1
|
Kuwayama N, Powers EN, Siketanc M, Sousa CI, Reynaud K, Jovanovic M, Hondele M, Ingolia NT, Brar GA. Analyses of translation factors Dbp1 and Ded1 reveal the cellular response to heat stress to be separable from stress granule formation. Cell Rep 2024; 43:115059. [PMID: 39675003 PMCID: PMC11759133 DOI: 10.1016/j.celrep.2024.115059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 11/05/2024] [Accepted: 11/21/2024] [Indexed: 12/17/2024] Open
Abstract
Ded1 and Dbp1 are paralogous conserved DEAD-box ATPases involved in translation initiation in yeast. In long-term starvation states, Dbp1 expression increases and Ded1 decreases, whereas in cycling mitotic cells, Dbp1 is absent. Inserting DBP1 in place of DED1 cannot replace Ded1 function in supporting mitotic translation, partly due to inefficient translation of the DBP1 coding region. Global translation measurements, activity of mRNA-tethered proteins, and growth assays show that-even at matched protein levels-Ded1 is better than Dbp1 at activating translation, especially for mRNAs with structured 5' leaders. Heat-stressed cells normally downregulate translation of structured housekeeping transcripts and halt growth, but neither occurs in Dbp1-expressing cells. This failure to halt growth in response to heat is not based on deficient stress granule formation or failure to reduce bulk translation. Rather, it depends on heat-triggered loss of Ded1 function mediated by an 11-amino-acid interval within its intrinsically disordered C terminus.
Collapse
Affiliation(s)
- Naohiro Kuwayama
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Emily Nicole Powers
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Matej Siketanc
- Biozentrum, Center for Molecular Life Sciences, University of Basel, 4056 Basel, Switzerland
| | - Camila Ines Sousa
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Kendra Reynaud
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Marko Jovanovic
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Maria Hondele
- Biozentrum, Center for Molecular Life Sciences, University of Basel, 4056 Basel, Switzerland
| | - Nicholas Thomas Ingolia
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, Berkeley, CA 94720, USA; Center for Computational Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Gloria Ann Brar
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, Berkeley, CA 94720, USA; Center for Computational Biology, University of California, Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
2
|
Hausmann S, Geiser J, Allen G, Geslain S, Valentini M. Intrinsically disordered regions regulate RhlE RNA helicase functions in bacteria. Nucleic Acids Res 2024; 52:7809-7824. [PMID: 38874491 PMCID: PMC11260450 DOI: 10.1093/nar/gkae511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 05/29/2024] [Accepted: 06/03/2024] [Indexed: 06/15/2024] Open
Abstract
RNA helicases-central enzymes in RNA metabolism-often feature intrinsically disordered regions (IDRs) that enable phase separation and complex molecular interactions. In the bacterial pathogen Pseudomonas aeruginosa, the non-redundant RhlE1 and RhlE2 RNA helicases share a conserved REC catalytic core but differ in C-terminal IDRs. Here, we show how the IDR diversity defines RhlE RNA helicase specificity of function. Both IDRs facilitate RNA binding and phase separation, localizing proteins in cytoplasmic clusters. However, RhlE2 IDR is more efficient in enhancing REC core RNA unwinding, exhibits a greater tendency for phase separation, and interacts with the RNase E endonuclease, a crucial player in mRNA degradation. Swapping IDRs results in chimeric proteins that are biochemically active but functionally distinct as compared to their native counterparts. The RECRhlE1-IDRRhlE2 chimera improves cold growth of a rhlE1 mutant, gains interaction with RNase E and affects a subset of both RhlE1 and RhlE2 RNA targets. The RECRhlE2-IDRRhlE1 chimera instead hampers bacterial growth at low temperatures in the absence of RhlE1, with its detrimental effect linked to aberrant RNA droplets. By showing that IDRs modulate both protein core activities and subcellular localization, our study defines the impact of IDR diversity on the functional differentiation of RNA helicases.
Collapse
Affiliation(s)
- Stéphane Hausmann
- Department of Microbiology and Molecular Medicine, CMU, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Johan Geiser
- Department of Microbiology and Molecular Medicine, CMU, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - George Edward Allen
- Department of Microbiology and Molecular Medicine, CMU, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Sandra Amandine Marie Geslain
- Department of Microbiology and Molecular Medicine, CMU, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Martina Valentini
- Department of Microbiology and Molecular Medicine, CMU, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
3
|
Yeter-Alat H, Belgareh-Touzé N, Le Saux A, Huvelle E, Mokdadi M, Banroques J, Tanner NK. The RNA Helicase Ded1 from Yeast Is Associated with the Signal Recognition Particle and Is Regulated by SRP21. Molecules 2024; 29:2944. [PMID: 38931009 PMCID: PMC11206880 DOI: 10.3390/molecules29122944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/12/2024] [Accepted: 06/18/2024] [Indexed: 06/28/2024] Open
Abstract
The DEAD-box RNA helicase Ded1 is an essential yeast protein involved in translation initiation that belongs to the DDX3 subfamily. The purified Ded1 protein is an ATP-dependent RNA-binding protein and an RNA-dependent ATPase, but it was previously found to lack substrate specificity and enzymatic regulation. Here we demonstrate through yeast genetics, yeast extract pull-down experiments, in situ localization, and in vitro biochemical approaches that Ded1 is associated with, and regulated by, the signal recognition particle (SRP), which is a universally conserved ribonucleoprotein complex required for the co-translational translocation of polypeptides into the endoplasmic reticulum lumen and membrane. Ded1 is physically associated with SRP components in vivo and in vitro. Ded1 is genetically linked with SRP proteins. Finally, the enzymatic activity of Ded1 is inhibited by SRP21 in the presence of SCR1 RNA. We propose a model where Ded1 actively participates in the translocation of proteins during translation. Our results provide a new understanding of the role of Ded1 during translation.
Collapse
Affiliation(s)
- Hilal Yeter-Alat
- Expression Génétique Microbienne, UMR8261 CNRS, Université de Paris, 13 rue Pierre et Marie Curie, 75005 Paris, France; (H.Y.-A.); (A.L.S.); (E.H.); (M.M.); (J.B.)
- Expression Génétique Microbienne, Institut de Biologie Physico-Chimique, Paris Sciences et Lettres University, 75005 Paris, France
| | - Naïma Belgareh-Touzé
- Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes, UMR8226 CNRS, Sorbonne Université, 13 rue Pierre et Marie Curie, 75005 Paris, France;
| | - Agnès Le Saux
- Expression Génétique Microbienne, UMR8261 CNRS, Université de Paris, 13 rue Pierre et Marie Curie, 75005 Paris, France; (H.Y.-A.); (A.L.S.); (E.H.); (M.M.); (J.B.)
- Expression Génétique Microbienne, Institut de Biologie Physico-Chimique, Paris Sciences et Lettres University, 75005 Paris, France
| | - Emmeline Huvelle
- Expression Génétique Microbienne, UMR8261 CNRS, Université de Paris, 13 rue Pierre et Marie Curie, 75005 Paris, France; (H.Y.-A.); (A.L.S.); (E.H.); (M.M.); (J.B.)
- Expression Génétique Microbienne, Institut de Biologie Physico-Chimique, Paris Sciences et Lettres University, 75005 Paris, France
| | - Molka Mokdadi
- Expression Génétique Microbienne, UMR8261 CNRS, Université de Paris, 13 rue Pierre et Marie Curie, 75005 Paris, France; (H.Y.-A.); (A.L.S.); (E.H.); (M.M.); (J.B.)
- Expression Génétique Microbienne, Institut de Biologie Physico-Chimique, Paris Sciences et Lettres University, 75005 Paris, France
- Laboratory of Molecular Epidemiology and Experimental Pathology, LR16IPT04, Institut Pasteur de Tunis, Université de Tunis El Manar, Tunis 1002, Tunisia
- Institut National des Sciences Appliquées et Technologies, Université de Carthage, Tunis 1080, Tunisia
| | - Josette Banroques
- Expression Génétique Microbienne, UMR8261 CNRS, Université de Paris, 13 rue Pierre et Marie Curie, 75005 Paris, France; (H.Y.-A.); (A.L.S.); (E.H.); (M.M.); (J.B.)
- Expression Génétique Microbienne, Institut de Biologie Physico-Chimique, Paris Sciences et Lettres University, 75005 Paris, France
| | - N. Kyle Tanner
- Expression Génétique Microbienne, UMR8261 CNRS, Université de Paris, 13 rue Pierre et Marie Curie, 75005 Paris, France; (H.Y.-A.); (A.L.S.); (E.H.); (M.M.); (J.B.)
- Expression Génétique Microbienne, Institut de Biologie Physico-Chimique, Paris Sciences et Lettres University, 75005 Paris, France
| |
Collapse
|
4
|
Amson R, Senff-Ribeiro A, Karafin T, Lespagnol A, Honoré J, Baylot V, Banroques J, Tanner NK, Chamond N, Dimitrov JD, Hoebeke J, Droin NM, Job B, Piard J, Bommer UA, Choi KW, Abdelfatah S, Efferth T, Telerman SB, Geyer FC, Reis-Filho J, Telerman A. TCTP regulates genotoxic stress and tumorigenicity via intercellular vesicular signaling. EMBO Rep 2024; 25:1962-1986. [PMID: 38548973 PMCID: PMC11014985 DOI: 10.1038/s44319-024-00108-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 02/04/2024] [Accepted: 02/21/2024] [Indexed: 04/14/2024] Open
Abstract
Oncogenic intercellular signaling is regulated by extracellular vesicles (EVs), but the underlying mechanisms remain mostly unclear. Since TCTP (translationally controlled tumor protein) is an EV component, we investigated whether it has a role in genotoxic stress signaling and malignant transformation. By generating a Tctp-inducible knockout mouse model (Tctp-/f-), we report that Tctp is required for genotoxic stress-induced apoptosis signaling via small EVs (sEVs). Human breast cancer cells knocked-down for TCTP show impaired spontaneous EV secretion, thereby reducing sEV-dependent malignant growth. Since Trp53-/- mice are prone to tumor formation, we derived tumor cells from Trp53-/-;Tctp-/f- double mutant mice and describe a drastic decrease in tumori-genicity with concomitant decrease in sEV secretion and content. Remarkably, Trp53-/-;Tctp-/f- mice show highly prolonged survival. Treatment of Trp53-/- mice with sertraline, which inhibits TCTP function, increases their survival. Mechanistically, TCTP binds DDX3, recruiting RNAs, including miRNAs, to sEVs. Our findings establish TCTP as an essential protagonist in the regulation of sEV-signaling in the context of apoptosis and tumorigenicity.
Collapse
Affiliation(s)
- Robert Amson
- Institut Gustave Roussy (IGR), Unité Inserm U981, Bâtiment B2M, 114 rue Édouard-Vaillant, 94805, Villejuif, France
| | - Andrea Senff-Ribeiro
- Institut Gustave Roussy (IGR), Unité Inserm U981, Bâtiment B2M, 114 rue Édouard-Vaillant, 94805, Villejuif, France
| | - Teele Karafin
- Institut Gustave Roussy (IGR), Unité Inserm U981, Bâtiment B2M, 114 rue Édouard-Vaillant, 94805, Villejuif, France
| | - Alexandra Lespagnol
- Institut Gustave Roussy (IGR), Unité Inserm U981, Bâtiment B2M, 114 rue Édouard-Vaillant, 94805, Villejuif, France
| | - Joane Honoré
- Institut Gustave Roussy (IGR), Unité Inserm U981, Bâtiment B2M, 114 rue Édouard-Vaillant, 94805, Villejuif, France
| | - Virginie Baylot
- Institut Gustave Roussy (IGR), Unité Inserm U981, Bâtiment B2M, 114 rue Édouard-Vaillant, 94805, Villejuif, France
| | - Josette Banroques
- Université de Paris Cité & CNRS, Expression Génétique Microbienne, IBPC, 13 rue Pierre et Marie Curie and Institut de Biologie Physico-Chimique, Paris Sciences et Lettres University, CNRS UMR8261, EGM, 75005, Paris, France
| | - N Kyle Tanner
- Université de Paris Cité & CNRS, Expression Génétique Microbienne, IBPC, 13 rue Pierre et Marie Curie and Institut de Biologie Physico-Chimique, Paris Sciences et Lettres University, CNRS UMR8261, EGM, 75005, Paris, France
| | - Nathalie Chamond
- Faculté de Pharmacie de Paris, Laboratoire CiTCom - UMR CNRS 8038 Université Paris Descartes 4 Avenue de l'Observatoire, 75270, Paris, France
| | - Jordan D Dimitrov
- Centre de Recherche des Cordeliers, INSERM, CNRS, Sorbonne Université, Université de Paris, 75006, Paris, France
| | - Johan Hoebeke
- Institut de Biologie Moléculaire et Cellulaire, UPR CNRS 9021, 15, rue René Descartes, 67084, Strasbourg, France
| | - Nathalie M Droin
- Institut Gustave Roussy (IGR), Unité Inserm U1287, 114 rue Édouard-Vaillant, 94805, Villejuif, France
| | - Bastien Job
- Institut Gustave Roussy (IGR), Bioinformatics Core Facility, 114 rue Édouard-Vaillant, 94805, Villejuif, France
| | - Jonathan Piard
- Département de Chimie, Ecole Normale Supérieure Paris-Saclay, 4 avenue Des Sciences, 91110, Gif-sur-Yvette, France
| | - Ulrich-Axel Bommer
- Graduate School of Medicine, Faculty of Science, Medicine & Health, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Kwang-Wook Choi
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Korea
| | - Sara Abdelfatah
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Science, Johannes Gutenberg University, Staudinger Weg 5, 55128, Mainz, Germany
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Science, Johannes Gutenberg University, Staudinger Weg 5, 55128, Mainz, Germany
| | | | - Felipe Correa Geyer
- Department of Pathology, Memorial Sloan Kettering Cancer Center (MSKCC), 1275 York Ave, New York, NY, 10065, USA
| | - Jorge Reis-Filho
- Department of Pathology, Memorial Sloan Kettering Cancer Center (MSKCC), 1275 York Ave, New York, NY, 10065, USA
| | - Adam Telerman
- Institut Gustave Roussy (IGR), Unité Inserm U981, Bâtiment B2M, 114 rue Édouard-Vaillant, 94805, Villejuif, France.
| |
Collapse
|
5
|
Powers EN, Kuwayama N, Sousa C, Reynaud K, Jovanovic M, Ingolia NT, Brar GA. Dbp1 is a low performance paralog of RNA helicase Ded1 that drives impaired translation and heat stress response. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.12.575095. [PMID: 38260653 PMCID: PMC10802583 DOI: 10.1101/2024.01.12.575095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Ded1 and Dbp1 are paralogous conserved RNA helicases that enable translation initiation in yeast. Ded1 has been heavily studied but the role of Dbp1 is poorly understood. We find that the expression of these two helicases is controlled in an inverse and condition-specific manner. In meiosis and other long-term starvation states, Dbp1 expression is upregulated and Ded1 is downregulated, whereas in mitotic cells, Dbp1 expression is extremely low. Inserting the DBP1 ORF in place of the DED1 ORF cannot replace the function of Ded1 in supporting translation, partly due to inefficient mitotic translation of the DBP1 mRNA, dependent on features of its ORF sequence but independent of codon optimality. Global measurements of translation rates and 5' leader translation, activity of mRNA-tethered helicases, ribosome association, and low temperature growth assays show that-even at matched protein levels-Ded1 is more effective than Dbp1 at activating translation, especially for mRNAs with structured 5' leaders. Ded1 supports halting of translation and cell growth in response to heat stress, but Dbp1 lacks this function, as well. These functional differences in the ability to efficiently mediate translation activation and braking can be ascribed to the divergent, disordered N- and C-terminal regions of these two helicases. Altogether, our data show that Dbp1 is a "low performance" version of Ded1 that cells employ in place of Ded1 under long-term conditions of nutrient deficiency.
Collapse
|
6
|
Yeter-Alat H, Belgareh-Touzé N, Huvelle E, Banroques J, Tanner NK. The DEAD-Box RNA Helicase Ded1 Is Associated with Translating Ribosomes. Genes (Basel) 2023; 14:1566. [PMID: 37628617 PMCID: PMC10454743 DOI: 10.3390/genes14081566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/21/2023] [Accepted: 07/26/2023] [Indexed: 08/27/2023] Open
Abstract
DEAD-box RNA helicases are ATP-dependent RNA binding proteins and RNA-dependent ATPases that possess weak, nonprocessive unwinding activity in vitro, but they can form long-lived complexes on RNAs when the ATPase activity is inhibited. Ded1 is a yeast DEAD-box protein, the functional ortholog of mammalian DDX3, that is considered important for the scanning efficiency of the 48S pre-initiation complex ribosomes to the AUG start codon. We used a modified PAR-CLIP technique, which we call quicktime PAR-CLIP (qtPAR-CLIP), to crosslink Ded1 to 4-thiouridine-incorporated RNAs in vivo using UV light centered at 365 nm. The irradiation conditions are largely benign to the yeast cells and to Ded1, and we are able to obtain a high efficiency of crosslinking under physiological conditions. We find that Ded1 forms crosslinks on the open reading frames of many different mRNAs, but it forms the most extensive interactions on relatively few mRNAs, and particularly on mRNAs encoding certain ribosomal proteins and translation factors. Under glucose-depletion conditions, the crosslinking pattern shifts to mRNAs encoding metabolic and stress-related proteins, which reflects the altered translation. These data are consistent with Ded1 functioning in the regulation of translation elongation, perhaps by pausing or stabilizing the ribosomes through its ATP-dependent binding.
Collapse
Affiliation(s)
- Hilal Yeter-Alat
- Expression Génétique Microbienne, Université de Paris Cité & CNRS, IBPC, 13 Rue Pierre et Marie Curie, 75005 Paris, France; (H.Y.-A.); (E.H.); (J.B.)
- Institut de Biologie Physico-Chimique, Paris Sciences et Lettres University, CNRS UMR8261, EGM, 75005 Paris, France
| | - Naïma Belgareh-Touzé
- Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes, UMR8226 CNRS, Institut de Biologie Physico-Chimique, Sorbonne Université, 13 Rue Pierre et Marie Curie, 75005 Paris, France;
| | - Emmeline Huvelle
- Expression Génétique Microbienne, Université de Paris Cité & CNRS, IBPC, 13 Rue Pierre et Marie Curie, 75005 Paris, France; (H.Y.-A.); (E.H.); (J.B.)
- Institut de Biologie Physico-Chimique, Paris Sciences et Lettres University, CNRS UMR8261, EGM, 75005 Paris, France
| | - Josette Banroques
- Expression Génétique Microbienne, Université de Paris Cité & CNRS, IBPC, 13 Rue Pierre et Marie Curie, 75005 Paris, France; (H.Y.-A.); (E.H.); (J.B.)
- Institut de Biologie Physico-Chimique, Paris Sciences et Lettres University, CNRS UMR8261, EGM, 75005 Paris, France
| | - N. Kyle Tanner
- Expression Génétique Microbienne, Université de Paris Cité & CNRS, IBPC, 13 Rue Pierre et Marie Curie, 75005 Paris, France; (H.Y.-A.); (E.H.); (J.B.)
- Institut de Biologie Physico-Chimique, Paris Sciences et Lettres University, CNRS UMR8261, EGM, 75005 Paris, France
| |
Collapse
|
7
|
Nonstructural N- and C-tails of Dbp2 confer the protein full helicase activities. J Biol Chem 2023; 299:104592. [PMID: 36894019 DOI: 10.1016/j.jbc.2023.104592] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 02/28/2023] [Accepted: 03/01/2023] [Indexed: 03/09/2023] Open
Abstract
Human DDX5 and its yeast ortholog Dbp2 are ATP-dependent RNA helicases that play a key role in normal cell processes, cancer development and viral infection. The crystal structure of the RecA1-like domain of DDX5 is available, but the global structure of DDX5/Dbp2 subfamily proteins remains to be elucidated. Here, we report the first X-ray crystal structures of the Dbp2 helicase core alone and in complex with adenosine diphosphate nucleotide (ADP) at 3.22 Å and 3.05 Å resolutions, respectively. The structures of the ADP-bound post-hydrolysis state and apo-state demonstrate the conformational changes that occur when the nucleotides are released. Our results showed that the helicase core of Dbp2 shifted between open and closed conformation in solution, but the unwinding activity was hindered when the helicase core was restricted to a single conformation. A small-angle X-ray scattering (SAXS) experiment showed that the disordered amino- (N-) and carboxy- (C-) tails are flexible in solution. Truncation mutations confirmed that the N- and C-tails were critical for the nucleic acid binding, ATPase, and unwinding activities, with the C-tail being exclusively responsible for the annealing activity. Furthermore, we labeled the terminal tails to observe the conformational changes between the disordered tails and the helicase core upon binding nucleic acid substrates. Specifically, we found that the nonstructural N- and C-tails bind to RNA substrates and tether them to the helicase core domain, thereby conferring full helicase activities to the Dbp2 protein. This distinct structural characteristic provides new insight into the mechanism of DEAD-box RNA helicases.
Collapse
|
8
|
The Terminal Extensions of Dbp7 Influence Growth and 60S Ribosomal Subunit Biogenesis in Saccharomyces cerevisiae. Int J Mol Sci 2023; 24:ijms24043460. [PMID: 36834876 PMCID: PMC9960301 DOI: 10.3390/ijms24043460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 01/30/2023] [Accepted: 02/07/2023] [Indexed: 02/11/2023] Open
Abstract
Ribosome synthesis is a complex process that involves a large set of protein trans-acting factors, among them DEx(D/H)-box helicases. These are enzymes that carry out remodelling activities onto RNAs by hydrolysing ATP. The nucleolar DEGD-box protein Dbp7 is required for the biogenesis of large 60S ribosomal subunits. Recently, we have shown that Dbp7 is an RNA helicase that regulates the dynamic base-pairing between the snR190 small nucleolar RNA and the precursors of the ribosomal RNA within early pre-60S ribosomal particles. As the rest of DEx(D/H)-box proteins, Dbp7 has a modular organization formed by a helicase core region, which contains conserved motifs, and variable, non-conserved N- and C-terminal extensions. The role of these extensions remains unknown. Herein, we show that the N-terminal domain of Dbp7 is necessary for efficient nuclear import of the protein. Indeed, a basic bipartite nuclear localization signal (NLS) could be identified in its N-terminal domain. Removal of this putative NLS impairs, but does not abolish, Dbp7 nuclear import. Both N- and C-terminal domains are required for normal growth and 60S ribosomal subunit synthesis. Furthermore, we have studied the role of these domains in the association of Dbp7 with pre-ribosomal particles. Altogether, our results show that the N- and C-terminal domains of Dbp7 are important for the optimal function of this protein during ribosome biogenesis.
Collapse
|
9
|
Ru JN, Hou ZH, Zheng L, Zhao Q, Wang FZ, Chen J, Zhou YB, Chen M, Ma YZ, Xi YJ, Xu ZS. Genome-Wide Analysis of DEAD-box RNA Helicase Family in Wheat ( Triticum aestivum) and Functional Identification of TaDEAD-box57 in Abiotic Stress Responses. FRONTIERS IN PLANT SCIENCE 2021; 12:797276. [PMID: 34956297 PMCID: PMC8699334 DOI: 10.3389/fpls.2021.797276] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 11/01/2021] [Indexed: 05/29/2023]
Abstract
DEAD-box RNA helicases constitute the largest subfamily of RNA helicase superfamily 2 (SF2), and play crucial roles in plant growth, development, and abiotic stress responses. Wheat is one of the most important cereal crops in worldwide, and abiotic stresses greatly restrict its production. So far, the DEAD-box RNA helicase family has yet to be characterized in wheat. Here, we performed a comprehensive genome-wide analysis of the DEAD-box RNA helicase family in wheat, including phylogenetic relationships, chromosomal distribution, duplication events, and protein motifs. A total of 141 TaDEAD-box genes were identified and found to be unevenly distributed across all 21 chromosomes. Whole genome/segmental duplication was identified as the likely main driving factor for expansion of the TaDEAD-box family. Expression patterns of the 141 TaDEAD-box genes were compared across different tissues and under abiotic stresses to identify genes to be important in growth or stress responses. TaDEAD-box57-3B was significantly up-regulated under multiple abiotic stresses, and was therefore selected for further analysis. TaDEAD-box57-3B was localized to the cytoplasm and plasma membrane. Ectopic expression of TaDEAD-box57-3B in Arabidopsis improved tolerance to drought and salt stress as measured by germination rates, root lengths, fresh weights, and survival rates. Transgenic lines also showed higher levels of proline and chlorophyll and lower levels of malonaldehyde (MDA) than WT plants in response to drought or salt stress. In response to cold stress, the transgenic lines showed significantly better growth and higher survival rates than WT plants. These results indicate that TaDEAD-box57-3B may increase tolerance to drought, salt, and cold stress in transgenic plants through regulating the degree of membrane lipid peroxidation. This study provides new insights for understanding evolution and function in the TaDEAD-box gene family.
Collapse
Affiliation(s)
- Jing-Na Ru
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, China
- Institute of Crop Science, Chinese Academy of Agricultural Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
| | - Ze-Hao Hou
- Institute of Crop Science, Chinese Academy of Agricultural Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
| | - Lei Zheng
- Institute of Crop Science, Chinese Academy of Agricultural Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
| | - Qi Zhao
- Institute of Crop Science, Chinese Academy of Agricultural Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
| | - Feng-Zhi Wang
- Hebei Key Laboratory of Crop Salt-Alkali Stress Tolerance Evaluation and Genetic Improvement/Cangzhou Academy of Agriculture and Forestry Sciences, Cangzhou, China
| | - Jun Chen
- Institute of Crop Science, Chinese Academy of Agricultural Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
| | - Yong-Bin Zhou
- Institute of Crop Science, Chinese Academy of Agricultural Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
| | - Ming Chen
- Institute of Crop Science, Chinese Academy of Agricultural Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
| | - You-Zhi Ma
- Institute of Crop Science, Chinese Academy of Agricultural Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
| | - Ya-Jun Xi
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, China
| | - Zhao-Shi Xu
- Institute of Crop Science, Chinese Academy of Agricultural Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
| |
Collapse
|
10
|
Zong X, Xiao X, Shen B, Jiang Q, Wang H, Lu Z, Wang F, Jin M, Min J, Wang F, Wang Y. The N6-methyladenosine RNA-binding protein YTHDF1 modulates the translation of TRAF6 to mediate the intestinal immune response. Nucleic Acids Res 2021; 49:5537-5552. [PMID: 33999206 PMCID: PMC8191762 DOI: 10.1093/nar/gkab343] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 03/31/2021] [Accepted: 04/20/2021] [Indexed: 12/11/2022] Open
Abstract
The intestinal invasion of pathogenic microorganisms can have serious health consequences. Recent evidence has shown that the N6-methyladenosine (m6A) mRNA modification is closely associated with innate immunity; however, the underlying mechanism is poorly understood. Here, we examined the function and mechanism of m6A mRNA modification and the YTH domain-containing protein YTHDF1 (YTH N6-methyladenosine RNA-binding protein 1) in the innate immune response against bacterial pathogens in the intestine. Ribo-seq and m6A-seq analyses revealed that YTHDF1 directs the translation of Traf6 mRNA, which encodes tumor necrosis factor receptor-associated factor 6, thereby regulating the immune response via the m6A modification near the transcript's stop codon. Furthermore, we identified a unique mechanism by which the P/Q/N-rich domain in YTHDF1 interacts with the DEAD domain in the host factor DDX60, thereby regulating the intestinal immune response to bacterial infection by recognizing the target Traf6 transcript. These results provide novel insights into the mechanism by which YTHDF1 recognizes its target and reveal YTHDF1 as an important driver of the intestinal immune response, opening new avenues for developing therapeutic strategies designed to modulate the intestinal immune response to bacterial infection.
Collapse
Affiliation(s)
- Xin Zong
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou, China.,The First Affiliated Hospital, School of Public Health, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Animal Nutrition and Feed Science in Eastern China, Ministry of Agriculture, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Xiao Xiao
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Bin Shen
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing, China
| | - Qin Jiang
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Hong Wang
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Zeqing Lu
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou, China.,Key Laboratory of Animal Nutrition and Feed Science in Eastern China, Ministry of Agriculture, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Fengqin Wang
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou, China.,Key Laboratory of Animal Nutrition and Feed Science in Eastern China, Ministry of Agriculture, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Mingliang Jin
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou, China.,Key Laboratory of Animal Nutrition and Feed Science in Eastern China, Ministry of Agriculture, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Junxia Min
- The First Affiliated Hospital, School of Public Health, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Fudi Wang
- The First Affiliated Hospital, School of Public Health, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China.,Hengyang Medical School, University of South China, Hengyang, China
| | - Yizhen Wang
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou, China.,Key Laboratory of Animal Nutrition and Feed Science in Eastern China, Ministry of Agriculture, College of Animal Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
11
|
Mokdadi M, Abdelkrim YZ, Banroques J, Huvelle E, Oualha R, Yeter-Alat H, Guizani I, Barhoumi M, Tanner NK. The In Silico Identification of Potential Members of the Ded1/DDX3 Subfamily of DEAD-Box RNA Helicases from the Protozoan Parasite Leishmania infantum and Their Analyses in Yeast. Genes (Basel) 2021; 12:212. [PMID: 33535521 PMCID: PMC7912733 DOI: 10.3390/genes12020212] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 01/27/2021] [Accepted: 01/29/2021] [Indexed: 12/14/2022] Open
Abstract
DEAD-box RNA helicases are ubiquitous proteins found in all kingdoms of life and that are associated with all processes involving RNA. Their central roles in biology make these proteins potential targets for therapeutic or prophylactic drugs. The Ded1/DDX3 subfamily of DEAD-box proteins is of particular interest because of their important role(s) in translation. In this paper, we identified and aligned the protein sequences of 28 different DEAD-box proteins from the kinetoplast-protozoan parasite Leishmania infantum, which is the cause of the visceral form of leishmaniasis that is often lethal if left untreated, and compared them with the consensus sequence derived from DEAD-box proteins in general, and from the Ded1/DDX3 subfamily in particular, from a wide variety of other organisms. We identified three potential homologs of the Ded1/DDX3 subfamily and the equivalent proteins from the related protozoan parasite Trypanosoma brucei, which is the causative agent of sleeping sickness. We subsequently tested these proteins for their ability to complement a yeast strain deleted for the essential DED1 gene. We found that the DEAD-box proteins from Trypanosomatids are highly divergent from other eukaryotes, and consequently they are suitable targets for protein-specific drugs.
Collapse
Affiliation(s)
- Molka Mokdadi
- Expression Génétique Microbienne, UMR8261 CNRS, Université de Paris, Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, 75005 Paris, France; (M.M.); (Y.Z.A.); (J.B.); (E.H.); (H.Y.-A.)
- PSL Research University, 75005 Paris, France
- Laboratory of Molecular Epidemiology and Experimental Pathology (LR16IPT04), Institut Pasteur de Tunis, Université de Tunis El Manar, 13 Place Pasteur, BP74 Tunis-Belvédère 1002, Tunisia; (R.O.); (I.G.)
- Institut National des Sciences Appliquées et Technologies, Université de Carthage, CEDEX, Tunis 1080, Tunisia
| | - Yosser Zina Abdelkrim
- Expression Génétique Microbienne, UMR8261 CNRS, Université de Paris, Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, 75005 Paris, France; (M.M.); (Y.Z.A.); (J.B.); (E.H.); (H.Y.-A.)
- Laboratory of Molecular Epidemiology and Experimental Pathology (LR16IPT04), Institut Pasteur de Tunis, Université de Tunis El Manar, 13 Place Pasteur, BP74 Tunis-Belvédère 1002, Tunisia; (R.O.); (I.G.)
| | - Josette Banroques
- Expression Génétique Microbienne, UMR8261 CNRS, Université de Paris, Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, 75005 Paris, France; (M.M.); (Y.Z.A.); (J.B.); (E.H.); (H.Y.-A.)
- PSL Research University, 75005 Paris, France
| | - Emmeline Huvelle
- Expression Génétique Microbienne, UMR8261 CNRS, Université de Paris, Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, 75005 Paris, France; (M.M.); (Y.Z.A.); (J.B.); (E.H.); (H.Y.-A.)
- PSL Research University, 75005 Paris, France
| | - Rafeh Oualha
- Laboratory of Molecular Epidemiology and Experimental Pathology (LR16IPT04), Institut Pasteur de Tunis, Université de Tunis El Manar, 13 Place Pasteur, BP74 Tunis-Belvédère 1002, Tunisia; (R.O.); (I.G.)
| | - Hilal Yeter-Alat
- Expression Génétique Microbienne, UMR8261 CNRS, Université de Paris, Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, 75005 Paris, France; (M.M.); (Y.Z.A.); (J.B.); (E.H.); (H.Y.-A.)
- PSL Research University, 75005 Paris, France
| | - Ikram Guizani
- Laboratory of Molecular Epidemiology and Experimental Pathology (LR16IPT04), Institut Pasteur de Tunis, Université de Tunis El Manar, 13 Place Pasteur, BP74 Tunis-Belvédère 1002, Tunisia; (R.O.); (I.G.)
| | - Mourad Barhoumi
- Laboratory of Molecular Epidemiology and Experimental Pathology (LR16IPT04), Institut Pasteur de Tunis, Université de Tunis El Manar, 13 Place Pasteur, BP74 Tunis-Belvédère 1002, Tunisia; (R.O.); (I.G.)
| | - N. Kyle Tanner
- Expression Génétique Microbienne, UMR8261 CNRS, Université de Paris, Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, 75005 Paris, France; (M.M.); (Y.Z.A.); (J.B.); (E.H.); (H.Y.-A.)
- PSL Research University, 75005 Paris, France
| |
Collapse
|
12
|
Abdelkrim YZ, Banroques J, Kyle Tanner N. Known Inhibitors of RNA Helicases and Their Therapeutic Potential. Methods Mol Biol 2021; 2209:35-52. [PMID: 33201461 DOI: 10.1007/978-1-0716-0935-4_3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
RNA helicases are proteins found in all kingdoms of life, and they are associated with all processes involving RNA from transcription to decay. They use NTP binding and hydrolysis to unwind duplexes, to remodel RNA structures and protein-RNA complexes, and to facilitate the unidirectional metabolism of biological processes. Viral, bacterial, and eukaryotic parasites have an intimate need for RNA helicases in their reproduction. Moreover, various disorders, like cancers, are often associated with a perturbation of the host's helicase activity. Thus, RNA helicases provide a rich source of targets for the development of therapeutic or prophylactic drugs. In this review, we provide an overview of the different targeting strategies against helicases, the different types of compounds explored, the proposed inhibitory mechanisms of the compounds on the proteins, and the therapeutic potential of these compounds in the treatment of various disorders.
Collapse
Affiliation(s)
- Yosser Zina Abdelkrim
- Expression Génétique Microbienne, UMR8261 CNRS, Institut de Biologie Physico-Chimique, Université de Paris, Paris, France.,Molecular Epidemiology and Experimental Pathology (LR16IPT04), Institut Pasteur de Tunis/Université de Tunis el Manar, Tunis-Belvédère, Tunisia
| | - Josette Banroques
- Expression Génétique Microbienne, UMR8261 CNRS, Institut de Biologie Physico-Chimique, Université de Paris, Paris, France.,PSL Research University, Paris, France
| | - N Kyle Tanner
- Expression Génétique Microbienne, UMR8261 CNRS, Institut de Biologie Physico-Chimique, Université de Paris, Paris, France.
| |
Collapse
|
13
|
Sen ND, Gupta N, K Archer S, Preiss T, Lorsch JR, Hinnebusch AG. Functional interplay between DEAD-box RNA helicases Ded1 and Dbp1 in preinitiation complex attachment and scanning on structured mRNAs in vivo. Nucleic Acids Res 2019; 47:8785-8806. [PMID: 31299079 DOI: 10.1093/nar/gkz595] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 06/24/2019] [Accepted: 07/01/2019] [Indexed: 01/03/2023] Open
Abstract
RNA structures that impede ribosome binding or subsequent scanning of the 5'-untranslated region (5'-UTR) for the AUG initiation codon reduce translation efficiency. Yeast DEAD-box RNA helicase Ded1 appears to promote translation by resolving 5'-UTR structures, but whether its paralog, Dbp1, performs similar functions is unknown. Furthermore, direct in vivo evidence was lacking that Ded1 or Dbp1 resolves 5'-UTR structures that impede attachment of the 43S preinitiation complex (PIC) or scanning. Here, profiling of translating 80S ribosomes reveals that the translational efficiencies of many more mRNAs are reduced in a ded1-ts dbp1Δ double mutant versus either single mutant, becoming highly dependent on Dbp1 or Ded1 only when the other helicase is impaired. Such 'conditionally hyperdependent' mRNAs contain unusually long 5'-UTRs with heightened propensity for secondary structure and longer transcript lengths. Consistently, overexpressing Dbp1 in ded1 cells improves the translation of many such Ded1-hyperdependent mRNAs. Importantly, Dbp1 mimics Ded1 in conferring greater acceleration of 48S PIC assembly in a purified system on mRNAs harboring structured 5'-UTRs. Profiling 40S initiation complexes in ded1 and dbp1 mutants provides direct evidence that Ded1 and Dbp1 cooperate to stimulate both PIC attachment and scanning on many Ded1/Dbp1-hyperdependent mRNAs in vivo.
Collapse
Affiliation(s)
- Neelam Dabas Sen
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Neha Gupta
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Stuart K Archer
- Monash Bioinformatics Platform, Monash University, Clayton, VIC 3800, Australia
| | - Thomas Preiss
- EMBL-Australia Collaborating Group, Department of Genome Sciences, The John Curtin School of Medical Research, The Australian National University, Canberra, ACT 2601, Australia.,Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia
| | - Jon R Lorsch
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Alan G Hinnebusch
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
14
|
Raj S, Bagchi D, Orero JV, Banroques J, Tanner NK, Croquette V. Mechanistic characterization of the DEAD-box RNA helicase Ded1 from yeast as revealed by a novel technique using single-molecule magnetic tweezers. Nucleic Acids Res 2019; 47:3699-3710. [PMID: 30993346 PMCID: PMC6468243 DOI: 10.1093/nar/gkz057] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 01/21/2019] [Accepted: 02/01/2019] [Indexed: 12/11/2022] Open
Abstract
DEAD-box helicases are involved in all steps of RNA metabolism. They are ATP-dependent RNA binding proteins and RNA-dependent ATPases. They can displace short duplexes, but they lack processivity. Their mechanism and functioning are not clearly understood; classical or bulk biochemical assays are not sufficient to answer these questions. Single-molecule techniques provide useful tools, but they are limited in cases where the proteins are nonprocessive and give weak signals. We present here a new, magnetic-tweezers-based, single-molecule assay that is simple and that can sensitively measure the displacement time of a small, hybridized, RNA oligonucleotide. Tens of molecules can be analyzed at the same time. Comparing the displacement times with and without a helicase gives insights into the enzymatic activity of the protein. We used this assay to study yeast Ded1, which is orthologous to human DDX3. Although Ded1 acts on a variety of substrates, we find that Ded1 requires an RNA substrate for its ATP-dependent unwinding activity and that ATP hydrolysis is needed to see this activity. Further, we find that only intramolecular single-stranded RNA extensions enhance this activity. We propose a model where ATP-bound Ded1 stabilizes partially unwound duplexes and where multiple binding events may be needed to see displacement.
Collapse
Affiliation(s)
- Saurabh Raj
- Laboratoire de Physique de l'Ecole normale supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université Paris-Diderot, Sorbonne Paris Cité, Paris, France.,IBENS, Département de biologie, École normale supérieure, CNRS, INSERM, PSL Research University, 75005 Paris, France
| | - Debjani Bagchi
- Laboratoire de Physique de l'Ecole normale supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université Paris-Diderot, Sorbonne Paris Cité, Paris, France.,IBENS, Département de biologie, École normale supérieure, CNRS, INSERM, PSL Research University, 75005 Paris, France
| | - Jessica Valle Orero
- Laboratoire de Physique de l'Ecole normale supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université Paris-Diderot, Sorbonne Paris Cité, Paris, France.,IBENS, Département de biologie, École normale supérieure, CNRS, INSERM, PSL Research University, 75005 Paris, France
| | - Josette Banroques
- Laboratoire d'Expression Génétique Microbienne, CNRS UMR8261/Université Paris 7-Diderot, Sorbonne Paris Cité Universités, 13 rue Pierre et Marie Curie, Paris, France.,Institut de Biologie Physico-Chimique, PSL Research University, 75005 Paris, France
| | - N Kyle Tanner
- Laboratoire d'Expression Génétique Microbienne, CNRS UMR8261/Université Paris 7-Diderot, Sorbonne Paris Cité Universités, 13 rue Pierre et Marie Curie, Paris, France.,Institut de Biologie Physico-Chimique, PSL Research University, 75005 Paris, France
| | - Vincent Croquette
- Laboratoire de Physique de l'Ecole normale supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université Paris-Diderot, Sorbonne Paris Cité, Paris, France.,IBENS, Département de biologie, École normale supérieure, CNRS, INSERM, PSL Research University, 75005 Paris, France.,ESPCI Paris, PSL University, 10 rue Vauquelin, 75005 Paris, France
| |
Collapse
|
15
|
Nguyen LV, Seok HY, Woo DH, Lee SY, Moon YH. Overexpression of the DEAD-Box RNA Helicase Gene AtRH17 Confers Tolerance to Salt Stress in Arabidopsis. Int J Mol Sci 2018; 19:ijms19123777. [PMID: 30486488 PMCID: PMC6321491 DOI: 10.3390/ijms19123777] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 11/25/2018] [Accepted: 11/26/2018] [Indexed: 01/13/2023] Open
Abstract
Plants adapt to abiotic stresses by complex mechanisms involving various stress-responsive genes. Here, we identified a DEAD-box RNA helicase (RH) gene, AtRH17, in Arabidopsis, involved in salt-stress responses using activation tagging, a useful technique for isolating novel stress-responsive genes. AT895, an activation tagging line, was more tolerant than wild type (WT) under NaCl treatment during germination and seedling development, and AtRH17 was activated in AT895. AtRH17 possesses nine well-conserved motifs of DEAD-box RHs, consisting of motifs Q, I, Ia, Ib, and II-VI. Although at least 12 orthologs of AtRH17 have been found in various plant species, no paralog occurs in Arabidopsis. AtRH17 protein is subcellularily localized in the nucleus. AtRH17-overexpressing transgenic plants (OXs) were more tolerant to high concentrations of NaCl and LiCl compared with WT, but no differences from WT were detected among seedlings exposed to mannitol and freezing treatments. Moreover, in the mature plant stage, AtRH17 OXs were also more tolerant to NaCl than WT, but not to drought, suggesting that AtRH17 is involved specifically in the salt-stress response. Notably, transcriptions of well-known abscisic acid (ABA)-dependent and ABA-independent stress-response genes were similar or lower in AtRH17 OXs than WT under salt-stress treatments. Taken together, our findings suggest that AtRH17, a nuclear DEAD-box RH protein, is involved in salt-stress tolerance, and that its overexpression confers salt-stress tolerance via a pathway other than the well-known ABA-dependent and ABA-independent pathways.
Collapse
Affiliation(s)
- Linh Vu Nguyen
- Department of Integrated Biological Sciences, Pusan National University, Busan 46241, Korea.
| | - Hye-Yeon Seok
- Department of Integrated Biological Sciences, Pusan National University, Busan 46241, Korea.
| | - Dong-Hyuk Woo
- Department of Integrated Biological Sciences, Pusan National University, Busan 46241, Korea.
| | - Sun-Young Lee
- Department of Integrated Biological Sciences, Pusan National University, Busan 46241, Korea.
| | - Yong-Hwan Moon
- Department of Integrated Biological Sciences, Pusan National University, Busan 46241, Korea.
| |
Collapse
|
16
|
Gupta N, Lorsch JR, Hinnebusch AG. Yeast Ded1 promotes 48S translation pre-initiation complex assembly in an mRNA-specific and eIF4F-dependent manner. eLife 2018; 7:38892. [PMID: 30281017 PMCID: PMC6181565 DOI: 10.7554/elife.38892] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 10/02/2018] [Indexed: 12/28/2022] Open
Abstract
DEAD-box RNA helicase Ded1 is thought to resolve secondary structures in mRNA 5'-untranslated regions (5'-UTRs) that impede 48S preinitiation complex (PIC) formation at the initiation codon. We reconstituted Ded1 acceleration of 48S PIC assembly on native mRNAs in a pure system, and recapitulated increased Ded1-dependence of mRNAs that are Ded1-hyperdependent in vivo. Stem-loop (SL) structures in 5'-UTRs of native and synthetic mRNAs increased the Ded1 requirement to overcome their intrinsically low rates of 48S PIC recruitment. Ded1 acceleration of 48S assembly was greater in the presence of eIF4F, and domains mediating one or more Ded1 interactions with eIF4G or helicase eIF4A were required for efficient recruitment of all mRNAs; however, the relative importance of particular Ded1 and eIF4G domains were distinct for each mRNA. Our results account for the Ded1 hyper-dependence of mRNAs with structure-prone 5'-UTRs, and implicate an eIF4E·eIF4G·eIF4A·Ded1 complex in accelerating 48S PIC assembly on native mRNAs.
Collapse
Affiliation(s)
- Neha Gupta
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, United States
| | - Jon R Lorsch
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, United States
| | - Alan G Hinnebusch
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, United States
| |
Collapse
|
17
|
González-Gutiérrez JA, Díaz-Jiménez DF, Vargas-Pérez I, Guillén-Solís G, Stülke J, Olmedo-Álvarez G. The DEAD-Box RNA Helicases of Bacillus subtilis as a Model to Evaluate Genetic Compensation Among Duplicate Genes. Front Microbiol 2018; 9:2261. [PMID: 30337909 PMCID: PMC6178137 DOI: 10.3389/fmicb.2018.02261] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 09/05/2018] [Indexed: 11/29/2022] Open
Abstract
The presence of duplicated genes in organisms is well documented. There is increasing interest in understanding how these genes subfunctionalize and whether functional overlap can explain the fact that some of these genes are dispensable. Bacillus subtilis possesses four DEAD-box RNA helicases (DBRH) genes, cshA, cshB, deaD/yxiN, and yfmL that make a good case to study to what extent they can complement each other despite their subfunctionalization. They possess the highly conserved N-terminal catalytic domain core common to RNA helicases, but different carboxy-terminal ends. All four genes have been shown to have independent functions although all participate in rRNA assembly. None of the B. subtilis DBRH is essential for growth at 37°C, and all single deletion mutants exhibit defective growth at 18°C except for ΔdeaD/yxiN. Evaluation of double mutants did not reveal negative epistasis, suggesting that they do not have overlapping functions. The absence of any one gene distorts the expression pattern of the others, but not in a specific pattern suggestive of compensation. Overexpression of these paralogous genes in the different mutant backgrounds did not result in cross-complementation, further confirming their lack of buffering capability. Since no complementation could be observed among full sized proteins, we evaluated to what extent the superfamily 2 (SF2) helicase core of the smallest DBRH, YfmL, could be functional when hooked to each of the C-terminal end of CshA, CshB, and DeaD/YxiN. None of the different chimeras complemented the different mutants, and instead, all chimeras inhibited the growth of the ΔyfmL mutant, and other combinations were also deleterious. Our findings suggest that the long time divergence between DEAD-box RNA helicase genes has resulted in specialized activities in RNA metabolism and shows that these duplicated genes cannot buffer one another.
Collapse
Affiliation(s)
- José Antonio González-Gutiérrez
- Departamento de Ingeniería Genética, Unidad Irapuato, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Guanajuato, Mexico
| | - Diana Fabiola Díaz-Jiménez
- Departamento de Ingeniería Genética, Unidad Irapuato, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Guanajuato, Mexico
| | - Itzel Vargas-Pérez
- Departamento de Ingeniería Genética, Unidad Irapuato, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Guanajuato, Mexico
| | - Gabriel Guillén-Solís
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Jörg Stülke
- Department of General Microbiology, Institute of Microbiology and Genetics, Georg-August-Universität Göttingen, Göttingen, Germany
| | - Gabriela Olmedo-Álvarez
- Departamento de Ingeniería Genética, Unidad Irapuato, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Guanajuato, Mexico
| |
Collapse
|
18
|
Fu TY, Wu CN, Sie HC, Cheng JT, Lin YS, Liou HH, Tseng YK, Shu CW, Tsai KW, Yen LM, Tseng HW, Tseng CJ, Ger LP, Liu PF. Subsite-specific association of DEAD box RNA helicase DDX60 with the development and prognosis of oral squamous cell carcinoma. Oncotarget 2018; 7:85097-85108. [PMID: 27835882 PMCID: PMC5356722 DOI: 10.18632/oncotarget.13197] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 10/28/2016] [Indexed: 01/05/2023] Open
Abstract
The clinical significance and biological function of DEXD/H box helicase 60 (DDX60) in oral cancer remains unknown. Herein, we evaluated the association of DDX60 expression with tumorigenesis and the prognosis of oral squamous cell carcinoma (OSCC). DDX60 expression was examined by immunohistochemistry on tissue microarray slides of 494 OSCC patients, including 180 buccal mucosal SCC (BMSCC), 241 tongue SCC (TSCC), and 73 lip SCC (LSCC) patients. DDX60 expression was significantly increased in all three subsites of OSCC compared to its expression in tumor adjacent normal tissues. However, its association with tumorigenesis was specific to the oral cavity subsite after the stratification of betel quid chewing, smoking, and drinking. Among OSCC patients, higher levels of DDX60 expression were associated with the male gender, a well-differentiated tumor, advanced stage of disease, and a large tumor size with subsite specific features. LSCC patients with high DDX60 expression levels showed shorter disease-specific survival, particularly those with moderately or poorly differentiated tumors. Additionally, TSCC or OSCC patients with high DDX60 expression showed a poor disease-free survival (DFS), particularly those with moderately or poorly differentiated tumors. Therefore, DDX60 is a novel and unfavorable biomarker for tumorigenesis and prognosis of OSCC in a subsite-specific manner.
Collapse
Affiliation(s)
- Ting-Ying Fu
- Department of Pathology and Laboratory Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan.,Department of Optometry, Shu-Zen Junior College of Medicine and Management, Kaohsiung, Taiwan
| | - Chao-Nan Wu
- Department of Stomatology, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan.,Department of Dental Technology, Shu-Zen Junior College of Medicine and Management, Kaohsiung, Taiwan
| | - Huei-Cin Sie
- Department of Pathology and Laboratory Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Jiin-Tsuey Cheng
- Department of Biological Sciences, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Yaoh-Shiang Lin
- Department of Otorhinolaryngology-Head & Neck Surgery, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Huei-Han Liou
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Yu-Kai Tseng
- Department of Orthopedics, Show Chwan Memorial Hospital, Changhua, Taiwan.,Department of Orthopedics, National Cheng Kung University Hospital, Tainan, Taiwan
| | - Chih-Wen Shu
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Kuo-Wang Tsai
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan.,Department of Chemical Biology, National Pingtung University of Education, Pingtung, Taiwan
| | - Leing-Ming Yen
- Department of Pathology and Laboratory Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Hui-Wen Tseng
- Department of Dermatology, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan.,Department of Nursing, Meiho University, Pingtung, Taiwan
| | - Ching-Jiunn Tseng
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan.,Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan.,Department of Pharmacology, National Defense Medical Center, Taipei, Taiwan.,Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Luo-Ping Ger
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan.,Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Pei-Feng Liu
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan.,Department of Biotechnology, Fooyin University, Kaohsiung, Taiwan
| |
Collapse
|
19
|
Marquez-Vilendrer SB, Thompson K, Lu L, Reisman D. Mechanism of BRG1 silencing in primary cancers. Oncotarget 2018; 7:56153-56169. [PMID: 27486753 PMCID: PMC5302903 DOI: 10.18632/oncotarget.10593] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 01/19/2016] [Indexed: 11/25/2022] Open
Abstract
BRG1 (SMARCA4) is a documented tumor suppressor and a key subunit of the SWI/SNF chromatin remodeling complex that is silenced in many cancer types. Studies have shown that BRG1 is mutated in cancer-derived cell lines, which led to the assertion that BRG1 is also mutated in primary human tumors. However, the sequencing of BRG1-deficient tumors has revealed a paucity of mutations; hence, the cause of BRG1 silencing in tumors remains an enigma. We conducted immunohistochemistry (IHC) on a number of tumor microarrays to characterize the frequency of BRG1 loss in different tumor types. We also analyzed BRG1-deficient tumors by sequencing the genomic DNA and the mRNA. We then tested if BRG1 expression could be induced in BRG1-negative cell lines (i.e., that lack mutations in BRG1) after the application of several different epigenetic agents, including drugs that inhibit the AKT pathway. We found that a subset of BRG1-negative cell lines also demonstrated aberrant splicing of BRG1, and in at least 30% of BRG1-deficient tumors, BRG1 expression appeared to be suppressed due to aberrant BRG1 splicing. As the majority of BRG1-deficient tumors lack mutations or splicing defects that could drive BRG1 loss of expression, this suggests that other mechanisms underlie BRG1 silencing. To this end, we analyzed 3 BRG1-deficient nonmutated cancer cell lines and found that BRG1 was inducible in these cell lines upon inhibition of the AKT pathway. We show that the loss of BRG1 is associated with the loss of E-cadherin and up-regulation of Vimentin in primary tumors, which explains why BRG1 loss is associated with a poor prognosis in multiple tumor types.
Collapse
Affiliation(s)
| | - Kenneth Thompson
- Division of Hematology/Oncology, Department of Medicine, University of Florida, Gainesville, Florida, USA
| | - Li Lu
- Department of Pathology, University of Florida, Gainesville, Florida, USA
| | - David Reisman
- Division of Hematology/Oncology, Department of Medicine, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
20
|
Harigua-Souiai E, Abdelkrim YZ, Bassoumi-Jamoussi I, Zakraoui O, Bouvier G, Essafi-Benkhadir K, Banroques J, Desdouits N, Munier-Lehmann H, Barhoumi M, Tanner NK, Nilges M, Blondel A, Guizani I. Identification of novel leishmanicidal molecules by virtual and biochemical screenings targeting Leishmania eukaryotic translation initiation factor 4A. PLoS Negl Trop Dis 2018; 12:e0006160. [PMID: 29346371 PMCID: PMC5790279 DOI: 10.1371/journal.pntd.0006160] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 01/30/2018] [Accepted: 12/11/2017] [Indexed: 01/25/2023] Open
Abstract
Leishmaniases are neglected parasitic diseases in spite of the major burden they inflict on public health. The identification of novel drugs and targets constitutes a research priority. For that purpose we used Leishmania infantum initiation factor 4A (LieIF), an essential translation initiation factor that belongs to the DEAD-box proteins family, as a potential drug target. We modeled its structure and identified two potential binding sites. A virtual screening of a diverse chemical library was performed for both sites. The results were analyzed with an in-house version of the Self-Organizing Maps algorithm combined with multiple filters, which led to the selection of 305 molecules. Effects of these molecules on the ATPase activity of LieIF permitted the identification of a promising hit (208) having a half maximal inhibitory concentration (IC50) of 150 ± 15 μM for 1 μM of protein. Ten chemical analogues of compound 208 were identified and two additional inhibitors were selected (20 and 48). These compounds inhibited the mammalian eIF4I with IC50 values within the same range. All three hits affected the viability of the extra-cellular form of L. infantum parasites with IC50 values at low micromolar concentrations. These molecules showed non-significant toxicity toward THP-1 macrophages. Furthermore, their anti-leishmanial activity was validated with experimental assays on L. infantum intramacrophage amastigotes showing IC50 values lower than 4.2 μM. Selected compounds exhibited selectivity indexes between 19 to 38, which reflects their potential as promising anti-Leishmania molecules.
Collapse
Affiliation(s)
- Emna Harigua-Souiai
- Laboratory of Molecular Epidemiology and Experimental Pathology – LR11IPT04, Institut Pasteur de Tunis, Université de Tunis el Manar, Tunis, Tunisia
- Institut Pasteur, Unité de Bioinformatique Structurale, CNRS UMR 3528, Département de Biologie Structurale et Chimie, Paris, France
| | - Yosser Zina Abdelkrim
- Laboratory of Molecular Epidemiology and Experimental Pathology – LR11IPT04, Institut Pasteur de Tunis, Université de Tunis el Manar, Tunis, Tunisia
- Laboratory of Microbial Gene Expression (EGM), CNRS UMR8261/Université Paris Diderot P7, Sorbonne Paris Cité & PSL, Institut de Biologie Physico-Chimique, Paris, France
- Faculté des Sciences de Bizerte, Université de Carthage, Tunis, Tunisia
| | - Imen Bassoumi-Jamoussi
- Laboratory of Molecular Epidemiology and Experimental Pathology – LR11IPT04, Institut Pasteur de Tunis, Université de Tunis el Manar, Tunis, Tunisia
| | - Ons Zakraoui
- Laboratory of Molecular Epidemiology and Experimental Pathology – LR11IPT04, Institut Pasteur de Tunis, Université de Tunis el Manar, Tunis, Tunisia
| | - Guillaume Bouvier
- Institut Pasteur, Unité de Bioinformatique Structurale, CNRS UMR 3528, Département de Biologie Structurale et Chimie, Paris, France
| | - Khadija Essafi-Benkhadir
- Laboratory of Molecular Epidemiology and Experimental Pathology – LR11IPT04, Institut Pasteur de Tunis, Université de Tunis el Manar, Tunis, Tunisia
| | - Josette Banroques
- Laboratory of Microbial Gene Expression (EGM), CNRS UMR8261/Université Paris Diderot P7, Sorbonne Paris Cité & PSL, Institut de Biologie Physico-Chimique, Paris, France
| | - Nathan Desdouits
- Institut Pasteur, Unité de Bioinformatique Structurale, CNRS UMR 3528, Département de Biologie Structurale et Chimie, Paris, France
| | - Hélène Munier-Lehmann
- Institut Pasteur, Unité de Chimie et Biocatalyse, Département de Biologie Structurale et Chimie, Paris, France
- Unité Mixte de Recherche 3523, Centre National de la Recherche Scientifique, Paris, France
| | - Mourad Barhoumi
- Laboratory of Molecular Epidemiology and Experimental Pathology – LR11IPT04, Institut Pasteur de Tunis, Université de Tunis el Manar, Tunis, Tunisia
| | - N. Kyle Tanner
- Laboratory of Microbial Gene Expression (EGM), CNRS UMR8261/Université Paris Diderot P7, Sorbonne Paris Cité & PSL, Institut de Biologie Physico-Chimique, Paris, France
| | - Michael Nilges
- Institut Pasteur, Unité de Bioinformatique Structurale, CNRS UMR 3528, Département de Biologie Structurale et Chimie, Paris, France
| | - Arnaud Blondel
- Institut Pasteur, Unité de Bioinformatique Structurale, CNRS UMR 3528, Département de Biologie Structurale et Chimie, Paris, France
| | - Ikram Guizani
- Laboratory of Molecular Epidemiology and Experimental Pathology – LR11IPT04, Institut Pasteur de Tunis, Université de Tunis el Manar, Tunis, Tunisia
| |
Collapse
|
21
|
Xing Z, Wang S, Tran EJ. Characterization of the mammalian DEAD-box protein DDX5 reveals functional conservation with S. cerevisiae ortholog Dbp2 in transcriptional control and glucose metabolism. RNA (NEW YORK, N.Y.) 2017; 23:1125-1138. [PMID: 28411202 PMCID: PMC5473146 DOI: 10.1261/rna.060335.116] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2016] [Accepted: 04/10/2017] [Indexed: 05/09/2023]
Abstract
DEAD-box proteins are a class of nonprocessive RNA helicases that dynamically modulate the structure of RNA and ribonucleoprotein complexes (RNPs). However, the precise roles of individual members are not well understood. Work from our laboratory revealed that the DEAD-box protein Dbp2 in Saccharomyces cerevisiae is an active RNA helicase in vitro that functions in transcription by promoting mRNP assembly, repressing cryptic transcription initiation, and regulating long noncoding RNA activity. Interestingly, Dbp2 is also linked to glucose sensing and hexose transporter gene expression. DDX5 is the mammalian ortholog of Dbp2 that has been implicated in cancer and metabolic syndrome, suggesting that the role of Dbp2 and DDX5 in glucose metabolic regulation is conserved. Herein, we present a refined biochemical and biological comparison of yeast Dbp2 and human DDX5 enzymes. We find that human DDX5 possesses a 10-fold higher unwinding activity than Dbp2, which is partially due to the presence of a mammalian/avian specific C-terminal extension. Interestingly, ectopic expression of DDX5 rescues the cold sensitivity, cryptic initiation defects, and impaired glucose import in dbp2Δ cells, suggesting functional conservation. Consistently, we show that DDX5 promotes glucose uptake and glycolysis in mouse AML12 hepatocyte cells, suggesting that mammalian DDX5 and S. cerevisiae Dbp2 share conserved roles in cellular metabolism.
Collapse
Affiliation(s)
- Zheng Xing
- Department of Biochemistry, Purdue University, West Lafayette, Indiana 47906, USA
| | - Siwen Wang
- Department of Biochemistry, Purdue University, West Lafayette, Indiana 47906, USA
| | - Elizabeth J Tran
- Department of Biochemistry, Purdue University, West Lafayette, Indiana 47906, USA
- Purdue Center for Cancer Research, Purdue University, West Lafayette, Indiana 47906, USA
| |
Collapse
|
22
|
Gao Z, Putnam AA, Bowers HA, Guenther UP, Ye X, Kindsfather A, Hilliker AK, Jankowsky E. Coupling between the DEAD-box RNA helicases Ded1p and eIF4A. eLife 2016; 5. [PMID: 27494274 PMCID: PMC4990422 DOI: 10.7554/elife.16408] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2016] [Accepted: 08/04/2016] [Indexed: 11/13/2022] Open
Abstract
Eukaryotic translation initiation involves two conserved DEAD-box RNA helicases, eIF4A and Ded1p. Here we show that S. cerevisiae eIF4A and Ded1p directly interact with each other and simultaneously with the scaffolding protein eIF4G. We delineate a comprehensive thermodynamic framework for the interactions between Ded1p, eIF4A, eIF4G, RNA and ATP, which indicates that eIF4A, with and without eIF4G, acts as a modulator for activity and substrate preferences of Ded1p, which is the RNA remodeling unit in all complexes. Our results reveal and characterize an unexpected interdependence between the two RNA helicases and eIF4G, and suggest that Ded1p is an integral part of eIF4F, the complex comprising eIF4G, eIF4A, and eIF4E.
Collapse
Affiliation(s)
- Zhaofeng Gao
- Center for RNA Molecular Biology, Case Western Reserve University, Cleveland, United States.,Department of Biochemistry, Case Western Reserve University, Cleveland, United States.,School of Medicine, Case Western Reserve University, Cleveland, United States
| | - Andrea A Putnam
- Center for RNA Molecular Biology, Case Western Reserve University, Cleveland, United States.,Department of Biochemistry, Case Western Reserve University, Cleveland, United States.,School of Medicine, Case Western Reserve University, Cleveland, United States
| | - Heath A Bowers
- Center for RNA Molecular Biology, Case Western Reserve University, Cleveland, United States.,Department of Biochemistry, Case Western Reserve University, Cleveland, United States.,School of Medicine, Case Western Reserve University, Cleveland, United States
| | - Ulf-Peter Guenther
- Center for RNA Molecular Biology, Case Western Reserve University, Cleveland, United States.,Department of Biochemistry, Case Western Reserve University, Cleveland, United States.,School of Medicine, Case Western Reserve University, Cleveland, United States
| | - Xuan Ye
- Center for RNA Molecular Biology, Case Western Reserve University, Cleveland, United States.,Department of Biochemistry, Case Western Reserve University, Cleveland, United States.,School of Medicine, Case Western Reserve University, Cleveland, United States
| | | | - Angela K Hilliker
- Department of Biology, University of Richmond, Richmond, United States
| | - Eckhard Jankowsky
- Center for RNA Molecular Biology, Case Western Reserve University, Cleveland, United States.,Department of Biochemistry, Case Western Reserve University, Cleveland, United States.,School of Medicine, Case Western Reserve University, Cleveland, United States
| |
Collapse
|
23
|
Fröhlich A, Rojas-Araya B, Pereira-Montecinos C, Dellarossa A, Toro-Ascuy D, Prades-Pérez Y, García-de-Gracia F, Garcés-Alday A, Rubilar PS, Valiente-Echeverría F, Ohlmann T, Soto-Rifo R. DEAD-box RNA helicase DDX3 connects CRM1-dependent nuclear export and translation of the HIV-1 unspliced mRNA through its N-terminal domain. BIOCHIMICA ET BIOPHYSICA ACTA 2016; 1859:719-30. [PMID: 27012366 DOI: 10.1016/j.bbagrm.2016.03.009] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 03/14/2016] [Accepted: 03/17/2016] [Indexed: 12/20/2022]
Abstract
DEAD-box RNA helicase DDX3 is a host factor essential for HIV-1 replication and thus, a potential target for novel therapies aimed to overcome viral resistance. Previous studies have shown that DDX3 promotes nuclear export and translation of the HIV-1 unspliced mRNA. Although the function of DDX3 during both processes requires its catalytic activity, it is unknown whether other domains surrounding the helicase core are involved. Here, we show the involvement of the N- and C-terminal domains of DDX3 in the regulation of HIV-1 unspliced mRNA translation. Our results suggest that the intrinsically disordered N-terminal domain of DDX3 regulates its functions in translation by acting prior to the recruitment of the 43S pre-initiation complex onto the viral 5'-UTR. Interestingly, this regulation was conserved in HIV-2 and was dependent on the CRM1-dependent nuclear export pathway suggesting a role of the RNA helicase in interconnecting nuclear export with ribosome recruitment of the viral unspliced mRNA. This specific function of DDX3 during HIV gene expression could be exploited as an alternative target for pharmaceutical intervention.
Collapse
Affiliation(s)
- Alvaro Fröhlich
- Molecular and Cellular Virology Laboratory, Virology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Independencia 834100, Santiago, Chile
| | - Bárbara Rojas-Araya
- Molecular and Cellular Virology Laboratory, Virology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Independencia 834100, Santiago, Chile
| | - Camila Pereira-Montecinos
- Molecular and Cellular Virology Laboratory, Virology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Independencia 834100, Santiago, Chile
| | - Alessandra Dellarossa
- Molecular and Cellular Virology Laboratory, Virology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Independencia 834100, Santiago, Chile
| | - Daniela Toro-Ascuy
- Molecular and Cellular Virology Laboratory, Virology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Independencia 834100, Santiago, Chile
| | - Yara Prades-Pérez
- Molecular and Cellular Virology Laboratory, Virology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Independencia 834100, Santiago, Chile
| | - Francisco García-de-Gracia
- Molecular and Cellular Virology Laboratory, Virology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Independencia 834100, Santiago, Chile
| | - Andrea Garcés-Alday
- Molecular and Cellular Virology Laboratory, Virology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Independencia 834100, Santiago, Chile
| | - Paulina S Rubilar
- CIRI, International Center for Infectiology Research, Université de Lyon, Lyon, France; Inserm, U1111 Lyon, France; Ecole Normale Supérieure de Lyon, Lyon, France
| | - Fernando Valiente-Echeverría
- Molecular and Cellular Virology Laboratory, Virology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Independencia 834100, Santiago, Chile
| | - Théophile Ohlmann
- CIRI, International Center for Infectiology Research, Université de Lyon, Lyon, France; Inserm, U1111 Lyon, France; Ecole Normale Supérieure de Lyon, Lyon, France
| | - Ricardo Soto-Rifo
- Molecular and Cellular Virology Laboratory, Virology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Independencia 834100, Santiago, Chile.
| |
Collapse
|
24
|
Floor SN, Condon KJ, Sharma D, Jankowsky E, Doudna JA. Autoinhibitory Interdomain Interactions and Subfamily-specific Extensions Redefine the Catalytic Core of the Human DEAD-box Protein DDX3. J Biol Chem 2015; 291:2412-21. [PMID: 26598523 DOI: 10.1074/jbc.m115.700625] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Indexed: 11/06/2022] Open
Abstract
DEAD-box proteins utilize ATP to bind and remodel RNA and RNA-protein complexes. All DEAD-box proteins share a conserved core that consists of two RecA-like domains. The core is flanked by subfamily-specific extensions of idiosyncratic function. The Ded1/DDX3 subfamily of DEAD-box proteins is of particular interest as members function during protein translation, are essential for viability, and are frequently altered in human malignancies. Here, we define the function of the subfamily-specific extensions of the human DEAD-box protein DDX3. We describe the crystal structure of the subfamily-specific core of wild-type DDX3 at 2.2 Å resolution, alone and in the presence of AMP or nonhydrolyzable ATP. These structures illustrate a unique interdomain interaction between the two ATPase domains in which the C-terminal domain clashes with the RNA-binding surface. Destabilizing this interaction accelerates RNA duplex unwinding, suggesting that it is present in solution and inhibitory for catalysis. We use this core fragment of DDX3 to test the function of two recurrent medulloblastoma variants of DDX3 and find that both inactivate the protein in vitro and in vivo. Taken together, these results redefine the structural and functional core of the DDX3 subfamily of DEAD-box proteins.
Collapse
Affiliation(s)
- Stephen N Floor
- From the Department of Molecular and Cell Biology, Howard Hughes Medical Institute
| | | | - Deepak Sharma
- the Department of Biochemistry and Center for RNA Molecular Biology, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106
| | - Eckhard Jankowsky
- the Department of Biochemistry and Center for RNA Molecular Biology, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106
| | - Jennifer A Doudna
- From the Department of Molecular and Cell Biology, Howard Hughes Medical Institute, Department of Chemistry, and Innovative Genomics Initiative, University of California, Berkeley, California 94720, the Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, and
| |
Collapse
|
25
|
Ding H, Guo M, Vidhyasagar V, Talwar T, Wu Y. The Q Motif Is Involved in DNA Binding but Not ATP Binding in ChlR1 Helicase. PLoS One 2015; 10:e0140755. [PMID: 26474416 PMCID: PMC4608764 DOI: 10.1371/journal.pone.0140755] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 09/30/2015] [Indexed: 01/08/2023] Open
Abstract
Helicases are molecular motors that couple the energy of ATP hydrolysis to the unwinding of structured DNA or RNA and chromatin remodeling. The conversion of energy derived from ATP hydrolysis into unwinding and remodeling is coordinated by seven sequence motifs (I, Ia, II, III, IV, V, and VI). The Q motif, consisting of nine amino acids (GFXXPXPIQ) with an invariant glutamine (Q) residue, has been identified in some, but not all helicases. Compared to the seven well-recognized conserved helicase motifs, the role of the Q motif is less acknowledged. Mutations in the human ChlR1 (DDX11) gene are associated with a unique genetic disorder known as Warsaw Breakage Syndrome, which is characterized by cellular defects in genome maintenance. To examine the roles of the Q motif in ChlR1 helicase, we performed site directed mutagenesis of glutamine to alanine at residue 23 in the Q motif of ChlR1. ChlR1 recombinant protein was overexpressed and purified from HEK293T cells. ChlR1-Q23A mutant abolished the helicase activity of ChlR1 and displayed reduced DNA binding ability. The mutant showed impaired ATPase activity but normal ATP binding. A thermal shift assay revealed that ChlR1-Q23A has a melting point value similar to ChlR1-WT. Partial proteolysis mapping demonstrated that ChlR1-WT and Q23A have a similar globular structure, although some subtle conformational differences in these two proteins are evident. Finally, we found ChlR1 exists and functions as a monomer in solution, which is different from FANCJ, in which the Q motif is involved in protein dimerization. Taken together, our results suggest that the Q motif is involved in DNA binding but not ATP binding in ChlR1 helicase.
Collapse
Affiliation(s)
- Hao Ding
- Department of Biochemistry, University of Saskatchewan, Health Sciences Building, 107 Wiggins Road, Saskatoon, Saskatchewan, Canada
| | - Manhong Guo
- Department of Biochemistry, University of Saskatchewan, Health Sciences Building, 107 Wiggins Road, Saskatoon, Saskatchewan, Canada
| | - Venkatasubramanian Vidhyasagar
- Department of Biochemistry, University of Saskatchewan, Health Sciences Building, 107 Wiggins Road, Saskatoon, Saskatchewan, Canada
| | - Tanu Talwar
- Department of Biochemistry, University of Saskatchewan, Health Sciences Building, 107 Wiggins Road, Saskatoon, Saskatchewan, Canada
| | - Yuliang Wu
- Department of Biochemistry, University of Saskatchewan, Health Sciences Building, 107 Wiggins Road, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
26
|
Hauk G, Bowman GD. Formation of a Trimeric Xpo1-Ran[GTP]-Ded1 Exportin Complex Modulates ATPase and Helicase Activities of Ded1. PLoS One 2015; 10:e0131690. [PMID: 26120835 PMCID: PMC4484809 DOI: 10.1371/journal.pone.0131690] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 06/05/2015] [Indexed: 11/24/2022] Open
Abstract
The DEAD-box RNA helicase Ded1, which is essential in yeast and known as DDX3 in humans, shuttles between the nucleus and cytoplasm and takes part in several basic processes including RNA processing and translation. A key interacting partner of Ded1 is the exportin Xpo1, which together with the GTP-bound state of the small GTPase Ran, facilitates unidirectional transport of Ded1 out of the nucleus. Here we demonstrate that Xpo1 and Ran[GTP] together reduce the RNA-stimulated ATPase and helicase activities of Ded1. Binding and inhibition of Ded1 by Xpo1 depend on the affinity of the Ded1 nuclear export sequence (NES) for Xpo1 and the presence of Ran[GTP]. Association with Xpo1/Ran[GTP] reduces RNA-stimulated ATPase activity of Ded1 by increasing the apparent KM for the RNA substrate. Despite the increased KM, the Ded1:Xpo1:Ran[GTP] ternary complex retains the ability to bind single stranded RNA, suggesting that Xpo1/Ran[GTP] may modulate the substrate specificity of Ded1. These results demonstrate that, in addition to transport, exportins such as Xpo1 also have the capability to alter enzymatic activities of their cargo.
Collapse
Affiliation(s)
- Glenn Hauk
- T.C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Gregory D. Bowman
- T.C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, Maryland, United States of America
| |
Collapse
|
27
|
Banroques J, Tanner NK. Bioinformatics and biochemical methods to study the structural and functional elements of DEAD-box RNA helicases. Methods Mol Biol 2015; 1259:165-181. [PMID: 25579586 DOI: 10.1007/978-1-4939-2214-7_11] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
DEAD-box RNA helicases have core structures consisting of two, tandemly linked, RecA-like domains that contain all of the conserved motifs involved in binding ATP and RNA, and that are needed for the enzymatic activities. The conserved sequence motifs and structural homology indicate that these proteins share common origins and underlining functionality. Indeed, the purified proteins generally act as ATP-dependent RNA-binding proteins and RNA-dependent ATPases in vitro, but for the most part without the substrate specificity or enzymatic regulation that exists in the cell. We are interested in understanding the relationships between the conserved motifs and structures that confer the commonly shared features, and we are interested in understanding how modifications of the core structure alter the enzymatic properties. We use sequence alignments and structural modeling to reveal regions of interest, which we modify by classical molecular biological techniques (mutations and deletions). We then use various biochemical techniques to characterize the purified proteins and their variants for their ATPase, RNA binding, and RNA unwinding activities to determine the functional roles of the different elements. In this chapter, we describe the methods we use to design our constructs and to determine their enzymatic activities in vitro.
Collapse
Affiliation(s)
- Josette Banroques
- Institut de Biologie Physico-chimique, CNRS FRE3630, Sorbonne Paris Cité, 13 rue Pierre et Marie Curie, Paris, 75005, France
| | | |
Collapse
|
28
|
Senissar M, Le Saux A, Belgareh-Touzé N, Adam C, Banroques J, Tanner NK. The DEAD-box helicase Ded1 from yeast is an mRNP cap-associated protein that shuttles between the cytoplasm and nucleus. Nucleic Acids Res 2014; 42:10005-22. [PMID: 25013175 PMCID: PMC4150762 DOI: 10.1093/nar/gku584] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Revised: 06/02/2014] [Accepted: 06/17/2014] [Indexed: 01/13/2023] Open
Abstract
The DEAD-box helicase Ded1 is an essential yeast protein that is closely related to mammalian DDX3 and to other DEAD-box proteins involved in developmental and cell cycle regulation. Ded1 is considered to be a translation-initiation factor that helps the 40S ribosome scan the mRNA from the 5' 7-methylguanosine cap to the AUG start codon. We used IgG pull-down experiments, mass spectrometry analyses, genetic experiments, sucrose gradients, in situ localizations and enzymatic assays to show that Ded1 is a cap-associated protein that actively shuttles between the cytoplasm and the nucleus. NanoLC-MS/MS analyses of purified complexes show that Ded1 is present in both nuclear and cytoplasmic mRNPs. Ded1 physically interacts with purified components of the nuclear CBC and the cytoplasmic eIF4F complexes, and its enzymatic activity is stimulated by these factors. In addition, we show that Ded1 is genetically linked to these factors. Ded1 comigrates with these proteins on sucrose gradients, but treatment with rapamycin does not appreciably alter the distribution of Ded1; thus, most of the Ded1 is in stable mRNP complexes. We conclude that Ded1 is an mRNP cofactor of the cap complex that may function to remodel the different mRNPs and thereby regulate the expression of the mRNAs.
Collapse
Affiliation(s)
- Meriem Senissar
- Expression Génétique Microbienne, CNRS FRE3630 (UPR9073), in association with Université Paris Diderot, Sorbonne Paris Cité, Paris 75005, France Université Paris-Sud, Ecole Doctorale 426 GGC, Orsay, France
| | - Agnès Le Saux
- Expression Génétique Microbienne, CNRS FRE3630 (UPR9073), in association with Université Paris Diderot, Sorbonne Paris Cité, Paris 75005, France
| | - Naïma Belgareh-Touzé
- Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes, CNRS UMR8226 (FRE3354), UPMC, Paris 75005, France
| | - Céline Adam
- Expression Génétique Microbienne, CNRS FRE3630 (UPR9073), in association with Université Paris Diderot, Sorbonne Paris Cité, Paris 75005, France
| | - Josette Banroques
- Expression Génétique Microbienne, CNRS FRE3630 (UPR9073), in association with Université Paris Diderot, Sorbonne Paris Cité, Paris 75005, France
| | - N Kyle Tanner
- Expression Génétique Microbienne, CNRS FRE3630 (UPR9073), in association with Université Paris Diderot, Sorbonne Paris Cité, Paris 75005, France
| |
Collapse
|
29
|
Khan A, Garbelli A, Grossi S, Florentin A, Batelli G, Acuna T, Zolla G, Kaye Y, Paul LK, Zhu JK, Maga G, Grafi G, Barak S. The Arabidopsis STRESS RESPONSE SUPPRESSOR DEAD-box RNA helicases are nucleolar- and chromocenter-localized proteins that undergo stress-mediated relocalization and are involved in epigenetic gene silencing. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 79:28-43. [PMID: 24724701 DOI: 10.1111/tpj.12533] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2014] [Revised: 04/03/2014] [Accepted: 04/08/2014] [Indexed: 05/03/2023]
Abstract
DEAD-box RNA helicases are involved in many aspects of RNA metabolism and in diverse biological processes in plants. Arabidopsis thaliana mutants of two DEAD-box RNA helicases, STRESS RESPONSE SUPPRESSOR1 (STRS1) and STRS2 were previously shown to exhibit tolerance to abiotic stresses and up-regulated stress-responsive gene expression. Here, we show that Arabidopsis STRS-overexpressing lines displayed a less tolerant phenotype and reduced expression of stress-induced genes confirming the STRSs as attenuators of Arabidopsis stress responses. GFP-STRS fusion proteins exhibited localization to the nucleolus, nucleoplasm and chromocenters and exhibited relocalization in response to abscisic acid (ABA) treatment and various stresses. This relocalization was reversed when stress treatments were removed. The STRS proteins displayed mis-localization in specific gene-silencing mutants and exhibited RNA-dependent ATPase and RNA-unwinding activities. In particular, STRS2 showed mis-localization in three out of four mutants of the RNA-directed DNA methylation (RdDM) pathway while STRS1 was mis-localized in the hd2c mutant that is defective in histone deacetylase activity. Furthermore, heterochromatic RdDM target loci displayed reduced DNA methylation and increased expression in the strs mutants. Taken together, our findings suggest that the STRS proteins are involved in epigenetic silencing of gene expression to bring about suppression of the Arabidopsis stress response.
Collapse
Affiliation(s)
- Asif Khan
- French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion, 84990, Israel
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Zhang ZM, Yang F, Zhang J, Tang Q, Li J, Gu J, Zhou J, Xu YZ. Crystal structure of Prp5p reveals interdomain interactions that impact spliceosome assembly. Cell Rep 2013; 5:1269-78. [PMID: 24290758 DOI: 10.1016/j.celrep.2013.10.047] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2013] [Revised: 09/30/2013] [Accepted: 10/29/2013] [Indexed: 01/13/2023] Open
Abstract
The DEAD-box adenosine triphosphatase (ATPase) Prp5p facilitates U2 small nuclear ribonucleoprotein particle (snRNP) binding to the intron branch site region during spliceosome assembly. We present crystal structures of S. cerevisiae Prp5p alone and in complex with ADP at 2.12 Å and 1.95 Å resolution. The three-dimensional packing of Prp5p subdomains differs strikingly from that so far observed in other DEAD-box proteins: two RecA-like subdomains adopt an "open state" conformation stabilized by extensive interactions involving sequences that flank the two subdomains. This conformation is distinct from that required for ATP hydrolysis. Consistent with this, Prp5p mutations that destabilize interdomain interactions exhibited increased ATPase activity in vitro and inhibited splicing of suboptimal branch site substrates in vivo, whereas restoration of interdomain interactions reversed these effects. We conclude that the Prp5p open state conformation is biologically relevant and that disruption of the interdomain interaction facilitates a large-scale conformational change of Prp5p during U2 snRNP-branch site recognition.
Collapse
Affiliation(s)
- Zhi-Min Zhang
- State Key Laboratory of Bio-organic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| | - Fei Yang
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Jinru Zhang
- State Key Laboratory of Bio-organic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| | - Qing Tang
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Jie Li
- State Key Laboratory of Bio-organic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| | - Jing Gu
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Jiahai Zhou
- State Key Laboratory of Bio-organic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China.
| | - Yong-Zhen Xu
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China.
| |
Collapse
|
31
|
Gargantini PR, Serradell MC, Torri A, Lujan HD. Putative SF2 helicases of the early-branching eukaryote Giardia lamblia are involved in antigenic variation and parasite differentiation into cysts. BMC Microbiol 2012. [PMID: 23190735 PMCID: PMC3566956 DOI: 10.1186/1471-2180-12-284] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Background Regulation of surface antigenic variation in Giardia lamblia is controlled post-transcriptionally by an RNA-interference (RNAi) pathway that includes a Dicer-like bidentate RNase III (gDicer). This enzyme, however, lacks the RNA helicase domain present in Dicer enzymes from higher eukaryotes. The participation of several RNA helicases in practically all organisms in which RNAi was studied suggests that RNA helicases are potentially involved in antigenic variation, as well as during Giardia differentiation into cysts. Results An extensive in silico analysis of the Giardia genome identified 32 putative Super Family 2 RNA helicases that contain almost all the conserved RNA helicase motifs. Phylogenetic studies and sequence analysis separated them into 22 DEAD-box, 6 DEAH-box and 4 Ski2p-box RNA helicases, some of which are homologs of well-characterized helicases from higher organisms. No Giardia putative helicase was found to have significant homology to the RNA helicase domain of Dicer enzymes. Additionally a series of up- and down-regulated putative RNA helicases were found during encystation and antigenic variation by qPCR experiments. Finally, we were able to recognize 14 additional putative helicases from three different families (RecQ family, Swi2/Snf2 and Rad3 family) that could be considered DNA helicases. Conclusions This is the first comprehensive analysis of the Super Family 2 helicases from the human intestinal parasite G. lamblia. The relative and variable expression of particular RNA helicases during both antigenic variation and encystation agrees with the proposed participation of these enzymes during both adaptive processes. The putatives RNA and DNA helicases identified in this early-branching eukaryote provide initial information regarding the biological role of these enzymes in cell adaptation and differentiation.
Collapse
Affiliation(s)
- Pablo R Gargantini
- Laboratory of Biochemistry and Molecular Biology, School of Medicine, Catholic University of Córdoba, Córdoba X5004ASK, Argentina.
| | | | | | | |
Collapse
|
32
|
Hardwick SW, Luisi BF. Rarely at rest: RNA helicases and their busy contributions to RNA degradation, regulation and quality control. RNA Biol 2012; 10:56-70. [PMID: 23064154 DOI: 10.4161/rna.22270] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
RNA helicases are compact, machine-like proteins that can harness the energy of nucleoside triphosphate binding and hydrolysis to dynamically remodel RNA structures and protein-RNA complexes. Through such activities, helicases participate in virtually every process associated with the expression of genetic information. Often found as components of multi-enzyme assemblies, RNA helicases facilitate the processivity of RNA degradation, the remodeling of protein interactions during maturation of structured RNA precursors, and fidelity checks of RNA quality. In turn, the assemblies modulate and guide the activities of the helicases. We describe the roles of RNA helicases with a conserved "DExD/H box" sequence motif in representative examples of such machineries from bacteria, archaea and eukaryotes. The recurrent occurrence of such helicases in complex assemblies throughout the course of evolution suggests a common requirement for their activities to meet cellular demands for the dynamic control of RNA metabolism.
Collapse
|
33
|
Abstract
DEAD-box helicases catalyze the ATP-dependent unwinding of RNA duplexes. They share a helicase core formed by two RecA-like domains that carries a set of conserved motifs contributing to ATP binding and hydrolysis, RNA binding and duplex unwinding. The translation initiation factor eIF4A is the founding member of the DEAD-box protein family, and one of the few examples of DEAD-box proteins that consist of a helicase core only. It is an RNA-stimulated ATPase and a non-processive helicase that unwinds short RNA duplexes. In the catalytic cycle, a series of conformational changes couples the nucleotide cycle to RNA unwinding. eIF4A has been considered a paradigm for DEAD-box proteins, and studies of its function have revealed the governing principles underlying the DEAD-box helicase mechanism. However, as an isolated helicase core, eIF4A is rather the exception, not the rule. Most helicase modules in other DEAD-box proteins are modified, some by insertions into the RecA-like domains, and the majority by N- and C-terminal appendages. While the basic catalytic function resides within the helicase core, its modulation by insertions, additional domains or a network of interaction partners generates the diversity of DEAD-box protein functions in the cell. This review summarizes the current knowledge on eIF4A and its regulation, and discusses to what extent eIF4A serves as a model DEAD-box protein.
Collapse
|
34
|
Asakura Y, Galarneau E, Watkins KP, Barkan A, van Wijk KJ. Chloroplast RH3 DEAD box RNA helicases in maize and Arabidopsis function in splicing of specific group II introns and affect chloroplast ribosome biogenesis. PLANT PHYSIOLOGY 2012; 159:961-74. [PMID: 22576849 PMCID: PMC3387720 DOI: 10.1104/pp.112.197525] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Accepted: 05/08/2012] [Indexed: 05/18/2023]
Abstract
Chloroplasts in angiosperms contain at least seven nucleus-encoded members of the DEAD box RNA helicase family. Phylogenetic analysis shows that five of these plastid members (RH22, -39, -47, -50, and -58) form a single clade and that RH3 forms a clade with two mitochondrial RH proteins (PMH1 and -2) functioning in intron splicing. The function of chloroplast RH3 in maize (Zea mays; ZmRH3) and Arabidopsis (Arabidopsis thaliana; AtRH3) was determined. ZmRH3 and AtRH3 are both under strong developmental control, and ZmRH3 abundance sharply peaked in the sink-source transition zone of developing maize leaves, coincident with the plastid biogenesis machinery. ZmRH3 coimmunoprecipitated with a specific set of plastid RNAs, including several group II introns, as well as pre23S and 23S ribosomal RNA (rRNA), but not 16S rRNA. Furthermore, ZmRH3 associated with 50S preribosome particles as well as nucleoids. AtRH3 null mutants are embryo lethal, whereas a weak allele (rh3-4) results in pale-green seedlings with defects in splicing of several group II introns and rRNA maturation as well as reduced levels of assembled ribosomes. These results provide strong evidence that RH3 functions in the splicing of group II introns and possibly also contributes to the assembly of the 50S ribosomal particle. Previously, we observed 5- to 10-fold up-regulation of AtRH3 in plastid Caseinolytic protease mutants. The results shown here indicate that AtRH3 up-regulation was not a direct consequence of reduced proteolysis but constituted a compensatory response at both RH3 transcript and protein levels to impaired chloroplast biogenesis; this response demonstrates that cross talk between the chloroplast and the nucleus is used to regulate RH3 levels.
Collapse
Affiliation(s)
- Yukari Asakura
- Department of Plant Biology, Cornell University, Ithaca, New York 14853, USA
| | | | | | | | | |
Collapse
|
35
|
Cloutier SC, Ma WK, Nguyen LT, Tran EJ. The DEAD-box RNA helicase Dbp2 connects RNA quality control with repression of aberrant transcription. J Biol Chem 2012; 287:26155-66. [PMID: 22679025 DOI: 10.1074/jbc.m112.383075] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
DEAD-box proteins are a class of RNA-dependent ATP hydrolysis enzymes that rearrange RNA and RNA-protein (ribonucleoprotein) complexes. In an effort to characterize the cellular function of individual DEAD-box proteins, our laboratory has uncovered a previously unrecognized link between the DEAD-box protein Dbp2 and the regulation of transcription in Saccharomyces cerevisiae. Here, we report that Dbp2 is a double-stranded RNA-specific ATPase that associates directly with chromatin and is required for transcriptional fidelity. In fact, loss of DBP2 results in multiple gene expression defects, including accumulation of noncoding transcripts, inefficient 3' end formation, and appearance of aberrant transcriptional initiation products. We also show that loss of DBP2 is synthetic lethal with deletion of the nuclear RNA decay factor, RRP6, pointing to a global role for Dbp2 in prevention of aberrant transcriptional products. Taken together, we present a model whereby Dbp2 functions to cotranscriptionally modulate RNA structure, a process that facilitates ribonucleoprotein assembly and clearance of transcripts from genomic loci. These studies suggest that Dbp2 is a missing link in RNA quality control that functions to maintain the fidelity of transcriptional processes.
Collapse
Affiliation(s)
- Sara C Cloutier
- Department of Biochemistry and Purdue Cancer Center, Purdue University, West Lafayette, Indiana 47907-2063, USA
| | | | | | | |
Collapse
|
36
|
Moesa HA, Wakabayashi S, Nakai K, Patil A. Chemical composition is maintained in poorly conserved intrinsically disordered regions and suggests a means for their classification. MOLECULAR BIOSYSTEMS 2012; 8:3262-73. [DOI: 10.1039/c2mb25202c] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|