1
|
Zhang X, Avellaneda J, Spletter ML, Lemke SB, Mangeol P, Habermann BH, Schnorrer F. Mechanoresponsive regulation of myogenesis by the force-sensing transcriptional regulator Tono. Curr Biol 2024; 34:4143-4159.e6. [PMID: 39163855 DOI: 10.1016/j.cub.2024.07.079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 05/26/2024] [Accepted: 07/22/2024] [Indexed: 08/22/2024]
Abstract
Muscle morphogenesis is a multi-step program, starting with myoblast fusion, followed by myotube-tendon attachment and sarcomere assembly, with subsequent sarcomere maturation, mitochondrial amplification, and specialization. The correct chronological order of these steps requires precise control of the transcriptional regulators and their effectors. How this regulation is achieved during muscle development is not well understood. In a genome-wide RNAi screen in Drosophila, we identified the BTB-zinc-finger protein Tono (CG32121) as a muscle-specific transcriptional regulator. tono mutant flight muscles display severe deficits in mitochondria and sarcomere maturation, resulting in uncontrolled contractile forces causing muscle rupture and degeneration during development. Tono protein is expressed during sarcomere maturation and localizes in distinct condensates in flight muscle nuclei. Interestingly, internal pressure exerted by the maturing sarcomeres deforms the muscle nuclei into elongated shapes and changes the Tono condensates, suggesting that Tono senses the mechanical status of the muscle cells. Indeed, external mechanical pressure on the muscles triggers rapid liquid-liquid phase separation of Tono utilizing its BTB domain. Thus, we propose that Tono senses high mechanical pressure to adapt muscle transcription, specifically at the sarcomere maturation stages. Consistently, tono mutant muscles display specific defects in a transcriptional switch that represses early muscle differentiation genes and boosts late ones. We hypothesize that a similar mechano-responsive regulation mechanism may control the activity of related BTB-zinc-finger proteins that, if mutated, can result in uncontrolled force production in human muscle.
Collapse
Affiliation(s)
- Xu Zhang
- Aix Marseille University, CNRS, IBDM, Turing Centre for Living Systems, Parc Scientifique de Luminy, 13288 Marseille, France; Max Planck Institute of Biochemistry, Am Klopferspitz, Martinsried, 82152 Munich, Germany; School of Life Science and Engineering, Foshan University, Foshan 52800, Guangdong, China
| | - Jerome Avellaneda
- Aix Marseille University, CNRS, IBDM, Turing Centre for Living Systems, Parc Scientifique de Luminy, 13288 Marseille, France
| | - Maria L Spletter
- Max Planck Institute of Biochemistry, Am Klopferspitz, Martinsried, 82152 Munich, Germany; Department of Physiological Chemistry, Biomedical Center, Ludwig Maximilians University of Munich, Großhaderner Strasse, Martinsried, 82152 Munich, Germany; Division of Biological and Biomedical Systems, School of Science and Engineering, University of Missouri-Kansas City, Rockhill Road, Kansas City, MO 64110, USA
| | - Sandra B Lemke
- Max Planck Institute of Biochemistry, Am Klopferspitz, Martinsried, 82152 Munich, Germany
| | - Pierre Mangeol
- Aix Marseille University, CNRS, IBDM, Turing Centre for Living Systems, Parc Scientifique de Luminy, 13288 Marseille, France
| | - Bianca H Habermann
- Aix Marseille University, CNRS, IBDM, Turing Centre for Living Systems, Parc Scientifique de Luminy, 13288 Marseille, France; Max Planck Institute of Biochemistry, Am Klopferspitz, Martinsried, 82152 Munich, Germany
| | - Frank Schnorrer
- Aix Marseille University, CNRS, IBDM, Turing Centre for Living Systems, Parc Scientifique de Luminy, 13288 Marseille, France; Max Planck Institute of Biochemistry, Am Klopferspitz, Martinsried, 82152 Munich, Germany.
| |
Collapse
|
2
|
Nikonova E, DeCata J, Canela M, Barz C, Esser A, Bouterwek J, Roy A, Gensler H, Heß M, Straub T, Forne I, Spletter ML. Bruno 1/CELF regulates splicing and cytoskeleton dynamics to ensure correct sarcomere assembly in Drosophila flight muscles. PLoS Biol 2024; 22:e3002575. [PMID: 38683844 PMCID: PMC11081514 DOI: 10.1371/journal.pbio.3002575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 05/09/2024] [Accepted: 03/04/2024] [Indexed: 05/02/2024] Open
Abstract
Muscles undergo developmental transitions in gene expression and alternative splicing that are necessary to refine sarcomere structure and contractility. CUG-BP and ETR-3-like (CELF) family RNA-binding proteins are important regulators of RNA processing during myogenesis that are misregulated in diseases such as Myotonic Dystrophy Type I (DM1). Here, we report a conserved function for Bruno 1 (Bru1, Arrest), a CELF1/2 family homolog in Drosophila, during early muscle myogenesis. Loss of Bru1 in flight muscles results in disorganization of the actin cytoskeleton leading to aberrant myofiber compaction and defects in pre-myofibril formation. Temporally restricted rescue and RNAi knockdown demonstrate that early cytoskeletal defects interfere with subsequent steps in sarcomere growth and maturation. Early defects are distinct from a later requirement for bru1 to regulate sarcomere assembly dynamics during myofiber maturation. We identify an imbalance in growth in sarcomere length and width during later stages of development as the mechanism driving abnormal radial growth, myofibril fusion, and the formation of hollow myofibrils in bru1 mutant muscle. Molecularly, we characterize a genome-wide transition from immature to mature sarcomere gene isoform expression in flight muscle development that is blocked in bru1 mutants. We further demonstrate that temporally restricted Bru1 rescue can partially alleviate hypercontraction in late pupal and adult stages, but it cannot restore myofiber function or correct structural deficits. Our results reveal the conserved nature of CELF function in regulating cytoskeletal dynamics in muscle development and demonstrate that defective RNA processing due to misexpression of CELF proteins causes wide-reaching structural defects and progressive malfunction of affected muscles that cannot be rescued by late-stage gene replacement.
Collapse
Affiliation(s)
- Elena Nikonova
- Biomedical Center, Department of Physiological Chemistry, Ludwig-Maximilians-Universität München, München, Germany
| | - Jenna DeCata
- School of Science and Engineering, Division of Biological and Biomedical Systems, Kansas City, Missouri, United States of America
| | - Marc Canela
- Faculty of Biology, Universitat de Barcelona, Barcelona, Spain
| | - Christiane Barz
- Muscle Dynamics Group, Max Planck Institute of Biochemistry, München, Germany
| | - Alexandra Esser
- Biomedical Center, Department of Physiological Chemistry, Ludwig-Maximilians-Universität München, München, Germany
| | - Jessica Bouterwek
- Biomedical Center, Department of Physiological Chemistry, Ludwig-Maximilians-Universität München, München, Germany
| | - Akanksha Roy
- Biomedical Center, Department of Physiological Chemistry, Ludwig-Maximilians-Universität München, München, Germany
| | - Heidemarie Gensler
- Department of Systematic Zoology, Biocenter, Faculty of Biology, Ludwig-Maximilians-Universität München, München, Germany
| | - Martin Heß
- Department of Systematic Zoology, Biocenter, Faculty of Biology, Ludwig-Maximilians-Universität München, München, Germany
| | - Tobias Straub
- Biomedical Center, Bioinformatics Core Unit, Ludwig-Maximilians-Universität München, München, Germany
| | - Ignasi Forne
- Biomedical Center, Protein Analysis Unit, Ludwig-Maximilians-Universität München, München, Germany
| | - Maria L. Spletter
- Biomedical Center, Department of Physiological Chemistry, Ludwig-Maximilians-Universität München, München, Germany
- School of Science and Engineering, Division of Biological and Biomedical Systems, Kansas City, Missouri, United States of America
| |
Collapse
|
3
|
Farkas D, Szikora S, Jijumon AS, Polgár TF, Patai R, Tóth MÁ, Bugyi B, Gajdos T, Bíró P, Novák T, Erdélyi M, Mihály J. Peripheral thickening of the sarcomeres and pointed end elongation of the thin filaments are both promoted by SALS and its formin interaction partners. PLoS Genet 2024; 20:e1011117. [PMID: 38198522 PMCID: PMC10805286 DOI: 10.1371/journal.pgen.1011117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 01/23/2024] [Accepted: 12/27/2023] [Indexed: 01/12/2024] Open
Abstract
During striated muscle development the first periodically repeated units appear in the premyofibrils, consisting of immature sarcomeres that must undergo a substantial growth both in length and width, to reach their final size. Here we report that, beyond its well established role in sarcomere elongation, the Sarcomere length short (SALS) protein is involved in Z-disc formation and peripheral growth of the sarcomeres. Our protein localization data and loss-of-function studies in the Drosophila indirect flight muscle strongly suggest that radial growth of the sarcomeres is initiated at the Z-disc. As to thin filament elongation, we used a powerful nanoscopy approach to reveal that SALS is subject to a major conformational change during sarcomere development, which might be critical to stop pointed end elongation in the adult muscles. In addition, we demonstrate that the roles of SALS in sarcomere elongation and radial growth are both dependent on formin type of actin assembly factors. Unexpectedly, when SALS is present in excess amounts, it promotes the formation of actin aggregates highly resembling the ones described in nemaline myopathy patients. Collectively, these findings helped to shed light on the complex mechanisms of SALS during the coordinated elongation and thickening of the sarcomeres, and resulted in the discovery of a potential nemaline myopathy model, suitable for the identification of genetic and small molecule inhibitors.
Collapse
Affiliation(s)
- Dávid Farkas
- Institute of Genetics, Biological Research Centre, Szeged, Hungary
| | - Szilárd Szikora
- Institute of Genetics, Biological Research Centre, Szeged, Hungary
| | - A. S. Jijumon
- Institute of Genetics, Biological Research Centre, Szeged, Hungary
| | - Tamás F. Polgár
- Institute of Biophysics, Biological Research Centre, Szeged, Hungary
- Doctoral School of Theoretical Medicine, University of Szeged, Szeged, Hungary
| | - Roland Patai
- Institute of Biophysics, Biological Research Centre, Szeged, Hungary
| | - Mónika Ágnes Tóth
- University of Pécs, Medical School, Department of Biophysics, Pécs, Hungary
| | - Beáta Bugyi
- University of Pécs, Medical School, Department of Biophysics, Pécs, Hungary
| | - Tamás Gajdos
- Department of Optics and Quantum Electronics, University of Szeged, Szeged, Hungary
| | - Péter Bíró
- Department of Optics and Quantum Electronics, University of Szeged, Szeged, Hungary
| | - Tibor Novák
- Department of Optics and Quantum Electronics, University of Szeged, Szeged, Hungary
| | - Miklós Erdélyi
- Department of Optics and Quantum Electronics, University of Szeged, Szeged, Hungary
| | - József Mihály
- Institute of Genetics, Biological Research Centre, Szeged, Hungary
- University of Szeged, Department of Genetics, Szeged, Hungary
| |
Collapse
|
4
|
González Morales N, Marescal O, Szikora S, Katzemich A, Correia-Mesquita T, Bíró P, Erdelyi M, Mihály J, Schöck F. The oxoglutarate dehydrogenase complex is involved in myofibril growth and Z-disc assembly in Drosophila. J Cell Sci 2023; 136:jcs260717. [PMID: 37272588 PMCID: PMC10323237 DOI: 10.1242/jcs.260717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 05/24/2023] [Indexed: 06/06/2023] Open
Abstract
Myofibrils are long intracellular cables specific to muscles, composed mainly of actin and myosin filaments. The actin and myosin filaments are organized into repeated units called sarcomeres, which form the myofibrils. Muscle contraction is achieved by the simultaneous shortening of sarcomeres, which requires all sarcomeres to be the same size. Muscles have a variety of ways to ensure sarcomere homogeneity. We have previously shown that the controlled oligomerization of Zasp proteins sets the diameter of the myofibril. Here, we looked for Zasp-binding proteins at the Z-disc to identify additional proteins coordinating myofibril growth and assembly. We found that the E1 subunit of the oxoglutarate dehydrogenase complex localizes to both the Z-disc and the mitochondria, and is recruited to the Z-disc by Zasp52. The three subunits of the oxoglutarate dehydrogenase complex are required for myofibril formation. Using super-resolution microscopy, we revealed the overall organization of the complex at the Z-disc. Metabolomics identified an amino acid imbalance affecting protein synthesis as a possible cause of myofibril defects, which is supported by OGDH-dependent localization of ribosomes at the Z-disc.
Collapse
Affiliation(s)
- Nicanor González Morales
- Department of Biology, McGill University, Quebec H3A 1B1, Canada
- Department of Biology, Dalhousie University, Nova Scotia B3H 4R2, Canada
| | - Océane Marescal
- Department of Biology, McGill University, Quebec H3A 1B1, Canada
| | - Szilárd Szikora
- Institute of Genetics, Biological Research Centre, Hungarian Academy of Sciences, Szeged 6726, Hungary
| | - Anja Katzemich
- Department of Biology, McGill University, Quebec H3A 1B1, Canada
| | | | - Péter Bíró
- Department of Optics and Quantum Electronics, University of Szeged, Szeged 6720, Hungary
| | - Miklos Erdelyi
- Department of Optics and Quantum Electronics, University of Szeged, Szeged 6720, Hungary
| | - József Mihály
- Institute of Genetics, Biological Research Centre, Hungarian Academy of Sciences, Szeged 6726, Hungary
- Department of Genetics, University of Szeged, Szeged 6726, Hungary
| | - Frieder Schöck
- Department of Biology, McGill University, Quebec H3A 1B1, Canada
| |
Collapse
|
5
|
Loreau V, Rees R, Chan EH, Taxer W, Gregor K, Mußil B, Pitaval C, Luis NM, Mangeol P, Schnorrer F, Görlich D. A nanobody toolbox to investigate localisation and dynamics of Drosophila titins and other key sarcomeric proteins. eLife 2023; 12:79343. [PMID: 36645120 PMCID: PMC9886281 DOI: 10.7554/elife.79343] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 12/16/2022] [Indexed: 01/17/2023] Open
Abstract
Measuring the positions and dynamics of proteins in intact tissues or whole animals is key to understanding protein function. However, to date, this is challenging, as the accessibility of large antibodies to dense tissues is often limited, and fluorescent proteins inserted close to a domain of interest may affect protein function. These complications apply in particular to muscle sarcomeres, arguably one of the most protein-dense assemblies in nature, which complicates studying sarcomere morphogenesis at molecular resolution. Here, we introduce a toolbox of nanobodies recognising various domains of the two Drosophila titin homologs, Sallimus and Projectin, as well as the key sarcomeric proteins Obscurin, α-Actinin, and Zasp52. We verified the superior labelling qualities of our nanobodies in muscle tissue as compared to antibodies. By applying our toolbox to larval muscles, we found a gigantic Sallimus isoform stretching more than 2 µm to bridge the sarcomeric I-band, while Projectin covers almost the entire myosin filaments in a polar orientation. Transgenic expression of tagged nanobodies confirmed their high affinity-binding without affecting target protein function. Finally, adding a degradation signal to anti-Sallimus nanobodies suggested that it is difficult to fully degrade Sallimus in mature sarcomeres; however, expression of these nanobodies caused developmental lethality. These results may inspire the generation of similar toolboxes for other large protein complexes in Drosophila or mammals.
Collapse
Affiliation(s)
- Vincent Loreau
- Turing Centre for Living Systems, Aix-Marseille University, CNRS, IDBMMarseilleFrance
| | - Renate Rees
- Department of Cellular Logistics, Max Planck Institute for Multidisciplinary SciencesGöttingenGermany
| | - Eunice HoYee Chan
- Turing Centre for Living Systems, Aix-Marseille University, CNRS, IDBMMarseilleFrance
| | - Waltraud Taxer
- Department of Cellular Logistics, Max Planck Institute for Multidisciplinary SciencesGöttingenGermany
| | - Kathrin Gregor
- Department of Cellular Logistics, Max Planck Institute for Multidisciplinary SciencesGöttingenGermany
| | - Bianka Mußil
- Department of Cellular Logistics, Max Planck Institute for Multidisciplinary SciencesGöttingenGermany
| | - Christophe Pitaval
- Turing Centre for Living Systems, Aix-Marseille University, CNRS, IDBMMarseilleFrance
| | - Nuno Miguel Luis
- Turing Centre for Living Systems, Aix-Marseille University, CNRS, IDBMMarseilleFrance
| | - Pierre Mangeol
- Turing Centre for Living Systems, Aix-Marseille University, CNRS, IDBMMarseilleFrance
| | - Frank Schnorrer
- Turing Centre for Living Systems, Aix-Marseille University, CNRS, IDBMMarseilleFrance
| | - Dirk Görlich
- Department of Cellular Logistics, Max Planck Institute for Multidisciplinary SciencesGöttingenGermany
| |
Collapse
|
6
|
Schöck F, González-Morales N. The insect perspective on Z-disc structure and biology. J Cell Sci 2022; 135:277280. [PMID: 36226637 DOI: 10.1242/jcs.260179] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Myofibrils are the intracellular structures formed by actin and myosin filaments. They are paracrystalline contractile cables with unusually well-defined dimensions. The sliding of actin past myosin filaments powers contractions, and the entire system is held in place by a structure called the Z-disc, which anchors the actin filaments. Myosin filaments, in turn, are anchored to another structure called the M-line. Most of the complex architecture of myofibrils can be reduced to studying the Z-disc, and recently, important advances regarding the arrangement and function of Z-discs in insects have been published. On a very small scale, we have detailed protein structure information. At the medium scale, we have cryo-electron microscopy maps, super-resolution microscopy and protein-protein interaction networks, while at the functional scale, phenotypic data are available from precise genetic manipulations. All these data aim to answer how the Z-disc works and how it is assembled. Here, we summarize recent data from insects and explore how it fits into our view of the Z-disc, myofibrils and, ultimately, muscles.
Collapse
Affiliation(s)
- Frieder Schöck
- Department of Biology, McGill University, Montreal, Quebec, H3A 1B1, Canada
| | | |
Collapse
|
7
|
Mechanobiology of muscle and myofibril morphogenesis. Cells Dev 2021; 168:203760. [PMID: 34863916 DOI: 10.1016/j.cdev.2021.203760] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 11/22/2021] [Accepted: 11/22/2021] [Indexed: 01/05/2023]
Abstract
Muscles generate forces for animal locomotion. The contractile apparatus of muscles is the sarcomere, a highly regular array of large actin and myosin filaments linked by gigantic titin springs. During muscle development many sarcomeres assemble in series into long periodic myofibrils that mechanically connect the attached skeleton elements. Thus, ATP-driven myosin forces can power movement of the skeleton. Here we review muscle and myofibril morphogenesis, with a particular focus on their mechanobiology. We describe recent progress on the molecular structure of sarcomeres and their mechanical connections to the skeleton. We discuss current models predicting how tension coordinates the assembly of key sarcomeric components to periodic myofibrils that then further mature during development. This requires transcriptional feedback mechanisms that may help to coordinate myofibril assembly and maturation states with the transcriptional program. To fuel the varying energy demands of muscles we also discuss the close mechanical interactions of myofibrils with mitochondria and nuclei to optimally support powerful or enduring muscle fibers.
Collapse
|
8
|
Sirot L, Bansal R, Esquivel CJ, Arteaga-Vázquez M, Herrera-Cruz M, Pavinato VAC, Abraham S, Medina-Jiménez K, Reyes-Hernández M, Dorantes-Acosta A, Pérez-Staples D. Post-mating gene expression of Mexican fruit fly females: disentangling the effects of the male accessory glands. INSECT MOLECULAR BIOLOGY 2021; 30:480-496. [PMID: 34028117 DOI: 10.1111/imb.12719] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 04/26/2021] [Accepted: 05/16/2021] [Indexed: 06/12/2023]
Abstract
Mating has profound physiological and behavioural consequences for female insects. During copulation, female insects typically receive not only sperm, but a complex ejaculate containing hundreds of proteins and other molecules from male reproductive tissues, primarily the reproductive accessory glands. The post-mating phenotypes affected by male accessory gland (MAG) proteins include egg development, attraction to oviposition hosts, mating, attractiveness, sperm storage, feeding and lifespan. In the Mexican fruit fly, Anastrepha ludens, mating increases egg production and the latency to remating. However, previous studies have not found a clear relationship between injection of MAG products and oviposition or remating inhibition in this species. We used RNA-seq to study gene expression in mated, unmated and MAG-injected females to understand the potential mating- and MAG-regulated genes and pathways in A. ludens. Both mating and MAG-injection regulated transcripts and pathways related to egg development. Other transcripts regulated by mating included those with orthologs predicted to be involved in immune response, musculature and chemosensory perception, whereas those regulated by MAG-injection were predicted to be involved in translational control, sugar regulation, diet detoxification and lifespan determination. These results suggest new phenotypes that may be influenced by seminal fluid molecules in A. ludens. Understanding these influences is critical for developing novel tools to manage A. ludens.
Collapse
Affiliation(s)
- L Sirot
- The College of Wooster, Wooster, OH, USA
| | - R Bansal
- USDA-ARS, San Joaquin Valley Agricultural Sciences Center, Parlier, CA, USA
| | - C J Esquivel
- Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, OH, USA
| | - M Arteaga-Vázquez
- INBIOTECA, Universidad Veracruzana, Av de las Culturas Veracruzanas 101, Col. Emiliano Zapata, Xalapa, Veracruz, Mexico
| | - M Herrera-Cruz
- CONACyT- Facultad de Medicina y Cirugía, Universidad Autónoma "Benito Juárez" de Oaxaca, Oaxaca, Mexico
| | - V A C Pavinato
- Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, OH, USA
| | - S Abraham
- Laboratorio de Investigaciones Ecoetológicas de Moscas de la Fruta y sus Enemigos Naturales (LIEMEN), PROIMI, Tucumán, Argentina, CONICET, Argentina
| | - K Medina-Jiménez
- INBIOTECA, Universidad Veracruzana, Av de las Culturas Veracruzanas 101, Col. Emiliano Zapata, Xalapa, Veracruz, Mexico
| | - M Reyes-Hernández
- INBIOTECA, Universidad Veracruzana, Av de las Culturas Veracruzanas 101, Col. Emiliano Zapata, Xalapa, Veracruz, Mexico
| | - A Dorantes-Acosta
- INBIOTECA, Universidad Veracruzana, Av de las Culturas Veracruzanas 101, Col. Emiliano Zapata, Xalapa, Veracruz, Mexico
| | - D Pérez-Staples
- INBIOTECA, Universidad Veracruzana, Av de las Culturas Veracruzanas 101, Col. Emiliano Zapata, Xalapa, Veracruz, Mexico
| |
Collapse
|
9
|
Kaya-Çopur A, Marchiano F, Hein MY, Alpern D, Russeil J, Luis NM, Mann M, Deplancke B, Habermann BH, Schnorrer F. The Hippo pathway controls myofibril assembly and muscle fiber growth by regulating sarcomeric gene expression. eLife 2021; 10:e63726. [PMID: 33404503 PMCID: PMC7815313 DOI: 10.7554/elife.63726] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 01/05/2021] [Indexed: 12/30/2022] Open
Abstract
Skeletal muscles are composed of gigantic cells called muscle fibers, packed with force-producing myofibrils. During development, the size of individual muscle fibers must dramatically enlarge to match with skeletal growth. How muscle growth is coordinated with growth of the contractile apparatus is not understood. Here, we use the large Drosophila flight muscles to mechanistically decipher how muscle fiber growth is controlled. We find that regulated activity of core members of the Hippo pathway is required to support flight muscle growth. Interestingly, we identify Dlg5 and Slmap as regulators of the STRIPAK phosphatase, which negatively regulates Hippo to enable post-mitotic muscle growth. Mechanistically, we show that the Hippo pathway controls timing and levels of sarcomeric gene expression during development and thus regulates the key components that physically mediate muscle growth. Since Dlg5, STRIPAK and the Hippo pathway are conserved a similar mechanism may contribute to muscle or cardiomyocyte growth in humans.
Collapse
Affiliation(s)
- Aynur Kaya-Çopur
- Aix Marseille University, CNRS, IBDM, Turing Center for Living SystemsMarseilleFrance
- Max Planck Institute of BiochemistryMartinsriedGermany
| | - Fabio Marchiano
- Aix Marseille University, CNRS, IBDM, Turing Center for Living SystemsMarseilleFrance
| | - Marco Y Hein
- Max Planck Institute of BiochemistryMartinsriedGermany
| | - Daniel Alpern
- Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland
| | - Julie Russeil
- Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland
| | - Nuno Miguel Luis
- Aix Marseille University, CNRS, IBDM, Turing Center for Living SystemsMarseilleFrance
| | - Matthias Mann
- Max Planck Institute of BiochemistryMartinsriedGermany
| | - Bart Deplancke
- Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland
| | - Bianca H Habermann
- Aix Marseille University, CNRS, IBDM, Turing Center for Living SystemsMarseilleFrance
| | - Frank Schnorrer
- Aix Marseille University, CNRS, IBDM, Turing Center for Living SystemsMarseilleFrance
- Max Planck Institute of BiochemistryMartinsriedGermany
| |
Collapse
|
10
|
The actin polymerization factor Diaphanous and the actin severing protein Flightless I collaborate to regulate sarcomere size. Dev Biol 2021; 469:12-25. [PMID: 32980309 DOI: 10.1016/j.ydbio.2020.09.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 09/15/2020] [Accepted: 09/19/2020] [Indexed: 12/22/2022]
Abstract
The sarcomere is the basic contractile unit of muscle, composed of repeated sets of actin thin filaments and myosin thick filaments. During muscle development, sarcomeres grow in size to accommodate the growth and function of muscle fibers. Failure in regulating sarcomere size results in muscle dysfunction; yet, it is unclear how the size and uniformity of sarcomeres are controlled. Here we show that the formin Diaphanous is critical for the growth and maintenance of sarcomere size: Dia sets sarcomere length and width through regulation of the number and length of the actin thin filaments in the Drosophila flight muscle. To regulate thin filament length and sarcomere size, Dia interacts with the Gelsolin superfamily member Flightless I (FliI). We suggest that these actin regulators, by controlling actin dynamics and turnover, generate uniformly sized sarcomeres tuned for the muscle contractions required for flight.
Collapse
|
11
|
Dhanyasi N, VijayRaghavan K, Shilo BZ, Schejter ED. Microtubules provide guidance cues for myofibril and sarcomere assembly and growth. Dev Dyn 2020; 250:60-73. [PMID: 32725855 DOI: 10.1002/dvdy.227] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 04/09/2020] [Accepted: 06/20/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Muscle myofibrils and sarcomeres present exceptional examples of highly ordered cytoskeletal filament arrays, whose distinct spatial organization is an essential aspect of muscle cell functionality. We utilized ultra-structural analysis to investigate the assembly of myofibrils and sarcomeres within developing myotubes of the indirect flight musculature of Drosophila. RESULTS A temporal sequence composed of three major processes was identified: subdivision of the unorganized cytoplasm of nascent, multi-nucleated myotubes into distinct organelle-rich and filament-rich domains; initial organization of the filament-rich domains into myofibrils harboring nascent sarcomeric units; and finally, maturation of the highly-ordered pattern of sarcomeric thick (myosin-based) and thin (microfilament-based) filament arrays in parallel to myofibril radial growth. Significantly, organized microtubule arrays were present throughout these stages and exhibited dynamic changes in their spatial patterns consistent with instructive roles. Genetic manipulations confirm these notions, and imply specific and critical guidance activities of the microtubule-based cytoskeleton, as well as structural interdependence between the myosin- and actin-based filament arrays. CONCLUSIONS Our observations highlight a surprisingly significant, behind-the-scenes role for microtubules in establishment of myofibril and sarcomere spatial patterns and size, and provide a detailed account of the interplay between major cytoskeletal elements in generating these essential contractile myogenic units.
Collapse
Affiliation(s)
- Nagaraju Dhanyasi
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel.,National Centre for Biological Sciences, TIFR, Bangalore, India
| | - K VijayRaghavan
- National Centre for Biological Sciences, TIFR, Bangalore, India
| | - Ben-Zion Shilo
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Eyal D Schejter
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
12
|
Poovathumkadavil P, Jagla K. Genetic Control of Muscle Diversification and Homeostasis: Insights from Drosophila. Cells 2020; 9:cells9061543. [PMID: 32630420 PMCID: PMC7349286 DOI: 10.3390/cells9061543] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 06/19/2020] [Accepted: 06/23/2020] [Indexed: 12/13/2022] Open
Abstract
In the fruit fly, Drosophila melanogaster, the larval somatic muscles or the adult thoracic flight and leg muscles are the major voluntary locomotory organs. They share several developmental and structural similarities with vertebrate skeletal muscles. To ensure appropriate activity levels for their functions such as hatching in the embryo, crawling in the larva, and jumping and flying in adult flies all muscle components need to be maintained in a functionally stable or homeostatic state despite constant strain. This requires that the muscles develop in a coordinated manner with appropriate connections to other cell types they communicate with. Various signaling pathways as well as extrinsic and intrinsic factors are known to play a role during Drosophila muscle development, diversification, and homeostasis. In this review, we discuss genetic control mechanisms of muscle contraction, development, and homeostasis with particular emphasis on the contractile unit of the muscle, the sarcomere.
Collapse
|
13
|
Sherman W, Grosberg A. An adapted particle swarm optimization algorithm as a model for exploring premyofibril formation. AIP ADVANCES 2020; 10:045126. [PMID: 32341885 PMCID: PMC7166122 DOI: 10.1063/1.5145010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 03/28/2020] [Indexed: 06/11/2023]
Abstract
While the fundamental steps outlining myofibril formation share a similar scheme for different cell and species types, various granular details involved in the development of a functional contractile muscle are not well understood. Many studies of myofibrillogenesis focus on the protein interactions that are involved in myofibril maturation with the assumption that there is a fully formed premyofibril at the start of the process. However, there is little known regarding how the premyofibril is initially constructed. Fortunately, the protein α-actinin, which has been consistently identified throughout the maturation process, is found in premyofibrils as punctate aggregates known as z-bodies. We propose a theoretical model based on the particle swarm optimization algorithm that can explore how these α-actinin clusters form into the patterns observed experimentally. Our algorithm can produce different pattern configurations by manipulating specific parameters that can be related to α-actinin mobility and binding affinity. These patterns, which vary experimentally according to species and muscle cell type, speak to the versatility of α-actinin and demonstrate how its behavior may be altered through interactions with various regulatory, signaling, and metabolic proteins. The results of our simulations invite speculation that premyofibrils can be influenced toward developing different patterns by altering the behavior of individual α-actinin molecules, which may be linked to key differences present in different cell types.
Collapse
|
14
|
Nikonova E, Kao SY, Spletter ML. Contributions of alternative splicing to muscle type development and function. Semin Cell Dev Biol 2020; 104:65-80. [PMID: 32070639 DOI: 10.1016/j.semcdb.2020.02.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/05/2020] [Accepted: 02/07/2020] [Indexed: 12/30/2022]
Abstract
Animals possess a wide variety of muscle types that support different kinds of movements. Different muscles have distinct locations, morphologies and contractile properties, raising the question of how muscle diversity is generated during development. Normal aging processes and muscle disorders differentially affect particular muscle types, thus understanding how muscles normally develop and are maintained provides insight into alterations in disease and senescence. As muscle structure and basic developmental mechanisms are highly conserved, many important insights into disease mechanisms in humans as well as into basic principles of muscle development have come from model organisms such as Drosophila, zebrafish and mouse. While transcriptional regulation has been characterized to play an important role in myogenesis, there is a growing recognition of the contributions of alternative splicing to myogenesis and the refinement of muscle function. Here we review our current understanding of muscle type specific alternative splicing, using examples of isoforms with distinct functions from both vertebrates and Drosophila. Future exploration of the vast potential of alternative splicing to fine-tune muscle development and function will likely uncover novel mechanisms of isoform-specific regulation and a more holistic understanding of muscle development, disease and aging.
Collapse
Affiliation(s)
- Elena Nikonova
- Biomedical Center, Department of Physiological Chemistry, Ludwig-Maximilians-Universität München, Großhaderner Str. 9, 82152 Martinsried-Planegg, Germany
| | - Shao-Yen Kao
- Biomedical Center, Department of Physiological Chemistry, Ludwig-Maximilians-Universität München, Großhaderner Str. 9, 82152 Martinsried-Planegg, Germany
| | - Maria L Spletter
- Biomedical Center, Department of Physiological Chemistry, Ludwig-Maximilians-Universität München, Großhaderner Str. 9, 82152 Martinsried-Planegg, Germany; Center for Integrated Protein Science Munich (CIPSM) at the Department of Chemistry, Ludwig-Maximilians-Universität München, Munich, Germany.
| |
Collapse
|
15
|
González-Morales N, Xiao YS, Schilling MA, Marescal O, Liao KA, Schöck F. Myofibril diameter is set by a finely tuned mechanism of protein oligomerization in Drosophila. eLife 2019; 8:50496. [PMID: 31746737 PMCID: PMC6910826 DOI: 10.7554/elife.50496] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 11/18/2019] [Indexed: 11/13/2022] Open
Abstract
Myofibrils are huge cytoskeletal assemblies embedded in the cytosol of muscle cells. They consist of arrays of sarcomeres, the smallest contractile unit of muscles. Within a muscle type, myofibril diameter is highly invariant and contributes to its physiological properties, yet little is known about the underlying mechanisms setting myofibril diameter. Here we show that the PDZ and LIM domain protein Zasp, a structural component of Z-discs, mediates Z-disc and thereby myofibril growth through protein oligomerization. Oligomerization is induced by an interaction of its ZM domain with LIM domains. Oligomerization is terminated upon upregulation of shorter Zasp isoforms which lack LIM domains at later developmental stages. The balance between these two isoforms, which we call growing and blocking isoforms sets the stereotyped diameter of myofibrils. If blocking isoforms dominate, myofibrils become smaller. If growing isoforms dominate, myofibrils and Z-discs enlarge, eventually resulting in large pathological aggregates that disrupt muscle function.
Collapse
Affiliation(s)
| | - Yu Shu Xiao
- Department of Biology, McGill University, Montreal, Canada
| | | | | | - Kuo An Liao
- Department of Biology, McGill University, Montreal, Canada
| | - Frieder Schöck
- Department of Biology, McGill University, Montreal, Canada
| |
Collapse
|
16
|
Kaya-Çopur A, Schnorrer F. RNA Interference Screening for Genes Regulating Drosophila Muscle Morphogenesis. Methods Mol Biol 2019; 1889:331-348. [PMID: 30367424 DOI: 10.1007/978-1-4939-8897-6_20] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
RNA interference (RNAi) is the method of choice to systematically test for gene function in an intact organism. The model organism Drosophila has the advantage that RNAi is cell autonomous, meaning it does not spread from one cell to the next. Hence, RNAi can be performed in a tissue-specific manner by expressing short or long inverted repeat constructs (hairpins) designed to target mRNAs from one specific target gene. This achieves tissue-specific knock-down of a target gene of choice. Here, we detail the methodology to test gene function in Drosophila muscle tissue by expressing hairpins in a muscle-specific manner using the GAL4-UAS system. We further discuss the systematic RNAi resource collections available which also permit large scale screens in a muscle-specific manner. The full power of such screens is revealed by combination of high-throughput assays followed by detailed morphological assays. Together, this chapter should be a practical guide to enable the reader to either test a few candidate genes, or large gene sets for particular functions in Drosophila muscle tissue and provide first insights into the biological process the gene might be important for in muscle.
Collapse
|
17
|
Phillips MA, Rutledge GA, Kezos JN, Greenspan ZS, Talbott A, Matty S, Arain H, Mueller LD, Rose MR, Shahrestani P. Effects of evolutionary history on genome wide and phenotypic convergence in Drosophila populations. BMC Genomics 2018; 19:743. [PMID: 30305018 PMCID: PMC6180417 DOI: 10.1186/s12864-018-5118-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 09/26/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Studies combining experimental evolution and next-generation sequencing have found that adaptation in sexually reproducing populations is primarily fueled by standing genetic variation. Consequently, the response to selection is rapid and highly repeatable across replicate populations. Some studies suggest that the response to selection is highly repeatable at both the phenotypic and genomic levels, and that evolutionary history has little impact. Other studies suggest that even when the response to selection is repeatable phenotypically, evolutionary history can have significant impacts at the genomic level. Here we test two hypotheses that may explain this discrepancy. Hypothesis 1: Past intense selection reduces evolutionary repeatability at the genomic and phenotypic levels when conditions change. Hypothesis 2: Previous intense selection does not reduce evolutionary repeatability, but other evolutionary mechanisms may. We test these hypotheses using D. melanogaster populations that were subjected to 260 generations of intense selection for desiccation resistance and have since been under relaxed selection for the past 230 generations. RESULTS We find that, with the exception of longevity and to a lesser extent fecundity, 230 generations of relaxed selection has erased the extreme phenotypic differentiation previously found. We also find no signs of genetic fixation, and only limited evidence of genetic differentiation between previously desiccation resistance selected populations and their controls. CONCLUSION Our findings suggest that evolution in our system is highly repeatable even when populations have been previously subjected to bouts of extreme selection. We therefore conclude that evolutionary repeatability can overcome past bouts of extreme selection in Drosophila experimental evolution, provided experiments are sufficiently long and populations are not inbred.
Collapse
Affiliation(s)
- Mark A Phillips
- Department of Ecology and Evolutionary Biology, University of California Irvine, Irvine, USA.
| | - Grant A Rutledge
- Department of Ecology and Evolutionary Biology, University of California Irvine, Irvine, USA
| | - James N Kezos
- Department of Development, Aging, and Regeneration, Sanford Burnham Prebys Medical Discovery Institute, San Diego, USA
| | - Zachary S Greenspan
- Department of Ecology and Evolutionary Biology, University of California Irvine, Irvine, USA
| | - Andrew Talbott
- Department of Biological Science, California State University Fullerton, 800 N State College Blvd, Fullerton, CA, 92831, USA
| | - Sara Matty
- Department of Biological Science, California State University Fullerton, 800 N State College Blvd, Fullerton, CA, 92831, USA
| | - Hamid Arain
- Department of Biological Science, California State University Fullerton, 800 N State College Blvd, Fullerton, CA, 92831, USA
| | - Laurence D Mueller
- Department of Ecology and Evolutionary Biology, University of California Irvine, Irvine, USA
| | - Michael R Rose
- Department of Ecology and Evolutionary Biology, University of California Irvine, Irvine, USA
| | - Parvin Shahrestani
- Department of Biological Science, California State University Fullerton, 800 N State College Blvd, Fullerton, CA, 92831, USA
| |
Collapse
|
18
|
Palandri A, Martin E, Russi M, Rera M, Tricoire H, Monnier V. Identification of cardioprotective drugs by medium-scale in vivo pharmacological screening on a Drosophila cardiac model of Friedreich's ataxia. Dis Model Mech 2018; 11:dmm033811. [PMID: 29898895 PMCID: PMC6078405 DOI: 10.1242/dmm.033811] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 06/06/2018] [Indexed: 12/30/2022] Open
Abstract
Friedreich's ataxia (FA) is caused by reduced levels of frataxin, a highly conserved mitochondrial protein. There is currently no effective treatment for this disease, which is characterized by progressive neurodegeneration and cardiomyopathy, the latter being the most common cause of death in patients. We previously developed a Drosophila melanogaster cardiac model of FA, in which the fly frataxin is inactivated specifically in the heart, leading to heart dilatation and impaired systolic function. Methylene Blue (MB) was highly efficient to prevent these cardiac dysfunctions. Here, we used this model to screen in vivo the Prestwick Chemical Library, comprising 1280 compounds. Eleven drugs significantly reduced the cardiac dilatation, some of which may possibly lead to therapeutic applications in the future. The one with the strongest protective effects was paclitaxel, a microtubule-stabilizing drug. In parallel, we characterized the histological defects induced by frataxin deficiency in cardiomyocytes and observed strong sarcomere alterations with loss of striation of actin fibers, along with full disruption of the microtubule network. Paclitaxel and MB both improved these structural defects. Therefore, we propose that frataxin inactivation induces cardiac dysfunction through impaired sarcomere assembly or renewal due to microtubule destabilization, without excluding additional mechanisms. This study is the first drug screening of this extent performed in vivo on a Drosophila model of cardiac disease. Thus, it also brings the proof of concept that cardiac functional imaging in adult Drosophila flies is usable for medium-scale in vivo pharmacological screening, with potent identification of cardioprotective drugs in various contexts of cardiac diseases.
Collapse
Affiliation(s)
- Amandine Palandri
- Université Paris Diderot, Sorbonne Paris Cité, Unité de Biologie Fonctionnelle et Adaptative (BFA) UMR8251 CNRS, 75205, Paris Cedex 13, France
| | - Elodie Martin
- Université Paris Diderot, Sorbonne Paris Cité, Unité de Biologie Fonctionnelle et Adaptative (BFA) UMR8251 CNRS, 75205, Paris Cedex 13, France
| | - Maria Russi
- Université Paris Diderot, Sorbonne Paris Cité, Unité de Biologie Fonctionnelle et Adaptative (BFA) UMR8251 CNRS, 75205, Paris Cedex 13, France
| | - Michael Rera
- Université Paris Diderot, Sorbonne Paris Cité, Unité de Biologie Fonctionnelle et Adaptative (BFA) UMR8251 CNRS, 75205, Paris Cedex 13, France
| | - Hervé Tricoire
- Université Paris Diderot, Sorbonne Paris Cité, Unité de Biologie Fonctionnelle et Adaptative (BFA) UMR8251 CNRS, 75205, Paris Cedex 13, France
| | - Véronique Monnier
- Université Paris Diderot, Sorbonne Paris Cité, Unité de Biologie Fonctionnelle et Adaptative (BFA) UMR8251 CNRS, 75205, Paris Cedex 13, France
| |
Collapse
|
19
|
Spletter ML, Barz C, Yeroslaviz A, Zhang X, Lemke SB, Bonnard A, Brunner E, Cardone G, Basler K, Habermann BH, Schnorrer F. A transcriptomics resource reveals a transcriptional transition during ordered sarcomere morphogenesis in flight muscle. eLife 2018; 7:34058. [PMID: 29846170 PMCID: PMC6005683 DOI: 10.7554/elife.34058] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 05/26/2018] [Indexed: 01/07/2023] Open
Abstract
Muscles organise pseudo-crystalline arrays of actin, myosin and titin filaments to build force-producing sarcomeres. To study sarcomerogenesis, we have generated a transcriptomics resource of developing Drosophila flight muscles and identified 40 distinct expression profile clusters. Strikingly, most sarcomeric components group in two clusters, which are strongly induced after all myofibrils have been assembled, indicating a transcriptional transition during myofibrillogenesis. Following myofibril assembly, many short sarcomeres are added to each myofibril. Subsequently, all sarcomeres mature, reaching 1.5 µm diameter and 3.2 µm length and acquiring stretch-sensitivity. The efficient induction of the transcriptional transition during myofibrillogenesis, including the transcriptional boost of sarcomeric components, requires in part the transcriptional regulator Spalt major. As a consequence of Spalt knock-down, sarcomere maturation is defective and fibers fail to gain stretch-sensitivity. Together, this defines an ordered sarcomere morphogenesis process under precise transcriptional control - a concept that may also apply to vertebrate muscle or heart development.
Collapse
Affiliation(s)
- Maria L Spletter
- Muscle Dynamics GroupMax Planck Institute of BiochemistryMartinsriedGermany
- Biomedical Center, Physiological ChemistryLudwig-Maximilians-Universität MünchenMartinsriedGermany
| | - Christiane Barz
- Muscle Dynamics GroupMax Planck Institute of BiochemistryMartinsriedGermany
| | - Assa Yeroslaviz
- Computational Biology GroupMax Planck Institute of BiochemistryMartinsriedGermany
| | - Xu Zhang
- Muscle Dynamics GroupMax Planck Institute of BiochemistryMartinsriedGermany
- Aix Marseille Univ, CNRS, IBDMMarseilleFrance
- School of Life Science and EngineeringFoshan UniversityGuangdongChina
| | - Sandra B Lemke
- Muscle Dynamics GroupMax Planck Institute of BiochemistryMartinsriedGermany
| | - Adrien Bonnard
- Aix Marseille Univ, CNRS, IBDMMarseilleFrance
- Aix Marseille Univ, INSERM, TAGCMarseilleFrance
| | - Erich Brunner
- Institute of Molecular Life SciencesUniversity of ZurichZurichSwitzerland
| | - Giovanni Cardone
- Imaging FacilityMax Planck Institute of BiochemistryMartinsriedGermany
| | - Konrad Basler
- Institute of Molecular Life SciencesUniversity of ZurichZurichSwitzerland
| | - Bianca H Habermann
- Computational Biology GroupMax Planck Institute of BiochemistryMartinsriedGermany
- Aix Marseille Univ, CNRS, IBDMMarseilleFrance
- Aix Marseille Univ, INSERM, TAGCMarseilleFrance
| | - Frank Schnorrer
- Muscle Dynamics GroupMax Planck Institute of BiochemistryMartinsriedGermany
- Aix Marseille Univ, CNRS, IBDMMarseilleFrance
| |
Collapse
|
20
|
Loison O, Weitkunat M, Kaya-Çopur A, Nascimento Alves C, Matzat T, Spletter ML, Luschnig S, Brasselet S, Lenne PF, Schnorrer F. Polarization-resolved microscopy reveals a muscle myosin motor-independent mechanism of molecular actin ordering during sarcomere maturation. PLoS Biol 2018; 16:e2004718. [PMID: 29702642 PMCID: PMC5955565 DOI: 10.1371/journal.pbio.2004718] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 05/16/2018] [Accepted: 04/09/2018] [Indexed: 11/18/2022] Open
Abstract
Sarcomeres are stereotyped force-producing mini-machines of striated muscles. Each sarcomere contains a pseudocrystalline order of bipolar actin and myosin filaments, which are linked by titin filaments. During muscle development, these three filament types need to assemble into long periodic chains of sarcomeres called myofibrils. Initially, myofibrils contain immature sarcomeres, which gradually mature into their pseudocrystalline order. Despite the general importance, our understanding of myofibril assembly and sarcomere maturation in vivo is limited, in large part because determining the molecular order of protein components during muscle development remains challenging. Here, we applied polarization-resolved microscopy to determine the molecular order of actin during myofibrillogenesis in vivo. This method revealed that, concomitantly with mechanical tension buildup in the myotube, molecular actin order increases, preceding the formation of immature sarcomeres. Mechanistically, both muscle and nonmuscle myosin contribute to this actin order gain during early stages of myofibril assembly. Actin order continues to increase while myofibrils and sarcomeres mature. Muscle myosin motor activity is required for the regular and coordinated assembly of long myofibrils but not for the high actin order buildup during sarcomere maturation. This suggests that, in muscle, other actin-binding proteins are sufficient to locally bundle or cross-link actin into highly regular arrays.
Collapse
Affiliation(s)
| | - Manuela Weitkunat
- Max Planck Institute of Biochemistry, Muscle Dynamics Group, Martinsried, Germany
| | - Aynur Kaya-Çopur
- Max Planck Institute of Biochemistry, Muscle Dynamics Group, Martinsried, Germany
| | | | - Till Matzat
- Institute of Neurobiology and Cells-in-Motion Cluster of Excellence (EXC 1003 – CiM), University of Münster, Münster, Germany
- Department of Zoology, University of British Columbia, Vancouver, Canada
| | - Maria L. Spletter
- Max Planck Institute of Biochemistry, Muscle Dynamics Group, Martinsried, Germany
| | - Stefan Luschnig
- Institute of Neurobiology and Cells-in-Motion Cluster of Excellence (EXC 1003 – CiM), University of Münster, Münster, Germany
| | - Sophie Brasselet
- Aix Marseille Université, CNRS, Centrale Marseille, Institut Fresnel, Marseille, France
| | | | - Frank Schnorrer
- Aix Marseille Université, CNRS, IBDM, Marseille, France
- Max Planck Institute of Biochemistry, Muscle Dynamics Group, Martinsried, Germany
| |
Collapse
|
21
|
González-Morales N, Holenka TK, Schöck F. Filamin actin-binding and titin-binding fulfill distinct functions in Z-disc cohesion. PLoS Genet 2017; 13:e1006880. [PMID: 28732005 PMCID: PMC5521747 DOI: 10.1371/journal.pgen.1006880] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 06/21/2017] [Indexed: 01/03/2023] Open
Abstract
Many proteins contribute to the contractile properties of muscles, most notably myosin thick filaments, which are anchored at the M-line, and actin thin filaments, which are anchored at the Z-discs that border each sarcomere. In humans, mutations in the actin-binding protein Filamin-C result in myopathies, but the underlying molecular function is not well understood. Here we show using Drosophila indirect flight muscle that the filamin ortholog Cheerio in conjunction with the giant elastic protein titin plays a crucial role in keeping thin filaments stably anchored at the Z-disc. We identify the filamin domains required for interaction with the titin ortholog Sallimus, and we demonstrate a genetic interaction of filamin with titin and actin. Filamin mutants disrupting the actin- or the titin-binding domain display distinct phenotypes, with Z-discs breaking up in parallel or perpendicularly to the myofibril, respectively. Thus, Z-discs require filamin to withstand the strong contractile forces acting on them. The Z-disc is a macromolecular complex required to attach and stabilize actin thin filaments in the sarcomere, the smallest contractile unit of striated muscles. Mutations in Z-disc-associated proteins typically result in muscle disorders. Dimeric filamin organizes actin filaments, localizes at the Z-disc in vertebrates and causes muscle disorders in humans when mutated. Despite its clinical relevance, the molecular function of filamin in the sarcomere is not well understood. Here we use Drosophila muscles and an array of filamin mutations to address the molecular and cell biological function of filamin in the sarcomere. We show that filamin mainly serves as a Z-disc cohesive element, binding both thin filaments and titin. This configuration enables filamin to act as a bridge between thin filaments and the elastic scaffold protein titin from the adjacent sarcomere, maintaining sarcomere stability during muscle contraction.
Collapse
Affiliation(s)
| | | | - Frieder Schöck
- Department of Biology, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
22
|
Xiao YS, Schöck F, González-Morales N. Rapid IFM Dissection for Visualizing Fluorescently Tagged Sarcomeric Proteins. Bio Protoc 2017; 7:e2606. [PMID: 29423427 DOI: 10.21769/bioprotoc.2606] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Sarcomeres, the smallest contractile unit of muscles, are arguably the most impressive actomyosin structure. Yet a complete understanding of sarcomere formation and maintenance is missing. The Drosophila indirect flight muscle (IFM) has proven to be a very valuable model to study sarcomeres. Here, we present a protocol for the rapid dissection of IFM and analysis of sarcomeres using fluorescently tagged proteins.
Collapse
Affiliation(s)
- Yu Shu Xiao
- Department of Biology, McGill University, Montreal, Quebec, Canada
| | - Frieder Schöck
- Department of Biology, McGill University, Montreal, Quebec, Canada
| | | |
Collapse
|
23
|
Abstract
In this review we discuss the history and the current state of ideas related to the mechanism of size regulation of the thick (myosin) and thin (actin) filaments in vertebrate striated muscles. Various hypotheses have been considered during of more than half century of research, recently mostly involving titin and nebulin acting as templates or 'molecular rulers', terminating exact assembly. These two giant, single-polypeptide, filamentous proteins are bound in situ along the thick and thin filaments, respectively, with an almost perfect match in the respective lengths and structural periodicities. However, evidence still questions the possibility that the proteins function as templates, or scaffolds, on which the thin and thick filaments could be assembled. In addition, the progress in muscle research during the last decades highlighted a number of other factors that could potentially be involved in the mechanism of length regulation: molecular chaperones that may guide folding and assembly of actin and myosin; capping proteins that can influence the rates of assembly-disassembly of the myofilaments; Ca2+ transients that can activate or deactivate protein interactions, etc. The entire mechanism of sarcomere assembly appears complex and highly dynamic. This mechanism is also capable of producing filaments of about the correct size without titin and nebulin. What then is the role of these proteins? Evidence points to titin and nebulin stabilizing structures of the respective filaments. This stabilizing effect, based on linear proteins of a fixed size, implies that titin and nebulin are indeed molecular rulers of the filaments. Although the proteins may not function as templates in the assembly of the filaments, they measure and stabilize exactly the same size of the functionally important for the muscles segments in each of the respective filaments.
Collapse
|