1
|
Li H, Li Y, Zhang T, Liu S, Song C, Wang K, Yan W, Wang Z, Yang Q, Yang X, Wang H. Genome-wide CRISPR screen reveals specific role of type I interferon signaling pathway in Newcastle disease virus establishment of persistent infection. Vet Microbiol 2025; 300:110288. [PMID: 39642411 DOI: 10.1016/j.vetmic.2024.110288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/09/2024] [Accepted: 10/23/2024] [Indexed: 12/08/2024]
Abstract
Newcastle disease virus (NDV) is a potent oncolytic agent that exhibits sensitivity to a wide range of cancer cells. Unfortunately, some cancer cells are able to resist NDV-mediated oncolysis, by developing a persistent infection. The mechanism of persistency of infection remains poorly understood. In this study, a genome-wide CRISPR screen was conducted on non-small cell lung cancer cells (A549) to identify key host factors for NDV infection. Interestingly, a persistent infection was established in the surviving cells. CRISPR high-throughput screening results showed that members of the type I interferon signaling pathway (JAK1, STAT1, STAT2 and IRF9) were identified as top hits in the surviving cells. Further studies found that the type I IFN signaling pathway is intact in A549 cells, and a violent cytokine storm was induced after NDV infection. Both NDV infection and cytokine storm can induce cell death in A549 cells. We further blocked the type I interferon signaling pathway, and impaired type I interferon signaling pathway promoted NDV replication, but it did attenuate cell death induced by cytokine storm. Furthermore, persistent infection is more easily established in type I interferon signaling pathway-impaired A549 cells than in wild-type A549 cells. These findings suggest that the type I interferon signaling pathway plays a decisive role in persistent infection by regulating the antiviral immunity and cytokine storm inducing cell death.
Collapse
Affiliation(s)
- Hao Li
- Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, College of Life Science, Sichuan University, Chengdu 610064, China; Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Chengdu 610064, China
| | - Yuqing Li
- Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, College of Life Science, Sichuan University, Chengdu 610064, China; Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Chengdu 610064, China
| | - Tiejun Zhang
- Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, College of Life Science, Sichuan University, Chengdu 610064, China; Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Chengdu 610064, China
| | - Song Liu
- Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, College of Life Science, Sichuan University, Chengdu 610064, China; Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Chengdu 610064, China
| | - Cailiang Song
- Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, College of Life Science, Sichuan University, Chengdu 610064, China; Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Chengdu 610064, China
| | - Kailu Wang
- Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, College of Life Science, Sichuan University, Chengdu 610064, China; Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Chengdu 610064, China
| | - Wenjun Yan
- Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, College of Life Science, Sichuan University, Chengdu 610064, China; Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Chengdu 610064, China
| | - Zheng Wang
- Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, College of Life Science, Sichuan University, Chengdu 610064, China; Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Chengdu 610064, China
| | - Qingcheng Yang
- Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, College of Life Science, Sichuan University, Chengdu 610064, China; Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Chengdu 610064, China
| | - Xin Yang
- Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, College of Life Science, Sichuan University, Chengdu 610064, China; Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Chengdu 610064, China
| | - Hongning Wang
- Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, College of Life Science, Sichuan University, Chengdu 610064, China; Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Chengdu 610064, China.
| |
Collapse
|
2
|
Pasquesi GIM, Allen H, Ivancevic A, Barbachano-Guerrero A, Joyner O, Guo K, Simpson DM, Gapin K, Horton I, Nguyen LL, Yang Q, Warren CJ, Florea LD, Bitler BG, Santiago ML, Sawyer SL, Chuong EB. Regulation of human interferon signaling by transposon exonization. Cell 2024; 187:7621-7636.e19. [PMID: 39672162 PMCID: PMC11682929 DOI: 10.1016/j.cell.2024.11.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 02/21/2024] [Accepted: 11/12/2024] [Indexed: 12/15/2024]
Abstract
Innate immune signaling is essential for clearing pathogens and damaged cells and must be tightly regulated to avoid excessive inflammation or autoimmunity. Here, we found that the alternative splicing of exons derived from transposable elements is a key mechanism controlling immune signaling in human cells. By analyzing long-read transcriptome datasets, we identified numerous transposon exonization events predicted to generate functional protein variants of immune genes, including the type I interferon receptor IFNAR2. We demonstrated that the transposon-derived isoform of IFNAR2 is more highly expressed than the canonical isoform in almost all tissues and functions as a decoy receptor that potently inhibits interferon signaling, including in cells infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Our findings uncover a primate-specific axis controlling interferon signaling and show how a transposon exonization event can be co-opted for immune regulation.
Collapse
Affiliation(s)
- Giulia Irene Maria Pasquesi
- BioFrontiers Institute and Department of Molecular, Cellular & Developmental Biology, University of Colorado Boulder, Boulder, CO 80309, USA; Crnic Institute Boulder Branch, BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80303, USA
| | - Holly Allen
- BioFrontiers Institute and Department of Molecular, Cellular & Developmental Biology, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Atma Ivancevic
- BioFrontiers Institute and Department of Molecular, Cellular & Developmental Biology, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Arturo Barbachano-Guerrero
- BioFrontiers Institute and Department of Molecular, Cellular & Developmental Biology, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Olivia Joyner
- BioFrontiers Institute and Department of Molecular, Cellular & Developmental Biology, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Kejun Guo
- Division of Infectious Diseases, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - David M Simpson
- BioFrontiers Institute and Department of Molecular, Cellular & Developmental Biology, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Keala Gapin
- BioFrontiers Institute and Department of Molecular, Cellular & Developmental Biology, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Isabella Horton
- BioFrontiers Institute and Department of Molecular, Cellular & Developmental Biology, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Lily L Nguyen
- BioFrontiers Institute and Department of Molecular, Cellular & Developmental Biology, University of Colorado Boulder, Boulder, CO 80309, USA; Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Qing Yang
- BioFrontiers Institute and Department of Molecular, Cellular & Developmental Biology, University of Colorado Boulder, Boulder, CO 80309, USA; Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Cody J Warren
- BioFrontiers Institute and Department of Molecular, Cellular & Developmental Biology, University of Colorado Boulder, Boulder, CO 80309, USA; The Ohio State University College of Veterinary Medicine, Columbus, OH 43210, USA
| | - Liliana D Florea
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Benjamin G Bitler
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Mario L Santiago
- Division of Infectious Diseases, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Sara L Sawyer
- BioFrontiers Institute and Department of Molecular, Cellular & Developmental Biology, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Edward B Chuong
- BioFrontiers Institute and Department of Molecular, Cellular & Developmental Biology, University of Colorado Boulder, Boulder, CO 80309, USA; Crnic Institute Boulder Branch, BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80303, USA.
| |
Collapse
|
3
|
Shu X, Xie Y, Shu M, Ou X, Yang J, Wu Z, Zhang X, Zhang J, Zeng H, Shao L. Acute effects of TLR3 agonist Poly(I:C) on bone marrow hematopoietic progenitor cells in mice. Immunol Lett 2024; 270:106927. [PMID: 39265918 DOI: 10.1016/j.imlet.2024.106927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 08/20/2024] [Accepted: 09/09/2024] [Indexed: 09/14/2024]
Abstract
Hematopoietic progenitor cells (HPCs) in bone marrow with limited abilities for self-renewal and differentiation continuously supply hematopoietic cells through life. When suffering infection or inflammation, HPCs will actively proliferate to provide differentiated hematopoietic cells to maintain hematopoietic homeostasis. Poly(I:C), an agonist of TLR3, can specifically activate Type I interferon (IFN-I) signaling which exerts anti-inflammatory effects and influence hematopoiesis after infection. However, the effects of Poly(I:C)-induced IFN-I on the bone marrow hematopoietic system still deserve attention. In this study, our results revealed the efficacy of the IFN-I model, with a remarkably decrease in HPCs and a sharp elevation in LSKs numbers after single dose of Poly(I:C) injection. Apoptotic ratios of HPCs and LSKs significantly increased 48 h after Poly(I:C) treatment. Application of Poly(I:C) prompted the transition of HPCs and LSKs from G0 to G1 phases, potentially leading to the accelerated exhaustion of HPCs. From the cobblestone area-forming cell (CAFC) assay, we speculate that Poly(I:C) impairs the differentiation capacity of HPCs as well as their colony-forming ability. RT-qPCR and immunohistochemistry revealed significant upregulation of IFN-I associated genes and proteins following Poly(I:C) treatment. In conclusion, a single dose of Poly(I:C) induced an acute detrimental effect on HPCs within 48 h potentially due to TLR3 engagement. This activation cascaded into a robust IFN-I response emanating from the bone marrow, underscoring the intricate immunological dynamics at play following Poly(I:C) intervention.
Collapse
Affiliation(s)
- Xin Shu
- Jiangxi Provincial Key Laboratory of Disease Prevention and Public Health, Nanchang University, China; School of Public Health, Jiangxi Medical College, Nanchang University, China
| | - Yuxuan Xie
- Jiangxi Provincial Key Laboratory of Disease Prevention and Public Health, Nanchang University, China; School of Public Health, Jiangxi Medical College, Nanchang University, China
| | - Manling Shu
- Jiangxi Provincial Key Laboratory of Disease Prevention and Public Health, Nanchang University, China; School of Public Health, Jiangxi Medical College, Nanchang University, China
| | - Xiangying Ou
- Jiangxi Provincial Key Laboratory of Disease Prevention and Public Health, Nanchang University, China; School of Public Health, Jiangxi Medical College, Nanchang University, China
| | - Juan Yang
- Jiangxi Provincial Key Laboratory of Disease Prevention and Public Health, Nanchang University, China; School of Public Health, Jiangxi Medical College, Nanchang University, China
| | - Zhenyu Wu
- Jiangxi Provincial Key Laboratory of Disease Prevention and Public Health, Nanchang University, China; School of Public Health, Jiangxi Medical College, Nanchang University, China
| | - Xuan Zhang
- Jiangxi Provincial Key Laboratory of Disease Prevention and Public Health, Nanchang University, China; School of Public Health, Jiangxi Medical College, Nanchang University, China
| | - Jinfu Zhang
- Jiangxi Provincial Key Laboratory of Disease Prevention and Public Health, Nanchang University, China; School of Public Health, Jiangxi Medical College, Nanchang University, China
| | - Huihong Zeng
- Department of Histology and Embryology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, China; Basic Medical Experiment Center, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, 330006, China.
| | - Lijian Shao
- Jiangxi Provincial Key Laboratory of Disease Prevention and Public Health, Nanchang University, China; School of Public Health, Jiangxi Medical College, Nanchang University, China.
| |
Collapse
|
4
|
Zoler E, Meyer T, Bellón JS, Mönnig M, Sun B, Piehler J, Schreiber G. Promiscuous Janus kinase binding to cytokine receptors modulates signaling efficiencies and contributes to cytokine pleiotropy. Sci Signal 2024; 17:eadl1892. [PMID: 39561221 DOI: 10.1126/scisignal.adl1892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 04/09/2024] [Accepted: 10/08/2024] [Indexed: 11/21/2024]
Abstract
Janus kinases (JAKs) bind to class I and II cytokine receptors, activating signaling and regulating gene transcription through signal transducer and activator of transcription (STAT) proteins. Type I interferons (IFNs) require the JAK members TYK2 and JAK1, which bind to the receptor subunits IFNAR1 and IFNAR2, respectively. We investigated the role of JAKs in regulating IFNAR signaling activity. Synthetic IFNARs in which the extracellular domains of IFNAR1 and IFNAR2 are replaced with nanobodies had near-native type I IFN signaling, whereas the homomeric variant of IFNAR2 initiated much weaker signaling, despite harboring docking sites for JAKs and STATs. Cells with JAK1 and TYK2 knockout (KO) showed residual signaling, suggesting partial complementation by the remaining JAKs, particularly when they were overexpressed. Live-cell micropatterning experiments confirmed the promiscuous binding of JAK1, JAK2, and TYK2 to IFNAR1 and IFNAR2, and their recruitment correlated with their relative cellular abundances. However, each JAK had a different efficacy in inducing cross-phosphorylation and downstream signaling. JAK binding was also promiscuous for other cytokine receptors, including IFN-L1, IL-10Rβ, TPOR, and GHR, but not for EPOR, which activated different downstream signaling pathways. These findings suggest that competitive binding of JAKs to cytokine receptors together with the varying absolute and relative abundances of the JAKs in different cell types can account for the cell type-dependent signaling pleiotropy of cytokine receptors.
Collapse
Affiliation(s)
- Eyal Zoler
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Thomas Meyer
- Department of Biology/Chemistry and Center for Cellular Nanoanalytics, Osnabrück University, Osnabrück, Germany
| | - Junel Sotolongo Bellón
- Department of Biology/Chemistry and Center for Cellular Nanoanalytics, Osnabrück University, Osnabrück, Germany
| | - Mia Mönnig
- Department of Biology/Chemistry and Center for Cellular Nanoanalytics, Osnabrück University, Osnabrück, Germany
| | - Boyue Sun
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Jacob Piehler
- Department of Biology/Chemistry and Center for Cellular Nanoanalytics, Osnabrück University, Osnabrück, Germany
| | - Gideon Schreiber
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
5
|
Mesev EV, Lin AE, Guare EG, Heller BL, Douam F, Adamson B, Toettcher JE, Ploss A. Membrane-proximal motifs encode differences in signaling strength between type I and III interferon receptors. Sci Signal 2023; 16:eadf5494. [PMID: 37816090 PMCID: PMC10939449 DOI: 10.1126/scisignal.adf5494] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 09/09/2023] [Indexed: 10/12/2023]
Abstract
Interferons (IFNs) play crucial roles in antiviral defenses. Despite using the same Janus-activated kinase (JAK)-signal transducer and activator of transcription (STAT) signaling cascade, type I and III IFN receptors differ in the magnitude and dynamics of their signaling in terms of STAT phosphorylation, gene transcription, and antiviral responses. These differences are not due to ligand-binding affinity and receptor abundance. Here, we investigated the ability of the intracellular domains (ICDs) of IFN receptors to differentiate between type I and III IFN signaling. We engineered synthetic, heterodimeric type I and III IFN receptors that were stably expressed at similar amounts in human cells and responded to a common ligand. We found that our synthetic type I IFN receptors stimulated STAT phosphorylation and gene expression to greater extents than did the corresponding type III IFN receptors. Furthermore, we identified short "box motifs" within ICDs that bind to JAK1 that were sufficient to encode differences between the type I and III IFN receptors. Together, our results indicate that specific regions within the ICDs of IFN receptor subunits encode different downstream signaling strengths that enable type I and III IFN receptors to produce distinct signaling outcomes.
Collapse
Affiliation(s)
- Emily V. Mesev
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Aaron E. Lin
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Emma G. Guare
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Brigitte L. Heller
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Florian Douam
- Department of Microbiology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA 02118, USA
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA 02118, USA
| | - Britt Adamson
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
- Lewis Sigler Center for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Jared E. Toettcher
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
- Omenn-Darling Bioengineering Institute, Princeton University, Princeton, NJ 08544, USA
| | - Alexander Ploss
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| |
Collapse
|
6
|
Pasquesi GIM, Allen H, Ivancevic A, Barbachano-Guerrero A, Joyner O, Guo K, Simpson DM, Gapin K, Horton I, Nguyen L, Yang Q, Warren CJ, Florea LD, Bitler BG, Santiago ML, Sawyer SL, Chuong EB. Regulation of human interferon signaling by transposon exonization. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.11.557241. [PMID: 37745311 PMCID: PMC10515820 DOI: 10.1101/2023.09.11.557241] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Innate immune signaling is essential for clearing pathogens and damaged cells, and must be tightly regulated to avoid excessive inflammation or autoimmunity. Here, we found that the alternative splicing of exons derived from transposable elements is a key mechanism controlling immune signaling in human cells. By analyzing long-read transcriptome datasets, we identified numerous transposon exonization events predicted to generate functional protein variants of immune genes, including the type I interferon receptor IFNAR2. We demonstrated that the transposon-derived isoform of IFNAR2 is more highly expressed than the canonical isoform in almost all tissues, and functions as a decoy receptor that potently inhibits interferon signaling including in cells infected with SARS-CoV-2. Our findings uncover a primate-specific axis controlling interferon signaling and show how a transposon exonization event can be co-opted for immune regulation.
Collapse
Affiliation(s)
- Giulia Irene Maria Pasquesi
- BioFrontiers Institute and Department of Molecular, Cellular & Developmental Biology, University of Colorado Boulder, Boulder, CO, 80309
- Crnic Institute Boulder Branch, BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, 80303
| | - Holly Allen
- BioFrontiers Institute and Department of Molecular, Cellular & Developmental Biology, University of Colorado Boulder, Boulder, CO, 80309
| | - Atma Ivancevic
- BioFrontiers Institute and Department of Molecular, Cellular & Developmental Biology, University of Colorado Boulder, Boulder, CO, 80309
| | - Arturo Barbachano-Guerrero
- BioFrontiers Institute and Department of Molecular, Cellular & Developmental Biology, University of Colorado Boulder, Boulder, CO, 80309
| | - Olivia Joyner
- BioFrontiers Institute and Department of Molecular, Cellular & Developmental Biology, University of Colorado Boulder, Boulder, CO, 80309
| | - Kejun Guo
- Division of Infectious Diseases, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045
| | - David M. Simpson
- BioFrontiers Institute and Department of Molecular, Cellular & Developmental Biology, University of Colorado Boulder, Boulder, CO, 80309
| | - Keala Gapin
- BioFrontiers Institute and Department of Molecular, Cellular & Developmental Biology, University of Colorado Boulder, Boulder, CO, 80309
| | - Isabella Horton
- BioFrontiers Institute and Department of Molecular, Cellular & Developmental Biology, University of Colorado Boulder, Boulder, CO, 80309
| | - Lily Nguyen
- BioFrontiers Institute and Department of Molecular, Cellular & Developmental Biology, University of Colorado Boulder, Boulder, CO, 80309
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045
| | - Qing Yang
- BioFrontiers Institute and Department of Molecular, Cellular & Developmental Biology, University of Colorado Boulder, Boulder, CO, 80309
- Fred Hutchinson Cancer Research Center, Seattle, WA, 98109
| | - Cody J. Warren
- BioFrontiers Institute and Department of Molecular, Cellular & Developmental Biology, University of Colorado Boulder, Boulder, CO, 80309
- The Ohio State University College of Veterinary Medicine, Columbus, OH, 43210
| | - Liliana D. Florea
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21205
| | - Benjamin G. Bitler
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045
| | - Mario L. Santiago
- Division of Infectious Diseases, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045
| | - Sara L. Sawyer
- BioFrontiers Institute and Department of Molecular, Cellular & Developmental Biology, University of Colorado Boulder, Boulder, CO, 80309
| | - Edward B. Chuong
- BioFrontiers Institute and Department of Molecular, Cellular & Developmental Biology, University of Colorado Boulder, Boulder, CO, 80309
- Crnic Institute Boulder Branch, BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, 80303
| |
Collapse
|
7
|
Kim A, Park JH, Lee MJ, Kim SM. Interferon alpha and beta receptor 1 knockout in human embryonic kidney 293 cells enhances the production efficiency of proteins or adenoviral vectors related to type I interferons. Front Bioeng Biotechnol 2023; 11:1192291. [PMID: 37476482 PMCID: PMC10355049 DOI: 10.3389/fbioe.2023.1192291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 05/16/2023] [Indexed: 07/22/2023] Open
Abstract
Human embryonic kidney (HEK) 293 cells are widely used in protein and viral vector production owing to their high transfection efficiency, rapid growth, and suspension growth capability. Given their antiviral, anticancer, and immune-enhancing effects, type I interferons (IFNs) have been used to prevent and treat human and animal diseases. However, the binding of type I IFNs to the IFN-α and-β receptor (IFNAR) stimulates the expression of IFN-stimulated genes (ISGs). This phenomenon induces an antiviral state and promotes apoptosis in cells, thereby impeding protein or viral vector production. In this study, we generated an IFNAR subtype 1 knockout (KO) HEK 293 suspension (IFNAR-KO) cell line by using clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein-9 nuclease (Cas9) technology. Upon treatment with human IFN-α, the IFNAR-KO cells showed a constant expression of ISGs, including 2'-5'-oligoadenylate synthetase 1 (OAS1), myxovirus resistance 1 (Mx1), protein kinase RNA-activated (PKR), and IFN-induced transmembrane protein 1 (IFITM1), when compared with the wild-type HEK 293 (WT) cells, wherein the ISGs were significantly upregulated. As a result, the titer of recombinant adenovirus expressing porcine IFN-α was significantly higher in the IFNAR-KO cells than in the WT cells. Furthermore, the IFNAR-KO cells continuously produced higher amounts of IFN-α protein than the WT cells. Thus, the CRISPR-Cas9-mediated IFNAR1 KO cell line can improve the production efficiency of proteins or viral vectors related to IFNs. The novel cell line may be used for producing vaccines and elucidating the type I IFN signaling pathway in cells.
Collapse
|
8
|
Fu Z, He Y, Gao L, Tong X, Zhou L, Zeng J. STAT2/Caspase3 in the diagnosis and treatment of psoriasis. Eur J Clin Invest 2023; 53:e13959. [PMID: 36708067 DOI: 10.1111/eci.13959] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/25/2023] [Accepted: 01/25/2023] [Indexed: 01/29/2023]
Abstract
BACKGROUND Psoriasis is a classic chronic recurrent inflammatory skin disease characterized by skin inflammation and abnormal biological behaviour of keratinocytes. Although Signal Transducer And Activator Of Transcription 2 (STAT2) was found to play an important role in the Janus kinase (JAK)-STAT signalling pathway and contribute to the pathogenesis of psoriasis, its exact role in psoriasis remains unclear. METHODS Using bioinformatics analysis, we identified the key pathways that significantly impacted psoriatic lesions. After identifying the critical molecule gene differentially expressed in multiple public databases using the Kyoto Encyclopaedia of Genes and Genomes (KEGG) enrichment analysis, clinical samples were collected to validate the gene's significance. Its functions and underlying mechanism were also investigated in vitro. Lastly, we evaluated the diagnostic and therapeutic power of the target gene using the receiver operating characteristic curve (ROC), and gene association was assessed using Spearman correlation. RESULTS A significant correlation was found between cysteine-aspartic acid protease3 (Caspase3) and STAT2, and functional enrichment analysis revealed that they were both significantly up-regulated in psoriatic skin lesions compared to non-lesional tissues. Functional analysis revealed that Caspase3 functioned downstream of STAT2 in psoriasis. Lastly, we found that Caspase3 and STAT2 could be potential biomarkers for diagnosing and treating psoriasis. CONCLUSIONS In summary, STAT2 overexpression contributes to psoriasis progression by regulating Capase3 phosphorylation to induce excessive apoptosis of keratinocytes. Meanwhile, STAT2 and Capase3 were identified as promising biomarkers for the diagnosis and treatment of psoriasis and could be used for individualized treatments.
Collapse
Affiliation(s)
- Zhibing Fu
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yi He
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
| | - Lihua Gao
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiaoliang Tong
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Lu Zhou
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jinrong Zeng
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
9
|
Wang Y, Liu M, Guo X, Zhang B, Li H, Liu Y, Han J, Jia L, Li L. Endogenous Retrovirus Elements Are Co-Expressed with IFN Stimulation Genes in the JAK-STAT Pathway. Viruses 2022; 15:60. [PMID: 36680099 PMCID: PMC9861321 DOI: 10.3390/v15010060] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
Background: Endogenous retrovirus (ERV) elements can act as proximal regulatory elements in promoting interferon (IFN) responses. Previous relevant studies have mainly focused on IFN-stimulated genes (ISGs). However, the role of ERV elements as cis-regulatory motifs in regulating genes of the JAK-STAT pathway remains poorly understood. In our study, we analyzed the changes in ERV elements and genes under both IFN stimulation and blockade of the signaling pathway. Methods: The effects of interferon on cells under normal conditions and knockout of the receptor were compared based on the THP1_IFNAR1_KO and THP1_IFNAR2_mutant cell lines. The correlation between differentially expressed ERVs (DHERVs) and differentially expressed genes (DEGs) as DEHERV-G pairs was explored with construction of gene regulatory networks related to ERV and induced by proinflammatory cytokines. Results: A total of 430 DEHERV loci and 190 DEGs were identified in 842 DEHERV-G pairs that are common to the three groups. More than 87% of DEHERV-G pairs demonstrated a consistent expression pattern. ISGs such as AIM2, IFIT1, IFIT2, IFIT3, STAT1, and IRF were activated via the JAK-STAT pathway in response to interferon stimulation. Thus, STAT1, STAT2, and IRF1 appear to play core roles in regulatory networks and are closely associated with ERVs. Conclusions: The RNA expression of ISGs and ERV elements is correlated, indicating that ERV elements are closely linked to host innate immune responses.
Collapse
Affiliation(s)
- Yanglan Wang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Mengying Liu
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xing Guo
- Department of Virology, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
- State Key Laboratory of Pathogen and Biosecurity, Beijing 100071, China
- Department of Microbiology, School of Basic Medicine, Anhui Medical University, Hefei 230032, China
| | - Bohan Zhang
- Department of Virology, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
- State Key Laboratory of Pathogen and Biosecurity, Beijing 100071, China
| | - Hanping Li
- Department of Virology, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
- State Key Laboratory of Pathogen and Biosecurity, Beijing 100071, China
| | - Yongjian Liu
- Department of Virology, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
- State Key Laboratory of Pathogen and Biosecurity, Beijing 100071, China
| | - Jingwan Han
- Department of Virology, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
- State Key Laboratory of Pathogen and Biosecurity, Beijing 100071, China
| | - Lei Jia
- Department of Virology, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
- State Key Laboratory of Pathogen and Biosecurity, Beijing 100071, China
| | - Lin Li
- Department of Virology, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
- State Key Laboratory of Pathogen and Biosecurity, Beijing 100071, China
| |
Collapse
|
10
|
Zhang L, Ma J, Jin X, Zhang L, Zhang M, Li PZ, Li J, Zhang L. Human IFNAR2 Mutant Generated by CRISPR/Cas9-Induced Exon Skipping Upregulates a Subset of Tonic-Like Interferon-Stimulated Genes Upon IFNβ Stimulation. J Interferon Cytokine Res 2022; 42:580-589. [DOI: 10.1089/jir.2022.0158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Linnan Zhang
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jianping Ma
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiaoyang Jin
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Liwei Zhang
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Mengfan Zhang
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Patrick Z. Li
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Jingyun Li
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Liguo Zhang
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
11
|
Zoellner N, Coesfeld N, De Vos FH, Denter J, Xu HC, Zimmer E, Knebel B, Al-Hasani H, Mossner S, Lang PA, Floss DM, Scheller J. Synthetic mimetics assigned a major role to IFNAR2 in type I interferon signaling. Front Microbiol 2022; 13:947169. [PMID: 36118237 PMCID: PMC9480868 DOI: 10.3389/fmicb.2022.947169] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 08/04/2022] [Indexed: 11/30/2022] Open
Abstract
Type I interferons (IFNs) are potent inhibitors of viral replication. Here, we reformatted the natural murine and human type I interferon-α/β receptors IFNAR1 and IFNAR2 into fully synthetic biological switches. The transmembrane and intracellular domains of natural IFNAR1 and IFNAR2 were conserved, whereas the extracellular domains were exchanged by nanobodies directed against the fluorescent proteins Green fluorescent protein (GFP) and mCherry. Using this approach, multimeric single-binding GFP-mCherry ligands induced synthetic IFNAR1/IFNAR2 receptor complexes and initiated STAT1/2 mediated signal transduction via Jak1 and Tyk2. Homodimeric GFP and mCherry ligands showed that IFNAR2 but not IFNAR1 homodimers were sufficient to induce STAT1/2 signaling. Transcriptome analysis revealed that synthetic murine type I IFN signaling was highly comparable to IFNα4 signaling. Moreover, replication of vesicular stomatitis virus (VSV) in a cell culture-based viral infection model using MC57 cells was significantly inhibited after stimulation with synthetic ligands. Using intracellular deletion variants and point mutations, Y510 and Y335 in murine IFNAR2 were verified as unique phosphorylation sites for STAT1/2 activation, whereas the other tyrosine residues in IFNAR1 and IFNAR2 were not involved in STAT1/2 phosphorylation. Comparative analysis of synthetic human IFNARs supports this finding. In summary, our data showed that synthetic type I IFN signal transduction is originating from IFNAR2 rather than IFNAR1.
Collapse
Affiliation(s)
- Nele Zoellner
- Medical Faculty, Institute of Biochemistry and Molecular Biology II, Heinrich-Heine-University, Düsseldorf, Germany
| | - Noémi Coesfeld
- Medical Faculty, Institute of Biochemistry and Molecular Biology II, Heinrich-Heine-University, Düsseldorf, Germany
| | - Frederik Henry De Vos
- Medical Faculty, Institute of Biochemistry and Molecular Biology II, Heinrich-Heine-University, Düsseldorf, Germany
| | - Jennifer Denter
- Medical Faculty, Institute of Molecular Medicine II, Heinrich-Heine-University, Düsseldorf, Germany
| | - Haifeng C. Xu
- Medical Faculty, Institute of Molecular Medicine II, Heinrich-Heine-University, Düsseldorf, Germany
| | - Elena Zimmer
- Medical Faculty, Institute of Biochemistry and Molecular Biology II, Heinrich-Heine-University, Düsseldorf, Germany
| | - Birgit Knebel
- Medical Faculty, Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Heinrich-Heine-University, Düsseldorf, Germany
| | - Hadi Al-Hasani
- Medical Faculty, Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Heinrich-Heine-University, Düsseldorf, Germany
| | - Sofie Mossner
- Medical Faculty, Institute of Biochemistry and Molecular Biology II, Heinrich-Heine-University, Düsseldorf, Germany
| | - Philipp A. Lang
- Medical Faculty, Institute of Molecular Medicine II, Heinrich-Heine-University, Düsseldorf, Germany
| | - Doreen M. Floss
- Medical Faculty, Institute of Biochemistry and Molecular Biology II, Heinrich-Heine-University, Düsseldorf, Germany
| | - Jürgen Scheller
- Medical Faculty, Institute of Biochemistry and Molecular Biology II, Heinrich-Heine-University, Düsseldorf, Germany
| |
Collapse
|
12
|
Shemesh M, Lochte S, Piehler J, Schreiber G. IFNAR1 and IFNAR2 play distinct roles in initiating type I interferon-induced JAK-STAT signaling and activating STATs. Sci Signal 2021; 14:eabe4627. [PMID: 34813358 DOI: 10.1126/scisignal.abe4627] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Maya Shemesh
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Sara Lochte
- Department of Biology and Center of Cellular Nanoanalytics, University of Osnabrück, 49076 Osnabrück, Germany
| | - Jacob Piehler
- Department of Biology and Center of Cellular Nanoanalytics, University of Osnabrück, 49076 Osnabrück, Germany
| | - Gideon Schreiber
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
13
|
Kirby D, Parmar B, Fathi S, Marwah S, Nayak CR, Cherepanov V, MacParland S, Feld JJ, Altan-Bonnet G, Zilman A. Determinants of Ligand Specificity and Functional Plasticity in Type I Interferon Signaling. Front Immunol 2021; 12:748423. [PMID: 34691060 PMCID: PMC8529159 DOI: 10.3389/fimmu.2021.748423] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 09/14/2021] [Indexed: 11/13/2022] Open
Abstract
The Type I Interferon family of cytokines all act through the same cell surface receptor and induce phosphorylation of the same subset of response regulators of the STAT family. Despite their shared receptor, different Type I Interferons have different functions during immune response to infection. In particular, they differ in the potency of their induced anti-viral and anti-proliferative responses in target cells. It remains not fully understood how these functional differences can arise in a ligand-specific manner both at the level of STAT phosphorylation and the downstream function. We use a minimal computational model of Type I Interferon signaling, focusing on Interferon-α and Interferon-β. We validate the model with quantitative experimental data to identify the key determinants of specificity and functional plasticity in Type I Interferon signaling. We investigate different mechanisms of signal discrimination, and how multiple system components such as binding affinity, receptor expression levels and their variability, receptor internalization, short-term negative feedback by SOCS1 protein, and differential receptor expression play together to ensure ligand specificity on the level of STAT phosphorylation. Based on these results, we propose phenomenological functional mappings from STAT activation to downstream anti-viral and anti-proliferative activity to investigate differential signal processing steps downstream of STAT phosphorylation. We find that the negative feedback by the protein USP18, which enhances differences in signaling between Interferons via ligand-dependent refractoriness, can give rise to functional plasticity in Interferon-α and Interferon-β signaling, and explore other factors that control functional plasticity. Beyond Type I Interferon signaling, our results have a broad applicability to questions of signaling specificity and functional plasticity in signaling systems with multiple ligands acting through a bottleneck of a small number of shared receptors.
Collapse
Affiliation(s)
- Duncan Kirby
- Department of Physics, University of Toronto, Toronto, ON, Canada
| | - Baljyot Parmar
- Department of Physics, University of Toronto, Toronto, ON, Canada
| | - Sepehr Fathi
- Department of Physics, University of Toronto, Toronto, ON, Canada
| | - Sagar Marwah
- Ajmera Family Transplant Centre, Toronto General Research Institute, Departments of Laboratory Medicine and Pathobiology and Immunology, University of Toronto, Toronto, ON, Canada
| | - Chitra R Nayak
- Department of Physics, University of Toronto, Toronto, ON, Canada.,Department of Physics, Tuskegee University, Tuskegee, AL, United States
| | - Vera Cherepanov
- Sandra Rotman Centre for Global Health, Toronto General Research Institute, University of Toronto, Toronto, ON, Canada
| | - Sonya MacParland
- Ajmera Family Transplant Centre, Toronto General Research Institute, Departments of Laboratory Medicine and Pathobiology and Immunology, University of Toronto, Toronto, ON, Canada
| | - Jordan J Feld
- Toronto Centre for Liver Disease, University Health Network, Toronto, ON, Canada
| | - Grégoire Altan-Bonnet
- Immunodynamics Group, Laboratory of Integrative Cancer Immunology, Center for Cancer Research (CCR), National Cancer Institute (NCI), Bethesda, MD, United States
| | - Anton Zilman
- Department of Physics, University of Toronto, Toronto, ON, Canada.,Institute for Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
14
|
Shemesh M, Aktepe TE, Deerain JM, McAuley JL, Audsley MD, David CT, Purcell DFJ, Urin V, Hartmann R, Moseley GW, Mackenzie JM, Schreiber G, Harari D. SARS-CoV-2 suppresses IFNβ production mediated by NSP1, 5, 6, 15, ORF6 and ORF7b but does not suppress the effects of added interferon. PLoS Pathog 2021; 17:e1009800. [PMID: 34437657 PMCID: PMC8389490 DOI: 10.1371/journal.ppat.1009800] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 07/14/2021] [Indexed: 12/16/2022] Open
Abstract
Type I Interferons (IFN-Is) are a family of cytokines which play a major role in inhibiting viral infection. Resultantly, many viruses have evolved mechanisms in which to evade the IFN-I response. Here we tested the impact of expression of 27 different SARS-CoV-2 genes in relation to their effect on IFN production and activity using three independent experimental methods. We identified six gene products; NSP6, ORF6, ORF7b, NSP1, NSP5 and NSP15, which strongly (>10-fold) blocked MAVS-induced (but not TRIF-induced) IFNβ production. Expression of the first three of these SARS-CoV-2 genes specifically blocked MAVS-induced IFNβ-promoter activity, whereas all six genes induced a collapse in IFNβ mRNA levels, corresponding with suppressed IFNβ protein secretion. Five of these six genes furthermore suppressed MAVS-induced activation of IFNλs, however with no effect on IFNα or IFNγ production. In sharp contrast, SARS-CoV-2 infected cells remained extremely sensitive to anti-viral activity exerted by added IFN-Is. None of the SARS-CoV-2 genes were able to block IFN-I signaling, as demonstrated by robust activation of Interferon Stimulated Genes (ISGs) by added interferon. This, despite the reduced levels of STAT1 and phospho-STAT1, was likely caused by broad translation inhibition mediated by NSP1. Finally, we found that a truncated ORF7b variant that has arisen from a mutant SARS-CoV-2 strain harboring a 382-nucleotide deletion associating with mild disease (Δ382 strain identified in Singapore & Taiwan in 2020) lost its ability to suppress type I and type III IFN production. In summary, our findings support a multi-gene process in which SARS-CoV-2 blocks IFN-production, with ORF7b as a major player, presumably facilitating evasion of host detection during early infection. However, SARS-CoV-2 fails to suppress IFN-I signaling thus providing an opportunity to exploit IFN-Is as potential therapeutic antiviral drugs.
Collapse
Affiliation(s)
- Maya Shemesh
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Turgut E. Aktepe
- Department of Microbiology and Immunology, University of Melbourne, at The Peter Doherty Institute for Infection and Immunity, Parkville, Melbourne, Victoria, Australia
| | - Joshua M. Deerain
- Department of Microbiology and Immunology, University of Melbourne, at The Peter Doherty Institute for Infection and Immunity, Parkville, Melbourne, Victoria, Australia
| | - Julie L. McAuley
- Department of Microbiology and Immunology, University of Melbourne, at The Peter Doherty Institute for Infection and Immunity, Parkville, Melbourne, Victoria, Australia
| | - Michelle D. Audsley
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Victoria, Australia
| | - Cassandra T. David
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Victoria, Australia
| | - Damian F. J. Purcell
- Department of Microbiology and Immunology, University of Melbourne, at The Peter Doherty Institute for Infection and Immunity, Parkville, Melbourne, Victoria, Australia
| | - Victoria Urin
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Rune Hartmann
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Gregory W. Moseley
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Victoria, Australia
| | - Jason M. Mackenzie
- Department of Microbiology and Immunology, University of Melbourne, at The Peter Doherty Institute for Infection and Immunity, Parkville, Melbourne, Victoria, Australia
| | - Gideon Schreiber
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Daniel Harari
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
15
|
Brezgin S, Kostyusheva A, Bayurova E, Volchkova E, Gegechkori V, Gordeychuk I, Glebe D, Kostyushev D, Chulanov V. Immunity and Viral Infections: Modulating Antiviral Response via CRISPR-Cas Systems. Viruses 2021; 13:1373. [PMID: 34372578 PMCID: PMC8310348 DOI: 10.3390/v13071373] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 07/07/2021] [Accepted: 07/09/2021] [Indexed: 12/13/2022] Open
Abstract
Viral infections cause a variety of acute and chronic human diseases, sometimes resulting in small local outbreaks, or in some cases spreading across the globe and leading to global pandemics. Understanding and exploiting virus-host interactions is instrumental for identifying host factors involved in viral replication, developing effective antiviral agents, and mitigating the severity of virus-borne infectious diseases. The diversity of CRISPR systems and CRISPR-based tools enables the specific modulation of innate immune responses and has contributed impressively to the fields of virology and immunology in a very short time. In this review, we describe the most recent advances in the use of CRISPR systems for basic and translational studies of virus-host interactions.
Collapse
Affiliation(s)
- Sergey Brezgin
- National Medical Research Center of Tuberculosis and Infectious Diseases, Ministry of Health, 127994 Moscow, Russia; (S.B.); (A.K.); (V.C.)
- Institute of Immunology, Federal Medical Biological Agency, 115522 Moscow, Russia
- Scientific Center for Genetics and Life Sciences, Division of Biotechnology, Sirius University of Science and Technology, 354340 Sochi, Russia
| | - Anastasiya Kostyusheva
- National Medical Research Center of Tuberculosis and Infectious Diseases, Ministry of Health, 127994 Moscow, Russia; (S.B.); (A.K.); (V.C.)
| | - Ekaterina Bayurova
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, 108819 Moscow, Russia; (E.B.); (I.G.)
| | - Elena Volchkova
- Department of Infectious Diseases, Sechenov University, 119991 Moscow, Russia;
| | - Vladimir Gegechkori
- Department of Pharmaceutical and Toxicological Chemistry, Sechenov University, 119991 Moscow, Russia;
| | - Ilya Gordeychuk
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, 108819 Moscow, Russia; (E.B.); (I.G.)
- Department of Organization and Technology of Immunobiological Drugs, Sechenov University, 119991 Moscow, Russia
| | - Dieter Glebe
- National Reference Center for Hepatitis B Viruses and Hepatitis D Viruses, Institute of Medical Virology, Justus Liebig University of Giessen, 35392 Giessen, Germany;
| | - Dmitry Kostyushev
- National Medical Research Center of Tuberculosis and Infectious Diseases, Ministry of Health, 127994 Moscow, Russia; (S.B.); (A.K.); (V.C.)
- Scientific Center for Genetics and Life Sciences, Division of Biotechnology, Sirius University of Science and Technology, 354340 Sochi, Russia
| | - Vladimir Chulanov
- National Medical Research Center of Tuberculosis and Infectious Diseases, Ministry of Health, 127994 Moscow, Russia; (S.B.); (A.K.); (V.C.)
- Scientific Center for Genetics and Life Sciences, Division of Biotechnology, Sirius University of Science and Technology, 354340 Sochi, Russia
- Department of Infectious Diseases, Sechenov University, 119991 Moscow, Russia;
| |
Collapse
|
16
|
Koufaris C, Nicolaidou V. Glutamine addiction in virus-infected mammalian cells: A target of the innate immune system? Med Hypotheses 2021; 153:110620. [PMID: 34130112 DOI: 10.1016/j.mehy.2021.110620] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 04/30/2021] [Accepted: 05/31/2021] [Indexed: 12/19/2022]
Abstract
Control of core cell metabolism is a key aspect of the evolutionary conflict between viruses and the host's defence mechanisms. From their side, the invading viruses press the accelerator on their host cell's glycolysis, fatty acid, and glutaminolytic metabolic processes among others. It is also well established that activation of innate immune system responses modulates facets of metabolism such as that of polyamine, cholesterol, tryptophan and many more. But what about glutamine, a proteogenic amino acid that is a crucial nutrient for multiple cellular biosynthetic processes? Although mammalian cells can normally synthesize glutamine de novo, it has been noted that infections with genetically and phylogenetically diverse viruses are followed by the acquisition of a dependency on supplies of exogenous glutamine i.e. "glutamine addiction". Here we present our novel hypothesis that glutamine metabolism is also a target of the innate immune system, possibly through the action of interferons, as part of the evolutionary conserved antiviral metabolic reprogramming.
Collapse
Affiliation(s)
- C Koufaris
- Department of Biological Sciences, University of Cyprus, Nicosia, Cyprus
| | - V Nicolaidou
- Department of Life and Health Sciences, University of Nicosia, Nicosia, Cyprus.
| |
Collapse
|
17
|
Göder A, Ginter T, Heinzel T, Stroh S, Fahrer J, Henke A, Krämer OH. STAT1 N-terminal domain discriminatively controls type I and type II IFN signaling. Cytokine 2021; 144:155552. [PMID: 34000478 DOI: 10.1016/j.cyto.2021.155552] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 04/10/2021] [Accepted: 04/21/2021] [Indexed: 12/23/2022]
Abstract
The seven signal transducers of transcription (STATs) are cytokine-inducible modular transcription factors. They transmit the stimulation of cells with type I interferons (IFN-α/IFN-β) and type II interferon (IFN-ɣ) into altered gene expression patterns. The N-terminal domain (NTD) of STAT1 is a surface for STAT1/STAT1 homodimer and STAT1/STAT2 heterodimer formation and allows the cooperative DNA binding of STAT1. We investigated whether the STAT1 NTD-mediated dimerization affected the IFN-induced tyrosine phosphorylation of STAT1, its nuclear translocation, STAT1-dependent gene expression, and IFN-dependent antiviral defense. We reconstituted human STAT1-negative and STAT2-negative fibrosarcoma cells with STAT1, NTD-mutated STAT1 (STAT1AA), STAT1 with a mutated DNA-binding domain (DBD), or STAT2. We treated these cells with IFN-α and IFN-ɣ to assess differences between IFN-α-induced STAT1 homo- and heterodimers and IFN-ɣ-induced STAT1 homodimers. Our data demonstrate that IFNs induce the phosphorylation of STAT1 and STAT1AA at Y701 and their nuclear accumulation. We further reveal that STAT1AA can be phosphorylated in response to IFN-α in the absence of STAT2 and that IFN-ɣ-induced STAT1AA can activate gene expression directly. However, STAT1AA largely fails to bind STAT2 and to activate IFN-α-induced expression of endogenous antiviral STAT1/STAT2 target proteins. Congruent herewith, both an intact STAT1 NTD and STAT2 are indispensable to establish an antiviral state with IFN-α. These data provide new insights into the biological importance of the STAT1 NTD.
Collapse
Affiliation(s)
- Anja Göder
- Department of Toxicology, University Medical Center, Obere Zahlbacher Str. 67, 55131 Mainz, Germany.
| | - Torsten Ginter
- Center for Molecular Biomedicine (CMB), Institute for Biochemistry, Friedrich-Schiller University Jena, Hans-Knöll Str. 2, 07745 Jena, Germany
| | - Thorsten Heinzel
- Center for Molecular Biomedicine (CMB), Institute for Biochemistry, Friedrich-Schiller University Jena, Hans-Knöll Str. 2, 07745 Jena, Germany.
| | - Svenja Stroh
- Department of Toxicology, University Medical Center, Obere Zahlbacher Str. 67, 55131 Mainz, Germany.
| | - Jörg Fahrer
- Department of Toxicology, University Medical Center, Obere Zahlbacher Str. 67, 55131 Mainz, Germany.
| | - Andreas Henke
- Section Experimental Virology, Institute of Medical Microbiology, Jena University Hospital, Friedrich Schiller University Jena, Hans-Knöll-Str. 2, 07745 Jena, Germany.
| | - Oliver H Krämer
- Department of Toxicology, University Medical Center, Obere Zahlbacher Str. 67, 55131 Mainz, Germany.
| |
Collapse
|
18
|
Hulsebosch BM, Mounce BC. Polyamine Analog Diethylnorspermidine Restricts Coxsackievirus B3 and Is Overcome by 2A Protease Mutation In Vitro. Viruses 2021; 13:310. [PMID: 33669273 PMCID: PMC7920041 DOI: 10.3390/v13020310] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/10/2021] [Accepted: 02/12/2021] [Indexed: 12/27/2022] Open
Abstract
Enteroviruses, including Coxsackievirus B3 (CVB3), are pervasive pathogens that cause significant disease, including cardiomyopathies. Unfortunately, no treatments or vaccines are available for infected individuals. We identified the host polyamine pathway as a potential drug target, as inhibiting polyamine biosynthesis significantly reduces enterovirus replication in vitro and in vivo. Here, we show that CVB3 is sensitive to polyamine depletion through the polyamine analog diethylnorspermidine (DENSpm), which enhances polyamine catabolism through induction of polyamine acetylation. We demonstrate that CVB3 acquires resistance to DENSpm via mutation of the 2A protease, which enhances proteolytic activity in the presence of DENSpm. Resistance to DENSpm occurred via mutation of a non-catalytic site mutation and results in decreased fitness. These data demonstrate that potential for targeting polyamine catabolism as an antiviral target as well as highlight a potential mechanism of resistance.
Collapse
Affiliation(s)
- Bridget M. Hulsebosch
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153, USA;
- Infectious Disease and Immunology Research Institute, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153, USA
| | - Bryan C. Mounce
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153, USA;
- Infectious Disease and Immunology Research Institute, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153, USA
| |
Collapse
|
19
|
Type I Interferon acts as a major barrier to the establishment of infectious bursal disease virus (IBDV) persistent infections. J Virol 2021; 95:JVI.02017-20. [PMID: 33328313 PMCID: PMC8092823 DOI: 10.1128/jvi.02017-20] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Infectious bursal disease virus (IBDV), the best characterized member of the Birnaviridae family, is a highly relevant avian pathogen causing both acute and persistent infections in different avian hosts. Here, we describe the establishment of clonal, long-term, productive persistent IBDV infections in DF-1 chicken embryonic fibroblasts. Although virus yields in persistently-infected cells are exceedingly lower than those detected in acutely infected cells, the replication fitness of viruses isolated from persistently-infected cells is higher than that of the parental virus. Persistently-infected DF-1 and IBDV-cured cell lines derived from them do not respond to type I interferon (IFN). High-throughput genome sequencing revealed that this defect is due to mutations affecting the IFNα/β receptor subunit 2 (IFNAR2) gene resulting in the expression of IFNAR2 polypeptides harbouring large C-terminal deletions that abolish the signalling capacity of IFNα/β receptor complex. Ectopic expression of a recombinant chicken IFNAR2 gene efficiently rescues IFNα responsiveness. IBDV-cured cell lines derived from persistently infected cells exhibit a drastically enhanced susceptibility to establishing new persistent IBDV infections. Additionally, experiments carried out with human HeLa cells lacking the IFNAR2 gene fully recapitulate results obtained with DF-1 cells, exhibiting a highly enhanced capacity to both survive the acute IBDV infection phase and to support the establishment of persistent IBDV infections. Results presented here show that the inactivation of the JAK-STAT signalling pathway significantly reduces the apoptotic response induced by the infection, hence facilitating the establishment and maintenance of IBDV persistent infections.IMPORTANCE Members of the Birnaviridae family, including infectious bursal disease virus (IBDV), exhibit a dual behaviour, causing acute infections that are often followed by the establishment of life-long persistent asymptomatic infections. Indeed, persistently infected specimens might act as efficient virus reservoirs, hence potentially contributing to virus dissemination. Despite the key importance of this biological trait, information about mechanisms triggering IBDV persistency is negligible. Our report evidences the capacity of IBDV, a highly relevant avian pathogen, to establishing long-term, productive, persistent infections in both avian and human cell lines. Data presented here provide novel and direct evidence about the crucial role of type I IFNs on the fate of IBDV-infected cells and their contribution to controlling the establishment of IBDV persistent infections. The use of cell lines unable to respond to type I IFNs opens a promising venue to unveiling additional factors contributing to IBDV persistency.
Collapse
|
20
|
de Weerd NA, Vivian JP, Lim SS, Huang SUS, Hertzog PJ. Structural integrity with functional plasticity: what type I IFN receptor polymorphisms reveal. J Leukoc Biol 2021; 108:909-924. [PMID: 33448473 DOI: 10.1002/jlb.2mr0420-152r] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 03/21/2020] [Accepted: 03/26/2020] [Indexed: 12/13/2022] Open
Abstract
The type I IFNs activate an array of signaling pathways, which are initiated after IFNs bind their cognate receptors, IFNα/β receptor (IFNAR)1 and IFNAR2. These signals contribute to many aspects of human health including defense against pathogens, cancer immunosurveillance, and regulation of inflammation. How these cytokines interact with their receptors influences the quality of these signals. As such, the integrity of receptor structure is pivotal to maintaining human health and the response to immune stimuli. This review brings together genome wide association studies and clinical reports describing the association of nonsynonymous IFNAR1 and IFNAR2 polymorphisms with clinical disease, including altered susceptibility to viral and bacterial pathogens, autoimmune diseases, cancer, and adverse reactions to live-attenuated vaccines. We describe the amino acid substitutions or truncations induced by these polymorphisms and, using the knowledge of IFNAR conformational changes, IFNAR-IFN interfaces and overall structure-function relationship of the signaling complexes, we hypothesize the effect of these polymorphisms on receptor structure. That these predicted changes to IFNAR structure are associated with clinical manifestations of human disease, highlights the importance of IFNAR structural integrity to maintaining functional quality of these receptor-mediated responses. Type I IFNs are pivotal to innate immune responses and ultimately, to human health. Understanding the consequences of altered structure on the actions of these clinically significant cell receptors provides important information on the roles of IFNARs in health and disease.
Collapse
Affiliation(s)
- Nicole A de Weerd
- Centre for Innate Immunity and Infectious Diseases, Department of Molecular and Translational Science, Hudson Institute of Medical Research and Monash University, Clayton, Victoria, Australia
| | - Julian P Vivian
- Infection and Immunity Program, Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute and Australian Research Council Centre for Excellence for Advanced Molecular Imaging, Monash University, Clayton, Victoria, Australia
| | - San S Lim
- Centre for Innate Immunity and Infectious Diseases, Department of Molecular and Translational Science, Hudson Institute of Medical Research and Monash University, Clayton, Victoria, Australia
| | - Stephanie U-Shane Huang
- Centre for Innate Immunity and Infectious Diseases, Department of Molecular and Translational Science, Hudson Institute of Medical Research and Monash University, Clayton, Victoria, Australia
| | - Paul J Hertzog
- Centre for Innate Immunity and Infectious Diseases, Department of Molecular and Translational Science, Hudson Institute of Medical Research and Monash University, Clayton, Victoria, Australia
| |
Collapse
|
21
|
Li J, Jin K, Li M, Mathy NW, Gong AY, Deng S, Martins GA, Sun M, Strauss-Soukup JK, Chen XM. A host cell long noncoding RNA NR_033736 regulates type I interferon-mediated gene transcription and modulates intestinal epithelial anti-Cryptosporidium defense. PLoS Pathog 2021; 17:e1009241. [PMID: 33481946 PMCID: PMC7857606 DOI: 10.1371/journal.ppat.1009241] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 02/03/2021] [Accepted: 12/17/2020] [Indexed: 12/18/2022] Open
Abstract
The gastrointestinal epithelium guides the immune system to differentiate between commensal and pathogenic microbiota, which relies on intimate links with the type I IFN signal pathway. Epithelial cells along the epithelium provide the front line of host defense against pathogen infection in the gastrointestinal tract. Increasing evidence supports the regulatory potential of long noncoding RNAs (lncRNAs) in immune defense but their role in regulating intestinal epithelial antimicrobial responses is still unclear. Cryptosporidium, a protozoan parasite that infects intestinal epithelial cells, is an important opportunistic pathogen in AIDS patients and a common cause of diarrhea in young children in developing countries. Recent advances in Cryptosporidium research have revealed a strong type I IFN response in infected intestinal epithelial cells. We previously identified a panel of host cell lncRNAs that are upregulated in murine intestinal epithelial cells following microbial challenge. One of these lncRNAs, NR_033736, is upregulated in intestinal epithelial cells following Cryptosporidium infection and displays a significant suppressive effect on type I IFN-controlled gene transcription in infected host cells. NR_033736 can be assembled into the ISGF3 complex and suppresses type I IFN-mediated gene transcription. Interestingly, upregulation of NR_033736 itself is triggered by the type I IFN signaling. Moreover, NR_033736 modulates epithelial anti-Cryptosporidium defense. Our data suggest that upregulation of NR_033736 provides negative feedback regulation of type I IFN signaling through suppression of type I IFN-controlled gene transcription, and consequently, contributing to fine-tuning of epithelial innate defense against microbial infection.
Collapse
Affiliation(s)
- Juan Li
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong, China
- Department of Medical Microbiology and Immunology, Creighton University School of Medicine, Omaha, NE, United States of America
| | - Kehua Jin
- Department of Medical Microbiology and Immunology, Creighton University School of Medicine, Omaha, NE, United States of America
- Department of Biochemistry, Hubei University of Science and Technology, Xianning, Hubei, China
| | - Min Li
- Department of Medical Microbiology and Immunology, Creighton University School of Medicine, Omaha, NE, United States of America
| | - Nicholas W. Mathy
- Department of Medical Microbiology and Immunology, Creighton University School of Medicine, Omaha, NE, United States of America
| | - Ai-Yu Gong
- Department of Medical Microbiology and Immunology, Creighton University School of Medicine, Omaha, NE, United States of America
| | - Silu Deng
- Department of Medical Microbiology and Immunology, Creighton University School of Medicine, Omaha, NE, United States of America
| | - Gislaine A. Martins
- Department of Medicine and Biomedical Sciences, Research Division of Immunology Cedars-Sinai Medical Center, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States of America
| | - Mingfei Sun
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong, China
| | - Juliane K. Strauss-Soukup
- Department of Chemistry, Creighton University College of Arts and Sciences, Omaha, NE, United States of America
| | - Xian-Ming Chen
- Department of Medical Microbiology and Immunology, Creighton University School of Medicine, Omaha, NE, United States of America
- * E-mail: ,
| |
Collapse
|
22
|
Wittling MC, Cahalan SR, Levenson EA, Rabin RL. Shared and Unique Features of Human Interferon-Beta and Interferon-Alpha Subtypes. Front Immunol 2021; 11:605673. [PMID: 33542718 PMCID: PMC7850986 DOI: 10.3389/fimmu.2020.605673] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Accepted: 11/18/2020] [Indexed: 12/14/2022] Open
Abstract
Type I interferons (IFN-I) were first discovered as an antiviral factor by Isaacs and Lindenmann in 1957, but they are now known to also modulate innate and adaptive immunity and suppress proliferation of cancer cells. While much has been revealed about IFN-I, it remains a mystery as to why there are 16 different IFN-I gene products, including IFNβ, IFNω, and 12 subtypes of IFNα. Here, we discuss shared and unique aspects of these IFN-I in the context of their evolution, expression patterns, and signaling through their shared heterodimeric receptor. We propose that rather than investigating responses to individual IFN-I, these contexts can serve as an alternative approach toward investigating roles for IFNα subtypes. Finally, we review uses of IFNα and IFNβ as therapeutic agents to suppress chronic viral infections or to treat multiple sclerosis.
Collapse
Affiliation(s)
| | | | | | - Ronald L. Rabin
- Division of Bacterial, Parasitic, and Allergenic Products, Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, United States
| |
Collapse
|
23
|
Mazewski C, Perez RE, Fish EN, Platanias LC. Type I Interferon (IFN)-Regulated Activation of Canonical and Non-Canonical Signaling Pathways. Front Immunol 2020; 11:606456. [PMID: 33329603 PMCID: PMC7719805 DOI: 10.3389/fimmu.2020.606456] [Citation(s) in RCA: 116] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 10/26/2020] [Indexed: 12/12/2022] Open
Abstract
For several decades there has been accumulating evidence implicating type I interferons (IFNs) as key elements of the immune response. Therapeutic approaches incorporating different recombinant type I IFN proteins have been successfully employed to treat a diverse group of diseases with significant and positive outcomes. The biological activities of type I IFNs are consequences of signaling events occurring in the cytoplasm and nucleus of cells. Biochemical events involving JAK/STAT proteins that control transcriptional activation of IFN-stimulated genes (ISGs) were the first to be identified and are referred to as "canonical" signaling. Subsequent identification of JAK/STAT-independent signaling pathways, critical for ISG transcription and/or mRNA translation, are denoted as "non-canonical" or "non-classical" pathways. In this review, we summarize these signaling cascades and discuss recent developments in the field, specifically as they relate to the biological and clinical implications of engagement of both canonical and non-canonical pathways.
Collapse
Affiliation(s)
- Candice Mazewski
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL, United States
- Division of Hematology-Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Ricardo E. Perez
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL, United States
- Division of Hematology-Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Eleanor N. Fish
- Toronto General Hospital Research Institute, University Health Network and Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Leonidas C. Platanias
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL, United States
- Division of Hematology-Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Department of Medicine, Jesse Brown Veterans Affairs Medical Center, Chicago, IL, United States
| |
Collapse
|
24
|
Schreiber G. The Role of Type I Interferons in the Pathogenesis and Treatment of COVID-19. Front Immunol 2020; 11:595739. [PMID: 33117408 PMCID: PMC7561359 DOI: 10.3389/fimmu.2020.595739] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 09/16/2020] [Indexed: 12/16/2022] Open
Abstract
Type I interferons (IFN-I) were first discovered over 60 years ago in a classical experiment by Isaacs and Lindenman, who showed that IFN-Is possess antiviral activity. Later, it became one of the first approved protein drugs using heterologous protein expression systems, which allowed its large-scale production. It has been approved, and widely used in a pleiotropy of diseases, including multiple-sclerosis, hepatitis B and C, and some forms of cancer. Preliminary clinical data has supported its effectiveness against potential pandemic pathogens such as Ebola and SARS. Still, more efficient and specific drugs have taken its place in treating such diseases. The COVID-19 global pandemic has again lifted the status of IFN-Is to become one of the more promising drug candidates, with initial clinical trials showing promising results in reducing the severity and duration of the disease. Although SARS-CoV-2 inhibits the production of IFNβ and thus obstructs the innate immune response to this virus, it is sensitive to the antiviral activity of externally administrated IFN-Is. In this review I discuss the diverse modes of biological actions of IFN-Is and how these are related to biophysical parameters of IFN-I-receptor interaction and cell-type specificity in light of the large variety of binding affinities of the different IFN-I subtypes towards the common interferon receptor. Furthermore, I discuss how these may guide the optimized use IFN-Is in combatting COVID-19.
Collapse
Affiliation(s)
- Gideon Schreiber
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
25
|
Walter KR, Balko JM, Hagan CR. Progesterone receptor promotes degradation of STAT2 to inhibit the interferon response in breast cancer. Oncoimmunology 2020; 9:1758547. [PMID: 32391191 PMCID: PMC7199813 DOI: 10.1080/2162402x.2020.1758547] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 03/30/2020] [Accepted: 04/03/2020] [Indexed: 02/07/2023] Open
Abstract
Type I (IFNα/β) interferon signaling represents a critical transduction pathway involved in recognition and destruction of nascent tumor cells. Downregulation of this pathway to promote a more immunosuppressed microenvironment contributes to the ability of tumor cells to evade the immune system, a known Hallmark of Cancer. The present study investigates the progesterone receptor (PR), which is expressed in the vast majority of breast cancers, and its ability to inhibit efficient interferon signaling in tumor cells. We have shown that PR can block the interferon signaling cascade by promoting ubiquitination and degradation of STAT2. Targeting STAT2 is critical, as we show that it is an essential protein in inducing transcription of interferon-stimulated genes (ISG); shRNA-mediated knockdown of STAT2 severely abrogates the interferon response in vitro. Importantly, we were able to reverse this inhibition by treating with onapristone, an anti-progestin currently being investigated in breast cancer clinical trials. Additionally, we have found that an interferon-related gene signature (composed of ISGs) is inversely correlated with PR expression in human tumors. We speculate that PR inhibition of interferon signaling may contribute to creating an immunosuppressed microenvironment and reversal of this through anti-progestins may present a novel therapeutic target to promote immune activity within the tumor.
Collapse
Affiliation(s)
- Katherine R Walter
- Department of Biochemistry and Molecular Biology, Department of Cancer Biology, University of Kansas Cancer Center, University of Kansas Medical Center, Kansas City, KS, USA
| | - Justin M Balko
- Departments of Medicine and Pathology, Microbiology, and Immunology, and Breast Cancer Research Program, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Christy R Hagan
- Department of Biochemistry and Molecular Biology, Department of Cancer Biology, University of Kansas Cancer Center, University of Kansas Medical Center, Kansas City, KS, USA
| |
Collapse
|