1
|
Radojković M, Bruggeling van Ingen A, Timmer M, Ubbink M. Stabilizing Mutations Enhance Evolvability of BlaC β-lactamase by Widening the Mutational Landscape. J Mol Biol 2025; 437:168999. [PMID: 39971266 DOI: 10.1016/j.jmb.2025.168999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 01/14/2025] [Accepted: 02/09/2025] [Indexed: 02/21/2025]
Abstract
Antimicrobial resistance is fueled by the rapid evolution of β-lactamases. However, a gain of new enzyme activity often comes at the expense of reduced protein stability. This evolutionary constraint is often overcome by the acquisition of stabilizing mutations that compensate for the loss of stability invoked by new function mutations. Here, we report three stabilizing mutations (I105F, H184R, and V263I) in BlaC, a serine β-lactamase from Mycobacterium tuberculosis. Using a severely destabilized variant as a template for random mutagenesis and selection, these three mutations emerged together and were able to fully restore resistance toward the antibiotic carbenicillin. In vitro characterization shows that all three mutations increase chemical and thermal stability, which leads to elevated protein levels in the periplasm of Escherichia coli. We demonstrate that the introduction of stabilizing mutations substantially enhances the evolvability of the enzyme. These findings illustrate the important role of stabilizing mutations in enzyme evolution by alleviating function-stability trade-offs and broadening the accessible evolutionary landscape.
Collapse
Affiliation(s)
- Marko Radojković
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, the Netherlands
| | | | - Monika Timmer
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, the Netherlands
| | - Marcellus Ubbink
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, the Netherlands.
| |
Collapse
|
2
|
Wang J, Watson JL, Lisanza SL. Protein Design Using Structure-Prediction Networks: AlphaFold and RoseTTAFold as Protein Structure Foundation Models. Cold Spring Harb Perspect Biol 2024; 16:a041472. [PMID: 38438190 PMCID: PMC11216169 DOI: 10.1101/cshperspect.a041472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2024]
Abstract
Designing proteins with tailored structures and functions is a long-standing goal in bioengineering. Recently, deep learning advances have enabled protein structure prediction at near-experimental accuracy, which has catalyzed progress in protein design as well. We review recent studies that use structure-prediction neural networks to design proteins, via approaches such as activation maximization, inpainting, or denoising diffusion. These methods have led to major improvements over previous methods in wet-lab success rates for designing protein binders, metalloproteins, enzymes, and oligomeric assemblies. These results show that structure-prediction models are a powerful foundation for developing protein-design tools and suggest that continued improvement of their accuracy and generality will be key to unlocking the full potential of protein design.
Collapse
Affiliation(s)
- Jue Wang
- Department of Biochemistry, University of Washington, Seattle, Washington 98195, USA
- Institute for Protein Design, University of Washington, Seattle, Washington 98195, USA
- Graduate Program in Biological Physics, Structure and Design, University of Washington, Seattle, Washington 98195, USA
- DeepMind, London EC4A 3BF, United Kingdom
| | - Joseph L Watson
- Department of Biochemistry, University of Washington, Seattle, Washington 98195, USA
- Institute for Protein Design, University of Washington, Seattle, Washington 98195, USA
| | - Sidney L Lisanza
- Department of Biochemistry, University of Washington, Seattle, Washington 98195, USA
- Institute for Protein Design, University of Washington, Seattle, Washington 98195, USA
- Graduate Program in Biological Physics, Structure and Design, University of Washington, Seattle, Washington 98195, USA
| |
Collapse
|
3
|
Fram B, Su Y, Truebridge I, Riesselman AJ, Ingraham JB, Passera A, Napier E, Thadani NN, Lim S, Roberts K, Kaur G, Stiffler MA, Marks DS, Bahl CD, Khan AR, Sander C, Gauthier NP. Simultaneous enhancement of multiple functional properties using evolution-informed protein design. Nat Commun 2024; 15:5141. [PMID: 38902262 PMCID: PMC11190266 DOI: 10.1038/s41467-024-49119-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 05/24/2024] [Indexed: 06/22/2024] Open
Abstract
A major challenge in protein design is to augment existing functional proteins with multiple property enhancements. Altering several properties likely necessitates numerous primary sequence changes, and novel methods are needed to accurately predict combinations of mutations that maintain or enhance function. Models of sequence co-variation (e.g., EVcouplings), which leverage extensive information about various protein properties and activities from homologous protein sequences, have proven effective for many applications including structure determination and mutation effect prediction. We apply EVcouplings to computationally design variants of the model protein TEM-1 β-lactamase. Nearly all the 14 experimentally characterized designs were functional, including one with 84 mutations from the nearest natural homolog. The designs also had large increases in thermostability, increased activity on multiple substrates, and nearly identical structure to the wild type enzyme. This study highlights the efficacy of evolutionary models in guiding large sequence alterations to generate functional diversity for protein design applications.
Collapse
Affiliation(s)
- Benjamin Fram
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA.
- Department of Data Sciences, Dana-Farber Cancer Institute, Boston, MA, USA.
| | - Yang Su
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| | - Ian Truebridge
- Institute for Protein Innovation, Boston, MA, USA
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- AI Proteins, Boston, MA, USA
| | - Adam J Riesselman
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
- Program in Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - John B Ingraham
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| | - Alessandro Passera
- Department of Data Sciences, Dana-Farber Cancer Institute, Boston, MA, USA
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Campus-Vienna-Biocenter 1, 1030, Vienna, Austria
| | - Eve Napier
- School of Biochemistry and Immunology, Trinity College Dublin, Dublin 2, Ireland
| | - Nicole N Thadani
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
- Apriori Bio, Cambridge, MA, USA
| | - Samuel Lim
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| | - Kristen Roberts
- Selux Diagnostics Inc., 56 Roland Street, Charlestown, MA, USA
| | - Gurleen Kaur
- Selux Diagnostics Inc., 56 Roland Street, Charlestown, MA, USA
| | - Michael A Stiffler
- Department of Data Sciences, Dana-Farber Cancer Institute, Boston, MA, USA
- Dyno Therapeutics, 343 Arsenal Street, Watertown, MA, USA
| | - Debora S Marks
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Christopher D Bahl
- Institute for Protein Innovation, Boston, MA, USA
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- AI Proteins, Boston, MA, USA
| | - Amir R Khan
- School of Biochemistry and Immunology, Trinity College Dublin, Dublin 2, Ireland
- Division of Newborn Medicine, Boston Children's Hospital, Boston, MA, USA
| | - Chris Sander
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
- Department of Data Sciences, Dana-Farber Cancer Institute, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Nicholas P Gauthier
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA.
- Department of Data Sciences, Dana-Farber Cancer Institute, Boston, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
4
|
González LJ, Bahr G, González MM, Bonomo RA, Vila AJ. In-cell kinetic stability is an essential trait in metallo-β-lactamase evolution. Nat Chem Biol 2023; 19:1116-1126. [PMID: 37188957 PMCID: PMC11534350 DOI: 10.1038/s41589-023-01319-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 03/21/2023] [Indexed: 05/17/2023]
Abstract
Protein stability is an essential property for biological function. In contrast to the vast knowledge on protein stability in vitro, little is known about the factors governing in-cell stability. Here we show that the metallo-β-lactamase (MBL) New Delhi MBL-1 (NDM-1) is a kinetically unstable protein on metal restriction that has evolved by acquiring different biochemical traits that optimize its in-cell stability. The nonmetalated (apo) NDM-1 is degraded by the periplasmic protease Prc that recognizes its partially unstructured C-terminal domain. Zn(II) binding renders the protein refractory to degradation by quenching the flexibility of this region. Membrane anchoring makes apo-NDM-1 less accessible to Prc and protects it from DegP, a cellular protease degrading misfolded, nonmetalated NDM-1 precursors. NDM variants accumulate substitutions at the C terminus that quench its flexibility, enhancing their kinetic stability and bypassing proteolysis. These observations link MBL-mediated resistance with the essential periplasmic metabolism, highlighting the importance of the cellular protein homeostasis.
Collapse
Affiliation(s)
- Lisandro J González
- Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET-UNR), Rosario, Argentina
- Área Biofísica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Guillermo Bahr
- Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET-UNR), Rosario, Argentina
- Área Biofísica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Mariano M González
- Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET-UNR), Rosario, Argentina
- Área Biofísica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Robert A Bonomo
- Research Service, Veterans Affairs Northeast Ohio Healthcare System, Cleveland, OH, USA
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, USA
- Medical Service and GRECC, Veterans Affairs Northeast Ohio Healthcare System, Cleveland, OH, USA
- CWRU-Cleveland VAMC Center for Antimicrobial Resistance and Epidemiology (Case VA CARES), Cleveland, OH, USA
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
- Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
- Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, OH, USA
- Department of Proteomics and Bioinformatics, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Alejandro J Vila
- Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET-UNR), Rosario, Argentina.
- Área Biofísica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina.
- CWRU-Cleveland VAMC Center for Antimicrobial Resistance and Epidemiology (Case VA CARES), Cleveland, OH, USA.
| |
Collapse
|
5
|
Fram B, Truebridge I, Su Y, Riesselman AJ, Ingraham JB, Passera A, Napier E, Thadani NN, Lim S, Roberts K, Kaur G, Stiffler M, Marks DS, Bahl CD, Khan AR, Sander C, Gauthier NP. Simultaneous enhancement of multiple functional properties using evolution-informed protein design. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.09.539914. [PMID: 37214973 PMCID: PMC10197589 DOI: 10.1101/2023.05.09.539914] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Designing optimized proteins is important for a range of practical applications. Protein design is a rapidly developing field that would benefit from approaches that enable many changes in the amino acid primary sequence, rather than a small number of mutations, while maintaining structure and enhancing function. Homologous protein sequences contain extensive information about various protein properties and activities that have emerged over billions of years of evolution. Evolutionary models of sequence co-variation, derived from a set of homologous sequences, have proven effective in a range of applications including structure determination and mutation effect prediction. In this work we apply one of these models (EVcouplings) to computationally design highly divergent variants of the model protein TEM-1 β-lactamase, and characterize these designs experimentally using multiple biochemical and biophysical assays. Nearly all designed variants were functional, including one with 84 mutations from the nearest natural homolog. Surprisingly, all functional designs had large increases in thermostability and most had a broadening of available substrates. These property enhancements occurred while maintaining a nearly identical structure to the wild type enzyme. Collectively, this work demonstrates that evolutionary models of sequence co-variation (1) are able to capture complex epistatic interactions that successfully guide large sequence departures from natural contexts, and (2) can be applied to generate functional diversity useful for many applications in protein design.
Collapse
Affiliation(s)
- Benjamin Fram
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| | - Ian Truebridge
- Institute for Protein Innovation, Boston, Massachusetts, Boston, MA, USA
- Division of Hematology/Oncology, Boston Children’s Hospital, Harvard Medical School; Boston, MA, USA
- current address: AI Proteins; Boston, MA, USA
| | - Yang Su
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| | - Adam J. Riesselman
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
- Program in Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - John B. Ingraham
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| | - Alessandro Passera
- Department of Data Sciences, Dana-Farber Cancer Institute, Boston, MA, USA
- current address: Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Campus-Vienna-Biocenter 1, 1030 Vienna, Austria
| | - Eve Napier
- School of Biochemistry and Immunology, Trinity College Dublin, Dublin 2, Ireland
| | - Nicole N. Thadani
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| | - Samuel Lim
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| | - Kristen Roberts
- Selux Diagnostics, Inc., 56 Roland Street, Charlestown, MA, USA
| | - Gurleen Kaur
- Selux Diagnostics, Inc., 56 Roland Street, Charlestown, MA, USA
| | - Michael Stiffler
- Department of Data Sciences, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Debora S. Marks
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| | - Christopher D. Bahl
- Institute for Protein Innovation, Boston, Massachusetts, Boston, MA, USA
- Division of Hematology/Oncology, Boston Children’s Hospital, Harvard Medical School; Boston, MA, USA
- current address: AI Proteins; Boston, MA, USA
| | - Amir R. Khan
- School of Biochemistry and Immunology, Trinity College Dublin, Dublin 2, Ireland
- Division of Newborn Medicine, Boston Children’s Hospital, Boston, MA, USA
| | - Chris Sander
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| | - Nicholas P. Gauthier
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
- Department of Data Sciences, Dana-Farber Cancer Institute, Boston, MA, USA
| |
Collapse
|
6
|
Biochemical Insights into Imipenem Collateral Susceptibility Driven by ampC Mutations Conferring Ceftolozane/Tazobactam Resistance in Pseudomonas aeruginosa. Antimicrob Agents Chemother 2023; 67:e0140922. [PMID: 36715512 PMCID: PMC9933714 DOI: 10.1128/aac.01409-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Several Pseudomonas aeruginosa AmpC mutants have emerged that exhibit enhanced activity against ceftazidime and ceftolozane, while also evading inhibition by avibactam. Interestingly, P. aeruginosa strains harboring these AmpC mutations fortuitously exhibit enhanced carbapenem susceptibility. This acquired susceptibility was investigated by comparing the degradation of imipenem by wild-type and cephalosporin-resistant AmpC. We show that cephalosporin-resistant AmpC enzymes lose their efficacy for hydrolyzing imipenem and suggest that this may be due to their increased flexibility and dynamics relative to the wild type.
Collapse
|
7
|
Santos JC, Handa S, Fernandes LGV, Bleicher L, Gandin CA, de Oliveira-Neto M, Ghosh P, Nascimento ALTO. Structural and biochemical characterization of Leptospira interrogans Lsa45 reveals a penicillin-binding protein with esterase activity. Process Biochem 2023; 125:141-153. [PMID: 36643388 PMCID: PMC9836055 DOI: 10.1016/j.procbio.2022.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Leptospirosis is a bacterial disease that affects humans and animals and is caused by Leptospira. The recommended treatment for leptospirosis is antibiotic therapy, which should be given early in the course of the disease. Despite the use of these antibiotics, their role during the course of the disease is still not completely clear because of the lack of effective clinical trials, particularly for severe cases of the disease. Here, we present the characterization of L. interrogans Lsa45 protein by gel filtration, protein crystallography, SAXS, fluorescence and enzymatic assays. The oligomeric studies revealed that Lsa45 is monomeric in solution. The crystal structure of Lsa45 revealed the presence of two subdomains: a large α/β subdomain and a small α-helical subdomain. The large subdomain contains the amino acids Ser122, Lys125, and Tyr217, which correspond to the catalytic triad that is essential for β-lactamase or serine hydrolase activity in similar enzymes. Additionally, we also confirmed the bifunctional promiscuity of Lsa45, in hydrolyzing both the 4-nitrophenyl acetate (p-NPA) and nitrocefin β-lactam antibiotic. Therefore, this study provides novel insights into the structure and function of enzymes from L. interrogans, which furthers our understanding of this bacterium and the development of new therapies for the prevention and treatment of leptospirosis.
Collapse
Affiliation(s)
- Jademilson C. Santos
- Laboratório de Desenvolvimento de Vacinas, Instituto Butantan, Avenida Vital Brasil, 1500, 05503-900, São Paulo, SP, Brazil
- Instituto Federal da Bahia – IFBA - Rodovia BR-367, R. José Fontana, 1, 45810-000, Porto Seguro - BA, Brazil
| | - Sumit Handa
- Department of Chemistry & Biochemistry, University of California, San Diego, CA 92093, USA
| | - Luis G. V. Fernandes
- Laboratório de Desenvolvimento de Vacinas, Instituto Butantan, Avenida Vital Brasil, 1500, 05503-900, São Paulo, SP, Brazil
| | - Lucas Bleicher
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - César A. Gandin
- Universidade Estadual Paulista (UNESP), Instituto de Biociências, Dep. de Física e Biofísica, Botucatu, SP, Brazil
| | - Mario de Oliveira-Neto
- Universidade Estadual Paulista (UNESP), Instituto de Biociências, Dep. de Física e Biofísica, Botucatu, SP, Brazil
| | - Partho Ghosh
- Department of Chemistry & Biochemistry, University of California, San Diego, CA 92093, USA
| | - Ana Lucia T. O. Nascimento
- Laboratório de Desenvolvimento de Vacinas, Instituto Butantan, Avenida Vital Brasil, 1500, 05503-900, São Paulo, SP, Brazil
| |
Collapse
|
8
|
Colque CA, albarracín Orio AG, Tomatis PE, Dotta G, Moreno DM, Hedemann LG, Hickman RA, Sommer LM, Feliziani S, Moyano AJ, Bonomo RA, K. Johansen H, Molin S, Vila AJ, Smania AM. Longitudinal Evolution of the Pseudomonas-Derived Cephalosporinase (PDC) Structure and Activity in a Cystic Fibrosis Patient Treated with β-Lactams. mBio 2022; 13:e0166322. [PMID: 36073814 PMCID: PMC9600753 DOI: 10.1128/mbio.01663-22] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 07/11/2022] [Indexed: 11/24/2022] Open
Abstract
Traditional studies on the evolution of antibiotic resistance development use approaches that can range from laboratory-based experimental studies, to epidemiological surveillance, to sequencing of clinical isolates. However, evolutionary trajectories also depend on the environment in which selection takes place, compelling the need to more deeply investigate the impact of environmental complexities and their dynamics over time. Herein, we explored the within-patient adaptive long-term evolution of a Pseudomonas aeruginosa hypermutator lineage in the airways of a cystic fibrosis (CF) patient by performing a chronological tracking of mutations that occurred in different subpopulations; our results demonstrated parallel evolution events in the chromosomally encoded class C β-lactamase (blaPDC). These multiple mutations within blaPDC shaped diverse coexisting alleles, whose frequency dynamics responded to the changing antibiotic selective pressures for more than 26 years of chronic infection. Importantly, the combination of the cumulative mutations in blaPDC provided structural and functional protein changes that resulted in a continuous enhancement of its catalytic efficiency and high level of cephalosporin resistance. This evolution was linked to the persistent treatment with ceftazidime, which we demonstrated selected for variants with robust catalytic activity against this expanded-spectrum cephalosporin. A "gain of function" of collateral resistance toward ceftolozane, a more recently introduced cephalosporin that was not prescribed to this patient, was also observed, and the biochemical basis of this cross-resistance phenomenon was elucidated. This work unveils the evolutionary trajectories paved by bacteria toward a multidrug-resistant phenotype, driven by decades of antibiotic treatment in the natural CF environmental setting. IMPORTANCE Antibiotics are becoming increasingly ineffective to treat bacterial infections. It has been consequently predicted that infectious diseases will become the biggest challenge to human health in the near future. Pseudomonas aeruginosa is considered a paradigm in antimicrobial resistance as it exploits intrinsic and acquired resistance mechanisms to resist virtually all antibiotics known. AmpC β-lactamase is the main mechanism driving resistance in this notorious pathogen to β-lactams, one of the most widely used classes of antibiotics for cystic fibrosis infections. Here, we focus on the β-lactamase gene as a model resistance determinant and unveil the trajectory P. aeruginosa undertakes on the path toward a multidrug-resistant phenotype during the course of two and a half decades of chronic infection in the airways of a cystic fibrosis patient. Integrating genetic and biochemical studies in the natural environment where evolution occurs, we provide a unique perspective on this challenging landscape, addressing fundamental molecular mechanisms of resistance.
Collapse
Affiliation(s)
- Claudia A. Colque
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Química Biológica Ranwel Caputto, Córdoba, Argentina
- CONICET, Universidad Nacional de Córdoba, Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), Córdoba, Argentina
| | - Andrea G. albarracín Orio
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Química Biológica Ranwel Caputto, Córdoba, Argentina
- CONICET, Universidad Nacional de Córdoba, Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), Córdoba, Argentina
- IRNASUS, Universidad Católica de Córdoba, CONICET, Facultad de Ciencias Agropecuarias, Córdoba, Argentina
| | - Pablo E. Tomatis
- Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET, Universidad Nacional de Rosario, Rosario, Argentina
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Gina Dotta
- Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET, Universidad Nacional de Rosario, Rosario, Argentina
| | - Diego M. Moreno
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
- IQUIR, Instituto de Química de Rosario, CONICET, Universidad Nacional de Rosario, Rosario, Argentina
| | - Laura G. Hedemann
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Química Biológica Ranwel Caputto, Córdoba, Argentina
- CONICET, Universidad Nacional de Córdoba, Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), Córdoba, Argentina
| | - Rachel A. Hickman
- Department of Clinical Microbiology, Rigshospitalet, Copenhagen, Denmark
- Novo Nordisk Foundation Centre for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Lea M. Sommer
- Department of Clinical Microbiology, Rigshospitalet, Copenhagen, Denmark
- Novo Nordisk Foundation Centre for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Sofía Feliziani
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Química Biológica Ranwel Caputto, Córdoba, Argentina
- CONICET, Universidad Nacional de Córdoba, Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), Córdoba, Argentina
| | - Alejandro J. Moyano
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Química Biológica Ranwel Caputto, Córdoba, Argentina
- CONICET, Universidad Nacional de Córdoba, Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), Córdoba, Argentina
| | - Robert A. Bonomo
- Departments of Molecular Biology and Microbiology, Medicine, Biochemistry, Pharmacology, and Proteomics and Bioinformatics, Case Western Reserve University, Cleveland, Ohio, USA
- Senior Clinical Scientist Investigator, Louis Stokes Cleveland Department of Veterans Affairs, Cleveland, Ohio, USA
| | - Helle K. Johansen
- Department of Clinical Microbiology, Rigshospitalet, Copenhagen, Denmark
- Novo Nordisk Foundation Centre for Biosustainability, Technical University of Denmark, Lyngby, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Søren Molin
- Novo Nordisk Foundation Centre for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Alejandro J. Vila
- Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET, Universidad Nacional de Rosario, Rosario, Argentina
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Andrea M. Smania
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Química Biológica Ranwel Caputto, Córdoba, Argentina
- CONICET, Universidad Nacional de Córdoba, Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), Córdoba, Argentina
| |
Collapse
|
9
|
Azbukina N, Zharikova A, Ramensky V. Intragenic compensation through the lens of deep mutational scanning. Biophys Rev 2022; 14:1161-1182. [PMID: 36345285 PMCID: PMC9636336 DOI: 10.1007/s12551-022-01005-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 09/26/2022] [Indexed: 12/20/2022] Open
Abstract
A significant fraction of mutations in proteins are deleterious and result in adverse consequences for protein function, stability, or interaction with other molecules. Intragenic compensation is a specific case of positive epistasis when a neutral missense mutation cancels effect of a deleterious mutation in the same protein. Permissive compensatory mutations facilitate protein evolution, since without them all sequences would be extremely conserved. Understanding compensatory mechanisms is an important scientific challenge at the intersection of protein biophysics and evolution. In human genetics, intragenic compensatory interactions are important since they may result in variable penetrance of pathogenic mutations or fixation of pathogenic human alleles in orthologous proteins from related species. The latter phenomenon complicates computational and clinical inference of an allele's pathogenicity. Deep mutational scanning is a relatively new technique that enables experimental studies of functional effects of thousands of mutations in proteins. We review the important aspects of the field and discuss existing limitations of current datasets. We reviewed ten published DMS datasets with quantified functional effects of single and double mutations and described rates and patterns of intragenic compensation in eight of them. Supplementary Information The online version contains supplementary material available at 10.1007/s12551-022-01005-w.
Collapse
Affiliation(s)
- Nadezhda Azbukina
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 1-73, Leninskie Gory, 119991 Moscow, Russia
| | - Anastasia Zharikova
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 1-73, Leninskie Gory, 119991 Moscow, Russia
- National Medical Research Center for Therapy and Preventive Medicine, Petroverigsky per., 10, Bld.3, 101000 Moscow, Russia
| | - Vasily Ramensky
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 1-73, Leninskie Gory, 119991 Moscow, Russia
- National Medical Research Center for Therapy and Preventive Medicine, Petroverigsky per., 10, Bld.3, 101000 Moscow, Russia
| |
Collapse
|
10
|
Abstract
Class C β-lactamases or cephalosporinases can be classified into two functional groups (1, 1e) with considerable molecular variability (≤20% sequence identity). These enzymes are mostly encoded by chromosomal and inducible genes and are widespread among bacteria, including Proteobacteria in particular. Molecular identification is based principally on three catalytic motifs (64SXSK, 150YXN, 315KTG), but more than 70 conserved amino-acid residues (≥90%) have been identified, many close to these catalytic motifs. Nevertheless, the identification of a tiny, phylogenetically distant cluster (including enzymes from the genera Legionella, Bradyrhizobium, and Parachlamydia) has raised questions about the possible existence of a C2 subclass of β-lactamases, previously identified as serine hydrolases. In a context of the clinical emergence of extended-spectrum AmpC β-lactamases (ESACs), the genetic modifications observed in vivo and in vitro (point mutations, insertions, or deletions) during the evolution of these enzymes have mostly involved the Ω- and H-10/R2-loops, which vary considerably between genera, and, in some cases, the conserved triplet 150YXN. Furthermore, the conserved deletion of several amino-acid residues in opportunistic pathogenic species of Acinetobacter, such as A. baumannii, A. calcoaceticus, A. pittii and A. nosocomialis (deletion of residues 304-306), and in Hafnia alvei and H. paralvei (deletion of residues 289-290), provides support for the notion of natural ESACs. The emergence of higher levels of resistance to β-lactams, including carbapenems, and to inhibitors such as avibactam is a reality, as the enzymes responsible are subject to complex regulation encompassing several other genes (ampR, ampD, ampG, etc.). Combinations of resistance mechanisms may therefore be at work, including overproduction or change in permeability, with the loss of porins and/or activation of efflux systems.
Collapse
|
11
|
Teufl M, Zajc CU, Traxlmayr MW. Engineering Strategies to Overcome the Stability-Function Trade-Off in Proteins. ACS Synth Biol 2022; 11:1030-1039. [PMID: 35258287 PMCID: PMC8938945 DOI: 10.1021/acssynbio.1c00512] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
In addition to its
biological function, the stability of a protein
is a major determinant for its applicability. Unfortunately, engineering
proteins for improved functionality usually results in destabilization
of the protein. This so-called stability–function trade-off
can be explained by the simple fact that the generation of a novel
protein function—or the improvement of an existing one—necessitates
the insertion of mutations, i.e., deviations from
the evolutionarily optimized wild-type sequence. In fact, it was demonstrated
that gain-of-function mutations are not more destabilizing than other
random mutations. The stability–function trade-off is a universal
phenomenon during protein evolution that has been observed with completely
different types of proteins, including enzymes, antibodies, and engineered
binding scaffolds. In this review, we discuss three types of strategies
that have been successfully deployed to overcome this omnipresent
obstacle in protein engineering approaches: (i) using highly stable
parental proteins, (ii) minimizing the extent of destabilization during
functional engineering (by library optimization and/or coselection
for stability and function), and (iii) repairing damaged mutants through
stability engineering. The implementation of these strategies in protein
engineering campaigns will facilitate the efficient generation of
protein variants that are not only functional but also stable and
therefore better-suited for subsequent applications.
Collapse
Affiliation(s)
- Magdalena Teufl
- Department of Chemistry, Institute of Biochemistry, University of Natural Resources and Life Sciences, 1190 Vienna, Austria
- CD Laboratory for Next Generation CAR T Cells, 1190 Vienna, Austria
| | - Charlotte U. Zajc
- Department of Chemistry, Institute of Biochemistry, University of Natural Resources and Life Sciences, 1190 Vienna, Austria
- CD Laboratory for Next Generation CAR T Cells, 1190 Vienna, Austria
| | - Michael W. Traxlmayr
- Department of Chemistry, Institute of Biochemistry, University of Natural Resources and Life Sciences, 1190 Vienna, Austria
- CD Laboratory for Next Generation CAR T Cells, 1190 Vienna, Austria
| |
Collapse
|
12
|
Kazan IC, Sharma P, Rahman MI, Bobkov A, Fromme R, Ghirlanda G, Ozkan SB. Design of novel cyanovirin-N variants by modulation of binding dynamics through distal mutations. eLife 2022; 11:67474. [PMID: 36472898 PMCID: PMC9725752 DOI: 10.7554/elife.67474] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 11/28/2022] [Indexed: 12/07/2022] Open
Abstract
We develop integrated co-evolution and dynamic coupling (ICDC) approach to identify, mutate, and assess distal sites to modulate function. We validate the approach first by analyzing the existing mutational fitness data of TEM-1 β-lactamase and show that allosteric positions co-evolved and dynamically coupled with the active site significantly modulate function. We further apply ICDC approach to identify positions and their mutations that can modulate binding affinity in a lectin, cyanovirin-N (CV-N), that selectively binds to dimannose, and predict binding energies of its variants through Adaptive BP-Dock. Computational and experimental analyses reveal that binding enhancing mutants identified by ICDC impact the dynamics of the binding pocket, and show that rigidification of the binding residues compensates for the entropic cost of binding. This work suggests a mechanism by which distal mutations modulate function through dynamic allostery and provides a blueprint to identify candidates for mutagenesis in order to optimize protein function.
Collapse
Affiliation(s)
- I Can Kazan
- Center for Biological Physics and Department of Physics, Arizona State UniversityTempeUnited States,School of Molecular Sciences, Arizona State UniversityTempeUnited States
| | - Prerna Sharma
- School of Molecular Sciences, Arizona State UniversityTempeUnited States
| | | | - Andrey Bobkov
- Sanford Burnham Prebys Medical Discovery InstituteLa JollaUnited States
| | - Raimund Fromme
- School of Molecular Sciences, Arizona State UniversityTempeUnited States
| | - Giovanna Ghirlanda
- School of Molecular Sciences, Arizona State UniversityTempeUnited States
| | - S Banu Ozkan
- Center for Biological Physics and Department of Physics, Arizona State UniversityTempeUnited States
| |
Collapse
|
13
|
Abderemane-Ali F, Rossen ND, Kobiela ME, Craig RA, Garrison CE, Chen Z, Colleran CM, O’Connell LA, Du Bois J, Dumbacher JP, Minor DL. Evidence that toxin resistance in poison birds and frogs is not rooted in sodium channel mutations and may rely on "toxin sponge" proteins. J Gen Physiol 2021; 153:e202112872. [PMID: 34351379 PMCID: PMC8348241 DOI: 10.1085/jgp.202112872] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 05/30/2021] [Accepted: 07/01/2021] [Indexed: 12/18/2022] Open
Abstract
Many poisonous organisms carry small-molecule toxins that alter voltage-gated sodium channel (NaV) function. Among these, batrachotoxin (BTX) from Pitohui poison birds and Phyllobates poison frogs stands out because of its lethality and unusual effects on NaV function. How these toxin-bearing organisms avoid autointoxication remains poorly understood. In poison frogs, a NaV DIVS6 pore-forming helix N-to-T mutation has been proposed as the BTX resistance mechanism. Here, we show that this variant is absent from Pitohui and poison frog NaVs, incurs a strong cost compromising channel function, and fails to produce BTX-resistant channels in poison frog NaVs. We also show that captivity-raised poison frogs are resistant to two NaV-directed toxins, BTX and saxitoxin (STX), even though they bear NaVs sensitive to both. Moreover, we demonstrate that the amphibian STX "toxin sponge" protein saxiphilin is able to protect and rescue NaVs from block by STX. Taken together, our data contradict the hypothesis that BTX autoresistance is rooted in the DIVS6 N→T mutation, challenge the idea that ion channel mutations are a primary driver of toxin resistance, and suggest the possibility that toxin sequestration mechanisms may be key for protecting poisonous species from the action of small-molecule toxins.
Collapse
Affiliation(s)
- Fayal Abderemane-Ali
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA
| | - Nathan D. Rossen
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA
| | - Megan E. Kobiela
- School of Biological Sciences, University of Nebraska–Lincoln, Lincoln, NE
| | | | | | - Zhou Chen
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA
| | - Claire M. Colleran
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA
| | | | - J. Du Bois
- Department of Chemistry, Stanford University, Stanford, CA
| | - John P. Dumbacher
- Institute for Biodiversity Science and Sustainability, California Academy of Sciences, San Francisco, CA
- Department of Biology, San Francisco State University, San Francisco, CA
| | - Daniel L. Minor
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA
- California Institute for Quantitative Biomedical Research, University of California, San Francisco, San Francisco, CA
- Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA
- Molecular Biophysics and Integrated Bio-imaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA
| |
Collapse
|
14
|
Bahr G, González LJ, Vila AJ. Metallo-β-lactamases in the Age of Multidrug Resistance: From Structure and Mechanism to Evolution, Dissemination, and Inhibitor Design. Chem Rev 2021; 121:7957-8094. [PMID: 34129337 PMCID: PMC9062786 DOI: 10.1021/acs.chemrev.1c00138] [Citation(s) in RCA: 131] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Antimicrobial resistance is one of the major problems in current practical medicine. The spread of genes coding for resistance determinants among bacteria challenges the use of approved antibiotics, narrowing the options for treatment. Resistance to carbapenems, last resort antibiotics, is a major concern. Metallo-β-lactamases (MBLs) hydrolyze carbapenems, penicillins, and cephalosporins, becoming central to this problem. These enzymes diverge with respect to serine-β-lactamases by exhibiting a different fold, active site, and catalytic features. Elucidating their catalytic mechanism has been a big challenge in the field that has limited the development of useful inhibitors. This review covers exhaustively the details of the active-site chemistries, the diversity of MBL alleles, the catalytic mechanism against different substrates, and how this information has helped developing inhibitors. We also discuss here different aspects critical to understand the success of MBLs in conferring resistance: the molecular determinants of their dissemination, their cell physiology, from the biogenesis to the processing involved in the transit to the periplasm, and the uptake of the Zn(II) ions upon metal starvation conditions, such as those encountered during an infection. In this regard, the chemical, biochemical and microbiological aspects provide an integrative view of the current knowledge of MBLs.
Collapse
Affiliation(s)
- Guillermo Bahr
- Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET, Universidad Nacional de Rosario, Ocampo y Esmeralda S/N, 2000 Rosario, Argentina
- Area Biofísica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000 Rosario, Argentina
| | - Lisandro J. González
- Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET, Universidad Nacional de Rosario, Ocampo y Esmeralda S/N, 2000 Rosario, Argentina
- Area Biofísica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000 Rosario, Argentina
| | - Alejandro J. Vila
- Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET, Universidad Nacional de Rosario, Ocampo y Esmeralda S/N, 2000 Rosario, Argentina
- Area Biofísica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000 Rosario, Argentina
| |
Collapse
|
15
|
Ward MD, Zimmerman MI, Meller A, Chung M, Swamidass SJ, Bowman GR. Deep learning the structural determinants of protein biochemical properties by comparing structural ensembles with DiffNets. Nat Commun 2021; 12:3023. [PMID: 34021153 PMCID: PMC8140102 DOI: 10.1038/s41467-021-23246-1] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 04/16/2021] [Indexed: 12/05/2022] Open
Abstract
Understanding the structural determinants of a protein's biochemical properties, such as activity and stability, is a major challenge in biology and medicine. Comparing computer simulations of protein variants with different biochemical properties is an increasingly powerful means to drive progress. However, success often hinges on dimensionality reduction algorithms for simplifying the complex ensemble of structures each variant adopts. Unfortunately, common algorithms rely on potentially misleading assumptions about what structural features are important, such as emphasizing larger geometric changes over smaller ones. Here we present DiffNets, self-supervised autoencoders that avoid such assumptions, and automatically identify the relevant features, by requiring that the low-dimensional representations they learn are sufficient to predict the biochemical differences between protein variants. For example, DiffNets automatically identify subtle structural signatures that predict the relative stabilities of β-lactamase variants and duty ratios of myosin isoforms. DiffNets should also be applicable to understanding other perturbations, such as ligand binding.
Collapse
Affiliation(s)
- Michael D Ward
- Department of Biochemistry & Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA
- Center for the Science and Engineering of Living Systems, Washington University in St. Louis, St. Louis, MO, USA
| | - Maxwell I Zimmerman
- Department of Biochemistry & Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA
- Center for the Science and Engineering of Living Systems, Washington University in St. Louis, St. Louis, MO, USA
| | - Artur Meller
- Department of Biochemistry & Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA
- Center for the Science and Engineering of Living Systems, Washington University in St. Louis, St. Louis, MO, USA
| | - Moses Chung
- Department of Biochemistry & Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA
- Center for the Science and Engineering of Living Systems, Washington University in St. Louis, St. Louis, MO, USA
| | - S J Swamidass
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Gregory R Bowman
- Department of Biochemistry & Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA.
- Center for the Science and Engineering of Living Systems, Washington University in St. Louis, St. Louis, MO, USA.
| |
Collapse
|
16
|
Grasso KT, Chatterjee A. An Emerging Link between Robustness and Evolvability in Directed Protein Evolution. Biochemistry 2021; 60:1325-1326. [PMID: 33872492 PMCID: PMC9526350 DOI: 10.1021/acs.biochem.1c00142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Katherine T Grasso
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Abhishek Chatterjee
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467, United States
| |
Collapse
|
17
|
Abstract
Very low antibiotic concentrations have been shown to drive the evolution of antimicrobial resistance. While substantial progress has been made to understand the driving role of low concentrations during resistance development for different antimicrobial classes, the importance of β-lactams, the most commonly used antibiotics, is still poorly studied. Our current understanding of how low antibiotic concentrations shape the evolution of contemporary β-lactamases is limited. Using the widespread carbapenemase OXA-48, we tested the long-standing hypothesis that selective compartments with low antibiotic concentrations cause standing genetic diversity that could act as a gateway to developing clinical resistance. Here, we subjected Escherichia coli expressing blaOXA-48, on a clinical plasmid, to experimental evolution at sub-MICs of ceftazidime. We identified and characterized seven single variants of OXA-48. Susceptibility profiles and dose-response curves showed that they increased resistance only marginally. However, in competition experiments at sub-MICs of ceftazidime, they demonstrated strong selectable fitness benefits. Increased resistance was also reflected in elevated catalytic efficiencies toward ceftazidime. These changes are likely caused by enhanced flexibility of the Ω- and β5-β6 loops and fine-tuning of preexisting active site residues. In conclusion, low-level concentrations of β-lactams can drive the evolution of β-lactamases through cryptic phenotypes which may act as stepping-stones toward clinical resistance. IMPORTANCE Very low antibiotic concentrations have been shown to drive the evolution of antimicrobial resistance. While substantial progress has been made to understand the driving role of low concentrations during resistance development for different antimicrobial classes, the importance of β-lactams, the most commonly used antibiotics, is still poorly studied. Here, we shed light on the evolutionary impact of low β-lactam concentrations on the widespread β-lactamase OXA-48. Our data indicate that the exposure to β-lactams at very low concentrations enhances β-lactamase diversity and drives the evolution of β-lactamases by significantly influencing their substrate specificity. Thus, in contrast to high concentrations, low levels of these drugs may substantially contribute to the diversification and divergent evolution of these enzymes, providing a standing genetic diversity that can be selected and mobilized when antibiotic pressure increases.
Collapse
|
18
|
Tunstall T, Portelli S, Phelan J, Clark TG, Ascher DB, Furnham N. Combining structure and genomics to understand antimicrobial resistance. Comput Struct Biotechnol J 2020; 18:3377-3394. [PMID: 33294134 PMCID: PMC7683289 DOI: 10.1016/j.csbj.2020.10.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 10/15/2020] [Accepted: 10/17/2020] [Indexed: 02/07/2023] Open
Abstract
Antimicrobials against bacterial, viral and parasitic pathogens have transformed human and animal health. Nevertheless, their widespread use (and misuse) has led to the emergence of antimicrobial resistance (AMR) which poses a potentially catastrophic threat to public health and animal husbandry. There are several routes, both intrinsic and acquired, by which AMR can develop. One major route is through non-synonymous single nucleotide polymorphisms (nsSNPs) in coding regions. Large scale genomic studies using high-throughput sequencing data have provided powerful new ways to rapidly detect and respond to such genetic mutations linked to AMR. However, these studies are limited in their mechanistic insight. Computational tools can rapidly and inexpensively evaluate the effect of mutations on protein function and evolution. Subsequent insights can then inform experimental studies, and direct existing or new computational methods. Here we review a range of sequence and structure-based computational tools, focussing on tools successfully used to investigate mutational effect on drug targets in clinically important pathogens, particularly Mycobacterium tuberculosis. Combining genomic results with the biophysical effects of mutations can help reveal the molecular basis and consequences of resistance development. Furthermore, we summarise how the application of such a mechanistic understanding of drug resistance can be applied to limit the impact of AMR.
Collapse
Affiliation(s)
- Tanushree Tunstall
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK
| | - Stephanie Portelli
- Computational Biology and Clinical Informatics, Baker Heart and Diabetes Institute, Australia
- Structural Biology and Bioinformatics, Department of Biochemistry and Molecular Biology, Bio21 Institute, University of Melbourne, Australia
| | - Jody Phelan
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK
| | - Taane G. Clark
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK
- Department of Infectious Disease Epidemiology, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK
| | - David B. Ascher
- Computational Biology and Clinical Informatics, Baker Heart and Diabetes Institute, Australia
- Structural Biology and Bioinformatics, Department of Biochemistry and Molecular Biology, Bio21 Institute, University of Melbourne, Australia
| | - Nicholas Furnham
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK
| |
Collapse
|
19
|
In vitro evolution of antibody affinity via insertional scanning mutagenesis of an entire antibody variable region. Proc Natl Acad Sci U S A 2020; 117:27307-27318. [PMID: 33067389 DOI: 10.1073/pnas.2002954117] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
We report a systematic combinatorial exploration of affinity enhancement of antibodies by insertions and deletions (InDels). Transposon-based introduction of InDels via the method TRIAD (transposition-based random insertion and deletion mutagenesis) was used to generate large libraries with random in-frame InDels across the entire single-chain variable fragment gene that were further recombined and screened by ribosome display. Knowledge of potential insertion points from TRIAD libraries formed the basis of exploration of length and sequence diversity of novel insertions by insertional-scanning mutagenesis (InScaM). An overall 256-fold affinity improvement of an anti-IL-13 antibody BAK1 as a result of InDel mutagenesis and combination with known point mutations validates this approach, and suggests that the results of this InDel mutagenesis and conventional exploration of point mutations can synergize to generate antibodies with higher affinity.
Collapse
|
20
|
Dabos L, Zavala A, Bonnin RA, Beckstein O, Retailleau P, Iorga BI, Naas T. Substrate Specificity of OXA-48 after β5-β6 Loop Replacement. ACS Infect Dis 2020; 6:1032-1043. [PMID: 32156115 DOI: 10.1021/acsinfecdis.9b00452] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
OXA-48 carbapenemase has rapidly spread in many countries worldwide with several OXA-48-variants being described, differing by a few amino acid (AA) substitutions or deletions, mostly in the β5-β6 loop. While single AA substitutions have only a minor impact on OXA-48 hydrolytic profiles, others with 4 AA deletions result in loss of carbapenem hydrolysis and gain of expanded-spectrum cephalosporin (ESC) hydrolysis. We have replaced the β5-β6 loop of OXA-48 with that of OXA-18, a clavulanic-acid inhibited oxacillinase capable of hydrolyzing ESCs but not carbapenems. The hybrid enzyme OXA-48Loop18 was able to hydrolyze ESCs and carbapenems (although with a lower kcat), even though the β5-β6 loop was longer and its sequence quite different from that of OXA-48. The kinetic parameters of OXA-48Loop18 were in agreement with the MIC values. X-ray crystallography and molecular modeling suggest that the conformation of the grafted loop allows the binding of bulkier substrates, unlike that of the native loop, expanding the hydrolytic profile. This seems to be due not only to differences in AA sequence, but also to the backbone conformation the loop can adopt. Finally, our results provide further experimental evidence for the role of the β5-β6 loop in substrate selectivity of OXA-48-like enzymes and additional details on the structure-function relationship of β-lactamases, demonstrating how localized changes in these proteins can alter or expand their function, highlighting their plasticity.
Collapse
Affiliation(s)
- Laura Dabos
- EA7361 “Structure, Dynamic, Function and Expression of Broad Spectrum β-Lactamases”, Université Paris Sud, Université Paris Saclay, LabEx Lermit, Faculty of Medicine, 94270 Le Kremlin-Bicêtre, France
- Evolution and Ecology of Resistance to Antibiotics Unit, Institut Pasteur−APHP−Université Paris Sud, 75015 Paris, France
| | - Agustin Zavala
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Université Paris-Saclay, Labex LERMIT, 91190 Gif-sur-Yvette, France
| | - Rémy A. Bonnin
- EA7361 “Structure, Dynamic, Function and Expression of Broad Spectrum β-Lactamases”, Université Paris Sud, Université Paris Saclay, LabEx Lermit, Faculty of Medicine, 94270 Le Kremlin-Bicêtre, France
- Evolution and Ecology of Resistance to Antibiotics Unit, Institut Pasteur−APHP−Université Paris Sud, 75015 Paris, France
- Associated French National Reference Center for Antibiotic Resistance: Carbapenemase-Producing Enterobacteriaceae, 94270 Le Kremlin-Bicêtre, France
| | - Oliver Beckstein
- Department of Physics and Center for Biological Physics, Arizona State University, Tempe, 85281 Arizona, United States
| | - Pascal Retailleau
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Université Paris-Saclay, Labex LERMIT, 91190 Gif-sur-Yvette, France
| | - Bogdan I. Iorga
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Université Paris-Saclay, Labex LERMIT, 91190 Gif-sur-Yvette, France
| | - Thierry Naas
- EA7361 “Structure, Dynamic, Function and Expression of Broad Spectrum β-Lactamases”, Université Paris Sud, Université Paris Saclay, LabEx Lermit, Faculty of Medicine, 94270 Le Kremlin-Bicêtre, France
- Evolution and Ecology of Resistance to Antibiotics Unit, Institut Pasteur−APHP−Université Paris Sud, 75015 Paris, France
- Associated French National Reference Center for Antibiotic Resistance: Carbapenemase-Producing Enterobacteriaceae, 94270 Le Kremlin-Bicêtre, France
- Bacteriology-Hygiene Unit, Assistance Publique/Hôpitaux de Paris, Bicêtre Hospital, 94270 Le Kremlin-Bicêtre, France
| |
Collapse
|
21
|
Russ D, Glaser F, Shaer Tamar E, Yelin I, Baym M, Kelsic ED, Zampaloni C, Haldimann A, Kishony R. Escape mutations circumvent a tradeoff between resistance to a beta-lactam and resistance to a beta-lactamase inhibitor. Nat Commun 2020; 11:2029. [PMID: 32332717 PMCID: PMC7181632 DOI: 10.1038/s41467-020-15666-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Accepted: 03/13/2020] [Indexed: 11/09/2022] Open
Abstract
Beta-lactamase inhibitors are increasingly used to counteract antibiotic resistance mediated by beta-lactamase enzymes. These inhibitors compete with the beta-lactam antibiotic for the same binding site on the beta-lactamase, thus generating an evolutionary tradeoff: mutations that increase the enzyme's beta-lactamase activity tend to increase also its susceptibility to the inhibitor. Here, we investigate how common and accessible are mutants that escape this adaptive tradeoff. Screening a deep mutant library of the blaampC beta-lactamase gene of Escherichia coli, we identified mutations that allow growth at beta-lactam concentrations far exceeding those inhibiting growth of the wildtype strain, even in the presence of the enzyme inhibitor (avibactam). These escape mutations are rare and drug-specific, and some combinations of avibactam with beta-lactam drugs appear to prevent such escape phenotypes. Our results, showing differential adaptive potential of blaampC to combinations of avibactam and different beta-lactam antibiotics, suggest that it may be possible to identify treatments that are more resilient to evolution of resistance.
Collapse
Affiliation(s)
- Dor Russ
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | - Fabian Glaser
- Lorry I. Lokey Interdisciplinary Center for Life Sciences and Engineering, Technion-Israel Institute of Technology, Haifa, Israel
| | - Einat Shaer Tamar
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | - Idan Yelin
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | - Michael Baym
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Eric D Kelsic
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Claudia Zampaloni
- Roche Pharma Research and Early Development, Immunology, Infectious Diseases, and Ophthalmology, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, 4070, Basel, Switzerland
| | - Andreas Haldimann
- Roche Pharma Research and Early Development, Immunology, Infectious Diseases, and Ophthalmology, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, 4070, Basel, Switzerland
| | - Roy Kishony
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, Israel. .,Faculty of Computer Science, Technion-Israel Institute of Technology, Haifa, Israel.
| |
Collapse
|
22
|
Highly Contingent Phenotypes of Lon Protease Deficiency in Escherichia coli upon Antibiotic Challenge. J Bacteriol 2020; 202:JB.00561-19. [PMID: 31740490 DOI: 10.1128/jb.00561-19] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Accepted: 11/05/2019] [Indexed: 01/05/2023] Open
Abstract
Evolutionary trajectories and mutational landscapes of drug-resistant bacteria are influenced by cell-intrinsic and extrinsic factors. In this study, I demonstrated that loss of the Lon protease altered susceptibility of Escherichia coli to trimethoprim and that these effects were strongly contingent on the drug concentration and genetic background. Lon, an AAA+ ATPase, is a bacterial master regulator protease involved in cytokinesis, suppression of transposition events, and clearance of misfolded proteins. I show that Lon deficiency enhances intrinsic drug tolerance at sub-MIC levels of trimethoprim. As a result, loss of Lon, though disadvantageous under drug-free conditions, has a selective advantage at low concentrations of trimethoprim. At high drug concentrations, however, Lon deficiency is detrimental for E. coli I show that the former is explained by suppression of drug efflux by Lon, while the latter can be attributed to SulA-dependent hyperfilamentation. On the other hand, deletion of lon in a trimethoprim-resistant mutant E. coli strain (harboring the Trp30Gly dihydrofolate reductase [DHFR] allele) directly potentiates resistance by enhancing the in vivo stability of mutant DHFR. Using extensive mutational analysis at 3 hot spots of resistance, I show that many resistance-conferring mutations render DHFR prone to proteolysis. This trade-off between gaining resistance and losing in vivo stability limits the number of mutations in DHFR that can confer trimethoprim resistance. Loss of Lon expands the mutational capacity for acquisition of trimethoprim resistance. This paper identifies the multipronged action of Lon in trimethoprim resistance in E. coli and provides mechanistic insight into how genetic backgrounds and drug concentrations may alter the potential for antimicrobial resistance evolution.IMPORTANCE Understanding the evolutionary dynamics of antimicrobial resistance is vital to curb its emergence and spread. Being fundamentally similar to natural selection, the fitness of resistant mutants is a key parameter to consider in the evolutionary dynamics of antimicrobial resistance (AMR). Various intrinsic and extrinsic factors modulate the fitness of resistant bacteria. This study demonstrated that Lon, a bacterial master regulator protease, influences drug tolerance and resistance. Lon is a key regulator of several fundamental processes in bacteria, including cytokinesis. I demonstrated that Lon deficiency produces highly contingent phenotypes in E. coli challenged with trimethoprim and can expand the mutational repertoire available to E. coli to evolve resistance. This multipronged influence of Lon on drug resistance provides an illustrative instance of how master regulators shape the response of bacteria to antibiotics.
Collapse
|
23
|
Shcherbinin D, Veselovsky A, Rubtsova M, Grigorenko V, Egorov A. The impact of long-distance mutations on the Ω-loop conformation in TEM type β-lactamases. J Biomol Struct Dyn 2019; 38:2369-2376. [PMID: 31241429 DOI: 10.1080/07391102.2019.1634642] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
β-lactamases are hydrolytic enzymes primarily responsible for occurrence and abundance of bacteria resistant to β-lactam antibiotics. TEM type β-lactamases are formed by the parent enzyme TEM-1 and more than two hundred of its mutants. Positions for the known amino acid substitutions cover ∼30% of TEM type enzyme's sequence. These substitutions are divided into the key mutations that lead to changes in catalytic properties of β-lactamases, and the secondary ones, which role is poorly understood. In this study, Residue Interaction Networks were constructed from molecular dynamic trajectories of β-lactamase TEM-1 and its variants with two key substitutions, G238S and E240K, and their combinations with secondary ones (M182T and Q39K). Particular attention was paid to a detailed analysis of the interactions that affect conformation and mobility of the Ω-loop, representing a part of the β-lactamase active site. It was shown that key mutations weakened the stability of contact inside the Ω-loop thus increasing its mobility. Combination of three amino acid substitutions, including the 182 residue, leads to the release of R65 promoting its new contacts with N175 and D176. As a result, Ω-loop is fixed on the protein globule. The second distal mutation Q39K prevents changes in spatial position of R65, which lead to the weakening of the effect of M182T substitution and the recovery of the Ω-loop mobility. Thus, the distal secondary mutations are directed for recovering the mobility of enzyme disturbed by the key mutations responsible for expansion of substrate specificity. AbbreviationsESBLextended spectrum beta-lactamasesIRinhibitor resistant beta-lactamasesMDmolecular dynamicsRINresidue interaction networksRMSDroot mean square deviationRMSFroot mean square fluctuations.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Dmitrii Shcherbinin
- Institute of Biomedical Chemistry, Moscow, Russia.,Department of Molecular Technologies, Pirogov Russian National Research Medical University, Moscow, Russia
| | | | - Maya Rubtsova
- Chemistry Faculty, M.V. Lomonosov Moscow State University, Moscow, Russia
| | - Vitaly Grigorenko
- Chemistry Faculty, M.V. Lomonosov Moscow State University, Moscow, Russia
| | - Alexey Egorov
- Chemistry Faculty, M.V. Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
24
|
Zavala A, Retailleau P, Elisée E, Iorga BI, Naas T. Genetic, Biochemical, and Structural Characterization of CMY-136 β-Lactamase, a Peculiar CMY-2 Variant. ACS Infect Dis 2019; 5:528-538. [PMID: 30788955 DOI: 10.1021/acsinfecdis.8b00240] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
With the widespread use and abuse of antibiotics for the past decades, antimicrobial resistance poses a serious threat to public health nowadays. β-Lactams are the most used antibiotics, and β-lactamases are the most widespread resistance mechanism. Class C β-lactamases, also known as cephalosporinases, usually do not hydrolyze the latest and most potent β-lactams, expanded spectrum cephalosporins and carbapenems. However, the recent emergence of extended-spectrum AmpC cephalosporinases, their resistance to inhibition by classic β-lactamase inhibitors, and the fact that they can contribute to carbapenem resistance when paired with impermeability mechanisms, means that these enzymes may still prove worrisome in the future. Here we report and characterize the CMY-136 β-lactamase, a Y221H point mutant derivative of CMY-2. CMY-136 confers an increased level of resistance to ticarcillin, cefuroxime, cefotaxime, and ceftolozane/tazobactam. It is also capable of hydrolyzing ticarcillin and cloxacillin, which act as inhibitors of CMY-2. X-ray crystallography and modeling experiments suggest that the hydrolytic profile alterations seem to be the result of an increased flexibility and altered conformation of the Ω-loop, caused by the Y221H mutation.
Collapse
Affiliation(s)
- Agustin Zavala
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Université Paris-Saclay, LabEx LERMIT, 1 avenue de la Terrasse, Bât. 27, 91198 Gif-sur-Yvette, France
- EA7361 “Structure, dynamic, function and expression of broad spectrum β-lactamases”, Université Paris Sud, Université Paris Saclay, LabEx LERMIT, Faculty of Medicine, 78 rue du Général Leclerc, 94275 Le Kremlin-Bicêtre, France
| | - Pascal Retailleau
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Université Paris-Saclay, LabEx LERMIT, 1 avenue de la Terrasse, Bât. 27, 91198 Gif-sur-Yvette, France
| | - Eddy Elisée
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Université Paris-Saclay, LabEx LERMIT, 1 avenue de la Terrasse, Bât. 27, 91198 Gif-sur-Yvette, France
| | - Bogdan I. Iorga
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Université Paris-Saclay, LabEx LERMIT, 1 avenue de la Terrasse, Bât. 27, 91198 Gif-sur-Yvette, France
| | - Thierry Naas
- EA7361 “Structure, dynamic, function and expression of broad spectrum β-lactamases”, Université Paris Sud, Université Paris Saclay, LabEx LERMIT, Faculty of Medicine, 78 rue du Général Leclerc, 94275 Le Kremlin-Bicêtre, France
- Bacteriology-Hygiene Unit, Assistance Publique/Hôpitaux de Paris, Bicêtre Hospital, 78 rue du Général Leclerc, 94275 Le Kremlin-Bicêtre, France
- Carbapenemase-producing Enterobacteriaceae, Associated French National Reference Center for Antibiotic Resistance, 78 rue du Général Leclerc, 94275 Le Kremlin-Bicêtre, France
- Evolution and Ecology of Resistance to Antibiotics Unit, Institut Pasteur, APHP, Université Paris Sud, 25-28 Rue du Dr Roux, 75015 Paris, France
| |
Collapse
|
25
|
Deciphering the Evolution of Cephalosporin Resistance to Ceftolozane-Tazobactam in Pseudomonas aeruginosa. mBio 2018; 9:mBio.02085-18. [PMID: 30538183 PMCID: PMC6299481 DOI: 10.1128/mbio.02085-18] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The presence of β-lactamases (e.g., PDC-3) that have naturally evolved and acquired the ability to break down β-lactam antibiotics (e.g., ceftazidime and ceftolozane) leads to highly resistant and potentially lethal Pseudomonas aeruginosa infections. We show that wild-type PDC-3 β-lactamase forms an acyl enzyme complex with ceftazidime, but it cannot accommodate the structurally similar ceftolozane that has a longer R2 side chain with increased basicity. A single amino acid substitution from a glutamate to a lysine at position 221 in PDC-3 (E221K) causes the tyrosine residue at 223 to adopt a new position poised for efficient hydrolysis of both cephalosporins. The importance of the mechanism of action of the E221K variant, in particular, is underscored by its evolutionary recurrences in multiple bacterial species. Understanding the biochemical and molecular basis for resistance is key to designing effective therapies and developing new β-lactam/β-lactamase inhibitor combinations. Pseudomonas aeruginosa produces a class C β-lactamase (e.g., PDC-3) that robustly hydrolyzes early generation cephalosporins often at the diffusion limit; therefore, bacteria possessing these β-lactamases are resistant to many β-lactam antibiotics. In response to this significant clinical threat, ceftolozane, a 3′ aminopyrazolium cephalosporin, was developed. Combined with tazobactam, ceftolozane promised to be effective against multidrug-resistant P. aeruginosa. Alarmingly, Ω-loop variants of the PDC β-lactamase (V213A, G216R, E221K, E221G, and Y223H) were identified in ceftolozane/tazobactam-resistant P. aeruginosa clinical isolates. Herein, we demonstrate that the Escherichia coli strain expressing the E221K variant of PDC-3 had the highest minimum inhibitory concentrations (MICs) against a panel of β-lactam antibiotics, including ceftolozane and ceftazidime, a cephalosporin that differs in structure largely in the R2 side chain. The kcat values of the E221K variant for both substrates were equivalent, whereas the Km for ceftolozane (341 ± 64 µM) was higher than that for ceftazidime (174 ± 20 µM). Timed mass spectrometry, thermal stability, and equilibrium unfolding studies revealed key mechanistic insights. Enhanced sampling molecular dynamics simulations identified conformational changes in the E221K variant Ω-loop, where a hidden pocket adjacent to the catalytic site opens and stabilizes ceftolozane for efficient hydrolysis. Encouragingly, the diazabicyclooctane β-lactamase inhibitor avibactam restored susceptibility to ceftolozane and ceftazidime in cells producing the E221K variant. In addition, a boronic acid transition state inhibitor, LP-06, lowered the ceftolozane and ceftazidime MICs by 8-fold for the E221K-expressing strain. Understanding these structural changes in evolutionarily selected variants is critical toward designing effective β-lactam/β-lactamase inhibitor therapies for P. aeruginosa infections.
Collapse
|
26
|
Wallis CP, Richman TR, Filipovska A, Rackham O. Tighter Ligand Binding Can Compensate for Impaired Stability of an RNA-Binding Protein. ACS Chem Biol 2018; 13:1499-1505. [PMID: 29808990 DOI: 10.1021/acschembio.8b00424] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
It has been widely shown that ligand-binding residues, by virtue of their orientation, charge, and solvent exposure, often have a net destabilizing effect on proteins that is offset by stability conferring residues elsewhere in the protein. This structure-function trade-off can constrain possible adaptive evolutionary changes of function and may hamper protein engineering efforts to design proteins with new functions. Here, we present evidence from a large randomized mutant library screen that, in the case of PUF RNA-binding proteins, this structural relationship may be inverted and that active-site mutations that increase protein activity are also able to compensate for impaired stability. We show that certain mutations in RNA-protein binding residues are not necessarily destabilizing and that increased ligand-binding can rescue an insoluble, unstable PUF protein. We hypothesize that these mutations restabilize the protein via thermodynamic coupling of protein folding and RNA binding.
Collapse
Affiliation(s)
- Christopher P. Wallis
- Harry Perkins Institute of Medical Research and Centre for Medical Research, The University of Western Australia, Nedlands 6009, Australia
| | - Tara R. Richman
- Harry Perkins Institute of Medical Research and Centre for Medical Research, The University of Western Australia, Nedlands 6009, Australia
| | - Aleksandra Filipovska
- Harry Perkins Institute of Medical Research and Centre for Medical Research, The University of Western Australia, Nedlands 6009, Australia
- School of Molecular Sciences, The University of Western Australia, Crawley 6009, Australia
| | - Oliver Rackham
- Harry Perkins Institute of Medical Research and Centre for Medical Research, The University of Western Australia, Nedlands 6009, Australia
- School of Molecular Sciences, The University of Western Australia, Crawley 6009, Australia
| |
Collapse
|
27
|
Abstract
In recent decades, carbapenems have been considered the last line of antibiotic therapy for Gram-negative bacterial infections. Unfortunately, strains carrying a high diversity of β-lactamases able to hydrolyze carbapenems have emerged in the clinical setting. Among them, VIM β-lactamases have diversified in a bloom of variants. The evolutionary reconstructions performed in this work revealed that, at the end of the 1980s, two independent events involving diversification from VIM-2 and VIM-4 produced at least 25 VIM variants. Later, a third event involving diversification from VIM-1 occurred in the mid-1990s. In a second approach to understanding the emergence of VIM carbapenemases, 44 mutants derived from VIM-2 and VIM-4 were obtained by site-directed mutagenesis based on those positions predicted to be under positive selection. These variants were expressed in an isogenic context. The more-evolved variants yielded increased levels of hydrolytic efficiency toward ceftazidime to a higher degree than toward carbapenems. In fact, an antagonist effect was frequently observed. These results led us to develop an experimental-evolution step. When Escherichia coli strains carrying VIM-2 or VIM-4 were submitted to serial passages at increasing concentrations of carbapenems or ceftazidime, more-efficient new variants (such as VIM-11 and VIM-1, with N165S [bearing a change from N to S at position 165] and R228S mutations, respectively) were only obtained when ceftazidime was present. Therefore, the observed effect of ceftazidime in the diversification and selection of VIM variants might help to explain the recent bloom of carbapenemase diversity, and it also represents another example of the potential universal effect exerted by ceftazidime in the selection of more-efficient β-lactamase variants, as in TEM, CTX-M, or KPC enzymes. One of the objectives recently proposed by the World Health Organization (WHO) Assembly in the global plan on antimicrobial resistance was to improve the understanding and knowledge of antimicrobial resistance. In the present work, we paid attention to the drivers of diversification and selection of new carbapenemases in Gram-negative bacteria, which occupy one of the most critical places in the WHO priority list of antibiotic-resistant microorganisms. Based on evolutionary-reconstruction, site-directed-mutagenesis, and experimental-evolution approaches, we proposed a critical role of ceftazidime exposure in the selection of VIM carbapenemase variants. This surprising finding is also applicable to other β-lactamases, indicating that ceftazidime, and not other antibiotics, might have a universal effect in the diversification of β-lactamases. Our results might help to define future strategies to reconsider the extended use of ceftazidime.
Collapse
|
28
|
Ibacache-Quiroga C, Oliveros JC, Couce A, Blázquez J. Parallel Evolution of High-Level Aminoglycoside Resistance in Escherichia coli Under Low and High Mutation Supply Rates. Front Microbiol 2018; 9:427. [PMID: 29615988 PMCID: PMC5867336 DOI: 10.3389/fmicb.2018.00427] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 02/22/2018] [Indexed: 11/16/2022] Open
Abstract
Antibiotic resistance is a major concern in public health worldwide, thus there is much interest in characterizing the mutational pathways through which susceptible bacteria evolve resistance. Here we use experimental evolution to explore the mutational pathways toward aminoglycoside resistance, using gentamicin as a model, under low and high mutation supply rates. Our results show that both normo and hypermutable strains of Escherichia coli are able to develop resistance to drug dosages > 1,000-fold higher than the minimal inhibitory concentration for their ancestors. Interestingly, such level of resistance was often associated with changes in susceptibility to other antibiotics, most prominently with increased resistance to fosfomycin. Whole-genome sequencing revealed that all resistant derivatives presented diverse mutations in five common genetic elements: fhuA, fusA and the atpIBEFHAGDC, cyoABCDE, and potABCD operons. Despite the large number of mutations acquired, hypermutable strains did not pay, apparently, fitness cost. In contrast to recent studies, we found that the mutation supply rate mainly affected the speed (tempo) but not the pattern (mode) of evolution: both backgrounds acquired the mutations in the same order, although the hypermutator strain did it faster. This observation is compatible with the adaptive landscape for high-level gentamicin resistance being relatively smooth, with few local maxima; which might be a common feature among antibiotics for which resistance involves multiple loci.
Collapse
Affiliation(s)
- Claudia Ibacache-Quiroga
- Centro Nacional de Biotecnología, Madrid, Spain.,Centro de Micro-Bioinnovación, Escuela de Nutrición y Dietética, Facultad de Farmacia, Universidad de Valparaíso, Valparaíso, Chile
| | | | - Alejandro Couce
- Unité Mixte de Recherche 1137, Infection, Antimicrobiens, Modélisation, Evolution, INSERM, Université Paris Diderot, Paris, France
| | - Jesus Blázquez
- Centro Nacional de Biotecnología, Madrid, Spain.,Unidad de Enfermedades Infecciosas, Microbiología y Medicina Preventiva, Hospital Universitario Virgen del Rocío, Sevilla, Spain
| |
Collapse
|
29
|
Arai M. Unified understanding of folding and binding mechanisms of globular and intrinsically disordered proteins. Biophys Rev 2018; 10:163-181. [PMID: 29307002 PMCID: PMC5899706 DOI: 10.1007/s12551-017-0346-7] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 11/13/2017] [Indexed: 12/18/2022] Open
Abstract
Extensive experimental and theoretical studies have advanced our understanding of the mechanisms of folding and binding of globular proteins, and coupled folding and binding of intrinsically disordered proteins (IDPs). The forces responsible for conformational changes and binding are common in both proteins; however, these mechanisms have been separately discussed. Here, we attempt to integrate the mechanisms of coupled folding and binding of IDPs, folding of small and multi-subdomain proteins, folding of multimeric proteins, and ligand binding of globular proteins in terms of conformational selection and induced-fit mechanisms as well as the nucleation–condensation mechanism that is intermediate between them. Accumulating evidence has shown that both the rate of conformational change and apparent rate of binding between interacting elements can determine reaction mechanisms. Coupled folding and binding of IDPs occurs mainly by induced-fit because of the slow folding in the free form, while ligand binding of globular proteins occurs mainly by conformational selection because of rapid conformational change. Protein folding can be regarded as the binding of intramolecular segments accompanied by secondary structure formation. Multi-subdomain proteins fold mainly by the induced-fit (hydrophobic collapse) mechanism, as the connection of interacting segments enhances the binding (compaction) rate. Fewer hydrophobic residues in small proteins reduce the intramolecular binding rate, resulting in the nucleation–condensation mechanism. Thus, the folding and binding of globular proteins and IDPs obey the same general principle, suggesting that the coarse-grained, statistical mechanical model of protein folding is promising for a unified theoretical description of all mechanisms.
Collapse
Affiliation(s)
- Munehito Arai
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo, 153-8902, Japan.
| |
Collapse
|
30
|
Knies JL, Cai F, Weinreich DM. Enzyme Efficiency but Not Thermostability Drives Cefotaxime Resistance Evolution in TEM-1 β-Lactamase. Mol Biol Evol 2017; 34:1040-1054. [PMID: 28087769 PMCID: PMC5400381 DOI: 10.1093/molbev/msx053] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
A leading intellectual challenge in evolutionary genetics is to identify the specific phenotypes that drive adaptation. Enzymes offer a particularly promising opportunity to pursue this question, because many enzymes' contributions to organismal fitness depend on a comparatively small number of experimentally accessible properties. Moreover, on first principles the demands of enzyme thermostability stand in opposition to the demands of catalytic activity. This observation, coupled with the fact that enzymes are only marginally thermostable, motivates the widely held hypothesis that mutations conferring functional improvement require compensatory mutations to restore thermostability. Here, we explicitly test this hypothesis for the first time, using four missense mutations in TEM-1 β-lactamase that jointly increase cefotaxime Minimum Inhibitory Concentration (MIC) ∼1500-fold. First, we report enzymatic efficiency (kcat/KM) and thermostability (Tm, and thence ΔG of folding) for all combinations of these mutations. Next, we fit a quantitative model that predicts MIC as a function of kcat/KM and ΔG. While kcat/KM explains ∼54% of the variance in cefotaxime MIC (∼92% after log transformation), ΔG does not improve explanatory power of the model. We also find that cefotaxime MIC rises more slowly in kcat/KM than predicted. Several explanations for these discrepancies are suggested. Finally, we demonstrate substantial sign epistasis in MIC and kcat/KM, and antagonistic pleiotropy between phenotypes, in spite of near numerical additivity in the system. Thus constraints on selectively accessible trajectories, as well as limitations in our ability to explain such constraints in terms of underlying mechanisms are observed in a comparatively "well-behaved" system.
Collapse
Affiliation(s)
- Jennifer L Knies
- Department of Ecology and Evolutionary Biology, Brown University, Providence, RI
| | - Fei Cai
- Department of Ecology and Evolutionary Biology, Brown University, Providence, RI
| | - Daniel M Weinreich
- Department of Ecology and Evolutionary Biology, Brown University, Providence, RI
| |
Collapse
|
31
|
Latallo MJ, Cortina GA, Faham S, Nakamoto RK, Kasson PM. Predicting allosteric mutants that increase activity of a major antibiotic resistance enzyme. Chem Sci 2017; 8:6484-6492. [PMID: 28989673 PMCID: PMC5628580 DOI: 10.1039/c7sc02676e] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 07/17/2017] [Indexed: 11/25/2022] Open
Abstract
Allosteric mutations increasing kcat in a beta lactamase act by changing conformational ensembles of active-site residues identified by machine learning.
The CTX-M family of beta lactamases mediate broad-spectrum antibiotic resistance and are present in the majority of drug-resistant Gram-negative bacterial infections worldwide. Allosteric mutations that increase catalytic rates of these drug resistance enzymes have been identified in clinical isolates but are challenging to predict prospectively. We have used molecular dynamics simulations to predict allosteric mutants increasing CTX-M9 drug resistance, experimentally testing top mutants using multiple antibiotics. Purified enzymes show an increase in catalytic rate and efficiency, while mutant crystal structures show no detectable changes from wild-type CTX-M9. We hypothesize that increased drug resistance results from changes in the conformational ensemble of an acyl intermediate in hydrolysis. Machine-learning analyses on the three top mutants identify changes to the binding-pocket conformational ensemble by which these allosteric mutations transmit their effect. These findings show how molecular simulation can predict how allosteric mutations alter active-site conformational equilibria to increase catalytic rates and thus resistance against common clinically used antibiotics.
Collapse
Affiliation(s)
- M J Latallo
- Department of Molecular Physiology , University of Virginia , Box 800886 , Charlottesville , VA 22908 , USA .
| | - G A Cortina
- Department of Molecular Physiology , University of Virginia , Box 800886 , Charlottesville , VA 22908 , USA . .,Department of Biomedical Engineering , University of Virginia , USA
| | - S Faham
- Department of Molecular Physiology , University of Virginia , Box 800886 , Charlottesville , VA 22908 , USA .
| | - R K Nakamoto
- Department of Molecular Physiology , University of Virginia , Box 800886 , Charlottesville , VA 22908 , USA .
| | - P M Kasson
- Department of Molecular Physiology , University of Virginia , Box 800886 , Charlottesville , VA 22908 , USA . .,Department of Biomedical Engineering , University of Virginia , USA.,Science for Life Laboratory , Department of Cell and Molecular Biology , Uppsala University , Sweden
| |
Collapse
|
32
|
Patel MP, Hu L, Stojanoski V, Sankaran B, Venkataram Prasad BV, Palzkill T. The Drug-Resistant Variant P167S Expands the Substrate Profile of CTX-M β-Lactamases for Oxyimino-Cephalosporin Antibiotics by Enlarging the Active Site upon Acylation. Biochemistry 2017; 56:3443-3453. [PMID: 28613873 PMCID: PMC5645026 DOI: 10.1021/acs.biochem.7b00176] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
CTX-M β-lactamases provide resistance against the β-lactam antibiotic, cefotaxime, but not a related antibiotic, ceftazidime. β-Lactamases that carry the P167S substitution, however, provide ceftazidime resistance. In this study, CTX-M-14 was used as a model to study the structural changes caused by the P167S mutation that accelerate ceftazidime turnover. X-ray crystallography was used to determine the structures of the P167S apoenzyme along with the structures of the S70G/P167S, E166A/P167S, and E166A mutant enzymes complexed with ceftazidime as well as the E166A/P167S apoenzyme. The S70G and E166A mutations allow capture of the enzyme-substrate complex and the acylated form of ceftazidime, respectively. The results showed a large conformational change in the Ω-loop of the ceftazidime acyl-enzyme complex of the P167S mutant but not in the enzyme-substrate complex, suggesting the change occurs upon acylation. The change results in a larger active site that prevents steric clash between the aminothiazole ring of ceftazidime and the Asn170 residue in the Ω-loop, allowing accommodation of ceftazidime for hydrolysis. In addition, the conformational change was not observed in the E166A/P167S apoenzyme, suggesting the presence of acylated ceftazidime influences the conformational change. Finally, the E166A acyl-enzyme structure with ceftazidime did not exhibit the altered conformation, indicating the P167S substitution is required for the change. Taken together, the results reveal that the P167S substitution and the presence of acylated ceftazidime both drive the structure toward a conformational change in the Ω-loop and that in CTX-M P167S enzymes found in drug-resistant bacteria this will lead to an increased level of ceftazidime hydrolysis.
Collapse
Affiliation(s)
- Meha P. Patel
- Interdepartmental Graduate Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, TX 77030
- Department of Pharmacology, Baylor College of Medicine, Houston, TX 77030
| | - Liya Hu
- Verna Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030
| | - Vlatko Stojanoski
- Verna Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030
- Department of Pharmacology, Baylor College of Medicine, Houston, TX 77030
| | - Banumathi Sankaran
- Department of Molecular Biophysics and Integrated Bioimaging, Berkeley Center for Structural Biology, Lawrence Berkeley National Laboratory, Berkeley, California 94720
| | - B. V. Venkataram Prasad
- Verna Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030
| | - Timothy Palzkill
- Interdepartmental Graduate Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, TX 77030
- Verna Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030
- Department of Pharmacology, Baylor College of Medicine, Houston, TX 77030
| |
Collapse
|
33
|
Thermal stability and kinetic constants for 129 variants of a family 1 glycoside hydrolase reveal that enzyme activity and stability can be separately designed. PLoS One 2017; 12:e0176255. [PMID: 28531185 PMCID: PMC5439667 DOI: 10.1371/journal.pone.0176255] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Accepted: 04/08/2017] [Indexed: 11/19/2022] Open
Abstract
Accurate modeling of enzyme activity and stability is an important goal of the protein engineering community. However, studies seeking to evaluate current progress are limited by small data sets of quantitative kinetic constants and thermal stability measurements. Here, we report quantitative measurements of soluble protein expression in E. coli, thermal stability, and Michaelis-Menten constants (kcat, KM, and kcat/KM) for 129 designed mutants of a glycoside hydrolase. Statistical analyses reveal that functional Tm is independent of kcat, KM, and kcat/KM in this system, illustrating that an individual mutation can modulate these functional parameters independently. In addition, this data set is used to evaluate computational predictions of protein stability using the established Rosetta and FoldX algorithms. Predictions for both are found to correlate only weakly with experimental measurements, suggesting improvements are needed in the underlying algorithms.
Collapse
|
34
|
Julian MC, Li L, Garde S, Wilen R, Tessier PM. Efficient affinity maturation of antibody variable domains requires co-selection of compensatory mutations to maintain thermodynamic stability. Sci Rep 2017; 7:45259. [PMID: 28349921 PMCID: PMC5368667 DOI: 10.1038/srep45259] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 02/27/2017] [Indexed: 12/31/2022] Open
Abstract
The ability of antibodies to accumulate affinity-enhancing mutations in their complementarity-determining regions (CDRs) without compromising thermodynamic stability is critical to their natural function. However, it is unclear if affinity mutations in the hypervariable CDRs generally impact antibody stability and to what extent additional compensatory mutations are required to maintain stability during affinity maturation. Here we have experimentally and computationally evaluated the functional contributions of mutations acquired by a human variable (VH) domain that was evolved using strong selections for enhanced stability and affinity for the Alzheimer’s Aβ42 peptide. Interestingly, half of the key affinity mutations in the CDRs were destabilizing. Moreover, the destabilizing effects of these mutations were compensated for by a subset of the affinity mutations that were also stabilizing. Our findings demonstrate that the accumulation of both affinity and stability mutations is necessary to maintain thermodynamic stability during extensive mutagenesis and affinity maturation in vitro, which is similar to findings for natural antibodies that are subjected to somatic hypermutation in vivo. These findings for diverse antibodies and antibody fragments specific for unrelated antigens suggest that the formation of the antigen-binding site is generally a destabilizing process and that co-enrichment for compensatory mutations is critical for maintaining thermodynamic stability.
Collapse
Affiliation(s)
- Mark C Julian
- Center for Biotechnology &Interdisciplinary Studies, Isermann Dept. of Chemical &Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Lijuan Li
- Center for Biotechnology &Interdisciplinary Studies, Isermann Dept. of Chemical &Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Shekhar Garde
- Center for Biotechnology &Interdisciplinary Studies, Isermann Dept. of Chemical &Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Rebecca Wilen
- Center for Biotechnology &Interdisciplinary Studies, Isermann Dept. of Chemical &Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Peter M Tessier
- Center for Biotechnology &Interdisciplinary Studies, Isermann Dept. of Chemical &Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| |
Collapse
|
35
|
Nshogozabahizi JC, Dench J, Aris-Brosou S. Widespread Historical Contingency in Influenza Viruses. Genetics 2017; 205:409-420. [PMID: 28049709 PMCID: PMC5223518 DOI: 10.1534/genetics.116.193979] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 11/04/2016] [Indexed: 11/18/2022] Open
Abstract
In systems biology and genomics, epistasis characterizes the impact that a substitution at a particular location in a genome can have on a substitution at another location. This phenomenon is often implicated in the evolution of drug resistance or to explain why particular "disease-causing" mutations do not have the same outcome in all individuals. Hence, uncovering these mutations and their locations in a genome is a central question in biology. However, epistasis is notoriously difficult to uncover, especially in fast-evolving organisms. Here, we present a novel statistical approach that replies on a model developed in ecology and that we adapt to analyze genetic data in fast-evolving systems such as the influenza A virus. We validate the approach using a two-pronged strategy: extensive simulations demonstrate a low-to-moderate sensitivity with excellent specificity and precision, while analyses of experimentally validated data recover known interactions, including in a eukaryotic system. We further evaluate the ability of our approach to detect correlated evolution during antigenic shifts or at the emergence of drug resistance. We show that in all cases, correlated evolution is prevalent in influenza A viruses, involving many pairs of sites linked together in chains; a hallmark of historical contingency. Strikingly, interacting sites are separated by large physical distances, which entails either long-range conformational changes or functional tradeoffs, for which we find support with the emergence of drug resistance. Our work paves a new way for the unbiased detection of epistasis in a wide range of organisms by performing whole-genome scans.
Collapse
Affiliation(s)
| | - Jonathan Dench
- Department of Biology, University of Ottawa, Ontario K1N 6N5, Canada
| | - Stéphane Aris-Brosou
- Department of Biology, University of Ottawa, Ontario K1N 6N5, Canada
- Department of Mathematics and Statistics, University of Ottawa, Ontario K1N 6N5, Canada
| |
Collapse
|
36
|
High adaptability of the omega loop underlies the substrate-spectrum-extension evolution of a class A β-lactamase, PenL. Sci Rep 2016; 6:36527. [PMID: 27827433 PMCID: PMC5101513 DOI: 10.1038/srep36527] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 10/18/2016] [Indexed: 01/11/2023] Open
Abstract
The omega loop in β-lactamases plays a pivotal role in substrate recognition and catalysis, and some mutations in this loop affect the adaptability of the enzymes to new antibiotics. Various mutations, including substitutions, deletions, and intragenic duplications resulting in tandem repeats (TRs), have been associated with β-lactamase substrate spectrum extension. TRs are unique among the mutations as they cause severe structural perturbations in the enzymes. We explored the process by which TRs are accommodated in order to test the adaptability of the omega loop. Structures of the mutant enzymes showed that the extra amino acid residues in the omega loop were freed outward from the enzyme, thereby maintaining the overall enzyme integrity. This structural adjustment was accompanied by disruptions of the internal α-helix and hydrogen bonds that originally maintained the conformation of the omega loop and the active site. Consequently, the mutant enzymes had a relaxed binding cavity, allowing for access of new substrates, which regrouped upon substrate binding in an induced-fit manner for subsequent hydrolytic reactions. Together, the data demonstrate that the design of the binding cavity, including the omega loop with its enormous adaptive capacity, is the foundation of the continuous evolution of β-lactamases against new drugs.
Collapse
|
37
|
Stojanoski V, Adamski CJ, Hu L, Mehta SC, Sankaran B, Zwart P, Prasad BVV, Palzkill T. Removal of the Side Chain at the Active-Site Serine by a Glycine Substitution Increases the Stability of a Wide Range of Serine β-Lactamases by Relieving Steric Strain. Biochemistry 2016; 55:2479-90. [PMID: 27073009 DOI: 10.1021/acs.biochem.6b00056] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Serine β-lactamases are bacterial enzymes that hydrolyze β-lactam antibiotics. They utilize an active-site serine residue as a nucleophile, forming an acyl-enzyme intermediate during hydrolysis. In this study, thermal denaturation experiments as well as X-ray crystallography were performed to test the effect of substitution of the catalytic serine with glycine on protein stability in serine β-lactamases. Six different enzymes comprising representatives from each of the three classes of serine β-lactamases were examined, including TEM-1, CTX-M-14, and KPC-2 of class A, P99 of class C, and OXA-48 and OXA-163 of class D. For each enzyme, the wild type and a serine-to-glycine mutant were evaluated for stability. The glycine mutants all exhibited enhanced thermostability compared to that of the wild type. In contrast, alanine substitutions of the catalytic serine in TEM-1, OXA-48, and OXA-163 did not alter stability, suggesting removal of the Cβ atom is key to the stability increase associated with the glycine mutants. The X-ray crystal structures of P99 S64G, OXA-48 S70G and S70A, and OXA-163 S70G suggest that removal of the side chain of the catalytic serine releases steric strain to improve enzyme stability. Additionally, analysis of the torsion angles at the nucleophile position indicates that the glycine mutants exhibit improved distance and angular parameters of the intrahelical hydrogen bond network compared to those of the wild-type enzymes, which is also consistent with increased stability. The increased stability of the mutants indicates that the enzyme pays a price in stability for the presence of a side chain at the catalytic serine position but that the cost is necessary in that removal of the serine drastically impairs function. These findings support the stability-function hypothesis, which states that active-site residues are optimized for substrate binding and catalysis but that the requirements for catalysis are often not consistent with the requirements for optimal stability.
Collapse
Affiliation(s)
| | | | | | | | - Banumathi Sankaran
- Berkeley Center for Structural Biology, Molecular Biophysics and Integrated Bioimaging, Advanced Light Source, Lawrence Berkeley National Laboratory , Berkeley, California 94720, United States
| | - Peter Zwart
- Berkeley Center for Structural Biology, Molecular Biophysics and Integrated Bioimaging, Advanced Light Source, Lawrence Berkeley National Laboratory , Berkeley, California 94720, United States
| | | | | |
Collapse
|
38
|
Saino H, Sugiyabu T, Ueno G, Yamamoto M, Ishii Y, Miyano M. Crystal Structure of OXA-58 with the Substrate-Binding Cleft in a Closed State: Insights into the Mobility and Stability of the OXA-58 Structure. PLoS One 2015; 10:e0145869. [PMID: 26701320 PMCID: PMC4689445 DOI: 10.1371/journal.pone.0145869] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2015] [Accepted: 12/09/2015] [Indexed: 11/18/2022] Open
Abstract
OXA-58 is a class D β-lactamase from the multi-drug resistant Acinetobacter baumannii. We determined the crystal structure of OXA-58 in a novel crystal, and revealed the structure of the substrate-binding cleft in a closed state, distinct from a previously reported OXA-58 crystal structure with the binding cleft in an open state. In the closed state, the movement of three loops (α3-α4, β6-β7, and β8-α10) forms an arch-like architecture over the binding cleft through interaction between the Phe113 residues of α3-α4 and Met225 of β6-β7. This structure suggests the involvement of these flexible loops in OXA-58 substrate binding. In contrast to the mobile loops, the Ω-loop appeared static, including the conserved loop residues and their hydrogen bonds; the pivotal residue Trp169 within the Ω-loop, ζ-carbamic acid of the modified base catalyst residue Lys86, and nucleophilic residue Ser83. The stability of OXA-58 was enhanced concomitant with an increase in the hydrolytic activity catalyzed by NaHCO3-dependent ζ-carbamic acid formation, with an EC50 of 0.34 mM. The W169A mutant enzyme was significantly thermally unstable even in the presence of 100 mM NaHCO3, whereas the S83A mutant was stabilized with NaHCO3-dependent activation. The ζ-carbamic acid was shown to increase not only OXA-58 hydrolytic activity but also OXA-58 stability through the formation of a hydrogen bond network connected to the Ω-loop with Ser83 and Trp169. Thus, the static Ω-loop is important for OXA-58 stability, whereas the mobile loops of the substrate-binding cleft form the basis for accommodation of the various substituents of β-lactam backbone.
Collapse
Affiliation(s)
- Hiromichi Saino
- Department of Chemistry and Biological Science, College of Science and Engineering, Aoyama Gakuin University, Sagamihara-shi, Kanagawa, Japan
- * E-mail:
| | - Tomohiro Sugiyabu
- Department of Chemistry and Biological Science, College of Science and Engineering, Aoyama Gakuin University, Sagamihara-shi, Kanagawa, Japan
| | - Go Ueno
- Advanced Photon Technology Division, RIKEN SPring-8 Center, Sayo-gun, Hyogo, Japan
| | - Masaki Yamamoto
- Advanced Photon Technology Division, RIKEN SPring-8 Center, Sayo-gun, Hyogo, Japan
| | - Yoshikazu Ishii
- Department of Microbiology and Infectious Diseases, Faculty of Medicine, Toho University, Ota-ku, Tokyo, Japan
| | - Masashi Miyano
- Department of Chemistry and Biological Science, College of Science and Engineering, Aoyama Gakuin University, Sagamihara-shi, Kanagawa, Japan
| |
Collapse
|
39
|
Winkler ML, Bonomo RA. SHV-129: A Gateway to Global Suppressors in the SHV β-Lactamase Family? Mol Biol Evol 2015; 33:429-41. [PMID: 26531195 DOI: 10.1093/molbev/msv235] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Enzymes are continually evolving in response to environmental pressures. In order to increase enzyme fitness, amino acid substitutions can occur leading to a changing function or an increased stability. These evolutionary drivers determine the activity of an enzyme and its success in future generations in response to changing conditions such as environmental stressors or to improve physiological function allowing continual persistence of the enzyme. With recent warning reports on antibiotic resistance and multidrug resistant bacterial infections, understanding the evolution of β-lactamase enzymes, which are a large contributor to antibiotic resistance, is increasingly important. Here, we investigated a variant of the SHV β-lactamase identified from a clinical isolate of Escherichia coli in 2011 (SHV-129, G238S-E240K-R275L-N276D) to identify the first instance of a global suppressor substitution in the SHV β-lactamase family. We have used this enzyme to show that several evolutionary principles are conserved in different class A β-lactamases, such as active site mutations reducing stability and requiring compensating suppressor substitutions in order to ensure evolutionary persistence of a given β-lactamase. However, the pathway taken by a given β-lactamase in order to reach its evolutionary peak under a given set of conditions is likely different. We also provide further evidence for a conserved stabilizing substitution among class A β-lactamases, the back to consensus M182T substitution. In addition to expanding the spectrum of β-lactamase activity to include the hydrolysis of cefepime, the amino acid substitutions found in SHV-129 provide the enzyme with an excess of stability, which expands the evolutionary landscape of this enzyme and may result in further evolution to potentially include resistance to carbapenems or β-lactamase inhibitors.
Collapse
Affiliation(s)
- Marisa L Winkler
- Research Service, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH Department of Molecular Biology and Microbiology, Case Western Reserve University
| | - Robert A Bonomo
- Research Service, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH Department of Molecular Biology and Microbiology, Case Western Reserve University Department of Pharmacology, Case Western Reserve University Department of Biochemistry, Case Western Reserve University Department of Medicine, Case Western Reserve University
| |
Collapse
|
40
|
Lai JH, Yang JT, Chern J, Chen TL, Wu WL, Liao JH, Tsai SF, Liang SY, Chou CC, Wu SH. Comparative Phosphoproteomics Reveals the Role of AmpC β-lactamase Phosphorylation in the Clinical Imipenem-resistant Strain Acinetobacter baumannii SK17. Mol Cell Proteomics 2015; 15:12-25. [PMID: 26499836 DOI: 10.1074/mcp.m115.051052] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Indexed: 01/13/2023] Open
Abstract
Nosocomial infectious outbreaks caused by multidrug-resistant Acinetobacter baumannii have emerged as a serious threat to human health. Phosphoproteomics of pathogenic bacteria has been used to identify the mechanisms of bacterial virulence and antimicrobial resistance. In this study, we used a shotgun strategy combined with high-accuracy mass spectrometry to analyze the phosphoproteomics of the imipenem-susceptible strain SK17-S and -resistant strain SK17-R. We identified 410 phosphosites on 248 unique phosphoproteins in SK17-S and 285 phosphosites on 211 unique phosphoproteins in SK17-R. The distributions of the Ser/Thr/Tyr/Asp/His phosphosites in SK17-S and SK17-R were 47.0%/27.6%/12.4%/8.0%/4.9% versus 41.4%/29.5%/17.5%/6.7%/4.9%, respectively. The Ser-90 phosphosite, located on the catalytic motif S(88)VS(90)K of the AmpC β-lactamase, was first identified in SK17-S. Based on site-directed mutagenesis, the nonphosphorylatable mutant S90A was found to be more resistant to imipenem, whereas the phosphorylation-simulated mutant S90D was sensitive to imipenem. Additionally, the S90A mutant protein exhibited higher β-lactamase activity and conferred greater bacterial protection against imipenem in SK17-S compared with the wild-type. In sum, our results revealed that in A. baumannii, Ser-90 phosphorylation of AmpC negatively regulates both β-lactamase activity and the ability to counteract the antibiotic effects of imipenem. These findings highlight the impact of phosphorylation-mediated regulation in antibiotic-resistant bacteria on future drug design and new therapies.
Collapse
Affiliation(s)
- Juo-Hsin Lai
- From the ‡Institute of Biochemical Sciences, College of Life Sciences, National Taiwan University, Taipei 10617, Taiwan; §Institute of Biological Chemistry, Academia Sinica. Taipei 11529, Taiwan
| | - Jhih-Tian Yang
- §Institute of Biological Chemistry, Academia Sinica. Taipei 11529, Taiwan; ¶Ph.D. Program in Microbial Genomics, National Chung Hsing University and Academia Sinica, Taiwan
| | - Jeffy Chern
- §Institute of Biological Chemistry, Academia Sinica. Taipei 11529, Taiwan; ‖Chemical Biology and Molecular Biophysics Program, Taiwan International Graduate Program, Academia Sinica, Taipei 11529, Taiwan; **Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Te-Li Chen
- ‡‡Institute of Clinical Medicine, School of Medicine, National Yang Ming University, Taipei 11221, Taiwan; §§Division of Infectious Diseases, Department of Medicine, Taipei Veterans General Hospital, Taipei 11217, Taiwan; ¶¶Department of Medicine, Cheng Hsin General Hospital, Taipei 11220, Taiwan
| | - Wan-Ling Wu
- §Institute of Biological Chemistry, Academia Sinica. Taipei 11529, Taiwan
| | - Jiahn-Haur Liao
- §Institute of Biological Chemistry, Academia Sinica. Taipei 11529, Taiwan
| | - Shih-Feng Tsai
- ‖‖Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei 11221, Taiwan; Institute of Molecular and Genomic Medicine, National Health Research Institutes, Miaoli 35053, Taiwan
| | - Suh-Yuen Liang
- §Institute of Biological Chemistry, Academia Sinica. Taipei 11529, Taiwan; Core Facilities for Protein Structural Analysis, Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan
| | - Chi-Chi Chou
- §Institute of Biological Chemistry, Academia Sinica. Taipei 11529, Taiwan; Core Facilities for Protein Structural Analysis, Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan
| | - Shih-Hsiung Wu
- From the ‡Institute of Biochemical Sciences, College of Life Sciences, National Taiwan University, Taipei 10617, Taiwan; §Institute of Biological Chemistry, Academia Sinica. Taipei 11529, Taiwan; ‖Chemical Biology and Molecular Biophysics Program, Taiwan International Graduate Program, Academia Sinica, Taipei 11529, Taiwan; **Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan;
| |
Collapse
|
41
|
Houlihan G, Gatti-Lafranconi P, Lowe D, Hollfelder F. Directed evolution of anti-HER2 DARPins by SNAP display reveals stability/function trade-offs in the selection process. Protein Eng Des Sel 2015; 28:269-79. [PMID: 26134501 PMCID: PMC4550541 DOI: 10.1093/protein/gzv029] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Revised: 05/05/2015] [Accepted: 05/07/2015] [Indexed: 01/08/2023] Open
Abstract
In vitro display technologies have proved to be powerful tools for obtaining high-affinity protein binders. We recently described SNAP display, an entirely in vitro DNA display system that uses the SNAP-tag to link protein with its encoding DNA in water-in-oil emulsions. Here, we apply SNAP display for the affinity maturation of a designed ankyrin repeat proteins (DARPin) that binds to the extracellular domain of HER2 previously isolated by ribosome display. After four SNAP display selection cycles, proteins that bound specifically to HER2 in vitro, with dissociation constants in the low- to sub-nanomolar range, were isolated. In vitro affinities of the panel of evolved DARPins directly correlated with the fluorescence intensities of evolved DARPins bound to HER2 on a breast cancer cell line. A stability trade-off is observed as the most improved DARPins have decreased thermostability, when compared with the parent DARPin used as a starting point for affinity maturation. Dissection of the framework mutations of the highest affinity variant, DARPin F1, shows that functionally destabilising and compensatory mutations accumulated throughout the four rounds of evolution.
Collapse
Affiliation(s)
- Gillian Houlihan
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK MedImmune Ltd, Milstein Building, Granta Park, Cambridge CB1 6GH, UK
| | - Pietro Gatti-Lafranconi
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK
| | - David Lowe
- MedImmune Ltd, Milstein Building, Granta Park, Cambridge CB1 6GH, UK
| | - Florian Hollfelder
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK
| |
Collapse
|
42
|
Characterization of the global stabilizing substitution A77V and its role in the evolution of CTX-M β-lactamases. Antimicrob Agents Chemother 2015; 59:6741-8. [PMID: 26282414 DOI: 10.1128/aac.00618-15] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 08/07/2015] [Indexed: 11/20/2022] Open
Abstract
The widespread use of oxyimino-cephalosporin antibiotics drives the evolution of the CTX-M family of β-lactamases that hydrolyze these drugs and confer antibiotic resistance. Clinically isolated CTX-M enzymes carrying the P167S or D240G active site-associated adaptive mutation have a broadened substrate profile that includes the oxyimino-cephalosporin antibiotic ceftazidime. The D240G substitution is known to reduce the stability of CTX-M-14 β-lactamase, and the P167S substitution is shown here to also destabilize the enzyme. Proteins are marginally stable entities, and second-site mutations that stabilize the enzyme can offset a loss in stability caused by mutations that enhance enzyme activity. Therefore, the evolution of antibiotic resistance enzymes can be dependent on the acquisition of stabilizing mutations. The A77V substitution is present in CTX-M extended-spectrum β-lactamases (ESBLs) from a number of clinical isolates, suggesting that it may be important in the evolution of antibiotic resistance in this family of β-lactamases. In this study, the effects of the A77V substitution in the CTX-M-14 model enzyme were characterized with regard to the kinetic parameters for antibiotic hydrolysis as well as enzyme expression levels in vivo and protein stability in vitro. The A77V substitution has little effect on the kinetics of oxyimino-cephalosporin hydrolysis, but it stabilizes the CTX-M enzyme and compensates for the loss of stability resulting from the P167S and D240G mutations. The acquisition of global stabilizing mutations, such as A77V, is an important feature in β-lactamase evolution and a common mechanism in protein evolution.
Collapse
|
43
|
Brown JR, Livesay DR. Flexibility Correlation between Active Site Regions Is Conserved across Four AmpC β-Lactamase Enzymes. PLoS One 2015; 10:e0125832. [PMID: 26018804 PMCID: PMC4446314 DOI: 10.1371/journal.pone.0125832] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Accepted: 03/26/2015] [Indexed: 11/24/2022] Open
Abstract
β-lactamases are bacterial enzymes that confer resistance to β-lactam antibiotics, such as penicillins and cephalosporins. There are four classes of β-lactamase enzymes, each with characteristic sequence and structure properties. Enzymes from class A are the most common and have been well characterized across the family; however, less is known about how physicochemical properties vary across the C and D families. In this report, we compare the dynamical properties of four AmpC (class C) β-lactamases using our distance constraint model (DCM). The DCM reliably predicts thermodynamic and mechanical properties in an integrated way. As a consequence, quantitative stability/flexibility relationships (QSFR) can be determined and compared across the whole family. The DCM calculates a large number of QSFR metrics. Perhaps the most useful is the flexibility index (FI), which quantifies flexibility along the enzyme backbone. As typically observed in other systems, FI is well conserved across the four AmpC enzymes. Cooperativity correlation (CC), which quantifies intramolecular couplings within structure, is rarely conserved across protein families; however, it is in AmpC. In particular, the bulk of each structure is composed of a large rigid cluster, punctuated by three flexibly correlated regions located at the active site. These regions include several catalytic residues and the Ω-loop. This evolutionary conservation combined with active their site location strongly suggests that these coupled dynamical modes are important for proper functioning of the enzyme.
Collapse
Affiliation(s)
- Jenna R. Brown
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, 28262, United States of America
| | - Dennis R. Livesay
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, NC, 28262, United States of America
- * E-mail:
| |
Collapse
|
44
|
|
45
|
Jeon JH, Hong MK, Lee JH, Lee JJ, Park KS, Karim AM, Jo JY, Kim JH, Ko KS, Kang LW, Lee SH. Structure of ADC-68, a novel carbapenem-hydrolyzing class C extended-spectrum β-lactamase isolated from Acinetobacter baumannii. ACTA ACUST UNITED AC 2014; 70:2924-36. [PMID: 25372683 DOI: 10.1107/s1399004714019543] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 08/28/2014] [Indexed: 11/10/2022]
Abstract
Outbreaks of multidrug-resistant bacterial infections have become more frequent worldwide owing to the emergence of several different classes of β-lactamases. In this study, the molecular, biochemical and structural characteristics of an Acinetobacter-derived cephalosporinase (ADC)-type class C β-lactamase, ADC-68, isolated from the carbapenem-resistant A. baumannii D015 were investigated. The blaADC-68 gene which encodes ADC-68 was confirmed to exist on the chromosome via Southern blot analysis and draft genome sequencing. The catalytic kinetics of β-lactams and their MICs (minimum inhibitory concentrations) for A. baumannii D015 and purified ADC-68 (a carbapenemase obtained from this strain) were assessed: the strain was resistant to penicillins, narrow-spectrum and extended-spectrum cephalosporins, and carbapenems, which were hydrolyzed by ADC-68. The crystal structure of ADC-68 was determined at a resolution of 1.8 Å. The structure of ADC-68 was compared with that of ADC-1 (a non-carbapenemase); differences were found in the central part of the Ω-loop and the C-loop constituting the edge of the R1 and R2 subsites and are close to the catalytic serine residue Ser66. The ADC-68 C-loop was stabilized in the open conformation of the upper R2 subsite and could better accommodate carbapenems with larger R2 side chains. Furthermore, a wide-open conformation of the R2-loop allowed ADC-68 to bind to and hydrolyze extended-spectrum cephalosporins. Therefore, ADC-68 had enhanced catalytic efficiency against these clinically important β-lactams (extended-spectrum cephalosporins and carbapenems). ADC-68 is the first reported enzyme among the chromosomal class C β-lactamases to possess class C extended-spectrum β-lactamase and carbapenemase activities.
Collapse
Affiliation(s)
- Jeong Ho Jeon
- National Leading Research Laboratory of Drug Resistance Proteomics, Department of Biological Sciences, Myongji University, 116 Myongjiro, Yongin, Gyeonggido 449-728, Republic of Korea
| | - Myoung Ki Hong
- Institute for Cellular and Structural Biology of Sun Yat-Sen University, Guangzhou, Peoples Republic of China
| | - Jung Hun Lee
- National Leading Research Laboratory of Drug Resistance Proteomics, Department of Biological Sciences, Myongji University, 116 Myongjiro, Yongin, Gyeonggido 449-728, Republic of Korea
| | - Jae Jin Lee
- National Leading Research Laboratory of Drug Resistance Proteomics, Department of Biological Sciences, Myongji University, 116 Myongjiro, Yongin, Gyeonggido 449-728, Republic of Korea
| | - Kwang Seung Park
- National Leading Research Laboratory of Drug Resistance Proteomics, Department of Biological Sciences, Myongji University, 116 Myongjiro, Yongin, Gyeonggido 449-728, Republic of Korea
| | - Asad Mustafa Karim
- National Leading Research Laboratory of Drug Resistance Proteomics, Department of Biological Sciences, Myongji University, 116 Myongjiro, Yongin, Gyeonggido 449-728, Republic of Korea
| | - Jeong Yeon Jo
- National Leading Research Laboratory of Drug Resistance Proteomics, Department of Biological Sciences, Myongji University, 116 Myongjiro, Yongin, Gyeonggido 449-728, Republic of Korea
| | - Ji Hwan Kim
- National Leading Research Laboratory of Drug Resistance Proteomics, Department of Biological Sciences, Myongji University, 116 Myongjiro, Yongin, Gyeonggido 449-728, Republic of Korea
| | - Kwan Soo Ko
- Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Lin Woo Kang
- Institute for Cellular and Structural Biology of Sun Yat-Sen University, Guangzhou, Peoples Republic of China
| | - Sang Hee Lee
- National Leading Research Laboratory of Drug Resistance Proteomics, Department of Biological Sciences, Myongji University, 116 Myongjiro, Yongin, Gyeonggido 449-728, Republic of Korea
| |
Collapse
|
46
|
Makena A, Brem J, Pfeffer I, Geffen REJ, Wilkins SE, Tarhonskaya H, Flashman E, Phee LM, Wareham DW, Schofield CJ. Biochemical characterization of New Delhi metallo-β-lactamase variants reveals differences in protein stability. J Antimicrob Chemother 2014; 70:463-9. [PMID: 25324420 PMCID: PMC4291237 DOI: 10.1093/jac/dku403] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Objectives Metallo-β-lactamase (MBL)-based resistance is a threat to the use of most β-lactam antibiotics. Multiple variants of the New Delhi MBL (NDM) have recently been reported. Previous reports indicate that the substitutions affect NDM activity despite being located outside the active site. This study compares the biochemical properties of seven clinically reported NDM variants. Methods NDM variants were generated by site-directed mutagenesis; recombinant proteins were purified to near homogeneity. Thermal stability and secondary structures of the variants were investigated using differential scanning fluorimetry and circular dichroism; kinetic parameters and MIC values were investigated for representative carbapenem, cephalosporin and penicillin substrates. Results The substitutions did not affect the overall folds of the NDM variants, within limits of detection; however, differences in thermal stabilities were observed. NDM-8 was the most stable variant with a melting temperature of 72°C compared with 60°C for NDM-1. In contrast to some previous studies, kcat/KM values were similar for carbapenem and penicillin substrates for NDM variants, but differences in kinetics were observed for cephalosporin substrates. Apparent substrate inhibition was observed with nitrocefin for variants containing the M154L substitution. In all cases, cefoxitin and ceftazidime were poorly hydrolysed with kcat/KM values <1 s−1 μM−1. Conclusions These results do not define major differences in the catalytic efficiencies of the studied NDM variants and carbapenem or penicillin substrates. Differences in the kinetics of cephalosporin hydrolysis were observed. The results do reveal that the clinically observed substitutions can make substantial differences in thermodynamic stability, suggesting that this may be a factor in MBL evolution.
Collapse
Affiliation(s)
- Anne Makena
- Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, UK
| | - Jürgen Brem
- Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, UK
| | - Inga Pfeffer
- Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, UK
| | - Rebecca E J Geffen
- Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, UK
| | - Sarah E Wilkins
- Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, UK
| | - Hanna Tarhonskaya
- Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, UK
| | - Emily Flashman
- Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, UK
| | - Lynette M Phee
- Antimicrobial Research Group, Queen Mary University London, London E1 2AT, UK
| | - David W Wareham
- Antimicrobial Research Group, Queen Mary University London, London E1 2AT, UK
| | | |
Collapse
|
47
|
Fang L, Chow KM, Hou S, Xue L, Chen X, Rodgers D, Zheng F, Zhan CG. Rational design, preparation, and characterization of a therapeutic enzyme mutant with improved stability and function for cocaine detoxification. ACS Chem Biol 2014; 9:1764-72. [PMID: 24919140 PMCID: PMC4136690 DOI: 10.1021/cb500257s] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Cocaine esterase (CocE) is known as the most efficient natural enzyme for cocaine hydrolysis. The major obstacle to the clinical application of wild-type CocE is the thermoinstability with a half-life of only ∼12 min at 37 °C. The previously designed T172R/G173Q mutant (denoted as enzyme E172-173) with an improved in vitro half-life of ∼6 h at 37 °C is currently in clinical trial Phase II for cocaine overdose treatment. Through molecular modeling and dynamics simulation, we designed and characterized a promising new mutant of E172-173 with extra L196C/I301C mutations (denoted as enzyme E196-301) to produce cross-subunit disulfide bonds that stabilize the dimer structure. The cross-subunit disulfide bonds were confirmed by X-ray diffraction. The designed L196C/I301C mutations have not only considerably extended the in vitro half-life at 37 °C to >100 days, but also significantly improved the catalytic efficiency against cocaine by ∼150%. In addition, the thermostable E196-301 can be PEGylated to significantly prolong the residence time in mice. The PEGylated E196-301 can fully protect mice from a lethal dose of cocaine (180 mg/kg, LD100) for at least 3 days, with an average protection time of ∼94h. This is the longest in vivo protection of mice from the lethal dose of cocaine demonstrated within all studies using an exogenous enzyme reported so far. Hence, E196-301 may be developed to become a more valuable therapeutic enzyme for cocaine abuse treatment, and it demonstrates that a general design strategy and protocol to simultaneously improve both the stability and function are feasible for rational protein drug design.
Collapse
Affiliation(s)
- Lei Fang
- Molecular
Modeling and Biopharmaceutical Center and Department of Pharmaceutical
Sciences, College of Pharmacy, University
of Kentucky, 789 South
Limestone Street, Lexington, Kentucky 40536, United
States
| | - K. Martin Chow
- Department
of Molecular and Cellular Biochemistry and Center for Structural Biology, University of Kentucky, 741 South Limestone Street, Lexington, Kentucky 40536, United States
| | - Shurong Hou
- Molecular
Modeling and Biopharmaceutical Center and Department of Pharmaceutical
Sciences, College of Pharmacy, University
of Kentucky, 789 South
Limestone Street, Lexington, Kentucky 40536, United
States
| | - Liu Xue
- Molecular
Modeling and Biopharmaceutical Center and Department of Pharmaceutical
Sciences, College of Pharmacy, University
of Kentucky, 789 South
Limestone Street, Lexington, Kentucky 40536, United
States
| | - Xiabin Chen
- Molecular
Modeling and Biopharmaceutical Center and Department of Pharmaceutical
Sciences, College of Pharmacy, University
of Kentucky, 789 South
Limestone Street, Lexington, Kentucky 40536, United
States
| | - David
W. Rodgers
- Department
of Molecular and Cellular Biochemistry and Center for Structural Biology, University of Kentucky, 741 South Limestone Street, Lexington, Kentucky 40536, United States
| | - Fang Zheng
- Molecular
Modeling and Biopharmaceutical Center and Department of Pharmaceutical
Sciences, College of Pharmacy, University
of Kentucky, 789 South
Limestone Street, Lexington, Kentucky 40536, United
States
| | - Chang-Guo Zhan
- Molecular
Modeling and Biopharmaceutical Center and Department of Pharmaceutical
Sciences, College of Pharmacy, University
of Kentucky, 789 South
Limestone Street, Lexington, Kentucky 40536, United
States,Tel.: 859-323-3943.
| |
Collapse
|
48
|
Trauner A, Borrell S, Reither K, Gagneux S. Evolution of drug resistance in tuberculosis: recent progress and implications for diagnosis and therapy. Drugs 2014; 74:1063-72. [PMID: 24962424 PMCID: PMC4078235 DOI: 10.1007/s40265-014-0248-y] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Drug-resistant tuberculosis is a growing threat to global public health. Recent efforts to understand the evolution of drug resistance have shown that changes in drug-target interactions are only the first step in a longer adaptive process. The emergence of transmissible drug-resistant Mycobacterium tuberculosis is the result of a multitude of additional genetic mutations, many of which interact, a phenomenon known as epistasis. The varied effects of these epistatic interactions include compensating for the reduction of the biological cost associated with the development of drug resistance, increasing the level of resistance, and possibly accommodating broader changes in the physiology of resistant bacteria. Knowledge of these processes and our ability to detect them as they happen informs the development of diagnostic tools and better control strategies. In particular, the use of whole genome sequencing combined with surveillance efforts in the field could provide a powerful instrument to prevent future epidemics of drug-resistant tuberculosis.
Collapse
Affiliation(s)
- Andrej Trauner
- Swiss Tropical and Public Health Institute, Socinstrasse 57, 4002 Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Sonia Borrell
- Swiss Tropical and Public Health Institute, Socinstrasse 57, 4002 Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Klaus Reither
- Swiss Tropical and Public Health Institute, Socinstrasse 57, 4002 Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Sebastien Gagneux
- Swiss Tropical and Public Health Institute, Socinstrasse 57, 4002 Basel, Switzerland
- University of Basel, Basel, Switzerland
| |
Collapse
|
49
|
Bhattacharya M, Toth M, Antunes NT, Smith CA, Vakulenko SB. Structure of the extended-spectrum class C β-lactamase ADC-1 from Acinetobacter baumannii. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2014; 70:760-71. [PMID: 24598745 PMCID: PMC3949520 DOI: 10.1107/s1399004713033014] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 12/05/2013] [Indexed: 11/10/2022]
Abstract
ADC-type class C β-lactamases comprise a large group of enzymes that are encoded by genes located on the chromosome of Acinetobacter baumannii, a causative agent of serious bacterial infections. Overexpression of these enzymes renders A. baumannii resistant to various β-lactam antibiotics and thus severely compromises the ability to treat infections caused by this deadly pathogen. Here, the high-resolution crystal structure of ADC-1, the first member of this clinically important family of antibiotic-resistant enzymes, is reported. Unlike the narrow-spectrum class C β-lactamases, ADC-1 is capable of producing resistance to the expanded-spectrum cephalosporins, rendering them inactive against A. baumannii. The extension of the substrate profile of the enzyme is likely to be the result of structural differences in the R2-loop, primarily the deletion of three residues and subsequent rearrangement of the A10a and A10b helices. These structural rearrangements result in the enlargement of the R2 pocket of ADC-1, allowing it to accommodate the bulky R2 substituents of the third-generation cephalosporins, thus enhancing the catalytic efficiency of the enzyme against these clinically important antibiotics.
Collapse
Affiliation(s)
- Monolekha Bhattacharya
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, USA
| | - Marta Toth
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, USA
| | - Nuno Tiago Antunes
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, USA
| | - Clyde A. Smith
- Stanford Synchrotron Radiation Lightsource, Stanford University, Menlo Park, California USA
| | - Sergei B. Vakulenko
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, USA
| |
Collapse
|
50
|
Stability-activity tradeoffs constrain the adaptive evolution of RubisCO. Proc Natl Acad Sci U S A 2014; 111:2223-8. [PMID: 24469821 DOI: 10.1073/pnas.1310811111] [Citation(s) in RCA: 112] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
A well-known case of evolutionary adaptation is that of ribulose-1,5-bisphosphate carboxylase (RubisCO), the enzyme responsible for fixation of CO2 during photosynthesis. Although the majority of plants use the ancestral C3 photosynthetic pathway, many flowering plants have evolved a derived pathway named C4 photosynthesis. The latter concentrates CO2, and C4 RubisCOs consequently have lower specificity for, and faster turnover of, CO2. The C4 forms result from convergent evolution in multiple clades, with substitutions at a small number of sites under positive selection. To understand the physical constraints on these evolutionary changes, we reconstructed in silico ancestral sequences and 3D structures of RubisCO from a large group of related C3 and C4 species. We were able to precisely track their past evolutionary trajectories, identify mutations on each branch of the phylogeny, and evaluate their stability effect. We show that RubisCO evolution has been constrained by stability-activity tradeoffs similar in character to those previously identified in laboratory-based experiments. The C4 properties require a subset of several ancestral destabilizing mutations, which from their location in the structure are inferred to mainly be involved in enhancing conformational flexibility of the open-closed transition in the catalytic cycle. These mutations are near, but not in, the active site or at intersubunit interfaces. The C3 to C4 transition is preceded by a sustained period in which stability of the enzyme is increased, creating the capacity to accept the functionally necessary destabilizing mutations, and is immediately followed by compensatory mutations that restore global stability.
Collapse
|