1
|
Khan O, Tanuj GN, Choravada DR, Rajak KK, Chandra Sekar S, Lingaraju MC, Dhara SK, Gupta PK, Mishra BP, Dutt T, Gandham RK, Sajjanar B. N 6-Methyladenosine RNA Modification in Host Cells Regulates Peste des Petits Ruminants Virus Replication. Microbiol Spectr 2023; 11:e0266622. [PMID: 36786625 PMCID: PMC10101086 DOI: 10.1128/spectrum.02666-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 12/09/2022] [Indexed: 02/15/2023] Open
Abstract
N6-methyladenosine (m6A) modification is a major RNA epigenetic regulatory mechanism. The dynamics of m6A levels in viral genomic RNA and their mRNAs have been shown to have either pro- or antiviral functions, and therefore, m6A modifications influence virus-host interactions. Currently, no reports are available on the effect of m6A modifications in the genome of Peste des petits ruminants virus (PPRV). In the present study, we took PPRV as a model for nonsegmented negative-sense single-stranded RNA viruses and elucidate the role of m6A modification on viral replication. We detected m6A-modified sites in the mRNA of the virus and host cells, as well as the PPRV RNA genome. Further, it was found that the level of m6A modification in host cells alters the viral gene expression. Knockdown of the METTL3 and FTO genes (encoding the m6A RNA modification writer and eraser proteins, respectively) results in alterations of the levels of m6A RNA modifications in the host cells. Experiments using these genetically modified clones of host cells infected with PPRV revealed that both higher and lower m6A RNA modification in the host cells negatively affect PPRV replication. We found that m6A-modified viral transcripts had better stability and translation efficiency compared to the unmodified mRNA. Altogether, from these data, we conclude that the m6A modification of RNA regulates PPRV replication. These findings contribute toward a way forward for developing novel antiviral strategies against PPRV by modulating the dynamics of host m6A RNA modification. IMPORTANCE Peste des petits ruminants virus (PPRV) causes a severe disease in sheep and goats. PPRV infection is a major problem, causing significant economic losses to small ruminant farmers in regions of endemicity. N6-methyladenosine (m6A) is an important RNA modification involved in various functions, including virus-host interactions. In the present study, we used stable clones of Vero cells, having knocked down the genes encoding proteins involved in dynamic changes of the levels of m6A modification. We also used small-molecule compounds that interfere with m6A methylation. This resulted in a platform of host cells with various degrees of m6A RNA modification. The host cells with these different microenvironments were useful for studying the effect of m6A RNA modification on the expression of viral genes and viral replication. The results pinpoint the level of m6A modifications that facilitate the maximum replication of PPRV. These findings will be useful in increasing the virus titers in cultured cells needed for the economical development of the vaccine. Furthermore, the findings have guiding significance for the development of novel antiviral strategies for limiting PPRV replication in infected animals.
Collapse
Affiliation(s)
- Owais Khan
- Veterinary Biotechnology Division, ICAR—Indian Veterinary Research Institute, Izatnagar Bareilly, Uttar Pradesh, India
| | - Gunturu Narasimha Tanuj
- Veterinary Biotechnology Division, ICAR—Indian Veterinary Research Institute, Izatnagar Bareilly, Uttar Pradesh, India
| | - Divyaprakash R. Choravada
- Veterinary Biotechnology Division, ICAR—Indian Veterinary Research Institute, Izatnagar Bareilly, Uttar Pradesh, India
| | - Kaushal Kishore Rajak
- Biological Products Division, ICAR—Indian Veterinary Research Institute, Izatnagar Bareilly, Uttar Pradesh, India
| | - S Chandra Sekar
- Division of Virology, ICAR—Indian Veterinary Research Institute, Mukteshwar, Uttarakhand, India
| | - Madhu Cholenahalli Lingaraju
- Pharmacology and Toxicology Division, ICAR—Indian Veterinary Research Institute, Izatnagar Bareilly, Uttar Pradesh, India
| | - Sujoy K. Dhara
- Veterinary Biotechnology Division, ICAR—Indian Veterinary Research Institute, Izatnagar Bareilly, Uttar Pradesh, India
| | - Praveen K. Gupta
- Veterinary Biotechnology Division, ICAR—Indian Veterinary Research Institute, Izatnagar Bareilly, Uttar Pradesh, India
| | | | - Triveni Dutt
- Veterinary Biotechnology Division, ICAR—Indian Veterinary Research Institute, Izatnagar Bareilly, Uttar Pradesh, India
| | - Ravi Kumar Gandham
- Veterinary Biotechnology Division, ICAR—Indian Veterinary Research Institute, Izatnagar Bareilly, Uttar Pradesh, India
| | - Basavaraj Sajjanar
- Veterinary Biotechnology Division, ICAR—Indian Veterinary Research Institute, Izatnagar Bareilly, Uttar Pradesh, India
| |
Collapse
|
2
|
Crespo R, Rao S, Mahmoudi T. HibeRNAtion: HIV-1 RNA Metabolism and Viral Latency. Front Cell Infect Microbiol 2022; 12:855092. [PMID: 35774399 PMCID: PMC9237370 DOI: 10.3389/fcimb.2022.855092] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 05/10/2022] [Indexed: 01/12/2023] Open
Abstract
HIV-1 infection remains non-curative due to the latent reservoir, primarily a small pool of resting memory CD4+ T cells bearing replication-competent provirus. Pharmacological reversal of HIV-1 latency followed by intrinsic or extrinsic cell killing has been proposed as a promising strategy to target and eliminate HIV-1 viral reservoirs. Latency reversing agents have been extensively studied for their role in reactivating HIV-1 transcription in vivo, although no permanent reduction of the viral reservoir has been observed thus far. This is partly due to the complex nature of latency, which involves strict intrinsic regulation at multiple levels at transcription and RNA processing. Still, the molecular mechanisms that control HIV-1 latency establishment and maintenance have been almost exclusively studied in the context of chromatin remodeling, transcription initiation and elongation and most known LRAs target LTR-driven transcription by manipulating these. RNA metabolism is a largely understudies but critical mechanistic step in HIV-1 gene expression and latency. In this review we provide an update on current knowledge on the role of RNA processing mechanisms in viral gene expression and latency and speculate on the possible manipulation of these pathways as a therapeutic target for future cure studies.
Collapse
Affiliation(s)
- Raquel Crespo
- Department of Biochemistry, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Shringar Rao
- Department of Biochemistry, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Tokameh Mahmoudi
- Department of Biochemistry, Erasmus University Medical Center, Rotterdam, Netherlands
- Department of Pathology, Erasmus University Medical Center, Rotterdam, Netherlands
- Department of Urology, Erasmus University Medical Center, Rotterdam, Netherlands
- *Correspondence: Tokameh Mahmoudi,
| |
Collapse
|
3
|
Estevez M, Li R, Paul B, Daneshvar K, Mullen AC, Romerio F, Addepalli B. Identification and mapping of post-transcriptional modifications on the HIV-1 antisense transcript Ast in human cells. RNA (NEW YORK, N.Y.) 2022; 28:697-710. [PMID: 35168996 PMCID: PMC9014878 DOI: 10.1261/rna.079043.121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 01/29/2022] [Indexed: 05/03/2023]
Abstract
The human immunodeficiency virus type 1 (HIV-1) encodes multiple RNA molecules. Transcripts that originate from the proviral 5' long terminal repeat (LTR) function as messenger RNAs for the expression of 16 different mature viral proteins. In addition, HIV-1 expresses an antisense transcript (Ast) from the 3'LTR, which has both protein-coding and noncoding properties. While the mechanisms that regulate the coding and noncoding activities of Ast remain unknown, post-transcriptional modifications are known to influence RNA stability, interaction with protein partners, and translation capacity. Here, we report the nucleoside modification profile of Ast obtained through liquid chromatography coupled with mass spectrometry (LC-MS) analysis. The epitranscriptome includes a limited set of modified nucleosides but predominantly ribose methylations. A number of these modifications were mapped to specific positions of the sequence through RNA modification mapping procedures. The presence of modifications on Ast is consistent with the RNA-modifying enzymes interacting with Ast The identification and mapping of Ast post-transcriptional modifications is expected to elucidate the mechanisms through which this versatile molecule can carry out diverse activities in different cell compartments. Manipulation of post-transcriptional modifications on the Ast RNA may have therapeutic implications.
Collapse
Affiliation(s)
- Mariana Estevez
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221, USA
| | - Rui Li
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Biplab Paul
- Massachusetts General Hospital, Boston, Massachusetts 02114, USA
| | - Kaveh Daneshvar
- Massachusetts General Hospital, Boston, Massachusetts 02114, USA
| | - Alan C Mullen
- Massachusetts General Hospital, Boston, Massachusetts 02114, USA
| | - Fabio Romerio
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | |
Collapse
|
4
|
Izadpanah A, Rappaport J, Datta PK. Epitranscriptomics of SARS-CoV-2 Infection. Front Cell Dev Biol 2022; 10:849298. [PMID: 35465335 PMCID: PMC9032796 DOI: 10.3389/fcell.2022.849298] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 03/01/2022] [Indexed: 11/30/2022] Open
Abstract
Recent studies on the epitranscriptomic code of SARS-CoV-2 infection have discovered various RNA modifications, such as N6-methyladenosine (m6A), pseudouridine (Ψ), and 2′-O-methylation (Nm). The effects of RNA methylation on SARS-CoV-2 replication and the enzymes involved in this mechanism are emerging. In this review, we summarize the advances in this emerging field and discuss the role of various players such as readers, writers, and erasers in m6A RNA methylation, the role of pseudouridine synthase one and seven in epitranscriptomic modification Ψ, an isomer of uridine, and role of nsp16/nsp10 heterodimer in 2′-O-methylation of the ribose sugar of the first nucleotide of SARS-CoV-2 mRNA. We also discuss RNA expression levels of various enzymes involved in RNA modifications in blood cells of SARS-CoV-2 infected individuals and their impact on host mRNA modification. In conclusion, these observations will facilitate the development of novel strategies and therapeutics for targeting RNA modification of SARS-CoV-2 RNA to control SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Amin Izadpanah
- Division of Comparative Pathology, Tulane National Primate Center, Covington, LA, United States
| | - Jay Rappaport
- Division of Comparative Pathology, Tulane National Primate Center, Covington, LA, United States
- Department of Microbiology and Immunology, School of Medicine, Tulane University, New Orleans, LA, United States
| | - Prasun K. Datta
- Division of Comparative Pathology, Tulane National Primate Center, Covington, LA, United States
- Department of Microbiology and Immunology, School of Medicine, Tulane University, New Orleans, LA, United States
- *Correspondence: Prasun K. Datta,
| |
Collapse
|
5
|
Li J, Boix E. Host Defence RNases as Antiviral Agents against Enveloped Single Stranded RNA Viruses. Virulence 2021; 12:444-469. [PMID: 33660566 PMCID: PMC7939569 DOI: 10.1080/21505594.2021.1871823] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 12/26/2020] [Accepted: 12/30/2020] [Indexed: 02/06/2023] Open
Abstract
Owing to the recent outbreak of Coronavirus Disease of 2019 (COVID-19), it is urgent to develop effective and safe drugs to treat the present pandemic and prevent other viral infections that might come in the future. Proteins from our own innate immune system can serve as ideal sources of novel drug candidates thanks to their safety and immune regulation versatility. Some host defense RNases equipped with antiviral activity have been reported over time. Here, we try to summarize the currently available information on human RNases that can target viral pathogens, with special focus on enveloped single-stranded RNA (ssRNA) viruses. Overall, host RNases can fight viruses by a combined multifaceted strategy, including the enzymatic target of the viral genome, recognition of virus unique patterns, immune modulation, control of stress granule formation, and induction of autophagy/apoptosis pathways. The review also includes a detailed description of representative enveloped ssRNA viruses and their strategies to interact with the host and evade immune recognition. For comparative purposes, we also provide an exhaustive revision of the currently approved or experimental antiviral drugs. Finally, we sum up the current perspectives of drug development to achieve successful eradication of viral infections.
Collapse
Affiliation(s)
- Jiarui Li
- Dpt. Of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autònoma De Barcelona, Spain
| | - Ester Boix
- Dpt. Of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autònoma De Barcelona, Spain
| |
Collapse
|
6
|
Wang X, Ma C, Rodríguez Labrada R, Qin Z, Xu T, He Z, Wei Y. Recent advances in lentiviral vectors for gene therapy. SCIENCE CHINA-LIFE SCIENCES 2021; 64:1842-1857. [PMID: 34708326 DOI: 10.1007/s11427-021-1952-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 05/19/2021] [Indexed: 02/05/2023]
Abstract
Lentiviral vectors (LVs), derived from human immunodeficiency virus, are powerful tools for modifying the genes of eukaryotic cells such as hematopoietic stem cells and neural cells. With the extensive and in-depth studies on this gene therapy vehicle over the past two decades, LVs have been widely used in both research and clinical trials. For instance, third-generation and self-inactive LVs have been used to introduce a gene with therapeutic potential into the host genome and achieve targeted delivery into specific tissue. When LVs are employed in leukemia, the transduced T cells recognize and kill the tumor B cells; in β-thalassemia, the transduced CD34+ cells express normal β-globin; in adenosine deaminase-deficient severe combined immunodeficiency, the autologous CD34+ cells express adenosine deaminase and realize immune reconstitution. Overall, LVs can perform significant roles in the treatment of primary immunodeficiency diseases, hemoglobinopathies, B cell leukemia, and neurodegenerative diseases. In this review, we discuss the recent developments and therapeutic applications of LVs. The safe and efficient LVs show great promise as a tool for human gene therapy.
Collapse
Affiliation(s)
- Xiaoyu Wang
- Department of Pharmacy, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Cuicui Ma
- Department of Pharmacy, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Roberto Rodríguez Labrada
- Department Clinical Neurophysiology, Centre for the Research and Rehabilitation of Hereditary Ataxias, Holguín, 80100, Cuba
| | - Zhou Qin
- Department of Pharmacy, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Ting Xu
- Department of Pharmacy, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Zhiyao He
- Department of Pharmacy, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China.
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China.
| | - Yuquan Wei
- Department of Pharmacy, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
7
|
Roberts JT, Porman AM, Johnson AM. Identification of m 6A residues at single-nucleotide resolution using eCLIP and an accessible custom analysis pipeline. RNA (NEW YORK, N.Y.) 2021; 27:527-541. [PMID: 33376190 PMCID: PMC7962486 DOI: 10.1261/rna.078543.120] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 12/18/2020] [Indexed: 06/12/2023]
Abstract
Methylation at the N6 position of adenosine (m6A) is one of the most abundant RNA modifications found in eukaryotes; however, accurate detection of specific m6A nucleotides within transcripts has been historically challenging due to m6A and unmodified adenosine having virtually indistinguishable chemical properties. While previous strategies such as methyl-RNA immunoprecipitation and sequencing (MeRIP-seq) have relied on m6A-specific antibodies to isolate RNA fragments containing the modification, these methods do not allow for precise identification of individual m6A residues. More recently, modified cross-linking and immunoprecipitation (CLIP)-based approaches that rely on inducing specific mutations during reverse transcription via UV cross-linking of the anti-m6A antibody to methylated RNA have been used to overcome this limitation. However, the most utilized version of this approach, miCLIP, can be technically challenging to use for achieving high-complexity libraries. Here we present an improved methodology that yields high library complexity and allows for the straightforward identification of individual m6A residues with reliable confidence metrics. Based on enhanced CLIP (eCLIP), our m6A-eCLIP (meCLIP) approach couples the improvements of eCLIP with the inclusion of an input sample and an easy-to-use computational pipeline to allow for precise calling of m6A sites at true single-nucleotide resolution. As the effort to accurately identify m6As in an efficient and straightforward way intensifies, this method is a valuable tool for investigators interested in unraveling the m6A epitranscriptome.
Collapse
Affiliation(s)
- Justin T Roberts
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
- Molecular Biology Graduate Program, University of Colorado-Denver Anschutz Medical Campus, Aurora, Colorado 80045, USA
| | - Allison M Porman
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
| | - Aaron M Johnson
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
- Molecular Biology Graduate Program, University of Colorado-Denver Anschutz Medical Campus, Aurora, Colorado 80045, USA
- RNA Biosciences Initiative, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
| |
Collapse
|
8
|
Barrera A, Olguín V, Vera-Otarola J, López-Lastra M. Cap-independent translation initiation of the unspliced RNA of retroviruses. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2020; 1863:194583. [PMID: 32450258 DOI: 10.1016/j.bbagrm.2020.194583] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 05/12/2020] [Accepted: 05/18/2020] [Indexed: 12/12/2022]
Abstract
Retroviruses are a unique family of RNA viruses that utilize a virally encoded reverse transcriptase (RT) to replicate their genomic RNA (gRNA) through a proviral DNA intermediate. The provirus is permanently integrated into the host cell chromosome and is expressed by the host cell transcription, RNA processing, and translation machinery. Retroviral messenger RNAs (mRNAs) entirely resemble a cellular mRNA as they have a 5'cap structure, 5'untranslated region (UTR), an open reading frame (ORF), 3'UTR, and a 3'poly(A) tail. The primary transcription product interacts with the cellular RNA processing machinery and is spliced, exported to the cytoplasm, and translated. However, a proportion of the pre-mRNA subverts typical RNA processing giving rise to the full-length RNA. In the cytoplasm, the full-length retroviral RNA fulfills a dual role acting as mRNA and as the gRNA. Simple retroviruses generate two pools of full-length RNA, one for each purpose. However, complex retroviruses have a single pool of full-length RNA, which is destined for translation or encapsidation. As for eukaryotic mRNAs, translational control of retroviral protein synthesis is mostly exerted at the step of initiation. Interestingly, some retroviral mRNAs, both simple and complex, use a dual mechanism to initiate protein synthesis, a cap-dependent initiation mechanism, or via internal initiation using an internal ribosome entry site (IRES). In this review, we describe and discuss data regarding the molecular mechanism driving the canonical cap-dependent and IRES-mediated translation initiation for retroviral mRNA, focusing the discussion mainly on the most studied retroviral mRNA, the HIV-1 mRNA.
Collapse
Affiliation(s)
- Aldo Barrera
- Laboratorio de Virología Molecular, Instituto Milenio de Inmunología e Inmunoterapia, Centro de Investigaciones Médicas, Departamento de Enfermedades Infecciosas e Inmunología Pediátrica, Escuela de Medicina, Pontificia Universidad Católica de Chile, Marcoleta 391, Santiago, Chile
| | - Valeria Olguín
- Laboratorio de Virología Molecular, Instituto Milenio de Inmunología e Inmunoterapia, Centro de Investigaciones Médicas, Departamento de Enfermedades Infecciosas e Inmunología Pediátrica, Escuela de Medicina, Pontificia Universidad Católica de Chile, Marcoleta 391, Santiago, Chile
| | - Jorge Vera-Otarola
- Laboratorio de Virología Molecular, Instituto Milenio de Inmunología e Inmunoterapia, Centro de Investigaciones Médicas, Departamento de Enfermedades Infecciosas e Inmunología Pediátrica, Escuela de Medicina, Pontificia Universidad Católica de Chile, Marcoleta 391, Santiago, Chile
| | - Marcelo López-Lastra
- Laboratorio de Virología Molecular, Instituto Milenio de Inmunología e Inmunoterapia, Centro de Investigaciones Médicas, Departamento de Enfermedades Infecciosas e Inmunología Pediátrica, Escuela de Medicina, Pontificia Universidad Católica de Chile, Marcoleta 391, Santiago, Chile.
| |
Collapse
|
9
|
Kong W, Biswas A, Zhou D, Fiches G, Fujinaga K, Santoso N, Zhu J. Nucleolar protein NOP2/NSUN1 suppresses HIV-1 transcription and promotes viral latency by competing with Tat for TAR binding and methylation. PLoS Pathog 2020; 16:e1008430. [PMID: 32176734 PMCID: PMC7098636 DOI: 10.1371/journal.ppat.1008430] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 03/26/2020] [Accepted: 02/24/2020] [Indexed: 01/11/2023] Open
Abstract
Recent efforts have been paid to identify previously unrecognized HIV-1 latency-promoting genes (LPGs) that can potentially be targeted for eradication of HIV-1 latent reservoirs. From our earlier orthologous RNAi screens of host factors regulating HIV-1 replication, we identified that the nucleolar protein NOP2/NSUN1, a m5C RNA methyltransferase (MTase), is an HIV-1 restriction factor. Loss- and gain-of-function analyses confirmed that NOP2 restricts HIV-1 replication. Depletion of NOP2 promotes the reactivation of latently infected HIV-1 proviruses in multiple cell lines as well as primary CD4+ T cells, alone or in combination with latency-reversing agents (LRAs). Mechanistically, NOP2 associates with HIV-1 5' LTR, interacts with HIV-1 TAR RNA by competing with HIV-1 Tat protein, as well as contributes to TAR m5C methylation. RNA MTase catalytic domain (MTD) of NOP2 mediates its competition with Tat and binding with TAR. Overall, these findings verified that NOP2 suppresses HIV-1 transcription and promotes viral latency.
Collapse
Affiliation(s)
- Weili Kong
- Department of Pathology, Ohio State University College of Medicine, Columbus, Ohio, United States of America
- Gladstone Institute of Virology and Immunology, University of California, San Francisco, California, United States of America
| | - Ayan Biswas
- Department of Pathology, Ohio State University College of Medicine, Columbus, Ohio, United States of America
| | - Dawei Zhou
- Department of Pathology, Ohio State University College of Medicine, Columbus, Ohio, United States of America
| | - Guillaume Fiches
- Department of Pathology, Ohio State University College of Medicine, Columbus, Ohio, United States of America
| | - Koh Fujinaga
- Department of Medicine, University of California San Francisco, San Francisco, California, United States of America
| | - Netty Santoso
- Department of Pathology, Ohio State University College of Medicine, Columbus, Ohio, United States of America
| | - Jian Zhu
- Department of Pathology, Ohio State University College of Medicine, Columbus, Ohio, United States of America
| |
Collapse
|