1
|
Catacuzzeno L, Michelucci A, Franciolini F. The crucial decade that ion channels were proven to exist : The vision of Bertil Hille and Clay Armstrong and how it came through. Pflugers Arch 2025; 477:903-917. [PMID: 40261416 DOI: 10.1007/s00424-025-03085-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 03/31/2025] [Accepted: 04/09/2025] [Indexed: 04/24/2025]
Abstract
This retrospective begins with the first recording of the Na+ and K+ currents underlying the action potential in the squid giant axon reported by Hodgkin and Huxley in 1952, which made the question of where ions pass through the membrane more compelling. The notion of channels in the membrane had been around for quite some time but was so vague and contested that even the recording of Na+ and K+ currents through the membrane was not considered sufficient proof of their existence. In fact, Hodgkin and Huxley never referred to ion channels in their papers, only currents and conductances. The word "channel" remained somewhat left out from the scientific debate for almost another two decades, even though its idea was slowly making its way into the minds of discerning scientists. It is precisely this period that the present retrospective focuses on to understand the evolution of the ion channel concept from a speculative functional entity to a physical transmembrane object that serves the efficient and selective passage of ions. In this regard, the fundamental contribution of Bertil Hille and Clay Armstrong in promoting this idea, in the cold attitude, when not open aversion, of much of the scientific community, is fully acknowledged. Mention should also be made of Erwin Neher and Bert Sakmann's patch-clamp technique, which made it possible to directly measure ion currents through individual channels, thus conclusively demonstrating their presence in cell membranes. The retrospective goes on to briefly show how the cloning of ion channels in the 1980s and the first X-ray crystallographic structures at the turn of the century fully confirmed the initial suggestions, and closes by illustrating the relevance of ion channels in biology and medicine.
Collapse
Affiliation(s)
- Luigi Catacuzzeno
- Dipartimento di Chimica Biologia e Biotecnologie, Universita' di Perugia, Perugia, Italy.
| | - Antonio Michelucci
- Dipartimento di Chimica Biologia e Biotecnologie, Universita' di Perugia, Perugia, Italy
| | - Fabio Franciolini
- Dipartimento di Chimica Biologia e Biotecnologie, Universita' di Perugia, Perugia, Italy.
| |
Collapse
|
2
|
Edington AR, Connor OM, Love AC, Marlar-Pavey M, Friedman JR. Functionally conserved inner mitochondrial membrane proteins CCDC51 and Mdm33 demarcate a subset of fission events. J Cell Biol 2025; 224:e202403140. [PMID: 39718510 PMCID: PMC11668171 DOI: 10.1083/jcb.202403140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 10/11/2024] [Accepted: 11/20/2024] [Indexed: 12/25/2024] Open
Abstract
While extensive work has examined the mechanisms of mitochondrial fission, it remains unclear whether internal mitochondrial proteins in metazoans play a direct role in the process. Previously, the yeast inner membrane protein Mdm33 was shown to be required for normal mitochondrial morphology and has been hypothesized to be involved in mitochondrial fission. However, it is unknown whether Mdm33 plays a direct role, and it is not thought to have a mammalian homolog. Here, we use a bioinformatic approach to identify a structural ortholog of Mdm33 in humans, CCDC51 (also called MITOK), whose depletion phenocopies loss of Mdm33. We find that knockdown of CCDC51 also leads to reduced rates of mitochondrial fission. Further, we spatially and temporally resolve Mdm33 and CCDC51 to a subset of mitochondrial fission events. Finally, we show that CCDC51 overexpression promotes its spatial association with Drp1 and induces mitochondrial fragmentation, suggesting it is a positive effector of mitochondrial fission. Together, our data reveal that Mdm33 and CCDC51 are functionally conserved and suggest that internal mitochondrial proteins are directly involved in at least a subset of mitochondrial fission events in human cells.
Collapse
Affiliation(s)
- Alia R. Edington
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Olivia M. Connor
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Abigail C. Love
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Madeleine Marlar-Pavey
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jonathan R. Friedman
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
3
|
Lee Y, Demes-Causse E, Yoo J, Jang SY, Jung S, Jaślan J, Hwang GS, Yoo J, De Angeli A, Lee S. Structural basis for malate-driven, pore lipid-regulated activation of the Arabidopsis vacuolar anion channel ALMT9. Nat Commun 2025; 16:1817. [PMID: 39979303 PMCID: PMC11842843 DOI: 10.1038/s41467-025-56940-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 02/04/2025] [Indexed: 02/22/2025] Open
Abstract
In plant cells, ALMTs are key plasma and vacuolar membrane-localized anion channels regulating plant responses to the environment. Vacuolar ALMTs control anion accumulation in plant cells and, in guard cells, they regulate stomata aperture. The activation of vacuolar ALMTs depends on voltage and cytosolic malate, but the underlying molecular mechanisms remain elusive. Here we report the cryo-EM structures of ALMT9 from Arabidopsis thaliana (AtALMT9), a malate-activated vacuolar anion channel, in plugged and unplugged lipid-bound states. In all these states, membrane lipids interact with the ion conduction pathway of AtALMT9. We identify two unplugged states presenting two distinct pore width profiles. Combining structural and functional analysis we identified conserved residues involved in ion conduction and in the pore lipid interaction. Molecular dynamics simulations revealed a peculiar anion conduction mechanism in AtALMT9. We propose a voltage-dependent activation mechanism based on the competition between pore lipids and malate at the cytosolic entrance of the channel.
Collapse
Affiliation(s)
- Yeongmok Lee
- Department of Biological Sciences, Sungkyunkwan University, Suwon, Republic of Korea
| | - Elsa Demes-Causse
- IPSiM, CNRS, INRAE, Institut Agro, Université Montpellier, Montpellier, France
| | - Jaemin Yoo
- Department of Physics, Sungkyunkwan University, Suwon, Republic of Korea
| | - Seo Young Jang
- Integrated Metabolomics Research Group, Metropolitan Seoul Center, Korea Basic Science Institute, Seoul, Republic of Korea
| | - Seoyeon Jung
- Department of Biological Sciences, Sungkyunkwan University, Suwon, Republic of Korea
| | - Justyna Jaślan
- IPSiM, CNRS, INRAE, Institut Agro, Université Montpellier, Montpellier, France
| | - Geum-Sook Hwang
- Integrated Metabolomics Research Group, Metropolitan Seoul Center, Korea Basic Science Institute, Seoul, Republic of Korea
- College of Pharmacy, Chung-Ang University, Seoul, Republic of Korea
| | - Jejoong Yoo
- Department of Physics, Sungkyunkwan University, Suwon, Republic of Korea
| | - Alexis De Angeli
- IPSiM, CNRS, INRAE, Institut Agro, Université Montpellier, Montpellier, France
| | - Sangho Lee
- Department of Biological Sciences, Sungkyunkwan University, Suwon, Republic of Korea.
- Biomedical Institute for Convergence at SKKU, Sungkyunkwan University, Suwon, Republic of Korea.
- Department of Metabiohealth, Sungkyunkwan University, Suwon, Republic of Korea.
| |
Collapse
|
4
|
Weckel-Dahman H, Carlsen R, Swanson JMJ. Multiscale Responsive Kinetic Modeling: Quantifying Biomolecular Reaction Flux under Varying Electrochemical Conditions. J Chem Theory Comput 2025; 21:374-389. [PMID: 39536322 DOI: 10.1021/acs.jctc.4c00872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Attaining a complete thermodynamic and kinetic characterization for processes involving multiple interconnected rare-event transitions remains a central challenge in molecular biophysics. This challenge is amplified when the process must be understood under a range of reaction conditions. Herein, we present a novel condition-responsive kinetic modeling framework that can combine the strengths of bottom-up rate quantification from multiscale simulations with top-down solution refinement using both equilibrium and nonequilibrium experimental data. Although this framework can be applied to any process, we demonstrate its use for electrochemically driven transport through channels and transporters via the development of electrochemically responsive rates. Using the Cl-/H+ antiporter ClC-ec1 as a model system, we show how optimal and predictive kinetic solutions can be obtained when the solution space is grounded by thermodynamic constraints, seeded through multiscale rate quantification, and further refined with experimental data, such as electrophysiology assays. Turning to the Shaker K+ channel, we demonstrate that optimal solutions and biophysical insights can also be obtained with sufficient experimental data. This multi-pathway method also proves capable of identifying single-pathway dominant channel mechanisms but reveals that competing and off-pathway flux is still essential to replicate experimental findings and to describe concentration-dependent channel rectification.
Collapse
Affiliation(s)
- Hannah Weckel-Dahman
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Ryan Carlsen
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Jessica M J Swanson
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| |
Collapse
|
5
|
Duan X, Zhang C, Wu Y, Ju J, Xu Z, Li X, Liu Y, Ohdah S, Constantin OM, Pan Y, Lu Z, Wang C, Chen X, Gee CE, Nagel G, Hou ST, Gao S, Song K. Suppression of epileptic seizures by transcranial activation of K +-selective channelrhodopsin. Nat Commun 2025; 16:559. [PMID: 39789018 PMCID: PMC11718177 DOI: 10.1038/s41467-025-55818-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 12/31/2024] [Indexed: 01/12/2025] Open
Abstract
Optogenetics is a valuable tool for studying the mechanisms of neurological diseases and is now being developed for therapeutic applications. In rodents and macaques, improved channelrhodopsins have been applied to achieve transcranial optogenetic stimulation. While transcranial photoexcitation of neurons has been achieved, noninvasive optogenetic inhibition for treating hyperexcitability-induced neurological disorders has remained elusive. There is a critical need for effective inhibitory optogenetic tools that are highly light-sensitive and capable of suppressing neuronal activity in deep brain tissue. In this study, we developed a highly sensitive moderately K+-selective channelrhodopsin (HcKCR1-hs) by molecular engineering of the recently discovered Hyphochytrium catenoides kalium (potassium) channelrhodopsin 1. Transcranial activation of HcKCR1-hs significantly prolongs the time to the first seizure, increases survival, and decreases seizure activity in several status epilepticus mouse models. Our approach for transcranial optogenetic inhibition of neural hyperactivity may be adapted for cell type-specific neuromodulation in both basic and preclinical settings.
Collapse
Affiliation(s)
- Xiaodong Duan
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, and Brain Research Center, Department of Neuroscience, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China.
| | - Chong Zhang
- Department of Neurophysiology, Institute of Physiology, University Würzburg, Würzburg, Germany
| | - Yujie Wu
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, and Brain Research Center, Department of Neuroscience, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Jun Ju
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, and Brain Research Center, Department of Neuroscience, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Zhe Xu
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, and Brain Research Center, Department of Neuroscience, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Xuanyi Li
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, and Brain Research Center, Department of Neuroscience, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Yao Liu
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, and Brain Research Center, Department of Neuroscience, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Schugofa Ohdah
- Institute for Synaptic Neuroscience, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Oana M Constantin
- Institute for Synaptic Neuroscience, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Yifan Pan
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, and Brain Research Center, Department of Neuroscience, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Zhonghua Lu
- Research Center for Primate Neuromodulation and Neuroimaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Cheng Wang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Xiaojing Chen
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, and Brain Research Center, Department of Neuroscience, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Christine E Gee
- Institute for Synaptic Neuroscience, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Georg Nagel
- Department of Neurophysiology, Institute of Physiology, University Würzburg, Würzburg, Germany
| | - Sheng-Tao Hou
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, and Brain Research Center, Department of Neuroscience, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China.
| | - Shiqiang Gao
- Department of Neurophysiology, Institute of Physiology, University Würzburg, Würzburg, Germany.
| | - Kun Song
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, and Brain Research Center, Department of Neuroscience, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China.
| |
Collapse
|
6
|
Lee B, White KI, Socolich M, Klureza MA, Henning R, Srajer V, Ranganathan R, Hekstra DR. Direct visualization of electric-field-stimulated ion conduction in a potassium channel. Cell 2025; 188:77-88.e15. [PMID: 39793560 PMCID: PMC11924917 DOI: 10.1016/j.cell.2024.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 02/22/2024] [Accepted: 12/08/2024] [Indexed: 01/13/2025]
Abstract
Understanding protein function would be facilitated by direct, real-time observation of chemical kinetics in the atomic structure. The selectivity filter (SF) of the K+ channel provides an ideal model, catalyzing the dehydration and transport of K+ ions across the cell membrane through a narrow pore. We used a "pump-probe" method called electric-field-stimulated time-resolved X-ray crystallography (EFX) to initiate and observe K+ conduction in the NaK2K channel in both directions on the timescale of the transport process. We observe both known and potentially new features in the high-energy conformations visited along the conduction pathway, including the associated dynamics of protein residues that control selectivity and conduction rate. A single time series of one channel in action shows the orderly appearance of features observed in diverse homologs with diverse methods, arguing for deep conservation of the dynamics underlying the reaction coordinate in this protein family.
Collapse
Affiliation(s)
- BoRam Lee
- Center for Physics of Evolving Systems, Biochemistry & Molecular Biology and the Pritzker School for Molecular Engineering, University of Chicago, Chicago, IL, USA; Modeling and Informatics, Discovery Chemistry, Merck & Co., Inc., South San Francisco, CA, USA
| | - K Ian White
- Department of Molecular and Cellular Physiology and HHMI, Stanford University, Stanford, CA, USA
| | - Michael Socolich
- Center for Physics of Evolving Systems, Biochemistry & Molecular Biology and the Pritzker School for Molecular Engineering, University of Chicago, Chicago, IL, USA
| | - Margaret A Klureza
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | - Robert Henning
- Center for Advanced Radiation Sources, University of Chicago, Chicago, IL, USA
| | - Vukica Srajer
- Center for Advanced Radiation Sources, University of Chicago, Chicago, IL, USA
| | - Rama Ranganathan
- Center for Physics of Evolving Systems, Biochemistry & Molecular Biology and the Pritzker School for Molecular Engineering, University of Chicago, Chicago, IL, USA; Center for Advanced Radiation Sources, University of Chicago, Chicago, IL, USA.
| | - Doeke R Hekstra
- Department of Molecular and Cell Biology and School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
7
|
Rentsch D, Bergs A, Shao J, Elvers N, Ruse C, Seidenthal M, Aoki I, Gottschalk A. Tools and methods for cell ablation and cell inhibition in Caenorhabditis elegans. Genetics 2025; 229:1-48. [PMID: 39110015 PMCID: PMC11708922 DOI: 10.1093/genetics/iyae119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 07/16/2024] [Indexed: 01/11/2025] Open
Abstract
To understand the function of cells such as neurons within an organism, it can be instrumental to inhibit cellular function, or to remove the cell (type) from the organism, and thus to observe the consequences on organismic and/or circuit function and animal behavior. A range of approaches and tools were developed and used over the past few decades that act either constitutively or acutely and reversibly, in systemic or local fashion. These approaches make use of either drugs or genetically encoded tools. Also, there are acutely acting inhibitory tools that require an exogenous trigger like light. Here, we give an overview of such methods developed and used in the nematode Caenorhabditis elegans.
Collapse
Affiliation(s)
- Dennis Rentsch
- Buchmann Institute for Molecular Life Sciences, Goethe University, Max-von-Laue Strasse 15, D-60438 Frankfurt, Germany
- Institute for Biophysical Chemistry, Goethe University, Max-von-Laue Strasse 9, D-60438 Frankfurt, Germany
| | - Amelie Bergs
- Buchmann Institute for Molecular Life Sciences, Goethe University, Max-von-Laue Strasse 15, D-60438 Frankfurt, Germany
- Institute for Biophysical Chemistry, Goethe University, Max-von-Laue Strasse 9, D-60438 Frankfurt, Germany
| | - Jiajie Shao
- Buchmann Institute for Molecular Life Sciences, Goethe University, Max-von-Laue Strasse 15, D-60438 Frankfurt, Germany
- Institute for Biophysical Chemistry, Goethe University, Max-von-Laue Strasse 9, D-60438 Frankfurt, Germany
| | - Nora Elvers
- Buchmann Institute for Molecular Life Sciences, Goethe University, Max-von-Laue Strasse 15, D-60438 Frankfurt, Germany
- Institute for Biophysical Chemistry, Goethe University, Max-von-Laue Strasse 9, D-60438 Frankfurt, Germany
| | - Christiane Ruse
- Buchmann Institute for Molecular Life Sciences, Goethe University, Max-von-Laue Strasse 15, D-60438 Frankfurt, Germany
- Institute for Biophysical Chemistry, Goethe University, Max-von-Laue Strasse 9, D-60438 Frankfurt, Germany
| | - Marius Seidenthal
- Buchmann Institute for Molecular Life Sciences, Goethe University, Max-von-Laue Strasse 15, D-60438 Frankfurt, Germany
- Institute for Biophysical Chemistry, Goethe University, Max-von-Laue Strasse 9, D-60438 Frankfurt, Germany
| | - Ichiro Aoki
- Buchmann Institute for Molecular Life Sciences, Goethe University, Max-von-Laue Strasse 15, D-60438 Frankfurt, Germany
- Institute for Biophysical Chemistry, Goethe University, Max-von-Laue Strasse 9, D-60438 Frankfurt, Germany
| | - Alexander Gottschalk
- Buchmann Institute for Molecular Life Sciences, Goethe University, Max-von-Laue Strasse 15, D-60438 Frankfurt, Germany
- Institute for Biophysical Chemistry, Goethe University, Max-von-Laue Strasse 9, D-60438 Frankfurt, Germany
| |
Collapse
|
8
|
Polakowski M, Panfil M. Quantum features of the transport through ion channels in the soft knock-on model. Phys Biol 2024; 22:016007. [PMID: 39727186 DOI: 10.1088/1478-3975/ad9cde] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 12/10/2024] [Indexed: 12/28/2024]
Abstract
Ion channels are protein structures that facilitate the selective passage of ions across the membrane cells of living organisms. They are known for their high conductance and high selectivity. The precise mechanism between these two seemingly contradicting features is not yet firmly established. One possible candidate is the quantum coherence. In this work we study the quantum model of the soft knock-on conduction using the Lindblad equation taking into account the non-hermiticity of the model. We show that the model exhibits a regime in which high conductance coexists with high coherence. Our findings second the role of quantum effects in the transport properties of the ion channels.
Collapse
Affiliation(s)
- Mateusz Polakowski
- Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland
| | - Miłosz Panfil
- Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland
| |
Collapse
|
9
|
Zhu W, Xu Z, Zhang W, Jia Q, Hao H, Gu Y, Zhao Y. Bioinspired Ion Host with Buried and Consecutive Binding Sites for Controlled Ion Dislocation. JACS AU 2024; 4:4415-4422. [PMID: 39610723 PMCID: PMC11600180 DOI: 10.1021/jacsau.4c00752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 10/01/2024] [Accepted: 10/02/2024] [Indexed: 11/30/2024]
Abstract
This study presents a bioinspired ion host featuring continuous binding sites arranged in a tunnel-like structure, closely resembling the selectivity filter of natural ion channels. Our investigation reveals that ions traverse these sites in a controlled, sequential manner due to the structural constraints, effectively mimicking the ion translocation process observed in natural channels. Unlike systems with open binding sites, our model facilitates sequential ion recognition state transitions, enabled by the deliberate design of the tunnel. Notably, we observe dual ion release kinetics, highlighting the system's capacity to maintain ion balance in complex environments and adapt to changing conditions. Additionally, we demonstrate selective binding of two different ions-a challenging task for systems lacking structured tunnels.
Collapse
Affiliation(s)
- Wenjie Zhu
- Key Laboratory
of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, University
of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai 200032, China
| | - Zhenchuang Xu
- Key Laboratory
of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, University
of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai 200032, China
| | - Wei Zhang
- Key Laboratory
of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, University
of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai 200032, China
| | - Qi Jia
- Key Laboratory
of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, University
of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai 200032, China
| | - Haoliang Hao
- Key Laboratory
of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, University
of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai 200032, China
| | - Yucheng Gu
- Jealott’s
Hill International Research Centre, Syngenta, Bracknell, Berkshire RG42
6EY, U.K.
| | - Yanchuan Zhao
- Key Laboratory
of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, University
of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai 200032, China
| |
Collapse
|
10
|
Andrini O, Ben Soussia I, Tardy P, Walker DS, Peña-Varas C, Ramírez D, Gendrel M, Mercier M, El Mouridi S, Leclercq-Blondel A, González W, Schafer WR, Jospin M, Boulin T. Constitutive sodium permeability in a C. elegans two-pore domain potassium channel. Proc Natl Acad Sci U S A 2024; 121:e2400650121. [PMID: 39405352 PMCID: PMC11513965 DOI: 10.1073/pnas.2400650121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 09/11/2024] [Indexed: 10/30/2024] Open
Abstract
Two-pore domain potassium (K2P) channels play a central role in modulating cellular excitability and neuronal function. The unique structure of the selectivity filter in K2P and other potassium channels determines their ability to allow the selective passage of potassium ions across cell membranes. The nematode C. elegans has one of the largest K2P families, with 47 subunit-coding genes. This remarkable expansion has been accompanied by the evolution of atypical selectivity filter sequences that diverge from the canonical TxGYG motif. Whether and how this sequence variation may impact the function of K2P channels has not been investigated so far. Here, we show that the UNC-58 K2P channel is constitutively permeable to sodium ions and that a cysteine residue in its selectivity filter is responsible for this atypical behavior. Indeed, by performing in vivo electrophysiological recordings and Ca2+ imaging experiments, we demonstrate that UNC-58 has a depolarizing effect in muscles and sensory neurons. Consistently, unc-58 gain-of-function mutants are hypercontracted, unlike the relaxed phenotype observed in hyperactive mutants of many neuromuscular K2P channels. Finally, by combining molecular dynamics simulations with functional studies in Xenopus laevis oocytes, we show that the atypical cysteine residue plays a key role in the unconventional sodium permeability of UNC-58. As predicting the consequences of selectivity filter sequence variations in silico remains a major challenge, our study illustrates how functional experiments are essential to determine the contribution of such unusual potassium channels to the electrical profile of excitable cells.
Collapse
Affiliation(s)
- Olga Andrini
- University Claude Bernard Lyon 1, MeLiS, CNRS UMR 5284, INSERM U1314, Lyon69008, France
| | - Ismail Ben Soussia
- University Claude Bernard Lyon 1, MeLiS, CNRS UMR 5284, INSERM U1314, Lyon69008, France
| | - Philippe Tardy
- University Claude Bernard Lyon 1, MeLiS, CNRS UMR 5284, INSERM U1314, Lyon69008, France
| | - Denise S. Walker
- Neurobiology Division, MRC Laboratory of Molecular Biology, CambridgeCB2 0QH, United Kingdom
| | - Carlos Peña-Varas
- Departamento de Farmacología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepcion4070386, Chile
| | - David Ramírez
- Departamento de Farmacología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepcion4070386, Chile
| | - Marie Gendrel
- Institut de Biologie de l’École Normale Supérieure, École Normale Supérieure, CNRS UMR 8197, INSERM U1024, Université Paris Sciences et Lettres, Paris75005, France
| | - Marine Mercier
- University Claude Bernard Lyon 1, MeLiS, CNRS UMR 5284, INSERM U1314, Lyon69008, France
| | - Sonia El Mouridi
- University Claude Bernard Lyon 1, MeLiS, CNRS UMR 5284, INSERM U1314, Lyon69008, France
| | | | - Wendy González
- Center for Bioinformatics, Simulation and Modelling, University of Talca, Talca3460000, Chile
| | - William R. Schafer
- Neurobiology Division, MRC Laboratory of Molecular Biology, CambridgeCB2 0QH, United Kingdom
- Department of Biology, Katholieke Universiteit Leuven, Leuven3000, Belgium
| | - Maelle Jospin
- University Claude Bernard Lyon 1, MeLiS, CNRS UMR 5284, INSERM U1314, Lyon69008, France
| | - Thomas Boulin
- University Claude Bernard Lyon 1, MeLiS, CNRS UMR 5284, INSERM U1314, Lyon69008, France
| |
Collapse
|
11
|
Volovik MV, Batishchev OV. Viral fingerprints of the ion channel evolution: compromise of complexity and function. J Biomol Struct Dyn 2024:1-20. [PMID: 39365745 DOI: 10.1080/07391102.2024.2411523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 04/29/2024] [Indexed: 10/06/2024]
Abstract
Evolution from precellular supramolecular assemblies to cellular world originated from the ability to make a barrier between the interior of the cell and the outer environment. This step resulted from the possibility to form a membrane, which preserves the cell like a wall of the castle. However, every castle needs gates for trading, i.e. in the case of cell, for controlled exchange of substances. These 'gates' should have the mechanism of opening and closing, guards, entry rules, and so on. Different structures are known to be able to make membrane permeable to various substances, from ions to macromolecules. They are amphipathic peptides, their assemblies, sophisticated membrane channels with numerous transmembrane domains, etc. Upon evolving, cellular world preserved and selected many variants, which, finally, have provided both prokaryotes and eukaryotes with highly selective and regulated ion channels. However, various simpler variants of ion channels are found in viruses. Despite the origin of viruses is still under debates, they have evolved parallelly with the cellular forms of life. Being initial form of the enveloped organisms, reduction of protocells or their escaped parts, viruses might be fingerprints of the evolutionary steps of cellular structures like ion channels. Therefore, viroporins may provide us a necessary information about selection between high functionality and less complex structure in supporting all the requirements for controlled membrane permeability. In this review we tried to elucidate these compromises and show the possible way of the evolution of ion channels, from peptides to complex multi-subunit structures, basing on viral examples.
Collapse
Affiliation(s)
- Marta V Volovik
- Laboratory of Bioelectrochemistry, A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Moscow, Russia
| | - Oleg V Batishchev
- Laboratory of Bioelectrochemistry, A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
12
|
Rana A, Peredkov S, Behrens M, DeBeer S. Probing the Local Environment in Potassium Salts and Potassium-Promoted Catalysts by Potassium Valence-to-Core X-ray Emission Spectroscopy. Inorg Chem 2024; 63:16217-16223. [PMID: 39162299 PMCID: PMC11372750 DOI: 10.1021/acs.inorgchem.4c02069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
Potassium plays an important role in biology as well as a promoter in heterogeneous catalysis. There are, however, limited characterization techniques for potassium available in the literature. This study elucidates the potential of element-selective X-ray emission spectroscopy (XES) for characterizing the coordination environment and the electronic properties of potassium. A series of XES measurements were conducted, primarily focusing on the VtC transition (Kβ2,5) of potassium halides (KCl, KBr, and KI) and oxide-bound potassium salts, including potassium nitrate (KNO3) and potassium carbonate (K2CO3). Across the series of potassium halides, the VtC transition energy is observed to increase, as accurately reproduced by TDDFT calculations. Molecular orbital analysis suggests that the Kβ2,5 transition is primarily derived from halide np contributions, with the primary factor influencing the energy shift being the metal-ligand distances. For oxide ligands, an additional Kβ″ transition appears alongside the Kβ2,5, which is attributed to a low-energy ligand ns, as elucidated by theoretical calculations. Finally, the XES spectra of two potassium-promoted catalysts for ammonia decomposition/synthesis were measured. These spectra show that potassium within the catalyst is distinct from other K salts in the VtC region, which could be promising for understanding the role of potassium as an electronic promoter.
Collapse
Affiliation(s)
- Atanu Rana
- Max Planck Institute for Chemical Energy Conversion, Stiftstraβe 34-36, D-45470 Mülheim an der Ruhr, Germany
| | - Sergey Peredkov
- Max Planck Institute for Chemical Energy Conversion, Stiftstraβe 34-36, D-45470 Mülheim an der Ruhr, Germany
| | - Malte Behrens
- Institute of Inorganic Chemistry, Kiel University, Max-Eyth-Str. 2, 24118 Kiel, Germany
| | - Serena DeBeer
- Max Planck Institute for Chemical Energy Conversion, Stiftstraβe 34-36, D-45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
13
|
Zaki AM, Çınaroğlu SS, Rahman T, Patel S, Biggin PC. Plasticity of the selectivity filter is essential for permeation in lysosomal TPC2 channels. Proc Natl Acad Sci U S A 2024; 121:e2320153121. [PMID: 39074274 PMCID: PMC11317647 DOI: 10.1073/pnas.2320153121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 06/24/2024] [Indexed: 07/31/2024] Open
Abstract
Two-pore channels are pathophysiologically important Na+- and Ca2+-permeable channels expressed in lysosomes and other acidic organelles. Unlike most other ion channels, their permeability is malleable and ligand-tuned such that when gated by the signaling lipid PI(3,5)P2, they are more Na+-selective than when gated by the Ca2+ mobilizing messenger nicotinic acid adenine dinucleotide phosphate. However, the structural basis that underlies such plasticity and single-channel behavior more generally remains poorly understood. A recent Cryo-electron microscopy (cryo-EM) structure of TPC2 bound to PI(3,5)P2 in a proposed open-channel conformation provided an opportunity to address this via molecular dynamics (MD) simulation. To our surprise, simulations designed to compute conductance through this structure revealed almost no Na+ permeation events even at very high transmembrane voltages. However further MD simulations identified a spontaneous transition to a dramatically different conformation of the selectivity filter that involved expansion and a flip in the orientation of two core asparagine residues. This alternative filter conformation was remarkably stable and allowed Na+ to flow through the channel leading to a conductance estimate that was in very good agreement with direct single-channel measurements. Furthermore, this conformation was more permeable for Na+ over Ca2+. Our results have important ramifications not just for understanding the control of ion selectivity in TPC2 channels but also more broadly in terms of how ion channels discriminate ions.
Collapse
Affiliation(s)
- Afroditi-Maria Zaki
- Department of Biochemistry, Structural Bioinformatics and Computational Biochemistry, University of Oxford, OxfordOX1 3QU, United Kingdom
| | - Süleyman Selim Çınaroğlu
- Department of Biochemistry, Structural Bioinformatics and Computational Biochemistry, University of Oxford, OxfordOX1 3QU, United Kingdom
| | - Taufiq Rahman
- Department of Pharmacology, University of Cambridge, CambridgeCB2 1PD, United Kingdom
| | - Sandip Patel
- Department of Cell and Developmental Biology, University College London, LondonWC1E, 6BT, United Kingdom
| | - Philip C. Biggin
- Department of Biochemistry, Structural Bioinformatics and Computational Biochemistry, University of Oxford, OxfordOX1 3QU, United Kingdom
| |
Collapse
|
14
|
Weckel-Dahman H, Carlsen R, Swanson JM. Multiscale Responsive Kinetic Modeling: Quantifying Biomolecular Reaction Flux under Varying Electrochemical Conditions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.01.606205. [PMID: 39131358 PMCID: PMC11312519 DOI: 10.1101/2024.08.01.606205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Attaining a complete thermodynamic and kinetic characterization for processes involving multiple interconnected rare-event transitions remains a central challenge in molecular biophysics. This challenge is amplified when the process must be understood under a range of reaction conditions. Herein, we present a condition-responsive kinetic modeling framework that can combine the strengths of bottom-up rate quantification from multiscale simulations with top-down solution refinement using experimental data. Although this framework can be applied to any process, we demonstrate its use for electrochemically driven transport through channels and transporters. Using the Cl- /H+ antiporter ClC-ec1 as a model system, we show how robust and predictive kinetic solutions can be obtained when the solution space is grounded by thermodynamic constraints, seeded through multiscale rate quantification, and further refined with experimental data, such as electrophysiology assays. Turning to the Shaker K+ channel, we demonstrate that robust solutions and biophysical insights can also be obtained with sufficient experimental data. This multi-pathway method proves capable of identifying single-pathway dominant mechanisms but also highlights that competing and off-pathway flux is still essential to replicate experimental findings and to describe concentration-dependent channel rectification.
Collapse
Affiliation(s)
- Hannah Weckel-Dahman
- Department of Chemistry, University of Utah, Salt Lake City, UT, 84112 – United States of America
| | - Ryan Carlsen
- Department of Chemistry, University of Utah, Salt Lake City, UT, 84112 – United States of America
| | - Jessica M.J. Swanson
- Department of Chemistry, University of Utah, Salt Lake City, UT, 84112 – United States of America
| |
Collapse
|
15
|
Mironenko A, de Groot BL, Kopec W. Selectivity filter mutations shift ion permeation mechanism in potassium channels. PNAS NEXUS 2024; 3:pgae272. [PMID: 39015549 PMCID: PMC11251424 DOI: 10.1093/pnasnexus/pgae272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 06/26/2024] [Indexed: 07/18/2024]
Abstract
Potassium (K+) channels combine high conductance with high ion selectivity. To explain this efficiency, two molecular mechanisms have been proposed. The "direct knock-on" mechanism is defined by water-free K+ permeation and formation of direct ion-ion contacts in the highly conserved selectivity filter (SF). The "soft knock-on" mechanism involves co-permeation of water and separation of K+ by water molecules. With the aim to distinguish between these mechanisms, crystal structures of the KcsA channel with mutations in two SF residues-G77 and T75-were published, where the arrangements of K+ ions and water display canonical soft knock-on configurations. These data were interpreted as evidence of the soft knock-on mechanism in wild-type channels. Here, we test this interpretation using molecular dynamics simulations of KcsA and its mutants. We show that while a strictly water-free direct knock-on permeation is observed in the wild type, conformational changes induced by these mutations lead to distinct ion permeation mechanisms, characterized by co-permeation of K+ and water. These mechanisms are characterized by reduced conductance and impaired potassium selectivity, supporting the importance of full dehydration of potassium ions for the hallmark high conductance and selectivity of K+ channels. In general, we present a case where mutations introduced at the critical points of the permeation pathway in an ion channel drastically change its permeation mechanism in a nonintuitive manner.
Collapse
Affiliation(s)
- Andrei Mironenko
- Computational Biomolecular Dynamics Group, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, Göttingen 37077, Germany
| | - Bert L de Groot
- Computational Biomolecular Dynamics Group, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, Göttingen 37077, Germany
| | - Wojciech Kopec
- Computational Biomolecular Dynamics Group, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, Göttingen 37077, Germany
- Department of Chemistry, Queen Mary University of London, 327 Mile End Road, London E1 4NS, UK
| |
Collapse
|
16
|
Huffer K, Tan XF, Fernández-Mariño AI, Dhingra S, Swartz KJ. Dilation of ion selectivity filters in cation channels. Trends Biochem Sci 2024; 49:417-430. [PMID: 38514273 PMCID: PMC11069442 DOI: 10.1016/j.tibs.2024.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/19/2024] [Accepted: 02/23/2024] [Indexed: 03/23/2024]
Abstract
Ion channels establish the voltage gradient across cellular membranes by providing aqueous pathways for ions to selectively diffuse down their concentration gradients. The selectivity of any given channel for its favored ions has conventionally been viewed as a stable property, and in many cation channels, it is determined by an ion-selectivity filter within the external end of the ion-permeation pathway. In several instances, including voltage-activated K+ (Kv) channels, ATP-activated P2X receptor channels, and transient receptor potential (TRP) channels, the ion-permeation pathways have been proposed to dilate in response to persistent activation, dynamically altering ion permeation. Here, we discuss evidence for dynamic ion selectivity, examples where ion selectivity filters exhibit structural plasticity, and opportunities to fill gaps in our current understanding.
Collapse
Affiliation(s)
- Kate Huffer
- Molecular Physiology and Biophysics Section, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Xiao-Feng Tan
- Molecular Physiology and Biophysics Section, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ana I Fernández-Mariño
- Molecular Physiology and Biophysics Section, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Surbhi Dhingra
- Molecular Physiology and Biophysics Section, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kenton J Swartz
- Molecular Physiology and Biophysics Section, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
17
|
Edington AR, Connor OM, Marlar-Pavey M, Friedman JR. Human CCDC51 and yeast Mdm33 are functionally conserved mitochondrial inner membrane proteins that demarcate a subset of organelle fission events. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.21.586162. [PMID: 38562768 PMCID: PMC10983960 DOI: 10.1101/2024.03.21.586162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Mitochondria are highly dynamic double membrane-bound organelles that exist in a semi-continuous network. Mitochondrial morphology arises from the complex interplay of numerous processes, including opposing fission and fusion dynamics and the formation of highly organized cristae invaginations of the inner membrane. While extensive work has examined the mechanisms of mitochondrial fission, it remains unclear how fission is coordinated across two membrane bilayers and how mitochondrial inner membrane organization is coupled with mitochondrial fission dynamics. Previously, the yeast protein Mdm33 was implicated in facilitating fission by coordinating with inner membrane homeostasis pathways. However, Mdm33 is not conserved outside fungal species and its precise mechanistic role remains unclear. Here, we use a bioinformatic approach to identify a putative structural ortholog of Mdm33 in humans, CCDC51 (also called MITOK). We find that the mitochondrial phenotypes associated with altered CCDC51 levels implicate the protein in mitochondrial fission dynamics. Further, using timelapse microscopy, we spatially and temporally resolve Mdm33 and CCDC51 to a subset of mitochondrial fission events. Finally, we show that CCDC51 can partially rescue yeast Δmdm33 cells, indicating the proteins are functionally analogous. Our data reveal that Mdm33/CCDC51 are conserved mediators of mitochondrial morphology and suggest the proteins play a crucial role in maintaining normal mitochondrial dynamics and organelle homeostasis.
Collapse
Affiliation(s)
- Alia R. Edington
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX
| | - Olivia M. Connor
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX
| | | | - Jonathan R. Friedman
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX
| |
Collapse
|
18
|
Sineshchekov OA, Govorunova EG, Li H, Wang Y, Spudich JL. Channel Gating in Kalium Channelrhodopsin Slow Mutants. J Mol Biol 2024; 436:168298. [PMID: 37802216 PMCID: PMC10932829 DOI: 10.1016/j.jmb.2023.168298] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/14/2023] [Accepted: 09/29/2023] [Indexed: 10/08/2023]
Abstract
Kalium channelrhodopsin 1 from Hyphochytrium catenoides (HcKCR1) is the first discovered natural light-gated ion channel that shows higher selectivity to K+ than to Na+ and therefore is used to silence neurons with light (optogenetics). Replacement of the conserved cysteine residue in the transmembrane helix 3 (Cys110) with alanine or threonine results in a >1,000-fold decrease in the channel closing rate. The phenotype of the corresponding mutants in channelrhodopsin 2 is attributed to breaking of a specific interhelical hydrogen bond (the "DC gate"). Unlike CrChR2 and other ChRs with long distance "DC gates", the HcKCR1 structure does not reveal any hydrogen bonding partners to Cys110, indicating that the mutant phenotype is likely caused by disruption of direct interaction between this residue and the chromophore. In HcKCR1_C110A, fast photochemical conversions corresponding to channel gating were followed by dramatically slower absorption changes. Full recovery of the unphotolyzed state in HcKCR1_C110A was extremely slow with two time constants 5.2 and 70 min. Analysis of the light-minus-dark difference spectra during these slow processes revealed accumulation of at least four spectrally distinct blue light-absorbing photocycle intermediates, L, M1 and M2, and a UV light-absorbing form, typical of bacteriorhodopsin-like channelrhodopsins from cryptophytes. Our results contribute to better understanding of the mechanistic links between the chromophore photochemistry and channel conductance, and provide the basis for using HcKCR1_C110A as an optogenetic tool.
Collapse
Affiliation(s)
- Oleg A Sineshchekov
- Center for Membrane Biology, Department of Biochemistry & Molecular Biology, The University of Texas Health Science Center at Houston McGovern Medical School, Houston, TX 77030, USA
| | - Elena G Govorunova
- Center for Membrane Biology, Department of Biochemistry & Molecular Biology, The University of Texas Health Science Center at Houston McGovern Medical School, Houston, TX 77030, USA
| | - Hai Li
- Center for Membrane Biology, Department of Biochemistry & Molecular Biology, The University of Texas Health Science Center at Houston McGovern Medical School, Houston, TX 77030, USA
| | - Yumei Wang
- Center for Membrane Biology, Department of Biochemistry & Molecular Biology, The University of Texas Health Science Center at Houston McGovern Medical School, Houston, TX 77030, USA
| | - John L Spudich
- Center for Membrane Biology, Department of Biochemistry & Molecular Biology, The University of Texas Health Science Center at Houston McGovern Medical School, Houston, TX 77030, USA.
| |
Collapse
|
19
|
Zhao X, Ding W, Wang H, Wang Y, Liu Y, Li Y, Liu C. Structural Insights and Influence of Terahertz Waves in Midinfrared Region on Kv1.2 Channel Selectivity Filter. ACS OMEGA 2024; 9:9702-9713. [PMID: 38434859 PMCID: PMC10905694 DOI: 10.1021/acsomega.3c09801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/16/2024] [Accepted: 01/23/2024] [Indexed: 03/05/2024]
Abstract
Potassium ion channels are the structural basis for excitation transmission, heartbeat, and other biological processes. The selectivity filter is a critical structural component of potassium ion channels, whose structure is crucial to realizing their function. As biomolecules vibrate and rotate at frequencies in the terahertz band, potassium ion channels are sensitive to terahertz waves. Therefore, it is worthwhile to investigate how the terahertz wave influences the selectivity filter of the potassium channels. In this study, we investigate the structure of the selectivity filter of Kv1.2 potassium ion channels using molecular dynamics simulations. The effect of an electric field on the channel has been examined at four different resonant frequencies of the carbonyl group in SF: 36.75 37.06, 37.68, and 38.2 THz. As indicated by the results, 376GLY appears to be the critical residue in the selectivity filter of the Kv1.2 channel. Its dihedral angle torsion is detrimental to the channel structural stability and the transmembrane movement of potassium ions. 36.75 THz is the resonance frequency of the carbonyl group of 376GLY. Among all four frequencies explored, the applied terahertz electric field of this frequency has the most significant impact on the channel structure, negatively impacting the channel stability and reducing the ion permeability by 20.2% compared to the absence of fields. In this study, we simulate that terahertz waves in the mid-infrared frequency region can significantly alter the structure and function of potassium ion channels and that the effects of terahertz waves differ greatly based on frequency.
Collapse
Affiliation(s)
- Xiaofei Zhao
- Key Laboratory
for Physical
Electronics and Devices of the Ministry of Education, School of Electronic
and Information Engineering, Xi’an
Jiaotong University, Xi’an, Shaanxi 710049, China
| | - Wen Ding
- Key Laboratory
for Physical
Electronics and Devices of the Ministry of Education, School of Electronic
and Information Engineering, Xi’an
Jiaotong University, Xi’an, Shaanxi 710049, China
| | - Hongguang Wang
- Key Laboratory
for Physical
Electronics and Devices of the Ministry of Education, School of Electronic
and Information Engineering, Xi’an
Jiaotong University, Xi’an, Shaanxi 710049, China
| | - Yize Wang
- Key Laboratory
for Physical
Electronics and Devices of the Ministry of Education, School of Electronic
and Information Engineering, Xi’an
Jiaotong University, Xi’an, Shaanxi 710049, China
| | - Yanjiang Liu
- Key Laboratory
for Physical
Electronics and Devices of the Ministry of Education, School of Electronic
and Information Engineering, Xi’an
Jiaotong University, Xi’an, Shaanxi 710049, China
| | - Yongdong Li
- Key Laboratory
for Physical
Electronics and Devices of the Ministry of Education, School of Electronic
and Information Engineering, Xi’an
Jiaotong University, Xi’an, Shaanxi 710049, China
| | - Chunliang Liu
- Key Laboratory
for Physical
Electronics and Devices of the Ministry of Education, School of Electronic
and Information Engineering, Xi’an
Jiaotong University, Xi’an, Shaanxi 710049, China
| |
Collapse
|
20
|
Stevens MJ, Rempe SLB. Insight into the K channel's selectivity from binding of K +, Na + and water to N-methylacetamide. Faraday Discuss 2024; 249:195-209. [PMID: 37846738 DOI: 10.1039/d3fd00110e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2023]
Abstract
In potassium channels that conduct K+ selectively over Na+, which sites are occupied by K+ or water and the mechanism of selectivity are unresolved questions. The combination of the energetics and the constraints imposed by the protein structure yield the selective permeation and occupancy. To gain insight into the combination of structure and energetics, we performed density functional theory (DFT) calculations of multiple N-methyl acetamide (NMA) ligands binding to K+ and Na+, relative to hydrated K+ and Na+. NMA is an analogue of the amino acid backbone and provides the carbonyl binding to the ions that occurs in most binding sites of the K+ channel. Unconstrained optimal structures are obtained through geometry optimization calculations of the NMA ligand binding. The complexes formed by 8 NMA binding to the cations have the O atoms positioned in nearly identical locations as the O atoms in the selectivity filter. The transfer free energies between bulk water and K+ or Na+ bound to 8 NMA are almost identical, implying there is no selectivity by a single site. For water optimized with 8 NMA, binding is weak and O atoms are not positioned as in the K+ channel selectivity filter, suggesting that the ions are much more favored than water. Optimal structures of 8 NMA binding with two cations (K+ or Na+) are stable and have lower binding free energy than the optimal structures with just one cation. However, in the Na+ case, the optimal structure deforms and does not match the K+ channel; that is, two bound Na+ are destabilizing. In contrast, the two K+ structure is stabilized and the selectivity free energy favors K+. Overall, this study shows that binding site occupancy and the mechanism for K+ selectivity involves multiple K+ binding in multiple neighboring layers or sites of the K+ channel selectivity filter.
Collapse
Affiliation(s)
- Mark J Stevens
- Center for Integrated Nanotechnologies, Sandia National Laboratories, Albuquerque, NM 87185, USA.
| | - Susan L B Rempe
- Center for Integrated Nanotechnologies, Sandia National Laboratories, Albuquerque, NM 87185, USA.
| |
Collapse
|
21
|
Ryan M, Gao L, Valiyaveetil FI, Kananenka AA, Zanni MT. Water inside the Selectivity Filter of a K + Ion Channel: Structural Heterogeneity, Picosecond Dynamics, and Hydrogen Bonding. J Am Chem Soc 2024; 146:1543-1553. [PMID: 38181505 PMCID: PMC10797622 DOI: 10.1021/jacs.3c11513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/08/2023] [Accepted: 12/19/2023] [Indexed: 01/07/2024]
Abstract
Water inside biological ion channels regulates the key properties of these proteins, such as selectivity, ion conductance, and gating. In this article, we measure the picosecond spectral diffusion of amide I vibrations of an isotope-labeled KcsA potassium channel using two-dimensional infrared (2D IR) spectroscopy. By combining waiting time (100-2000 fs) 2D IR measurements of the KcsA channel including 13C18O isotope-labeled Val76 and Gly77 residues with molecular dynamics simulations, we elucidated the site-specific dynamics of water and K+ ions inside the selectivity filter of KcsA. We observe inhomogeneous 2D line shapes with extremely slow spectral diffusion. Our simulations quantitatively reproduce the experiments and show that water is the only component with any appreciable dynamics, whereas K+ ions and the protein are essentially static on a picosecond timescale. By analyzing simulated and experimental vibrational frequencies, we find that water in the selectivity filter can be oriented to form hydrogen bonds with adjacent or nonadjacent carbonyl groups with the reorientation timescales being three times slower and comparable to that of water molecules in liquid, respectively. Water molecules can reside in the cavity sufficiently far from carbonyls and behave essentially like "free" gas-phase-like water with fast reorientation times. Remarkably, no interconversion between these configurations was observed on a picosecond timescale. These dynamics are in stark contrast with liquid water, which remains highly dynamic even in the presence of ions at high concentrations.
Collapse
Affiliation(s)
- Matthew
J. Ryan
- Department
of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Lujia Gao
- Department
of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, Oregon 97239, United States
| | - Francis I. Valiyaveetil
- Department
of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, Oregon 97239, United States
| | - Alexei A. Kananenka
- Department
of Physics and Astronomy, University of
Delaware, Newark, Delaware 19716, United States
| | - Martin T. Zanni
- Department
of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
22
|
Asgharpour S, Chi LA, Spehr M, Carloni P, Alfonso-Prieto M. Fluoride Transport and Inhibition Across CLC Transporters. Handb Exp Pharmacol 2024; 283:81-100. [PMID: 36042142 DOI: 10.1007/164_2022_593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The Chloride Channel (CLC) family includes proton-coupled chloride and fluoride transporters. Despite their similar protein architecture, the former exchange two chloride ions for each proton and are inhibited by fluoride, whereas the latter efficiently transport one fluoride in exchange for one proton. The combination of structural, mutagenesis, and functional experiments with molecular simulations has pinpointed several amino acid changes in the permeation pathway that capitalize on the different chemical properties of chloride and fluoride to fine-tune protein function. Here we summarize recent findings on fluoride inhibition and transport in the two prototypical members of the CLC family, the chloride/proton transporter from Escherichia coli (CLC-ec1) and the fluoride/proton transporter from Enterococcus casseliflavus (CLCF-eca).
Collapse
Affiliation(s)
- Somayeh Asgharpour
- Institute for Advanced Simulations IAS-5 and Institute of Neuroscience and Medicine INM-9, Computational Biomedicine, Forschungszentrum Jülich, Jülich, Germany
- Research Training Group 2416 MultiSenses-MultiScales, Institute for Biology II, RWTH Aachen University, Aachen, Germany
| | - L América Chi
- Laboratory for the Design and Development of New Drugs and Biotechnological Innovation, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, Ciudad de México, Mexico
| | - Marc Spehr
- Research Training Group 2416 MultiSenses-MultiScales, Institute for Biology II, RWTH Aachen University, Aachen, Germany
- Department of Chemosensation, Institute for Biology II, RWTH Aachen University, Aachen, Germany
| | - Paolo Carloni
- Institute for Advanced Simulations IAS-5 and Institute of Neuroscience and Medicine INM-9, Computational Biomedicine, Forschungszentrum Jülich, Jülich, Germany.
- Research Training Group 2416 MultiSenses-MultiScales, Institute for Biology II, RWTH Aachen University, Aachen, Germany.
- Department of Physics, RWTH Aachen University, Aachen, Germany.
- JARA Institute Molecular Neuroscience and Neuroimaging (INM-11), Forschungszentrum Jülich, Jülich, Germany.
- JARA-HPC, Forschungszentrum Jülich, Jülich, Germany.
| | - Mercedes Alfonso-Prieto
- Institute for Advanced Simulations IAS-5 and Institute of Neuroscience and Medicine INM-9, Computational Biomedicine, Forschungszentrum Jülich, Jülich, Germany.
- Medical Faculty, Cécile and Oskar Vogt Institute for Brain Research, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
| |
Collapse
|
23
|
Stix R, Tan XF, Bae C, Fernández-Mariño AI, Swartz KJ, Faraldo-Gómez JD. Eukaryotic Kv channel Shaker inactivates through selectivity filter dilation rather than collapse. SCIENCE ADVANCES 2023; 9:eadj5539. [PMID: 38064553 PMCID: PMC10708196 DOI: 10.1126/sciadv.adj5539] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 11/09/2023] [Indexed: 12/18/2023]
Abstract
Eukaryotic voltage-gated K+ channels have been extensively studied, but the structural bases for some of their most salient functional features remain to be established. C-type inactivation, for example, is an auto-inhibitory mechanism that confers temporal resolution to their signal-firing activity. In a recent breakthrough, studies of a mutant of Shaker that is prone to inactivate indicated that this process entails a dilation of the selectivity filter, the narrowest part of the ion conduction pathway. Here, we report an atomic-resolution cryo-electron microscopy structure that demonstrates that the wild-type channel can also adopt this dilated state. All-atom simulations corroborate this conformation is congruent with the electrophysiological characteristics of the C-type inactivated state, namely, residual K+ conductance and altered ion specificity, and help rationalize why inactivation is accelerated or impeded by certain mutations. In summary, this study establishes the molecular basis for an important self-regulatory mechanism in eukaryotic K+ channels, laying a solid foundation for further studies.
Collapse
Affiliation(s)
- Robyn Stix
- Theoretical Molecular Biophysics Laboratory, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
- Department of Biology, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218, USA
| | - Xiao-Feng Tan
- Molecular Physiology and Biophysics Section, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Chanhyung Bae
- Molecular Physiology and Biophysics Section, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ana I. Fernández-Mariño
- Molecular Physiology and Biophysics Section, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kenton J. Swartz
- Molecular Physiology and Biophysics Section, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - José D. Faraldo-Gómez
- Theoretical Molecular Biophysics Laboratory, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
24
|
Liu C, Xue L, Song C. Calcium binding and permeation in TRPV channels: Insights from molecular dynamics simulations. J Gen Physiol 2023; 155:e202213261. [PMID: 37728593 PMCID: PMC10510737 DOI: 10.1085/jgp.202213261] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 05/21/2023] [Accepted: 09/06/2023] [Indexed: 09/21/2023] Open
Abstract
Some calcium channels selectively permeate Ca2+, despite the high concentration of monovalent ions in the surrounding environment, which is essential for many physiological processes. Without atomistic and dynamical ion permeation details, the underlying mechanism of Ca2+ selectivity has long been an intensively studied, yet controversial, topic. This study takes advantage of the homologous Ca2+-selective TRPV6 and non-selective TRPV1 and utilizes the recently solved open-state structures and a newly developed multisite calcium model to investigate the ion binding and permeation features in TRPV channels by molecular dynamics simulations. Our results revealed that the open-state TRPV6 and TRPV1 show distinct ion binding patterns in the selectivity filter, which lead to different ion permeation features. Two Ca2+ ions simultaneously bind to the selectivity filter of TRPV6 compared with only one Ca2+ in the case of TRPV1. Multiple Ca2+ binding at the selectivity filter of TRPV6 permeated in a concerted manner, which could efficiently block the permeation of Na+. Cations of various valences differentiate between the binding sites at the entrance of the selectivity filter in TRPV6. Ca2+ preferentially binds to the central site with a higher probability of permeation, repelling Na+ to a peripheral site. Therefore, we believe that ion binding competition at the selectivity filter of calcium channels, including the binding strength and number of binding sites, determines Ca2+ selectivity under physiological conditions.
Collapse
Affiliation(s)
- Chunhong Liu
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Lingfeng Xue
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Chen Song
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| |
Collapse
|
25
|
Li J, Du L, Kong X, Wu J, Lu D, Jiang L, Guo W. Designing artificial ion channels with strict K +/Na + selectivity toward next-generation electric-eel-mimetic ionic power generation. Natl Sci Rev 2023; 10:nwad260. [PMID: 37954195 PMCID: PMC10632797 DOI: 10.1093/nsr/nwad260] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 09/03/2023] [Accepted: 09/27/2023] [Indexed: 11/14/2023] Open
Abstract
A biological potassium channel is >1000 times more permeable to K+ than to Na+ and exhibits a giant permeation rate of ∼108 ions/s. It is a great challenge to construct artificial potassium channels with such high selectivity and ion conduction rate. Herein, we unveil a long-overlooked structural feature that underpins the ultra-high K+/Na+ selectivity. By carrying out massive molecular dynamics simulation for ion transport through carbonyl-oxygen-modified bi-layer graphene nanopores, we find that the twisted carbonyl rings enable strict potassium selectivity with a dynamic K+/Na+ selectivity ratio of 1295 and a K+ conduction rate of 3.5 × 107 ions/s, approaching those of the biological counterparts. Intriguingly, atomic trajectories of K+ permeation events suggest a dual-ion transport mode, i.e. two like-charged potassium ions are successively captured by the nanopores in the graphene bi-layer and are interconnected by sharing one or two interlayer water molecules. The dual-ion behavior allows rapid release of the exiting potassium ion via a soft knock-on mechanism, which has previously been found only in biological ion channels. As a proof-of-concept utilization of this discovery, we propose a novel way for ionic power generation by mixing KCl and NaCl solutions through the bi-layer graphene nanopores, termed potassium-permselectivity enabled osmotic power generation (PoPee-OPG). Theoretically, the biomimetic device achieves a very high power density of >1000 W/m2 with graphene sheets of <1% porosity. This study provides a blueprint for artificial potassium channels and thus paves the way toward next-generation electric-eel-mimetic ionic power generation.
Collapse
Affiliation(s)
- Jipeng Li
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Materials Science and Engineering, Hainan University, Haikou570228, China
| | - Linhan Du
- Department of Chemical Engineering, Tsinghua University, Beijing100084, China
| | - Xian Kong
- South China Advanced Institute for Soft Matter Science and Technology, Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, School of Emergent Soft Matter, South China University of Technology, Guangzhou510640, China
| | - Jianzhong Wu
- Department of Chemical and Environmental Engineering, University of California, Riverside, CA92521, USA
| | - Diannan Lu
- Department of Chemical Engineering, Tsinghua University, Beijing100084, China
| | - Lei Jiang
- Research Institute for Frontier Science, Beihang University, Beijing100191, China
| | - Wei Guo
- Research Institute for Frontier Science, Beihang University, Beijing100191, China
- Center for Quantum Physics and Intelligent Sciences, Department of Physics, Capital Normal University, Beijing100048, China
| |
Collapse
|
26
|
Ryan MJ, Gao L, Valiyaveetil FI, Kananenka AA, Zanni MT. Water inside the selectivity filter of a K + ion channel: structural heterogeneity, picosecond dynamics, and hydrogen-bonding. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.16.567415. [PMID: 38014355 PMCID: PMC10680850 DOI: 10.1101/2023.11.16.567415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Water inside biological ion channels regulates the key properties of these proteins such as selectivity, ion conductance, and gating. In this Article we measure the picosecond spectral diffusion of amide I vibrations of an isotope labeled KcsA potassium channel using two-dimensional infrared (2D IR) spectroscopy. By combining waiting time (100 - 2000 fs) 2D IR measurements of the KcsA channel including 13C18O isotope labeled Val76 and Gly77 residues with molecular dynamics simulations, we elucidated the site-specific dynamics of water and K+ ions inside the selectivity filter of KcsA. We observe inhomogeneous 2D lineshapes with extremely slow spectral diffusion. Our simulations quantitatively reproduce the experiments and show that water is the only component with any appreciable dynamics, whereas K+ ions and the protein are essentially static on a picosecond timescale. By analyzing simulated and experimental vibrational frequencies, we find that water in the selectivity filter can be oriented to form hydrogen bonds with adjacent, or non-adjacent carbonyl groups with the reorientation timescales being three times slower and comparable to that of water molecules in liquid, respectively. Water molecules can reside in the cavity sufficiently far from carbonyls and behave essentially like "free" gas-phase-like water with fast reorientation times. Remarkably, no interconversion between these configurations were observed on a picosecond timescale. These dynamics are in stark contrast with liquid water that remains highly dynamic even in the presence of ions at high concentrations.
Collapse
Affiliation(s)
- Matthew J. Ryan
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Lujia Gao
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, OR 97239, USA
| | - Francis I. Valiyaveetil
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, OR 97239, USA
| | - Alexei A. Kananenka
- Department of Physics and Astronomy, University of Delaware, Newark, DE 19716, USA
| | - Martin T. Zanni
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
27
|
Wawrzkiewicz-Jałowiecka A, Fuliński A. Brownian Aging as One of the Mechanistic Components That Shape the Single-Channel Ionic Currents through Biological and Synthetic Membranes. MEMBRANES 2023; 13:879. [PMID: 37999365 PMCID: PMC10673163 DOI: 10.3390/membranes13110879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/26/2023] [Accepted: 11/08/2023] [Indexed: 11/25/2023]
Abstract
Semipermeable membranes enable the separation of a given system from its environment. In biological terms, they are responsible for cells' identity. In turn, the functioning of ion channels is crucial for the control of ionic fluxes across the membranes and, consequently, for the exchange of chemical and electrical signals. This paper presents a model and simulations of currents through ionic nanochannels in an attempt to better understand the physical mechanism(s) of open/closed (O/C) sequences, i.e., random interruptions of ionic flows through channels observed in all known biochannels and in some synthetic nanopores. We investigate whether aging, i.e., the changes in Brownian motion characteristics with the lapse of time, may be at least one of the sources of the O/C sequences (in addition to the gating machinery in biochannels). The simulations based on the approximated nanostructure of ion channels confirm this postulation. The results also show the possibility of changing the O/C characteristics through an appropriate alteration of the channel surroundings. This observation may be valuable in technical uses of nanochannels in synthetic membranes and allow for a better understanding of the reason for the differences between the biochannels' activity in diverse biological membranes. Proposals of experimental verification of this aging O/C hypothesis are also presented.
Collapse
Affiliation(s)
- Agata Wawrzkiewicz-Jałowiecka
- Department of Physical Chemistry and Technology of Polymers, Silesian University of Technology, Strzody 9, 44-100 Gliwice, Poland
| | - Andrzej Fuliński
- Institute of Theoretical Physics, Jagiellonian University, Łojasiewicza 11, 30-348 Kraków, Poland
| |
Collapse
|
28
|
Ryan M, Gao L, Valiyaveetil FI, Zanni MT, Kananenka AA. Probing Ion Configurations in the KcsA Selectivity Filter with Single-Isotope Labels and 2D IR Spectroscopy. J Am Chem Soc 2023; 145:18529-18537. [PMID: 37578394 PMCID: PMC10450685 DOI: 10.1021/jacs.3c05339] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Indexed: 08/15/2023]
Abstract
The potassium ion (K+) configurations of the selectivity filter of the KcsA ion channel protein are investigated with two-dimensional infrared (2D IR) spectroscopy of amide I vibrations. Single 13C-18O isotope labels are used, for the first time, to selectively probe the S1/S2 or S2/S3 binding sites in the selectivity filter. These binding sites have the largest differences in ion occupancy in two competing K+ transport mechanisms: soft-knock and hard-knock. According to the former, water molecules alternate between K+ ions in the selectivity filter while the latter assumes that K+ ions occupy the adjacent sites. Molecular dynamics simulations and computational spectroscopy are employed to interpret experimental 2D IR spectra. We find that in the closed conductive state of the KcsA channel, K+ ions do not occupy adjacent binding sites. The experimental data is consistent with simulated 2D IR spectra of soft-knock ion configurations. In contrast, the simulated spectra for the hard-knock ion configurations do not reproduce the experimental results. 2D IR spectra of the hard-knock mechanism have lower frequencies, homogeneous 2D lineshapes, and multiple peaks. In contrast, ion configurations of the soft-knock model produce 2D IR spectra with a single peak at a higher frequency and inhomogeneous lineshape. We conclude that under equilibrium conditions, in the absence of transmembrane voltage, both water and K+ ions occupy the selectivity filter of the KcsA channel in the closed conductive state. The ion configuration is central to the mechanism of ion transport through potassium channels.
Collapse
Affiliation(s)
- Matthew
J. Ryan
- Department
of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Lujia Gao
- Department
of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, Oregon 97239, United States
| | - Francis I. Valiyaveetil
- Department
of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, Oregon 97239, United States
| | - Martin T. Zanni
- Department
of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Alexei A. Kananenka
- Department
of Physics and Astronomy, University of
Delaware, Newark, Delaware 19716, United States
| |
Collapse
|
29
|
Kopec W, Thomson AS, de Groot BL, Rothberg BS. Interactions between selectivity filter and pore helix control filter gating in the MthK channel. J Gen Physiol 2023; 155:e202213166. [PMID: 37318452 PMCID: PMC10274084 DOI: 10.1085/jgp.202213166] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 01/13/2023] [Accepted: 05/31/2023] [Indexed: 06/16/2023] Open
Abstract
K+ channel activity can be limited by C-type inactivation, which is likely initiated in part by dissociation of K+ ions from the selectivity filter and modulated by the side chains that surround it. While crystallographic and computational studies have linked inactivation to a "collapsed" selectivity filter conformation in the KcsA channel, the structural basis for selectivity filter gating in other K+ channels is less clear. Here, we combined electrophysiological recordings with molecular dynamics simulations, to study selectivity filter gating in the model potassium channel MthK and its V55E mutant (analogous to KcsA E71) in the pore-helix. We found that MthK V55E has a lower open probability than the WT channel, due to decreased stability of the open state, as well as a lower unitary conductance. Simulations account for both of these variables on the atomistic scale, showing that ion permeation in V55E is altered by two distinct orientations of the E55 side chain. In the "vertical" orientation, in which E55 forms a hydrogen bond with D64 (as in KcsA WT channels), the filter displays reduced conductance compared to MthK WT. In contrast, in the "horizontal" orientation, K+ conductance is closer to that of MthK WT; although selectivity filter stability is lowered, resulting in more frequent inactivation. Surprisingly, inactivation in MthK WT and V55E is associated with a widening of the selectivity filter, unlike what is observed for KcsA and reminisces recent structures of inactivated channels, suggesting a conserved inactivation pathway across the potassium channel family.
Collapse
Affiliation(s)
- Wojciech Kopec
- Computational Biomolecular Dynamics Group, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Andrew S. Thomson
- Department of Medical Genetics and Molecular Biochemistry, Temple University Lewis Katz School of Medicine, Philadelphia, PA, USA
| | - Bert L. de Groot
- Computational Biomolecular Dynamics Group, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Brad S. Rothberg
- Department of Medical Genetics and Molecular Biochemistry, Temple University Lewis Katz School of Medicine, Philadelphia, PA, USA
| |
Collapse
|
30
|
Morizumi T, Kim K, Li H, Govorunova EG, Sineshchekov OA, Wang Y, Zheng L, Bertalan É, Bondar AN, Askari A, Brown LS, Spudich JL, Ernst OP. Structures of channelrhodopsin paralogs in peptidiscs explain their contrasting K + and Na + selectivities. Nat Commun 2023; 14:4365. [PMID: 37474513 PMCID: PMC10359266 DOI: 10.1038/s41467-023-40041-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 07/07/2023] [Indexed: 07/22/2023] Open
Abstract
Kalium channelrhodopsin 1 from Hyphochytrium catenoides (HcKCR1) is a light-gated channel used for optogenetic silencing of mammalian neurons. It selects K+ over Na+ in the absence of the canonical tetrameric K+ selectivity filter found universally in voltage- and ligand-gated channels. The genome of H. catenoides also encodes a highly homologous cation channelrhodopsin (HcCCR), a Na+ channel with >100-fold larger Na+ to K+ permeability ratio. Here, we use cryo-electron microscopy to determine atomic structures of these two channels embedded in peptidiscs to elucidate structural foundations of their dramatically different cation selectivity. Together with structure-guided mutagenesis, we show that K+ versus Na+ selectivity is determined at two distinct sites on the putative ion conduction pathway: in a patch of critical residues in the intracellular segment (Leu69/Phe69, Ile73/Ser73 and Asp116) and within a cluster of aromatic residues in the extracellular segment (primarily, Trp102 and Tyr222). The two filters are on the opposite sides of the photoactive site involved in channel gating.
Collapse
Affiliation(s)
- Takefumi Morizumi
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Kyumhyuk Kim
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Hai Li
- Department of Biochemistry & Molecular Biology, Center for Membrane Biology, The University of Texas Health Science Center at Houston McGovern Medical School, Houston, TX, USA
| | - Elena G Govorunova
- Department of Biochemistry & Molecular Biology, Center for Membrane Biology, The University of Texas Health Science Center at Houston McGovern Medical School, Houston, TX, USA
| | - Oleg A Sineshchekov
- Department of Biochemistry & Molecular Biology, Center for Membrane Biology, The University of Texas Health Science Center at Houston McGovern Medical School, Houston, TX, USA
| | - Yumei Wang
- Department of Biochemistry & Molecular Biology, Center for Membrane Biology, The University of Texas Health Science Center at Houston McGovern Medical School, Houston, TX, USA
| | - Lei Zheng
- Department of Biochemistry & Molecular Biology, Center for Membrane Biology, The University of Texas Health Science Center at Houston McGovern Medical School, Houston, TX, USA
| | - Éva Bertalan
- Physikzentrum, RWTH-Aachen University, Aachen, Germany
| | - Ana-Nicoleta Bondar
- Faculty of Physics, University of Bucharest, Măgurele, Romania
- Institute of Computational Biomedicine (IAS-5/INM-9), Forschungszentrum Jülich, Jülich, Germany
| | - Azam Askari
- Department of Physics and Biophysics Interdepartmental Group, University of Guelph, Guelph, ON, Canada
| | - Leonid S Brown
- Department of Physics and Biophysics Interdepartmental Group, University of Guelph, Guelph, ON, Canada
| | - John L Spudich
- Department of Biochemistry & Molecular Biology, Center for Membrane Biology, The University of Texas Health Science Center at Houston McGovern Medical School, Houston, TX, USA.
| | - Oliver P Ernst
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada.
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
31
|
Chen AY, Brooks BR, Damjanovic A. Ion channel selectivity through ion-modulated changes of selectivity filter p Ka values. Proc Natl Acad Sci U S A 2023; 120:e2220343120. [PMID: 37339196 PMCID: PMC10293820 DOI: 10.1073/pnas.2220343120] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 04/26/2023] [Indexed: 06/22/2023] Open
Abstract
In bacterial voltage-gated sodium channels, the passage of ions through the pore is controlled by a selectivity filter (SF) composed of four glutamate residues. The mechanism of selectivity has been the subject of intense research, with suggested mechanisms based on steric effects, and ion-triggered conformational change. Here, we propose an alternative mechanism based on ion-triggered shifts in pKa values of SF glutamates. We study the NavMs channel for which the open channel structure is available. Our free-energy calculations based on molecular dynamics simulations suggest that pKa values of the four glutamates are higher in solution of K+ ions than in solution of Na+ ions. Higher pKa in the presence of K+ stems primarily from the higher population of dunked conformations of the protonated Glu sidechain, which exhibit a higher pKa shift. Since pKa values are close to the physiological pH, this results in predominant population of the fully deprotonated state of glutamates in Na+ solution, while protonated states are predominantly populated in K+ solution. Through molecular dynamics simulations we calculate that the deprotonated state is the most conductive, the singly protonated state is less conductive, and the doubly protonated state has significantly reduced conductance. Thus, we propose that a significant component of selectivity is achieved through ion-triggered shifts in the protonation state, which favors more conductive states for Na+ ions and less conductive states for K+ ions. This mechanism also suggests a strong pH dependence of selectivity, which has been experimentally observed in structurally similar NaChBac channels.
Collapse
Affiliation(s)
- Ada Y. Chen
- Department of Physics & Astronomy, Johns Hopkins University, Baltimore, MD21218
- Laboratory of Computational Biology, National Heart, Lung and Blood Institute, NIH, Bethesda, MD20892
| | - Bernard R. Brooks
- Laboratory of Computational Biology, National Heart, Lung and Blood Institute, NIH, Bethesda, MD20892
| | - Ana Damjanovic
- Laboratory of Computational Biology, National Heart, Lung and Blood Institute, NIH, Bethesda, MD20892
- Department of Biophysics, Johns Hopkins University, Baltimore, MD21218
| |
Collapse
|
32
|
Abrahamyan A, Eldstrom J, Sahakyan H, Karagulyan N, Mkrtchyan L, Karapetyan T, Sargsyan E, Kneussel M, Nazaryan K, Schwarz JR, Fedida D, Vardanyan V. Mechanism of external K+ sensitivity of KCNQ1 channels. J Gen Physiol 2023; 155:213880. [PMID: 36809486 PMCID: PMC9960071 DOI: 10.1085/jgp.202213205] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 12/20/2022] [Accepted: 01/31/2023] [Indexed: 02/23/2023] Open
Abstract
KCNQ1 voltage-gated K+ channels are involved in a wide variety of fundamental physiological processes and exhibit the unique feature of being markedly inhibited by external K+. Despite the potential role of this regulatory mechanism in distinct physiological and pathological processes, its exact underpinnings are not well understood. In this study, using extensive mutagenesis, molecular dynamics simulations, and single-channel recordings, we delineate the molecular mechanism of KCNQ1 modulation by external K+. First, we demonstrate the involvement of the selectivity filter in the external K+ sensitivity of the channel. Then, we show that external K+ binds to the vacant outermost ion coordination site of the selectivity filter inducing a diminution in the unitary conductance of the channel. The larger reduction in the unitary conductance compared to whole-cell currents suggests an additional modulatory effect of external K+ on the channel. Further, we show that the external K+ sensitivity of the heteromeric KCNQ1/KCNE complexes depends on the type of associated KCNE subunits.
Collapse
Affiliation(s)
- Astghik Abrahamyan
- Molecular Neuroscience Group, Institute of Molecular Biology, National Academy of Sciences of the Republic of Armenia , Yerevan, Armenia
| | - Jodene Eldstrom
- Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia , Vancouver, BC, Canada
| | - Harutyun Sahakyan
- Laboratory of Computational Modeling of Biological Processes, Institute of Molecular Biology of National Academy of Sciences of the Republic of Armenia , Yerevan, Armenia
| | - Nare Karagulyan
- Molecular Neuroscience Group, Institute of Molecular Biology, National Academy of Sciences of the Republic of Armenia , Yerevan, Armenia
| | - Liana Mkrtchyan
- Molecular Neuroscience Group, Institute of Molecular Biology, National Academy of Sciences of the Republic of Armenia , Yerevan, Armenia
| | - Tatev Karapetyan
- Molecular Neuroscience Group, Institute of Molecular Biology, National Academy of Sciences of the Republic of Armenia , Yerevan, Armenia
| | - Ernest Sargsyan
- Molecular Neuroscience Group, Institute of Molecular Biology, National Academy of Sciences of the Republic of Armenia , Yerevan, Armenia
| | - Matthias Kneussel
- Institute for Molecular Neurogenetics, Center for Molecular Neurobiology Hamburg , Hamburg, Germany
| | - Karen Nazaryan
- Laboratory of Computational Modeling of Biological Processes, Institute of Molecular Biology of National Academy of Sciences of the Republic of Armenia , Yerevan, Armenia
| | - Jürgen R Schwarz
- Institute for Molecular Neurogenetics, Center for Molecular Neurobiology Hamburg , Hamburg, Germany
| | - David Fedida
- Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia , Vancouver, BC, Canada
| | - Vitya Vardanyan
- Molecular Neuroscience Group, Institute of Molecular Biology, National Academy of Sciences of the Republic of Armenia , Yerevan, Armenia
| |
Collapse
|
33
|
Govorunova EG, Sineshchekov OA, Spudich JL. Potassium-selective channelrhodopsins. Biophys Physicobiol 2023; 20:e201011. [PMID: 38362336 PMCID: PMC10865875 DOI: 10.2142/biophysico.bppb-v20.s011] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 02/03/2023] [Indexed: 02/05/2023] Open
Abstract
Since their discovery 21 years ago, channelrhodopsins have come of age and have become indispensable tools for optogenetic control of excitable cells such as neurons and myocytes. Potential therapeutic utility of channelrhodopsins has been proven by partial vision restoration in a human patient. Previously known channelrhodopsins are either proton channels, non-selective cation channels almost equally permeable to Na+ and K+ besides protons, or anion channels. Two years ago, we discovered a group of channelrhodopsins that exhibit over an order of magnitude higher selectivity for K+ than for Na+. These proteins, known as "kalium channelrhodopsins" or KCRs, lack the canonical tetrameric selectivity filter found in voltage- and ligand-gated K+ channels, and use a unique selectivity mechanism intrinsic to their individual protomers. Mutant analysis has revealed that the key residues responsible for K+ selectivity in KCRs are located at both ends of the putative cation conduction pathway, and their role has been confirmed by high-resolution KCR structures. Expression of KCRs in mouse neurons and human cardiomyocytes enabled optical inhibition of these cells' electrical activity. In this minireview we briefly discuss major results of KCR research obtained during the last two years and suggest some directions of future research.
Collapse
Affiliation(s)
- Elena G. Govorunova
- Center for Membrane Biology, Department of Biochemistry and Molecular Biology, University of Texas Health Science Center at Houston, McGovern Medical School, Houston, TX 77030, USA
| | - Oleg A. Sineshchekov
- Center for Membrane Biology, Department of Biochemistry and Molecular Biology, University of Texas Health Science Center at Houston, McGovern Medical School, Houston, TX 77030, USA
| | - John L. Spudich
- Center for Membrane Biology, Department of Biochemistry and Molecular Biology, University of Texas Health Science Center at Houston, McGovern Medical School, Houston, TX 77030, USA
| |
Collapse
|
34
|
Govorunova EG, Sineshchekov OA, Brown LS, Bondar AN, Spudich JL. Structural Foundations of Potassium Selectivity in Channelrhodopsins. mBio 2022; 13:e0303922. [PMID: 36413022 PMCID: PMC9765531 DOI: 10.1128/mbio.03039-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 11/01/2022] [Indexed: 11/23/2022] Open
Abstract
Potassium-selective channelrhodopsins (KCRs) are light-gated K+ channels recently found in the stramenopile protist Hyphochytrium catenoides. When expressed in neurons, KCRs enable high-precision optical inhibition of spiking (optogenetic silencing). KCRs are capable of discriminating K+ from Na+ without the conventional K+ selectivity filter found in classical K+ channels. The genome of H. catenoides also encodes a third paralog that is more permeable for Na+ than for K+. To identify structural motifs responsible for the unusual K+ selectivity of KCRs, we systematically analyzed a series of chimeras and mutants of this protein. We found that mutations of three critical residues in the paralog convert its Na+-selective channel into a K+-selective one. Our characterization of homologous proteins from other protists (Colponema vietnamica, Cafeteria burkhardae, and Chromera velia) and metagenomic samples confirmed the importance of these residues for K+ selectivity. We also show that Trp102 and Asp116, conserved in all three H. catenoides paralogs, are necessary, although not sufficient, for K+ selectivity. Our results provide the foundation for further engineering of KCRs for optogenetic needs. IMPORTANCE Recently discovered microbial light-gated ion channels (channelrhodopsins) with a higher permeability for K+ than for Na+ (potassium-selective channelrhodopsins [kalium channelrhodopsins, or KCRs]) demonstrate an alternative K+ selectivity mechanism, unrelated to well-characterized "selectivity filters" of voltage- and ligand-gated K+ channels. KCRs can be used for optogenetic inhibition of neuronal firing and potentially for the development of gene therapies to treat neurological and cardiovascular disorders. In this study, we identified structural motifs that determine the K+ selectivity of KCRs that provide the foundation for their further improvement as optogenetic tools.
Collapse
Affiliation(s)
- Elena G. Govorunova
- Center for Membrane Biology, Department of Biochemistry & Molecular Biology, The University of Texas Health Science Center at Houston McGovern Medical School, Houston, Texas, USA
| | - Oleg A. Sineshchekov
- Center for Membrane Biology, Department of Biochemistry & Molecular Biology, The University of Texas Health Science Center at Houston McGovern Medical School, Houston, Texas, USA
| | - Leonid S. Brown
- Department of Physics and Biophysics Interdepartmental Group, University of Guelph, Guelph, Ontario, Canada
| | - Ana-Nicoleta Bondar
- Faculty of Physics, University of Bucharest, Bucharest, Romania
- Institute of Computational Biomedicine, Forschungszentrum Jülich, Jülich, Germany
| | - John L. Spudich
- Center for Membrane Biology, Department of Biochemistry & Molecular Biology, The University of Texas Health Science Center at Houston McGovern Medical School, Houston, Texas, USA
| |
Collapse
|
35
|
Walch E, Fiacco TA. Honey, I shrunk the extracellular space: Measurements and mechanisms of astrocyte swelling. Glia 2022; 70:2013-2031. [PMID: 35635369 PMCID: PMC9474570 DOI: 10.1002/glia.24224] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 05/17/2022] [Accepted: 05/17/2022] [Indexed: 12/16/2022]
Abstract
Astrocyte volume fluctuation is a physiological phenomenon tied closely to the activation of neural circuits. Identification of underlying mechanisms has been challenging due in part to use of a wide range of experimental approaches that vary between research groups. Here, we first review the many methods that have been used to measure astrocyte volume changes directly or indirectly. While the field has recently shifted towards volume analysis using fluorescence microscopy to record cell volume changes directly, established metrics corresponding to extracellular space dynamics have also yielded valuable insights. We then turn to analysis of mechanisms of astrocyte swelling derived from many studies, with a focus on volume changes tied to increases in extracellular potassium concentration ([K+ ]o ). The diverse methods that have been utilized to generate the external [K+ ]o environment highlight multiple scenarios of astrocyte swelling mediated by different mechanisms. Classical potassium buffering theories are tempered by many recent studies that point to different swelling pathways optimized at particular [K+ ]o and that depend on local/transient versus more sustained increases in [K+ ]o .
Collapse
Affiliation(s)
- Erin Walch
- Division of Biomedical Sciences, School of MedicineUniversity of California, RiversideRiversideCaliforniaUSA
| | - Todd A. Fiacco
- Department of Molecular, Cell and Systems BiologyUniversity of California, RiversideRiversideCaliforniaUSA
- Center for Glial‐Neuronal InteractionsUniversity of California, RiversideRiversideCaliforniaUSA
| |
Collapse
|
36
|
Higgins JA, Ramos DS, Gili S, Spetea C, Kanoski S, Ha D, McDonough AA, Youn JH. Stable potassium isotopes (41K/39K) track transcellular and paracellular potassium transport in biological systems. Front Physiol 2022; 13:1016242. [PMID: 36388124 PMCID: PMC9644202 DOI: 10.3389/fphys.2022.1016242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 09/21/2022] [Indexed: 12/04/2022] Open
Abstract
As the most abundant cation in archaeal, bacterial, and eukaryotic cells, potassium (K+) is an essential element for life. While much is known about the machinery of transcellular and paracellular K transport–channels, pumps, co-transporters, and tight-junction proteins—many quantitative aspects of K homeostasis in biological systems remain poorly constrained. Here we present measurements of the stable isotope ratios of potassium (41K/39K) in three biological systems (algae, fish, and mammals). When considered in the context of our current understanding of plausible mechanisms of K isotope fractionation and K+ transport in these biological systems, our results provide evidence that the fractionation of K isotopes depends on transport pathway and transmembrane transport machinery. Specifically, we find that passive transport of K+ down its electrochemical potential through channels and pores in tight-junctions at favors 39K, a result which we attribute to a kinetic isotope effect associated with dehydration and/or size selectivity at the channel/pore entrance. In contrast, we find that transport of K+ against its electrochemical gradient via pumps and co-transporters is associated with less/no isotopic fractionation, a result that we attribute to small equilibrium isotope effects that are expressed in pumps/co-transporters due to their slower turnover rate and the relatively long residence time of K+ in the ion pocket. These results indicate that stable K isotopes may be able to provide quantitative constraints on transporter-specific K+ fluxes (e.g., the fraction of K efflux from a tissue by channels vs. co-transporters) and how these fluxes change in different physiological states. In addition, precise determination of K isotope effects associated with K+ transport via channels, pumps, and co-transporters may provide unique constraints on the mechanisms of K transport that could be tested with steered molecular dynamic simulations.
Collapse
Affiliation(s)
- John A. Higgins
- Department of Geosciences, Princeton University, Princeton, NJ, United States
- *Correspondence: John A. Higgins,
| | - Danielle Santiago Ramos
- Department of Marine and Coastal Science, Rutgers University, New Brunswick, NJ, United States
| | - Stefania Gili
- Department of Geosciences, Princeton University, Princeton, NJ, United States
| | - Cornelia Spetea
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
- Department of Molecular Biology, Princeton University, Princeton, NJ, United States
| | - Scott Kanoski
- Department of Human and Evolutionary Biology, University of Southern California, Los Angeles, CA, United States
| | - Darren Ha
- Department of Physiology and Neuroscience, University of Southern California Keck School of Medicine, Los Angeles, CA, United States
| | - Alicia A. McDonough
- Department of Physiology and Neuroscience, University of Southern California Keck School of Medicine, Los Angeles, CA, United States
| | - Jang H. Youn
- Department of Physiology and Neuroscience, University of Southern California Keck School of Medicine, Los Angeles, CA, United States
| |
Collapse
|
37
|
Accili E. When Is a Potassium Channel Not a Potassium Channel? FUNCTION (OXFORD, ENGLAND) 2022; 3:zqac052. [PMID: 36325512 PMCID: PMC9614928 DOI: 10.1093/function/zqac052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 09/26/2022] [Accepted: 09/27/2022] [Indexed: 01/06/2023]
Abstract
Ever since they were first observed in Purkinje fibers of the heart, funny channels have had close connections to potassium channels. Indeed, funny channels were initially thought to produce a potassium current in the heart called I K2. However, funny channels are completely unlike potassium channels in ways that make their contributions to the physiology of cells unique. An important difference is the greater ability for sodium to permeate funny channels. Although it does not flow through the funny channel as easily as does potassium, sodium does permeate well enough to allow for depolarization of cells following a strong hyperpolarization. This is critical for the function of funny channels in places like the heart and brain. Computational analyses using recent structures of the funny channels have provided a possible mechanism for their unusual permeation properties.
Collapse
|
38
|
Suzuki Y, Hirata K, Lisy JM, Ishiuchi SI, Fujii M. A bottom-up approach to the ion recognition mechanism of K + channels from laser spectroscopy of hydrated partial peptide-alkali metal ion complexes. Phys Chem Chem Phys 2022; 24:20803-20812. [PMID: 36000593 DOI: 10.1039/d2cp01667b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
K+ channels allow selective permeation of K+, but not physiologically abundant Na+, at almost diffusion limit rates. The conduction mechanism of K+ channels is still controversial, with experimental and computation studies supporting two distinct conduction mechanisms: either with or without water inside the channel. Here, we employ a bottom-up approach on hydrated alkali metal complexes of a model peptide of K+ channels, Ac-Tyr-NHMe, to characterize metal-peptide, metal-water, and water-peptide interactions that govern the selectivity of K+ channels at a molecular level. Both the extension to the series of alkali metal ions and to temperature-dependent studies (approaching physiological values) have revealed the clear difference between permeable and non-permeable ions in the spectral features of the ion complexes. Furthermore, the impact of hydration is discussed in relation to the K+ channels by comparisons of the non-hydrated and hydrated complexes.
Collapse
Affiliation(s)
- Yukina Suzuki
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, 226-8503, Japan. .,School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa, 226-8503, Japan
| | - Keisuke Hirata
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, 226-8503, Japan. .,Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan.,Tokyo Tech World Research Hub Initiative (WRHI), Institute of Innovation Research, Tokyo Institute of Technology, 4259, Nagatsuta-cho, Midori-ku, Yokohama, 226-8503, Japan.
| | - James M Lisy
- Tokyo Tech World Research Hub Initiative (WRHI), Institute of Innovation Research, Tokyo Institute of Technology, 4259, Nagatsuta-cho, Midori-ku, Yokohama, 226-8503, Japan. .,Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Shun-Ichi Ishiuchi
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, 226-8503, Japan. .,Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan.,Tokyo Tech World Research Hub Initiative (WRHI), Institute of Innovation Research, Tokyo Institute of Technology, 4259, Nagatsuta-cho, Midori-ku, Yokohama, 226-8503, Japan.
| | - Masaaki Fujii
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, 226-8503, Japan. .,School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa, 226-8503, Japan.,Tokyo Tech World Research Hub Initiative (WRHI), Institute of Innovation Research, Tokyo Institute of Technology, 4259, Nagatsuta-cho, Midori-ku, Yokohama, 226-8503, Japan.
| |
Collapse
|
39
|
Horng TL, Chen RS, Leonardi MV, Franciolini F, Catacuzzeno L. A Multi-Scale Approach to Model K+ Permeation Through the KcsA Channel. Front Mol Biosci 2022; 9:880660. [PMID: 35911957 PMCID: PMC9332843 DOI: 10.3389/fmolb.2022.880660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 05/16/2022] [Indexed: 11/13/2022] Open
Abstract
K+ channels allow a very efficient passage of K+ ions through the membrane while excluding Na+ ions, and these properties are essential for life. The 3D structure of the KcsA K+ channel, solved more than 20 years ago, allows to address many relevant aspects of K+ permeation and selectivity mechanisms at the molecular level. Recent crystallographic data and molecular dynamics (MD) studies suggest that no water is normally present inside the selectivity filter (SF), which can instead accommodate four adjacent K+ ions. Using a multi-scale approach, whereby information taken from a low-level simulation approach is used to feed a high-level model, we studied the mechanism of K+ permeation through KcsA channels. More specifically, we used MD to find stable ion configurations under physiological conditions. They were characterized by two adjacent K+ ions occupying the more central positions of the SF (sites S2 and S3), while the other two K+ ions could be found at the external and internal entrances to the SF. Sites S1 and S4 were instead not occupied by K+. A continuum Bikerman–Poisson–Boltzmann model that takes into account the volume of the ions and their dehydration when entering the SF fully confirmed the MD results, showing peaks of K+ occupancy at S2, S3, and the external and internal entrances, with S1 and S4 sites being virtually never occupied by K+. Inspired by the newly found ion configuration in the SF at equilibrium, we developed a simple kinetic permeation model which, fed with kinetic rate constants assessed from molecular meta-dynamics, reproduced the main permeation properties of the KcsA channel found experimentally, including sublinear current-voltage and saturating conductance-concentration relationships. This good agreement with the experimental data also implies that the ion configuration in the SF we identified at equilibrium would also be a key configuration during permeation.
Collapse
Affiliation(s)
- T. L. Horng
- Department of Applied Mathematics, Feng Chia University, Taichung, Taiwan
- *Correspondence: T. L. Horng, ; L. Catacuzzeno,
| | - R. S. Chen
- Department of Life Science, Tunghai University, Taichung, Taiwan
| | - M. V. Leonardi
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy
| | - F. Franciolini
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy
| | - L. Catacuzzeno
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy
- *Correspondence: T. L. Horng, ; L. Catacuzzeno,
| |
Collapse
|
40
|
Govorunova EG, Gou Y, Sineshchekov OA, Li H, Lu X, Wang Y, Brown LS, St-Pierre F, Xue M, Spudich JL. Kalium channelrhodopsins are natural light-gated potassium channels that mediate optogenetic inhibition. Nat Neurosci 2022; 25:967-974. [PMID: 35726059 PMCID: PMC9854242 DOI: 10.1038/s41593-022-01094-6] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 05/12/2022] [Indexed: 02/02/2023]
Abstract
Channelrhodopsins are used widely for optical control of neurons, in which they generate photoinduced proton, sodium or chloride influx. Potassium (K+) is central to neuron electrophysiology, yet no natural K+-selective light-gated channel has been identified. Here, we report kalium channelrhodopsins (KCRs) from Hyphochytrium catenoides. Previously known gated potassium channels are mainly ligand- or voltage-gated and share a conserved K+-selectivity filter. KCRs differ in that they are light-gated and have independently evolved an alternative K+ selectivity mechanism. The KCRs are potent, highly selective of K+ over Na+, and open in less than 1 ms following photoactivation. The permeability ratio PK/PNa of 23 makes H. catenoides KCR1 (HcKCR1) a powerful hyperpolarizing tool to suppress excitable cell firing upon illumination, demonstrated here in mouse cortical neurons. HcKCR1 enables optogenetic control of K+ gradients, which is promising for the study and potential treatment of potassium channelopathies such as epilepsy, Parkinson's disease and long-QT syndrome and other cardiac arrhythmias.
Collapse
Affiliation(s)
- Elena G Govorunova
- Center for Membrane Biology, Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston McGovern Medical School, Houston, TX, USA
| | - Yueyang Gou
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
- The Cain Foundation Laboratories, Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX, USA
| | - Oleg A Sineshchekov
- Center for Membrane Biology, Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston McGovern Medical School, Houston, TX, USA
| | - Hai Li
- Center for Membrane Biology, Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston McGovern Medical School, Houston, TX, USA
| | - Xiaoyu Lu
- Systems, Synthetic, and Physical Biology Program, Rice University, Houston, TX, USA
| | - Yumei Wang
- Center for Membrane Biology, Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston McGovern Medical School, Houston, TX, USA
| | - Leonid S Brown
- Department of Physics and Biophysics Interdepartmental Group, University of Guelph, Guelph, Ontario, Canada
| | - François St-Pierre
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
- Systems, Synthetic, and Physical Biology Program, Rice University, Houston, TX, USA
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, USA
- Department of Electrical and Computer Engineering, Rice University, Houston, TX, USA
| | - Mingshan Xue
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
- The Cain Foundation Laboratories, Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - John L Spudich
- Center for Membrane Biology, Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston McGovern Medical School, Houston, TX, USA.
| |
Collapse
|
41
|
Discovery of long-sought light-gated potassium channels: natural kalium channel-rhodopsins. Nat Neurosci 2022; 25:847-848. [PMID: 35750858 DOI: 10.1038/s41593-022-01096-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
42
|
Polêto MD, Lemkul JA. TUPÃ: Electric field analyses for molecular simulations. J Comput Chem 2022; 43:1113-1119. [PMID: 35460102 PMCID: PMC9098685 DOI: 10.1002/jcc.26873] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/31/2022] [Accepted: 04/08/2022] [Indexed: 11/06/2022]
Abstract
We introduce TUPÃ, a Python-based algorithm to calculate and analyze electric fields in molecular simulations. To demonstrate the features in TUPÃ, we present three test cases in which the orientation and magnitude of the electric field exerted by biomolecules help explain biological phenomena or observed kinetics. As part of TUPÃ, we also provide a PyMOL plugin to help researchers visualize how electric fields are organized within the simulation system. The code is freely available and can be obtained at https://mdpoleto.github.io/tupa/.
Collapse
Affiliation(s)
- Marcelo D. Polêto
- Department of Biochemistry, Virginia Tech, Blacksburg, VA 24061, United States
| | - Justin A. Lemkul
- Department of Biochemistry, Virginia Tech, Blacksburg, VA 24061, United States
- Center for Drug Discovery, Virginia Tech, Blacksburg, VA 24061, United States
| |
Collapse
|
43
|
Ahmad K, Rizzi A, Capelli R, Mandelli D, Lyu W, Carloni P. Enhanced-Sampling Simulations for the Estimation of Ligand Binding Kinetics: Current Status and Perspective. Front Mol Biosci 2022; 9:899805. [PMID: 35755817 PMCID: PMC9216551 DOI: 10.3389/fmolb.2022.899805] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 05/09/2022] [Indexed: 12/12/2022] Open
Abstract
The dissociation rate (k off) associated with ligand unbinding events from proteins is a parameter of fundamental importance in drug design. Here we review recent major advancements in molecular simulation methodologies for the prediction of k off. Next, we discuss the impact of the potential energy function models on the accuracy of calculated k off values. Finally, we provide a perspective from high-performance computing and machine learning which might help improve such predictions.
Collapse
Affiliation(s)
- Katya Ahmad
- Computational Biomedicine (IAS-5/INM-9), Forschungszentrum Jülich, Jülich, Germany
| | - Andrea Rizzi
- Computational Biomedicine (IAS-5/INM-9), Forschungszentrum Jülich, Jülich, Germany
- Atomistic Simulations, Istituto Italiano di Tecnologia, Genova, Italy
| | - Riccardo Capelli
- Department of Applied Science and Technology (DISAT), Politecnico di Torino, Torino, Italy
| | - Davide Mandelli
- Computational Biomedicine (IAS-5/INM-9), Forschungszentrum Jülich, Jülich, Germany
| | - Wenping Lyu
- Warshel Institute for Computational Biology, School of Life and Health Sciences, The Chinese University of Hong Kong (Shenzhen), Shenzhen, China
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, China
| | - Paolo Carloni
- Computational Biomedicine (IAS-5/INM-9), Forschungszentrum Jülich, Jülich, Germany
- Molecular Neuroscience and Neuroimaging (INM-11), Forschungszentrum Jülich, Jülich, Germany
| |
Collapse
|
44
|
Mukherjee S, Schäfer LV. Spatially Resolved Hydration Thermodynamics in Biomolecular Systems. J Phys Chem B 2022; 126:3619-3631. [PMID: 35534011 PMCID: PMC9150089 DOI: 10.1021/acs.jpcb.2c01088] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/22/2022] [Indexed: 01/17/2023]
Abstract
Water is essential for the structure, dynamics, energetics, and thus the function of biomolecules. It is a formidable challenge to elicit, in microscopic detail, the role of the solvation-related driving forces of biomolecular processes, such as the enthalpy and entropy contributions to the underlying free-energy landscape. In this Perspective, we discuss recent developments and applications of computational methods that provide a spatially resolved map of hydration thermodynamics in biomolecular systems and thus yield atomic-level insights to guide the interpretation of experimental observations. An emphasis is on the challenge of quantifying the hydration entropy, which requires characterization of both the motions of the biomolecules and of the water molecules in their surrounding.
Collapse
Affiliation(s)
- Saumyak Mukherjee
- Theoretical Chemistry, Ruhr
University Bochum, 44801 Bochum, Germany
| | - Lars V. Schäfer
- Theoretical Chemistry, Ruhr
University Bochum, 44801 Bochum, Germany
| |
Collapse
|
45
|
Oh S, Marinelli F, Zhou W, Lee J, Choi HJ, Kim M, Faraldo-Gómez JD, Hite RK. Differential ion dehydration energetics explains selectivity in the non-canonical lysosomal K + channel TMEM175. eLife 2022; 11:75122. [PMID: 35608336 PMCID: PMC9129878 DOI: 10.7554/elife.75122] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 05/01/2022] [Indexed: 12/31/2022] Open
Abstract
Structures of the human lysosomal K+ channel transmembrane protein 175 (TMEM175) in open and closed states revealed a novel architecture lacking the canonical K+ selectivity filter motif present in previously known K+ channel structures. A hydrophobic constriction composed of four isoleucine residues was resolved in the pore and proposed to serve as the gate in the closed state, and to confer ion selectivity in the open state. Here, we achieve higher-resolution structures of the open and closed states and employ molecular dynamics simulations to analyze the conducting properties of the putative open state, demonstrating that it is permeable to K+ and, to a lesser degree, also Na+. Both cations must dehydrate significantly to penetrate the narrow hydrophobic constriction, but ion flow is assisted by a favorable electrostatic field generated by the protein that spans the length of the pore. The balance of these opposing energetic factors explains why permeation is feasible, and why TMEM175 is selective for K+ over Na+, despite the absence of the canonical selectivity filter. Accordingly, mutagenesis experiments reveal an exquisite sensitivity of the channel to perturbations that mitigate the constriction. Together, these data reveal a novel mechanism for selective permeation of ions by TMEM175 that is unlike that of other K+ channels.
Collapse
Affiliation(s)
- SeCheol Oh
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, New York, United States
| | - Fabrizio Marinelli
- Theoretical Molecular Biophysics Section, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, United States
| | - Wenchang Zhou
- Theoretical Molecular Biophysics Section, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, United States
| | - Jooyeon Lee
- Department of Chemistry, Chungbuk National University, Cheongju-si, Republic of Korea
| | - Ho Jeong Choi
- Department of Chemistry, Chungbuk National University, Cheongju-si, Republic of Korea
| | - Min Kim
- Department of Chemistry, Chungbuk National University, Cheongju-si, Republic of Korea
| | - José D Faraldo-Gómez
- Theoretical Molecular Biophysics Section, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, United States
| | - Richard K Hite
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, New York, United States
| |
Collapse
|
46
|
Bauer D, Wissmann J, Moroni A, Thiel G, Hamacher K. Weak Cation Selectivity in HCN Channels Results From K +-Mediated Release of Na + From Selectivity Filter Binding Sites. FUNCTION (OXFORD, ENGLAND) 2022; 3:zqac019. [PMID: 36156894 PMCID: PMC9492253 DOI: 10.1093/function/zqac019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/04/2022] [Accepted: 04/11/2022] [Indexed: 01/07/2023]
Abstract
Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels generate the pacemaker current which plays an important role in the timing of various biological processes like the heart beat. We used umbrella sampling to explore the potential of mean force for the conduction of potassium and sodium through the open HCN4 pore. Our data explain distinct functional features like low unitary conductance and weak selectivity as a result of high energetic barriers inside the selectivity filter of this channel. They exceed the 3-5 kJ/mol threshold which is presumed as maximal barrier for diffusion-limited conductance. Furthermore, simulations provide a thermodynamic explanation for the weak cation selectivity of HCN channels that contain only two ion binding sites in the selectivity filter (SF). We find that sodium ions bind more strongly to the SF than potassium and are easier released by binding of potassium than of another sodium. Hence ion transport and selectivity in HCN channels is not determined by the same mechanism as in potassium-selective channels; it rather relies on sodium as a weak blocker that can only be released by potassium.
Collapse
Affiliation(s)
- Daniel Bauer
- Department of Biology and Centre for Synthetic Biology, TU Darmstadt, Schnittspahnstrasse 3, 64287 Darmstadt, Germany
| | - Jan Wissmann
- Department of Physics, TU Darmstadt, Schlossgartenstrasse 7, 64289 Darmstadt, Germany
| | - Anna Moroni
- Department of Biosciences, University of Milan, via Celoria 26, 20133 Milan, Italy
| | | | - Kay Hamacher
- Department of Biology and Centre for Synthetic Biology, TU Darmstadt, Schnittspahnstrasse 3, 64287 Darmstadt, Germany,Department of Physics, TU Darmstadt, Schlossgartenstrasse 7, 64289 Darmstadt, Germany
| |
Collapse
|
47
|
Tan XF, Bae C, Stix R, Fernández-Mariño AI, Huffer K, Chang TH, Jiang J, Faraldo-Gómez JD, Swartz KJ. Structure of the Shaker Kv channel and mechanism of slow C-type inactivation. SCIENCE ADVANCES 2022; 8:eabm7814. [PMID: 35302848 PMCID: PMC8932672 DOI: 10.1126/sciadv.abm7814] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 01/26/2022] [Indexed: 06/14/2023]
Abstract
Voltage-activated potassium (Kv) channels open upon membrane depolarization and proceed to spontaneously inactivate. Inactivation controls neuronal firing rates and serves as a form of short-term memory and is implicated in various human neurological disorders. Here, we use high-resolution cryo-electron microscopy and computer simulations to determine one of the molecular mechanisms underlying this physiologically crucial process. Structures of the activated Shaker Kv channel and of its W434F mutant in lipid bilayers demonstrate that C-type inactivation entails the dilation of the ion selectivity filter and the repositioning of neighboring residues known to be functionally critical. Microsecond-scale molecular dynamics trajectories confirm that these changes inhibit rapid ion permeation through the channel. This long-sought breakthrough establishes how eukaryotic K+ channels self-regulate their functional state through the plasticity of their selectivity filters.
Collapse
Affiliation(s)
- Xiao-Feng Tan
- Molecular Physiology and Biophysics Section, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Chanhyung Bae
- Molecular Physiology and Biophysics Section, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Robyn Stix
- Theoretical Molecular Biophysics Laboratory, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
- Department of Biology, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218, USA
| | - Ana I. Fernández-Mariño
- Molecular Physiology and Biophysics Section, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kate Huffer
- Molecular Physiology and Biophysics Section, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
- Department of Biology, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218, USA
| | - Tsg-Hui Chang
- Molecular Physiology and Biophysics Section, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jiansen Jiang
- Laboratory of Membrane Proteins and Structural Biology and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - José D. Faraldo-Gómez
- Theoretical Molecular Biophysics Laboratory, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kenton J. Swartz
- Molecular Physiology and Biophysics Section, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
48
|
Khalid S, Schroeder C, Bond PJ, Duncan AL. What have molecular simulations contributed to understanding of Gram-negative bacterial cell envelopes? MICROBIOLOGY (READING, ENGLAND) 2022; 168. [PMID: 35294337 PMCID: PMC9558347 DOI: 10.1099/mic.0.001165] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Bacterial cell envelopes are compositionally complex and crowded and while highly dynamic in some areas, their molecular motion is very limited, to the point of being almost static in others. Therefore, it is no real surprise that studying them at high resolution across a range of temporal and spatial scales requires a number of different techniques. Details at atomistic to molecular scales for up to tens of microseconds are now within range for molecular dynamics simulations. Here we review how such simulations have contributed to our current understanding of the cell envelopes of Gram-negative bacteria.
Collapse
Affiliation(s)
- Syma Khalid
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Cyril Schroeder
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Peter J Bond
- Bioinformatics Institute (A*STAR), Singapore 138671, Singapore.,Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore
| | - Anna L Duncan
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| |
Collapse
|
49
|
Öster C, Tekwani Movellan K, Goold B, Hendriks K, Lange S, Becker S, de Groot BL, Kopec W, Andreas LB, Lange A. Direct Detection of Bound Ammonium Ions in the Selectivity Filter of Ion Channels by Solid-State NMR. J Am Chem Soc 2022; 144:4147-4157. [PMID: 35200002 PMCID: PMC8915258 DOI: 10.1021/jacs.1c13247] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Indexed: 01/16/2023]
Abstract
The flow of ions across cell membranes facilitated by ion channels is an important function for all living cells. Despite the huge amount of structural data provided by crystallography, elucidating the exact interactions between the selectivity filter atoms and bound ions is challenging. Here, we detect bound 15N-labeled ammonium ions as a mimic for potassium ions in ion channels using solid-state NMR under near-native conditions. The non-selective ion channel NaK showed two ammonium peaks corresponding to its two ion binding sites, while its potassium-selective mutant NaK2K that has a signature potassium-selective selectivity filter with four ion binding sites gave rise to four ammonium peaks. Ions bound in specific ion binding sites were identified based on magnetization transfer between the ions and carbon atoms in the selectivity filters. Magnetization transfer between bound ions and water molecules revealed that only one out of four ions in the selectivity filter of NaK2K is in close contact with water, which is in agreement with the direct knock-on ion conduction mechanism where ions are conducted through the channel by means of direct interactions without water molecules in between. Interestingly, the potassium-selective ion channels investigated here (NaK2K and, additionally, KcsA-Kv1.3) showed remarkably different chemical shifts for their bound ions, despite having identical amino acid sequences and crystal structures of their selectivity filters. Molecular dynamics simulations show similar ion binding and conduction behavior between ammonium and potassium ions and identify the origin of the differences between the investigated potassium channels.
Collapse
Affiliation(s)
- Carl Öster
- Department
of Molecular Biophysics, Leibniz-Forschungsinstitut
für Molekulare Pharmakologie, Robert-Rössle-Str. 10, 13125 Berlin, Germany
| | - Kumar Tekwani Movellan
- Department
of NMR-Based Structural Biology, Max Planck
Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077 Göttingen, Germany
| | - Benjamin Goold
- Faculty
of Engineering and Physical Sciences, University
of Southampton, University Road, SO17 1BJ Southampton, U.K.
- Computational
Biomolecular Dynamics Group, Max Planck
Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077 Göttingen, Germany
| | - Kitty Hendriks
- Department
of Molecular Biophysics, Leibniz-Forschungsinstitut
für Molekulare Pharmakologie, Robert-Rössle-Str. 10, 13125 Berlin, Germany
| | - Sascha Lange
- Department
of Molecular Biophysics, Leibniz-Forschungsinstitut
für Molekulare Pharmakologie, Robert-Rössle-Str. 10, 13125 Berlin, Germany
| | - Stefan Becker
- Department
of NMR-Based Structural Biology, Max Planck
Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077 Göttingen, Germany
| | - Bert L. de Groot
- Computational
Biomolecular Dynamics Group, Max Planck
Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077 Göttingen, Germany
| | - Wojciech Kopec
- Computational
Biomolecular Dynamics Group, Max Planck
Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077 Göttingen, Germany
| | - Loren B. Andreas
- Department
of NMR-Based Structural Biology, Max Planck
Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077 Göttingen, Germany
| | - Adam Lange
- Department
of Molecular Biophysics, Leibniz-Forschungsinstitut
für Molekulare Pharmakologie, Robert-Rössle-Str. 10, 13125 Berlin, Germany
- Institut
für Biologie, Humboldt-Universität
zu Berlin, Invalidenstr.
42, 10115 Berlin, Germany
| |
Collapse
|
50
|
Rauh O, Opper J, Sturm M, Drexler N, Scheub DD, Hansen UP, Thiel G, Schroeder I. Role of ion distribution and energy barriers for concerted motion of subunits in selectivity filter gating of a K+ channel. J Mol Biol 2022; 434:167522. [DOI: 10.1016/j.jmb.2022.167522] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/04/2022] [Accepted: 02/28/2022] [Indexed: 11/25/2022]
|