional - LaModel, Instituto de Ciências Exatas - ICEx, Universidade Federal de Alfenas - UNIFAL-, MG, Alfenas Minas Gerais, Brazil
| | | | | | - F Sosa-Amay
- Universidad Nacional de la Amazonı́a Peruana, Iquitos, Peru
| | | | - N Moussa
- Faculty of Pharmacy, Manara University, Latakia, Syria
| | - F Casillas-Muñoz
- Departamento de Farmacobiologı́a, Centro Universitario de Ciencias Exactas e Ingenierı́as, Universidad de Guadalajara, Guadalajara, Jalisco 44430, Mexico
| | - I Camps
- Laboratório de Modelagem Computacional - LaModel, Instituto de Ciências Exatas - ICEx, Universidade Federal de Alfenas - UNIFAL-, MG, Alfenas Minas Gerais, Brazil.
| |
Collapse
|
2
|
Rogers J, Bajur AT, Salaita K, Spillane KM. Mechanical control of antigen detection and discrimination by T and B cell receptors. Biophys J 2024; 123:2234-2255. [PMID: 38794795 PMCID: PMC11331051 DOI: 10.1016/j.bpj.2024.05.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 05/10/2024] [Accepted: 05/21/2024] [Indexed: 05/26/2024] Open
Abstract
The adaptive immune response is orchestrated by just two cell types, T cells and B cells. Both cells possess the remarkable ability to recognize virtually any antigen through their respective antigen receptors-the T cell receptor (TCR) and B cell receptor (BCR). Despite extensive investigations into the biochemical signaling events triggered by antigen recognition in these cells, our ability to predict or control the outcome of T and B cell activation remains elusive. This challenge is compounded by the sensitivity of T and B cells to the biophysical properties of antigens and the cells presenting them-a phenomenon we are just beginning to understand. Recent insights underscore the central role of mechanical forces in this process, governing the conformation, signaling activity, and spatial organization of TCRs and BCRs within the cell membrane, ultimately eliciting distinct cellular responses. Traditionally, T cells and B cells have been studied independently, with researchers working in parallel to decipher the mechanisms of activation. While these investigations have unveiled many overlaps in how these cell types sense and respond to antigens, notable differences exist. To fully grasp their biology and harness it for therapeutic purposes, these distinctions must be considered. This review compares and contrasts the TCR and BCR, placing emphasis on the role of mechanical force in regulating the activity of both receptors to shape cellular and humoral adaptive immune responses.
Collapse
Affiliation(s)
- Jhordan Rogers
- Department of Chemistry, Emory University, Atlanta, Georgia
| | - Anna T Bajur
- Department of Physics, King's College London, London, United Kingdom; Randall Centre for Cell and Molecular Biophysics, King's College London, London, United Kingdom
| | - Khalid Salaita
- Department of Chemistry, Emory University, Atlanta, Georgia; Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia.
| | - Katelyn M Spillane
- Department of Physics, King's College London, London, United Kingdom; Randall Centre for Cell and Molecular Biophysics, King's College London, London, United Kingdom; Department of Life Sciences, Imperial College London, London, United Kingdom.
| |
Collapse
|
3
|
Louwerse MD, Sivak DA. Connections between efficient control and spontaneous transitions in an Ising model. Phys Rev E 2022; 106:064124. [PMID: 36671088 DOI: 10.1103/physreve.106.064124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 12/02/2022] [Indexed: 06/17/2023]
Abstract
A system can be driven between metastable configurations by a time-dependent driving protocol, which uses external control parameters to change the potential energy of the system. Here we investigate the correspondence between driving protocols that are designed to minimize work and the spontaneous transition paths of the system in the absence of driving. We study the spin-inversion reaction in a 2D Ising model, quantifying the timing of each spin flip and heat flow to the system during both a minimum-work protocol and a spontaneous transition. The general order of spin flips during the transition mechanism is preserved between the processes, despite the coarseness of control parameters that are unable to reproduce more detailed features of the spontaneous mechanism. Additionally, external control parameters provide energy to each system component to compensate changes in internal energy, showing how control parameters are tuned during a minimum-work protocol to counteract underlying energetic features. This paper supports a correspondence between minimum-work protocols and spontaneous transition mechanisms.
Collapse
Affiliation(s)
- Miranda D Louwerse
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia, Canada V5A1S6
| | - David A Sivak
- Department of Physics, Simon Fraser University, Burnaby, British Columbia, Canada V5A1S6
| |
Collapse
|
4
|
Louwerse MD, Sivak D. Multidimensional minimum-work control of a 2D Ising model. J Chem Phys 2022; 156:194108. [DOI: 10.1063/5.0086079] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
A system's configurational state can be manipulated using dynamic variation of control parameters, such as temperature, pressure, or magnetic field; for finite-duration driving, excess work is required above the equilibrium free-energy change. Minimum-work protocols in multidimensional control-parameter space have potential to significantly reduce work relative to one-dimensional control. By numerically minimizing a linear-response approximation to the excess work, we design protocols in control-parameter spaces of a 2D Ising model that efficiently drive the system from the all-down to all-up configuration. We find that such designed multidimensional protocols take advantage of more flexible control to avoid control-parameter regions of high system resistance, heterogeneously input and extract work to make use of system relaxation, and flatten the energy landscape, making accessible many configurations that would otherwise have prohibitively high energy and thus decreasing spin correlations. Relative to one-dimensional protocols, this speeds up the rate-limiting spin-inversion reaction, thereby keeping the system significantly closer to equilibrium for a wide range of protocol durations, and significantly reducing resistance and hence work.
Collapse
|
5
|
Yang B, Liu Z, Liu H, Nash MA. Next Generation Methods for Single-Molecule Force Spectroscopy on Polyproteins and Receptor-Ligand Complexes. Front Mol Biosci 2020; 7:85. [PMID: 32509800 PMCID: PMC7248566 DOI: 10.3389/fmolb.2020.00085] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 04/16/2020] [Indexed: 12/31/2022] Open
Abstract
Single-molecule force spectroscopy with the atomic force microscope provides molecular level insights into protein function, allowing researchers to reconstruct energy landscapes and understand functional mechanisms in biology. With steadily advancing methods, this technique has greatly accelerated our understanding of force transduction, mechanical deformation, and mechanostability within single- and multi-domain polyproteins, and receptor-ligand complexes. In this focused review, we summarize the state of the art in terms of methodology and highlight recent methodological improvements for AFM-SMFS experiments, including developments in surface chemistry, considerations for protein engineering, as well as theory and algorithms for data analysis. We hope that by condensing and disseminating these methods, they can assist the community in improving data yield, reliability, and throughput and thereby enhance the information that researchers can extract from such experiments. These leading edge methods for AFM-SMFS will serve as a groundwork for researchers cognizant of its current limitations who seek to improve the technique in the future for in-depth studies of molecular biomechanics.
Collapse
Affiliation(s)
- Byeongseon Yang
- Department of Chemistry, University of Basel, Basel, Switzerland
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Zhaowei Liu
- Department of Chemistry, University of Basel, Basel, Switzerland
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Haipei Liu
- Department of Chemistry, University of Basel, Basel, Switzerland
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Michael A. Nash
- Department of Chemistry, University of Basel, Basel, Switzerland
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| |
Collapse
|
6
|
Mechanobiology: protein refolding under force. Emerg Top Life Sci 2018; 2:687-699. [PMID: 33530665 DOI: 10.1042/etls20180044] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 09/19/2018] [Accepted: 09/19/2018] [Indexed: 02/03/2023]
Abstract
The application of direct force to a protein enables to probe wide regions of its energy surface through conformational transitions as unfolding, extending, recoiling, collapsing, and refolding. While unfolding under force typically displayed a two-state behavior, refolding under force, from highly extended unfolded states, displayed a more complex behavior. The first recording of protein refolding at a force quench step displayed an initial rapid elastic recoil, followed by a plateau phase at some extension, concluding with a collapse to a final state, at which refolding occurred. These findings stirred a lively discussion, which led to further experimental and theoretical investigation of this behavior. It was demonstrated that the polymeric chain of the unfolded protein is required to fully collapse to a globular conformation for the maturation of native structure. This behavior was modeled using one-dimensional free energy landscape over the end-to-end length reaction coordinate, the collective measured variable. However, at low forces, conformational space is not well captured by such models, and using two-dimensional energy surfaces provides further insight into the dynamics of this process. This work reviews the main concepts of protein refolding under constant force, which is essential for understanding how mechanotransducing proteins operate in vivo.
Collapse
|
7
|
Influence of gauche effect on uncharged oxime reactivators for the reactivation of tabun-inhibited AChE: quantum chemical and steered molecular dynamics studies. J Comput Aided Mol Des 2018; 32:793-807. [DOI: 10.1007/s10822-018-0130-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 07/04/2018] [Indexed: 02/06/2023]
|
8
|
Do PC, Lee EH, Le L. Steered Molecular Dynamics Simulation in Rational Drug Design. J Chem Inf Model 2018; 58:1473-1482. [DOI: 10.1021/acs.jcim.8b00261] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Phuc-Chau Do
- School of Biotechnology, International University, Vietnam National University, Ho Chi Minh City 700000, Vietnam
| | - Eric H. Lee
- Department of Medicine and Division of Hematology and Oncology, Loma Linda University Medical Center, Loma Linda, California 92350, United States
| | - Ly Le
- School of Biotechnology, International University, Vietnam National University, Ho Chi Minh City 700000, Vietnam
| |
Collapse
|
9
|
Jana K, Bandyopadhyay T, Ganguly B. Designed inhibitors with hetero linkers for gastric proton pump H +,K +-ATPase: Steered molecular dynamics and metadynamics studies. J Mol Graph Model 2017; 78:129-138. [PMID: 29055186 DOI: 10.1016/j.jmgm.2017.10.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 10/06/2017] [Accepted: 10/09/2017] [Indexed: 02/07/2023]
Abstract
Acid suppressant SCH28080 and its derivatives reversibly reduce acid secretion activity of the H+,K+-ATPase in a K+ competitive manner. The results on homologation of the SCH28080 by varying the linker chain length suggested the improvement in efficacy. However, the pharmacokinetic studies reveal that the hydrophobic nature of the CH2 linker units may not help it to function as a better acid suppressant. We have exploited the role of linker unit to enhance the efficacy of such reversible acid suppressant drug molecules using hetero linker, i.e., disulfide and peroxy linkers. The logarithm of partition coefficient defined for a drug molecule relates to the partition coefficient, which allows the optimum solubility characteristics to reach the active site. The logarithm of partition coefficient calculated for the designed inhibitors suggests that inhibitors would possibly reach the active site in sufficient concentration like in the case of SCH28080. The steered molecular dynamics studies have revealed that the Inhibitor-1 with disulfide linker unit is more stable at the active site due to greater noncovalent interactions compared to the SCH28080. Centre of mass distance analysis suggests that the Cysteine-813 amino acid residue selectively plays an important role in the inhibition of H+,K+-ATPase for Inhibitor-1. Furthermore, the quantum chemical calculations with M11L/6-31+G(d,p) level of theory have been performed to account the noncovalent interactions responsible for the stabilization of inhibitor molecules in the active site gorge of the gastric proton pump at different time scale. The hydrogen bonding and hydrophobic interaction studies corroborate the center of mass distance analysis as well. Well-tempered metadynamics free energy surface and center of mass separation analysis for the Inhibitor-1 is in good agreement with the steered molecular dynamics results. The torsional angle of the linker units seems to be crucial for better efficacy of drug molecules. The torsional angle of linker units of SCH28080 (COCH2C) and of Inhibitor 1 (CSSC) prefers to lie within ∼60°-90° for a longer time during the simulations, whereas, the peroxy linker (COOC) of Inhibitor 2 prefers to adopt ∼120-160°. Therefore, it appears that the smaller torsion angle of linker units can achieve better interactions with the active site residues of H+,K+-ATPase to inhibit the acid secretion activity. The reversible drug molecules with disulfide linker unit would be a promising candidate as proton pump antagonist to H+,K+-ATPase.
Collapse
Affiliation(s)
- Kalyanashis Jana
- Computation and Simulation Unit (Analytical Discipline and Centralized Instrument Facility), CSIR, Central Salt and Marine Chemicals Research Institute, Bhavnagar 364002, Gujarat, India; Academy of Scientific and Innovative Research, CSIR, CSMCRI, Bhavnagar 364002, Gujarat, India
| | - Tusar Bandyopadhyay
- Theoretical Chemistry Section, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085, India.
| | - Bishwajit Ganguly
- Computation and Simulation Unit (Analytical Discipline and Centralized Instrument Facility), CSIR, Central Salt and Marine Chemicals Research Institute, Bhavnagar 364002, Gujarat, India; Academy of Scientific and Innovative Research, CSIR, CSMCRI, Bhavnagar 364002, Gujarat, India.
| |
Collapse
|
10
|
Craven GT, Junginger A, Hernandez R. Lagrangian descriptors of driven chemical reaction manifolds. Phys Rev E 2017; 96:022222. [PMID: 28950601 DOI: 10.1103/physreve.96.022222] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Indexed: 06/07/2023]
Abstract
The persistence of a transition state structure in systems driven by time-dependent environments allows the application of modern reaction rate theories to solution-phase and nonequilibrium chemical reactions. However, identifying this structure is problematic in driven systems and has been limited by theories built on series expansion about a saddle point. Recently, it has been shown that to obtain formally exact rates for reactions in thermal environments, a transition state trajectory must be constructed. Here, using optimized Lagrangian descriptors [G. T. Craven and R. Hernandez, Phys. Rev. Lett. 115, 148301 (2015)PRLTAO0031-900710.1103/PhysRevLett.115.148301], we obtain this so-called distinguished trajectory and the associated moving reaction manifolds on model energy surfaces subject to various driving and dissipative conditions. In particular, we demonstrate that this is exact for harmonic barriers in one dimension and this verification gives impetus to the application of Lagrangian descriptor-based methods in diverse classes of chemical reactions. The development of these objects is paramount in the theory of reaction dynamics as the transition state structure and its underlying network of manifolds directly dictate reactivity and selectivity.
Collapse
Affiliation(s)
- Galen T Craven
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Andrej Junginger
- Institut für Theoretische Physik 1, Universität Stuttgart, 70550 Stuttgart, Germany
| | - Rigoberto Hernandez
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, USA
| |
Collapse
|
11
|
Durner E, Ott W, Nash MA, Gaub HE. Post-Translational Sortase-Mediated Attachment of High-Strength Force Spectroscopy Handles. ACS OMEGA 2017; 2:3064-3069. [PMID: 30023682 PMCID: PMC6044863 DOI: 10.1021/acsomega.7b00478] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 05/26/2017] [Indexed: 05/27/2023]
Abstract
Single-molecule force spectroscopy greatly benefits from site-specific surface immobilization and specific probing with a functionalized cantilever. Here, we describe a streamlined approach to such experiments by covalently attaching mechanically stable receptors onto proteins of interest (POI) to improve pickup efficiency and specificity. This platform provides improved throughput, allows precise control over the pulling geometry, and allows for multiple constructs to be probed with the same ligand-modified cantilever. We employ two orthogonal enzymatic ligation reactions [sortase and phosphopantetheinyl transferase (Sfp)] to covalently immobilize POI to a pegylated surface and to subsequently ligate the POI to a mechanically stable dockerin domain at the protein's C-terminus for use as a high-strength pulling handle. Our configuration permits expression and folding of the POI to proceed independently from the mechanically stable receptor used for specific probing and requires only two short terminal peptide sequences (i.e., ybbR-tag and sortase C-tag). We applied this system successfully to proteins expressed using in vitro transcription and translation reactions without a protein purification step and to purified proteins expressed in Escherichia coli.
Collapse
Affiliation(s)
- Ellis Durner
- Lehrstuhl
für Angewandte Physik and Center for Nanoscience, Ludwig-Maximilians-Universität, 80799 Munich, Germany
| | - Wolfgang Ott
- Lehrstuhl
für Angewandte Physik and Center for Nanoscience, Ludwig-Maximilians-Universität, 80799 Munich, Germany
| | - Michael A. Nash
- Department
of Chemistry, University of Basel, 4056 Basel, Switzerland
- Department
of Biosystems Science & Engineering, Swiss Federal Institute of Technology (ETH-Zurich), 4058 Basel, Switzerland
| | - Hermann E. Gaub
- Lehrstuhl
für Angewandte Physik and Center for Nanoscience, Ludwig-Maximilians-Universität, 80799 Munich, Germany
| |
Collapse
|
12
|
Ghosh S, Chandar NB, Jana K, Ganguly B. Revealing the importance of linkers in K-series oxime reactivators for tabun-inhibited AChE using quantum chemical, docking and SMD studies. J Comput Aided Mol Des 2017. [PMID: 28646405 DOI: 10.1007/s10822-017-0036-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Inhibition of acetylcholinesterase (AChE) with organophosphorus compounds has a detrimental effect on human life. Oxime K203 seems to be one of the promising reactivators for tabun-inhibited AChE than (K027, K127, and K628). These reactivators differ only in the linker units between the two pyridinium rings. The conformational analyses performed with quantum chemical RHF/6-31G* level for K027, K127, K203 and K628 showed that the minimum energy conformers have different orientations of the active and peripheral pyridinium rings for these reactivator molecules. K203 with (-CH2-CH=CH-CH2-) linker unit possesses more open conformation compared to the other reactivators. Such orientation of K203 experiences favorable interaction with the surrounding residues of catalytic anionic site (CAS) and peripheral anionic site (PAS) of tabun-inhibited AChE. From the steered molecular dynamics simulations, it has been observed that the oxygen atom of the oxime group of K203 reactivator approaches nearest to the P-atom of the SUN203 (3.75 Å) at lower time scales (less than ~1000 ps) as compared to the other reactivators. K203 experiences less number of hydrophobic interaction with the PAS residues which is suggested to be an important factor for the efficient reactivation process. In addition, K203 crates large number of H-bonding with CAS residues SUN203, Phe295, Tyr337, Phe338 and His447. K203 barely changes its conformation during the SMD simulation process and hence the energy penalty to adopt any other conformation is minimal in this case as compared to the other reactivators. The molecular mechanics and Poisson-Boltzmann surface area binding energies obtained for the interaction of K203 inside the gorge of tabun inhibited AChE is substantially higher (-290.2 kcal/mol) than the corresponding K628 reactivator (-260.4 kcal/mol), which also possess unsaturated aromatic linker unit.
Collapse
Affiliation(s)
- Shibaji Ghosh
- Computation and Simulation Unit (Analytical Discipline and Centralized Instrument Facility), CSIR-Central Salt & Marine Chemicals Research Institute, Bhavnagar, Gujarat, 364 002, India.,Academy of Scientific and Innovative Research, CSIR-CSMCRI, Bhavnagar, Gujarat, 364 002, India
| | - Nellore Bhanu Chandar
- Computation and Simulation Unit (Analytical Discipline and Centralized Instrument Facility), CSIR-Central Salt & Marine Chemicals Research Institute, Bhavnagar, Gujarat, 364 002, India.,Academy of Scientific and Innovative Research, CSIR-CSMCRI, Bhavnagar, Gujarat, 364 002, India
| | - Kalyanashis Jana
- Computation and Simulation Unit (Analytical Discipline and Centralized Instrument Facility), CSIR-Central Salt & Marine Chemicals Research Institute, Bhavnagar, Gujarat, 364 002, India.,Academy of Scientific and Innovative Research, CSIR-CSMCRI, Bhavnagar, Gujarat, 364 002, India
| | - Bishwajit Ganguly
- Computation and Simulation Unit (Analytical Discipline and Centralized Instrument Facility), CSIR-Central Salt & Marine Chemicals Research Institute, Bhavnagar, Gujarat, 364 002, India. .,Academy of Scientific and Innovative Research, CSIR-CSMCRI, Bhavnagar, Gujarat, 364 002, India.
| |
Collapse
|
13
|
Berkovich R, Mondal J, Paster I, Berne BJ. Simulated Force Quench Dynamics Shows GB1 Protein Is Not a Two State Folder. J Phys Chem B 2017; 121:5162-5173. [PMID: 28453938 DOI: 10.1021/acs.jpcb.7b00610] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Single molecule force spectroscopy is a useful technique for investigating mechanically induced protein unfolding and refolding under reduced forces by monitoring the end-to-end distance of the protein. The data is often interpreted via a "two-state" model based on the assumption that the end-to-end distance alone is a good reaction coordinate and the thermodynamic behavior is then ascribed to the free energy as a function of this one reaction coordinate. In this paper, we determined the free energy surface (PMF) of GB1 protein from atomistic simulations in explicit solvent under different applied forces as a function of two collective variables (the end-to-end-distance, and the fraction of native contacts ρ). The calculated 2-d free energy surfaces exhibited several distinct states, or basins, mostly visible along the ρ coordinate. Brownian dynamics (BD) simulations on the smoothed free energy surface show that the protein visits a metastable molten globule state and is thus a three state folder, not the two state folder inferred using the end-to-end distance as the sole reaction coordinate. This study lends support to recent experiments that suggest that GB1 is not a two-state folder.
Collapse
Affiliation(s)
- Ronen Berkovich
- Department of Chemical Engineering, Ben-Gurion University of the Negev , Beer-Sheva 84105, Israel
| | - Jagannath Mondal
- Tata Institute of Fundamental Research, Centre for Interdisciplinary Sciences , Hyderabad, India
| | - Inga Paster
- Department of Chemical Engineering, Ben-Gurion University of the Negev , Beer-Sheva 84105, Israel
| | - B J Berne
- Department of Chemistry, Columbia University , New York, New York 10027, United States
| |
Collapse
|
14
|
Nash MA, Smith SP, Fontes CM, Bayer EA. Single versus dual-binding conformations in cellulosomal cohesin-dockerin complexes. Curr Opin Struct Biol 2016; 40:89-96. [PMID: 27579515 DOI: 10.1016/j.sbi.2016.08.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 07/22/2016] [Accepted: 08/02/2016] [Indexed: 12/24/2022]
Abstract
Cohesins and dockerins are complementary interacting protein modules that form stable and highly specific receptor-ligand complexes. They play a crucial role in the assembly of cellulose-degrading multi-enzyme complexes called cellulosomes and have potential applicability in several technology areas, including biomass conversion processes. Here, we describe several exceptional properties of cohesin-dockerin complexes, including their tenacious biochemical affinity, remarkably high mechanostability and a dual-binding mode of recognition that is contrary to the conventional lock-and-key model of receptor-ligand interactions. We focus on structural aspects of the dual mode of cohesin-dockerin binding, highlighting recent single-molecule analysis techniques for its explicit characterization.
Collapse
Affiliation(s)
- Michael A Nash
- Lehrstuhl für Angewandte Physik and Center for Nanoscience, Ludwig-Maximilians-Universität, 80799 Munich, Germany; Department of Chemistry, University of Basel, 4056 Basel, Switzerland; Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule (ETH-Zürich), 4058 Basel, Switzerland.
| | - Steven P Smith
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Carlos Mga Fontes
- CIISA-Faculdade de Medicina Veterinária, ULisboa, Pólo Universitário do Alto da Ajuda, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
| | - Edward A Bayer
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
15
|
Baldacchini C, Bizzarri AR, Cannistraro S. Electron transfer, conduction and biorecognition properties of the redox metalloprotein Azurin assembled onto inorganic substrates. Eur Polym J 2016. [DOI: 10.1016/j.eurpolymj.2016.04.030] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
16
|
Lo R, Chandar NB, Ghosh S, Ganguly B. The reactivation of tabun-inhibited mutant AChE with Ortho-7: steered molecular dynamics and quantum chemical studies. MOLECULAR BIOSYSTEMS 2016; 12:1224-31. [PMID: 26879641 DOI: 10.1039/c5mb00735f] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A highly toxic nerve agent, tabun, can inhibit acetylcholinesterase (AChE) at cholinergic sites, which leads to serious cardiovascular complications, respiratory compromise and death. We have examined the structural features of the tabun-conjugated AChE complex with an oxime reactivator, Ortho-7, to provide a strategy for designing new and efficient reactivators. Mutation of mAChE within the choline binding site by Y337A and F338A and its interaction with Ortho-7 has been investigated using steered molecular dynamics (SMD) and quantum chemical methods. The overall study shows that after mutagenesis (Y337A), the reactivator can approach more freely towards the phosphorylated active site of serine without any significant steric hindrance in the presence of tabun compared to the wild type and double mutant. Furthermore, the poor binding of Ortho-7 with the peripheral residues of mAChE in the case of the single mutant compared to that of the wild-type and double mutant (Y337A/F338A) can contribute to better efficacy in the former case. Ortho-7 has formed a greater number of hydrogen bonds with the active site surrounding residues His447 and Phe295 in the case of the single mutant (Y337A), and that stabilizes the drug molecule for an effective reactivation process. The DFT M05-2X/6-31+G(d) level of theory shows that the binding energy of Ortho-7 with the single mutant (Y337A) is energetically more preferred (-19.8 kcal mol(-1)) than the wild-type (-8.1 kcal mol(-1)) and double mutant (Y337A/F338A) (-16.0 kcal mol(-1)). The study reveals that both the orientation of the oxime reactivator for nucleophilic attack and the stabilization of the reactivator at the active site would be crucial for the design of an efficient reactivator.
Collapse
Affiliation(s)
- Rabindranath Lo
- Computation and Simulation Unit (Analytical Division and Centralized Instrument Facility), CSIR-Central Salt & Marine Chemicals Research Institute, Bhavnagar, Gujarat, India-364 002.
| | | | | | | |
Collapse
|
17
|
Craven GT, Hernandez R. Deconstructing field-induced ketene isomerization through Lagrangian descriptors. Phys Chem Chem Phys 2016; 18:4008-18. [DOI: 10.1039/c5cp06624g] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Phase space contours (shown in color) constructed using the method of Lagrangian descriptors resolve the separatrices governing state transitions on the reaction-path potential energy surface (shown in white) for field-induced ketene isomerization.
Collapse
Affiliation(s)
- Galen T. Craven
- Center for Computational Molecular Science and Technology
- School of Chemistry and Biochemistry
- Georgia Institute of Technology
- Atlanta
- USA
| | - Rigoberto Hernandez
- Center for Computational Molecular Science and Technology
- School of Chemistry and Biochemistry
- Georgia Institute of Technology
- Atlanta
- USA
| |
Collapse
|
18
|
Leite FL, Hausen M, Oliveira GS, Brum DG, Oliveira ON. Nanoneurobiophysics: new challenges for diagnosis and therapy of neurologic disorders. Nanomedicine (Lond) 2015; 10:3417-9. [DOI: 10.2217/nnm.15.164] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- Fabio L Leite
- Nanoneurobiophysics Research Group, Department of Physics, Chemistry & Mathematics, Federal University of São Carlos (UFSCar), Sorocaba, 18052-780, São Paulo, Brazil
| | - Moema Hausen
- Neurology, Psychology & Psychiatry Department, Medical College of Botucatu, State University of São Paulo (UNESP), São Paulo, Brazil
| | - Guedmiller S Oliveira
- São Carlos Institute of Physics, University of São Paulo (USP), São Carlos, SP, Brazil
| | - Doralina G Brum
- Neurology, Psychology & Psychiatry Department, Medical College of Botucatu, State University of São Paulo (UNESP), São Paulo, Brazil
| | - Osvaldo N Oliveira
- São Carlos Institute of Physics, University of São Paulo (USP), São Carlos, SP, Brazil
| |
Collapse
|
19
|
In silico studies on the role of mutant Y337A to reactivate tabun inhibited mAChE with K048. Chem Biol Interact 2015; 242:299-306. [DOI: 10.1016/j.cbi.2015.10.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 10/11/2015] [Accepted: 10/15/2015] [Indexed: 01/18/2023]
|
20
|
Lo R, Ganguly B. Can hydroxylamine be a more potent nucleophile for the reactivation of tabun-inhibited AChE than prototype oxime drugs? An answer derived from quantum chemical and steered molecular dynamics studies. MOLECULAR BIOSYSTEMS 2015; 10:2368-83. [PMID: 24964273 DOI: 10.1039/c4mb00083h] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Organophosphorus nerve agents are highly toxic compounds which strongly inhibit acetylcholinesterase (AChE) in the blood and in the central nervous system (CNS). Tabun is one of the highly toxic organophosphorus (OP) compounds and is resistant to many oxime drugs formulated for the reactivation of AChE. The reactivation mechanism of tabun-conjugated AChE with various drugs has been examined with density functional theory and ab initio quantum chemical calculations. The presence of a lone-pair located on the amidic group resists the nucleophilic attack at the phosphorus center of the tabun-conjugated AChE. We have shown that the newly designed drug candidate N-(pyridin-2-yl)hydroxylamine, at the MP2/6-31+G*//M05-2X/6-31G* level in the aqueous phase with the polarizable continuum solvation model (PCM), is more effective in reactivating the tabun-conjugated AChE than typical oxime drugs. The rate determining activation barrier with N-(pyridin-2-yl)hydroxylamine was found to be ∼1.7 kcal mol(-1), which is 7.2 kcal mol(-1) lower than the charged oxime trimedoxime (one of the most efficient reactivators in tabun poisonings). The greater nucleophilicity index (ω(-)) and higher CHelpG charge of pyridinylhydroxylamine compared to TMB4 support this observation. Furthermore, we have also examined the reactivation process of tabun-inhibited AChE with some other bis-quaternary oxime drug candidates such as methoxime (MMB4) and obidoxime. The docking analysis suggests that charged bis-quaternary pyridinium oximes have greater binding affinity inside the active-site gorge of AChE compared to the neutral pyridinylhydroxylamine. The peripheral ligand attached to the neutral pyridinylhydroxylamine enhanced the binding with the aromatic residues in the active-site gorge of AChE through effective π-π interactions. Steered molecular dynamics (SMD) simulations have also been performed with the charged oxime (TMB4) and the neutral hydroxylamine. From protein-drug interaction parameters (rupture force profiles, hydrogen bonds, hydrophobic interactions), geometry and the orientation of the drug candidates, the hydroxylamine is suggested to orchestrate the reactivation process better than TMB4. Furthermore, the calculated log P values show the effective penetration of the neutral drug candidate through the blood-brain barrier. The toxicity measurements and the IC50 values (a measure of the intrinsic affinity toward AChE) suggest that the pyridinylhydroxylamine compound could have similar toxic behavior compared to the prototype oxime antidotes used for reactivation purposes. The newly designed pyridinylhydroxylamine drug candidate can be an effective antidote both kinetically and structurally to reactivate the tabun-inhibited enzyme.
Collapse
Affiliation(s)
- Rabindranath Lo
- Computation and Simulation Unit (Analytical Discipline and Centralized Instrument Facility), CSIR-Central Salt & Marine Chemicals Research Institute, Bhavnagar, Gujarat, India-364 002.
| | | |
Collapse
|
21
|
Craven GT, Hernandez R. Lagrangian Descriptors of Thermalized Transition States on Time-Varying Energy Surfaces. PHYSICAL REVIEW LETTERS 2015; 115:148301. [PMID: 26551825 DOI: 10.1103/physrevlett.115.148301] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Indexed: 06/05/2023]
Abstract
Thermalized chemical reactions driven under dynamical load are characteristic of activated dynamics for arbitrary nonautonomous systems. Recent generalizations of transition state theory to obtain formally exact rates have required the construction of a time-dependent transition state trajectory. Here, we show that Lagrangian descriptors can be used to obtain this structure directly. By developing a phase space separatrix that is void of recrossings, these constructs allow for the principal criterion in the implementation of modern rate theories to be satisfied. Thus, the reactive flux over a time-varying barrier can be determined without ambiguity in chemical reactions. The generality of the formalism suggests that this approach is applicable to any activated system subjected to arbitrary driving and thermal fluctuations.
Collapse
Affiliation(s)
- Galen T Craven
- Center for Computational Molecular Science and Technology, School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, USA
| | - Rigoberto Hernandez
- Center for Computational Molecular Science and Technology, School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, USA
| |
Collapse
|
22
|
Sirbuly DJ, Friddle RW, Villanueva J, Huang Q. Nanomechanical force transducers for biomolecular and intracellular measurements: is there room to shrink and why do it? REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2015; 78:024101. [PMID: 25629797 DOI: 10.1088/0034-4885/78/2/024101] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Over the past couple of decades there has been a tremendous amount of progress on the development of ultrasensitive nanomechanical instruments, which has enabled scientists to peer for the first time into the mechanical world of biomolecular systems. Currently, work-horse instruments such as the atomic force microscope and optical/magnetic tweezers have provided the resolution necessary to extract quantitative force data from various molecular systems down to the femtonewton range, but it remains difficult to access the intracellular environment with these analytical tools as they have fairly large sizes and complicated feedback systems. This review is focused on highlighting some of the major milestones and discoveries in the field of biomolecular mechanics that have been made possible by the development of advanced atomic force microscope and tweezer techniques as well as on introducing emerging state-of-the-art nanomechanical force transducers that are addressing the size limitations presented by these standard tools. We will first briefly cover the basic setup and operation of these instruments, and then focus heavily on summarizing advances in in vitro force studies at both the molecular and cellular level. The last part of this review will include strategies for shrinking down the size of force transducers and provide insight into why this may be important for gaining a more complete understanding of cellular activity and function.
Collapse
Affiliation(s)
- Donald J Sirbuly
- Department of NanoEngineering, University of California, San Diego, La Jolla, CA 92093, USA. Materials Science and Engineering, University of California, San Diego, La Jolla, CA, 92093, USA
| | | | | | | |
Collapse
|
23
|
Quantum chemical and steered molecular dynamics studies for one pot solution to reactivate aged acetylcholinesterase with alkylator oxime. Chem Biol Interact 2014; 223:58-68. [PMID: 25218671 DOI: 10.1016/j.cbi.2014.08.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Revised: 07/30/2014] [Accepted: 08/29/2014] [Indexed: 11/23/2022]
Abstract
Dimethyl(pyridin-2-yl)sulfonium based oxime has been designed to reverse the aging process of organophosphorus inhibited AChE and to reactivate the aged-AChE adduct. We have employed DFT M05-2X/6-31G(∗) level of theory in aqueous phase with polarizable continuum solvation model (PCM) for the methylation of phosphonate ester monoanion of the soman-aged adduct. The calculated free energy of activation for the methyl transfer process from designed dimethyl(phenyl)sulfonium (1) to aged AChE-OP adduct occurs with a barrier of 31.4kcal/mol at M05-2X/6-31G(∗) level of theory, which is 6.4kcal/mol lower compared to the aging process signifies the preferential reversal process to recover the aged AChE-OP adduct. The pyridine ring containing alkylated sulfonium species, dimethyl(pyridin-2-yl)sulfonium (2), reduced the free energy of activation by 4.4kcal/mol compared to the previously reported alkylating agent N-methyl-2-methoxypyridinium species (A) for the alkylation of aged AChE-OP adduct. The free enzyme can be liberated from the inhibited acetylcholinesterase with the sulfonium compound decorated with an oxime group to avoid the administration of oxime drugs separately. The calculated potential energy surfaces show that the oxime based sulfonium compound (3) can effectively methylate the aged phosphonate ester monoanion of soman aged-adduct. The calculated global reactivity descriptors of the oxime 3 also shed light on this observation. To gain better understanding for protein drug interaction as well as the unbinding and conformational changes of the drug candidate in the active site of cholinesterase, steered molecular dynamics (SMD) simulation with 3 has been performed. Through a protein-drug interaction parameters (rupture force profiles, hydrogen bonds, hydrophobic interactions), geometrical and the orientation of drug-like candidate, the oxime 3 suggests to orchestrate the better reactivation process. The docking studies have been performed with 3 in the aged AChE and BChE to obtain the initial geometry of the SMD studies. The docking methods adopted in this study have been verified with the available crystal geometry of 1-methyl-2-(pentafluorobenzyloxyimino)pyridinium compound in aged soman inhibited human BChE (PDB code: 4B0P). The computational study suggests that the newly designed oxime is a potential candidate to reactivate the aged-AChE adduct.
Collapse
|
24
|
|
25
|
Jobst MA, Schoeler C, Malinowska K, Nash MA. Investigating receptor-ligand systems of the cellulosome with AFM-based single-molecule force spectroscopy. J Vis Exp 2013:e50950. [PMID: 24378772 PMCID: PMC4110915 DOI: 10.3791/50950] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Cellulosomes are discrete multienzyme complexes used by a subset of anaerobic bacteria and fungi to digest lignocellulosic substrates. Assembly of the enzymes onto the noncatalytic scaffold protein is directed by interactions among a family of related receptor-ligand pairs comprising interacting cohesin and dockerin modules. The extremely strong binding between cohesin and dockerin modules results in dissociation constants in the low picomolar to nanomolar range, which may hamper accurate off-rate measurements with conventional bulk methods. Single-molecule force spectroscopy (SMFS) with the atomic force microscope measures the response of individual biomolecules to force, and in contrast to other single-molecule manipulation methods (i.e. optical tweezers), is optimal for studying high-affinity receptor-ligand interactions because of its ability to probe the high-force regime (>120 pN). Here we present our complete protocol for studying cellulosomal protein assemblies at the single-molecule level. Using a protein topology derived from the native cellulosome, we worked with enzyme-dockerin and carbohydrate binding module-cohesin (CBM-cohesin) fusion proteins, each with an accessible free thiol group at an engineered cysteine residue. We present our site-specific surface immobilization protocol, along with our measurement and data analysis procedure for obtaining detailed binding parameters for the high-affinity complex. We demonstrate how to quantify single subdomain unfolding forces, complex rupture forces, kinetic off-rates, and potential widths of the binding well. The successful application of these methods in characterizing the cohesin-dockerin interaction responsible for assembly of multidomain cellulolytic complexes is further described.
Collapse
Affiliation(s)
- Markus A Jobst
- Lehrstuhl für Angewandte Physik and Center for Nanoscience, Ludwig-Maximilians-Universität
| | | | | | | |
Collapse
|
26
|
Dutta S, Horita DA, Hantgan RR, Guthold M. PROBING αIIb β3: LIGAND INTERACTIONS BY DYNAMIC FORCE SPECTROSCOPY AND SURFACE PLASMON RESONANCE. NANO LIFE 2013; 3:13400051-134000511. [PMID: 24098311 PMCID: PMC3788690 DOI: 10.1142/s1793984413400059] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The interaction between platelet integrin αIIbβ3 and fibrin(ogen) plays a key role in blood clot formation and stability. Integrin antagonists, a class of pharmaceuticals used to prevent and treat cardiovascular disease, are designed to competitively interfere with this process. However, the energetics of the integrin-drug binding are not fully understood, potentially hampering further development of this class of pharmaceuticals. We integrated dynamic force spectroscopy (DFS) and surface plasmon resonance (SPR) to probe the energetics of complex formation between αIIbβ3 and cHarGD, a cyclic peptide integrin antagonist. Analysis of αIIbβ3:cHarGD DFS rupture force data at pulling rates of 14 000 pN/s, 42 000 pN/s and 70 000 pN/s yielded koff = 0.02-0.09 s-1, a dissociation energy barrier [Formula: see text] = 22-29 kJ/mol, and a potential well width x-1 = 0.5-0.8 nm. SPR kinetic data yielded an association rate constant kon = 7 × 103 L/mol-s and a dissociation rate constant koff = 10-2 s-1, followed by a slower stabilization step (τ ~ 400 s). Both DFS and SPR detected minimal interactions between αIIbβ3 and cHarGA demonstrating a key role for electrostatic interactions between the ligand aspartate and the integrin metal ion-dependent adhesion site (MIDAS). Our work provides new insights into the energy landscape of αIIbβ3's interactions with pharmacological and physiological ligands.
Collapse
Affiliation(s)
- Samrat Dutta
- Department of Physics, Wake Forest University 1834 Wake Forest Road, Winston-Salem, NC 27106, USA
| | - David A Horita
- Department of Biochemistry Wake Forest University School of Medicine Medical Center Boulevard Winston-Salem, NC 27157-1016, USA
| | - Roy R Hantgan
- Department of Biochemistry Wake Forest University School of Medicine Medical Center Boulevard Winston-Salem, NC 27157-1016, USA
| | - Martin Guthold
- Department of Physics, Wake Forest University 1834 Wake Forest Road, Winston-Salem, NC 27106, USA
| |
Collapse
|
27
|
Zapotoczny S, Biedroń R, Marcinkiewicz J, Nowakowska M. Atomic force microscopy-based molecular studies on the recognition of immunogenic chlorinated ovalbumin by macrophage receptors. J Mol Recognit 2012; 25:82-8. [PMID: 22290769 DOI: 10.1002/jmr.2160] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
This report presents simple and reliable approach developed to study the specific recognition events between chlorinated ovalbumin (OVA) and macrophages using atomic force microscopy (AFM). Thanks to the elimination of nonspecific adhesion, the interactions of the native and chlorinated OVA with a membrane of macrophages could be quantified using exclusively the so-called adhesion frequency (AF). The proposed system not only enabled the application of AFM-based force measurements for such poorly defined ligand-receptor pairs but also significantly improved both the acquisition and the processing of the data. The proteins were immobilized on the gold-coated AFM tips from the aqueous solutions containing charged thiol adsorbates. Such surface dilution of the proteins ensured the presence of single or just a few macromolecules at the tip-surface contact. The formation of negatively charged monolayer on the tip dramatically limited its nonspecific interactions with the macrophage surface. In such systems, AF was used as a measure of the recognition events even if the interaction forces varied significantly for sets of measurements. The system with the native OVA, a weak immunogen, showed only negligible AF compared with 85% measured for the immunogenic chlorinated OVA. The AF values varied with the tip-macrophage contact time and loading velocity. Blocking of the receptors by the chlorinated OVA was also confirmed. The developed approach can be also used to study other ligand-receptor interactions in poorly defined biological systems with intrinsically broad distribution of the rupture forces, thus opening new fields for AFM-based recognition on molecular level.
Collapse
Affiliation(s)
- Szczepan Zapotoczny
- Faculty of Chemistry, Jagiellonian University, Ingardena 3, 30-060 Krakow, Poland.
| | | | | | | |
Collapse
|
28
|
Yu R, Kaas Q, Craik DJ. Delineation of the unbinding pathway of α-conotoxin ImI from the α7 nicotinic acetylcholine receptor. J Phys Chem B 2012; 116:6097-105. [PMID: 22571488 DOI: 10.1021/jp301352d] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
α-Conotoxins potently and specifically inhibit isoforms of nicotinic acetylcholine receptors (nAChRs) and are used as molecular probes and as drugs or drug leads. Interactions occurring during binding and unbinding events are linked to binding kinetics, and knowledge of these interactions could help in the development of α-conotoxins as drugs. Here, the unbinding process for the prototypical α-conotoxin ImI/α7-nAChR system was investigated theoretically, and three exit routes were identified using random accelerated molecular dynamics simulations. The route involving the smallest conformation perturbation was further divided into three subpathways, which were studied using steered molecular dynamics simulations. Of the three subpathways, two had better experimental support and lower potential of mean force, indicating that they might be sampled more frequently. Additionally, these subpathways were supported by previous experimental studies. Several pairwise interactions, including a cation-π interaction and charge and hydrogen bond interactions, were identified as potentially playing important roles in the unbinding event.
Collapse
Affiliation(s)
- Rilei Yu
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | | | | |
Collapse
|
29
|
Strackharn M, Stahl SW, Severin PMD, Nicolaus T, Gaub HE. Peptide-Antibody Complex as Handle for Single-Molecule Cut & Paste. Chemphyschem 2011; 13:914-7. [DOI: 10.1002/cphc.201100765] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2011] [Indexed: 11/10/2022]
|
30
|
Wakayama J, Sugiyama S. Evaluation of Temperature Effect on the Interaction between β-Lactoglobulin and Anti-β-lactoglobulin Antibody by Atomic Force Microscopy. Biochemistry 2011; 51:32-42. [DOI: 10.1021/bi201245k] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jun’ichi Wakayama
- Nano-Biotechnology Laboratory, Food
Engineering Division, National Food Research Institute, National Agriculture and Food Research Organization, 2-1-12 Kannondai, Tsukuba, Ibaraki 305-8642, Japan
| | - Shigeru Sugiyama
- Nano-Biotechnology Laboratory, Food
Engineering Division, National Food Research Institute, National Agriculture and Food Research Organization, 2-1-12 Kannondai, Tsukuba, Ibaraki 305-8642, Japan
| |
Collapse
|
31
|
Force spectroscopy 101: how to design, perform, and analyze an AFM-based single molecule force spectroscopy experiment. Curr Opin Chem Biol 2011; 15:710-8. [DOI: 10.1016/j.cbpa.2011.07.020] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2011] [Revised: 07/26/2011] [Accepted: 07/27/2011] [Indexed: 11/17/2022]
|
32
|
Li D, Ji B, Hwang KC, Huang Y. Strength of hydrogen bond network takes crucial roles in the dissociation process of inhibitors from the HIV-1 protease binding pocket. PLoS One 2011; 6:e19268. [PMID: 21559397 PMCID: PMC3084818 DOI: 10.1371/journal.pone.0019268] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Accepted: 03/25/2011] [Indexed: 11/18/2022] Open
Abstract
To understand the underlying mechanisms of significant differences in dissociation rate constant among different inhibitors for HIV-1 protease, we performed steered molecular dynamics (SMD) simulations to analyze the entire dissociation processes of inhibitors from the binding pocket of protease at atomistic details. We found that the strength of hydrogen bond network between inhibitor and the protease takes crucial roles in the dissociation process. We showed that the hydrogen bond network in the cyclic urea inhibitors AHA001/XK263 is less stable than that of the approved inhibitor ABT538 because of their large differences in the structures of the networks. In the cyclic urea inhibitor bound complex, the hydrogen bonds often distribute at the flap tips and the active site. In contrast, there are additional accessorial hydrogen bonds formed at the lateral sides of the flaps and the active site in the ABT538 bound complex, which take crucial roles in stabilizing the hydrogen bond network. In addition, the water molecule W301 also plays important roles in stabilizing the hydrogen bond network through its flexible movement by acting as a collision buffer and helping the rebinding of hydrogen bonds at the flap tips. Because of its high stability, the hydrogen bond network of ABT538 complex can work together with the hydrophobic clusters to resist the dissociation, resulting in much lower dissociation rate constant than those of cyclic urea inhibitor complexes. This study may provide useful guidelines for design of novel potent inhibitors with optimized interactions.
Collapse
Affiliation(s)
- Dechang Li
- School of Aerospace, Department of Engineering Mechanics, Tsinghua University, Beijing, China
| | | | | | | |
Collapse
|
33
|
Black AL, Lenhardt JM, Craig SL. From molecular mechanochemistry to stress-responsive materials. ACTA ACUST UNITED AC 2011. [DOI: 10.1039/c0jm02636k] [Citation(s) in RCA: 264] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
34
|
Zimmermann JL, Nicolaus T, Neuert G, Blank K. Thiol-based, site-specific and covalent immobilization of biomolecules for single-molecule experiments. Nat Protoc 2010; 5:975-85. [PMID: 20448543 DOI: 10.1038/nprot.2010.49] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The success of single-molecule (SM) experiments critically depends on the functional immobilization of the biomolecule(s) to be studied. With the continuing trend of combining SM fluorescence with SM force experiments, methods are required that are suitable for both types of measurements. We describe a general protocol for the site-specific and covalent coupling of any type of biomolecule that can be prepared with a free thiol group. The protocol uses a poly(ethylene glycol) (PEG) spacer, which carries an N-hydroxy succinimide (NHS) group on one end and a maleimide group on the other. After reacting the NHS group with an amino-functionalized surface, the relatively stable but highly reactive maleimide group allows the coupling of the biomolecule. This protocol provides surfaces with low fluorescence background, low nonspecific binding and a large number of reactive sites. Surfaces containing immobilized biomolecules can be obtained within 6 h.
Collapse
Affiliation(s)
- Julia L Zimmermann
- Lehrstuhl für Angewandte Physik & Center for Nanoscience, LMU München, München, Germany
| | | | | | | |
Collapse
|
35
|
Fuhrmann A, Ros R. Single-molecule force spectroscopy: a method for quantitative analysis of ligand–receptor interactions. Nanomedicine (Lond) 2010; 5:657-66. [DOI: 10.2217/nnm.10.26] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The quantitative analysis of molecular interactions is of high interest in medical research. Most methods for the investigation of ligand–receptor complexes deal with huge ensembles of biomolecules, but often neglect interactions with low affinity or small subpopulations with different binding properties. Single-molecule force spectroscopy offers fascinating possibilities for the quantitative analysis of ligand–receptor interactions in a wide affinity range and the sensitivity to detect point mutations. Furthermore, this technique allows one to address questions about the related binding energy landscape. In this article, we introduce single-molecule force spectroscopy with a focus on novel developments in both data analysis and theoretical models for the technique. We also demonstrate two examples of the capabilities of this method.
Collapse
Affiliation(s)
- Alexander Fuhrmann
- Department of Physics, Arizona State University, Tempe, AZ 85287-1504, USA
| | | |
Collapse
|
36
|
Delmas J, Leyssene D, Dubois D, Birck C, Vazeille E, Robin F, Bonnet R. Structural insights into substrate recognition and product expulsion in CTX-M enzymes. J Mol Biol 2010; 400:108-20. [PMID: 20452359 DOI: 10.1016/j.jmb.2010.04.062] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2010] [Revised: 04/28/2010] [Accepted: 04/29/2010] [Indexed: 11/25/2022]
Abstract
beta-Lactamase-mediated resistance to beta-lactam antibiotics poses a major threat to our antibiotic armamentarium. Among beta-lactamases, a significant threat comes from enzymes that hydrolyze extended-spectrum cephalosporins such as cefotaxime. Among the enzymes that exhibit this phenotype, the CTX-M family is found worldwide. These enzymes have a small active site, which makes it difficult to explain how they hydrolyze the bulky extended-spectrum cephalosporins into the binding site. We investigated noncovalent substrate recognition and product release in CTX-M enzymes using steered molecular dynamics simulation and X-ray diffraction. An arginine residue located far from the binding site favors the capture and tracking of substrates during entrance into the catalytic pocket. We show that the accommodation of extended-spectrum cephalosporins by CTX-M enzymes induced subtle changes in the active site and established a high density of electrostatic interactions. Interestingly, the product of the catalytic reaction initiates its own release because of steric hindrances and electrostatic repulsions. This suggests that there exists a general mechanism for product release for all members of the beta-lactamase family and probably for most carboxypeptidases.
Collapse
Affiliation(s)
- Julien Delmas
- CHU Clermont-Ferrand, Laboratoire de Bactériologie, Clermont-Ferrand F-63003, France
| | | | | | | | | | | | | |
Collapse
|
37
|
Rich RL, Myszka DG. Grading the commercial optical biosensor literature-Class of 2008: 'The Mighty Binders'. J Mol Recognit 2010; 23:1-64. [PMID: 20017116 DOI: 10.1002/jmr.1004] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Optical biosensor technology continues to be the method of choice for label-free, real-time interaction analysis. But when it comes to improving the quality of the biosensor literature, education should be fundamental. Of the 1413 articles published in 2008, less than 30% would pass the requirements for high-school chemistry. To teach by example, we spotlight 10 papers that illustrate how to implement the technology properly. Then we grade every paper published in 2008 on a scale from A to F and outline what features make a biosensor article fabulous, middling or abysmal. To help improve the quality of published data, we focus on a few experimental, analysis and presentation mistakes that are alarmingly common. With the literature as a guide, we want to ensure that no user is left behind.
Collapse
Affiliation(s)
- Rebecca L Rich
- Center for Biomolecular Interaction Analysis, University of Utah, Salt Lake City, UT 84132, USA
| | | |
Collapse
|
38
|
Abstract
AIM To performe a time-dependent topographical delineation of protein-drug interactions to gain molecular insight into the supremacy of Ortho-7 over HI-6 in reactivating tabun-conjugated mouse acetylcholinesterase (mAChE). METHODS We conducted all-atom steered molecular dynamics simulations of the two protein-drug complexes. Through a host of protein-drug interaction parameters (rupture force profiles, hydrogen bonds, water bridges, hydrophobic interactions), geometrical, and orientation ordering of the drugs, we monitored the enzyme's response during the release of the drugs from its active-site. RESULTS The results show the preferential binding of the drugs with the enzyme. The pyridinium ring of HI-6 shows excellent complementary binding with the peripheral anionic site, whereas one of two identical pyridinium rings of Ortho-7 has excellent binding compatibility in the enzyme active-site where it can orchestrate the reactivation process. We found that the active pyridinium ring of HI-6 undergoes a complete turn along the active site axis, directed away from the active-site region during the course of the simulation. CONCLUSION Due to excellent cooperative binding of Ortho-7, as rendered by several cation-pi interactions with the active-site gorge of the enzyme, Ortho-7 may be a more efficient reactivator than HI-6. Our work supports the growing body of evidence that the efficacy of the drugs is due to the differential bindings of the oximes with AChE and can aid to the rational design of oxime drugs.
Collapse
|
39
|
Molecular modeling of Protein A affinity chromatography. J Chromatogr A 2009; 1216:8678-86. [DOI: 10.1016/j.chroma.2009.04.035] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2008] [Revised: 03/31/2009] [Accepted: 04/14/2009] [Indexed: 11/15/2022]
|
40
|
Neumann J, Gottschalk KE. The effect of different force applications on the protein-protein complex Barnase-Barstar. Biophys J 2009; 97:1687-99. [PMID: 19751674 DOI: 10.1016/j.bpj.2009.01.052] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2008] [Revised: 01/09/2009] [Accepted: 01/13/2009] [Indexed: 12/16/2022] Open
Abstract
Steered molecular dynamics simulations are a tool to examine the energy landscape of protein-protein complexes by applying external forces. Here, we analyze the influence of the velocity and geometry of the probing forces on a protein complex using this tool. With steered molecular dynamics, we probe the stability of the protein-protein complex Barnase-Barstar. The individual proteins are mechanically labile. The Barnase-Barstar binding site is more stable than the folds of the individual proteins. By using different force protocols, we observe a variety of responses of the system to the applied tension.
Collapse
Affiliation(s)
- Jan Neumann
- Angewandte Physik und Biophysik, Ludwig-Maximilians Universität, Munich, Germany
| | | |
Collapse
|
41
|
Alsteens D, Pesavento E, Cheuvart G, Dupres V, Trabelsi H, Soumillion P, Dufrêne YF. Controlled manipulation of bacteriophages using single-virus force spectroscopy. ACS NANO 2009; 3:3063-3068. [PMID: 19769381 DOI: 10.1021/nn900778t] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
A method is described for the site-directed manipulation of single filamentous bacteriophages, by using phage display technology and atomic force microscopy. f1 filamentous bacteriophages were genetically engineered to display His-tags on their pIX tail. Following adsorption on nitrilotriacetate-terminated surfaces, force spectroscopy with tips bearing monoclonal anti-pIII antibodies was used to pull on individual phages via their pIII head. Analysis of the force-extension profiles revealed that upon pulling, the phages are progressively straightened into an extended orientation until rupture of the anti-pIII/pIII complex. The single-virus manipulation technique presented here provides new opportunities for understanding the forces driving cell-virus and material-virus interactions, and for characterizing the binding properties of polypeptide sequences or proteins selected by the phage display technology.
Collapse
Affiliation(s)
- David Alsteens
- Unité de Chimie des Interfaces, Université Catholique de Louvain, Croix du Sud 2/18, B-1348 Louvain-la-Neuve, Belgium
| | | | | | | | | | | | | |
Collapse
|
42
|
Gumpp H, Puchner EM, Zimmermann JL, Gerland U, Gaub HE, Blank K. Triggering enzymatic activity with force. NANO LETTERS 2009; 9:3290-3295. [PMID: 19658405 DOI: 10.1021/nl9015705] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Integrating single molecule force spectroscopy with fluorescence-based techniques allows the manipulation of an enzyme with a periodic stretching and relaxation protocol while simultaneously monitoring its catalytic activity. After releasing the stretching force we observe a higher probability for enzymatic activity at a time of 1.7 s. A detailed theoretical analysis reveals that the relaxation from the force-induced enzyme conformation to the observed active conformation follows a cascade reaction with several steps and a free energy difference of at least 8 k(B)T. Our study clearly points out the direct influence of force on enzymatic activity and opens up a new way to study and manipulate (bio)catalytic reactions at the single molecule level.
Collapse
Affiliation(s)
- Hermann Gumpp
- Lehrstuhl für Angewandte Physik and Center for Nanoscience, Center for Integrated Protein Science Munich, LMU München, D-80799 München, Germany
| | | | | | | | | | | |
Collapse
|