1
|
Shen X, Chen J, Xu Y, Liu Q, He Z, Wang L, Sun P, Zhu H, Yan H. Torsional behavior of peripheral vascular stents: The role of stent design parameters. Proc Inst Mech Eng H 2025; 239:121-132. [PMID: 39959984 DOI: 10.1177/09544119251317621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2025]
Abstract
Torsional performance is a critical evaluation criterion in the design of peripheral vascular stents, enabling them to adapt to the deformation of the vessel to reduce damage to the vascular wall and thus avoiding in-stent restenosis (ISR). Therefore, this study employed the finite element method (FEM) to investigate the impact of stent design parameters on the torsional behavior of self-expanding peripheral vascular stents. These parameters included stent diameter and thickness, as well as the length and width of struts and links. Results revealed that among all parameters, strut length and width significantly influence the stent torsional performance, whereas link width has a lesser effect. Notably, increasing strut length and decreasing strut width were found to significantly reduce the required torque, with the twist metric (TM) reduced by approximately 86.3% when strut length increased from 1.2 to 2.8 mm. Moreover, reductions in stent diameter and thickness, alongside an increase in link length, further contributed to a decrease in TM, thereby enhancing the stent torsional performance. This study may provide insights for better peripheral stent design and clinical decision of stent choice.
Collapse
Affiliation(s)
- Xiang Shen
- School of Mechanical Engineering, Jiangsu University, Zhenjiang, China
| | - Jiahao Chen
- School of Mechanical Engineering, Jiangsu University, Zhenjiang, China
| | - Yue Xu
- School of Mechanical Engineering, Jiangsu University, Zhenjiang, China
| | - Qiang Liu
- School of Mechanical Engineering, Jiangsu University, Zhenjiang, China
| | - Zewen He
- School of Mechanical Engineering, Jiangsu University, Zhenjiang, China
| | - Lei Wang
- School of Mechanical Engineering, Jiangsu University, Zhenjiang, China
| | - Peng Sun
- School of Mechanical Engineering, Jiangsu University, Zhenjiang, China
| | - Hongfei Zhu
- School of Mechanical Engineering, Jiangsu University, Zhenjiang, China
| | - Hengfeng Yan
- Changzhou INNO Machining Co. Ltd., Changzhou, China
| |
Collapse
|
2
|
Moghadasi K, Ghayesh MH, Li J, Hu E, Amabili M, Żur KK, Fitridge R. Nonlinear biomechanical behaviour of extracranial carotid artery aneurysms in the framework of Windkessel effect via FSI technique. J Mech Behav Biomed Mater 2024; 160:106760. [PMID: 39366083 DOI: 10.1016/j.jmbbm.2024.106760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/29/2024] [Accepted: 09/28/2024] [Indexed: 10/06/2024]
Abstract
Extracranial carotid artery aneurysms (ECCA) lead to rupture and neurologic symptoms from embolisation, with potentially fatal outcomes. Investigating the biomechanical behaviour of EECA with blood flow dynamics is crucial for identifying regions more susceptible to rupture. A coupled three-dimensional (3D) Windkessel-framework and hyperelastic fluid-structure interaction (FSI) analysis of ECCAs with patient-specific geometries, was developed in this paper with a particular focus on hemodynamic parameters and the arterial wall's biomechanical response. The blood flow has been modelled as non-Newtonian, pulsatile, and turbulent. The biomechanical characteristics of the aneurysm and artery are characterised employing a 5-parameter Mooney-Rivlin hyperelasticity model. The Windkessel effect is also considered to efficiently simulate pressure profile of the outlets and to capture the dynamic changes over the cardiac cycle. The study found the aneurysm carotid artery exhibited the high levels of pressure, wall shear stress (WSS), oscillatory shear index (OSI), and relative residence time (RRT) compared to the healthy one. The deformation of the arterial wall and the corresponding von Mises (VM) stress were found significantly increased in aneurysm cases, in comparison to that of no aneurysm cases, which strongly correlated with the hemodynamic characteristics of the blood flow and the geometric features of the aneurysms. This escalation would intensify the risk of aneurysm wall rupture. These findings have critical implications for enhancing treatment strategies for patients with extracranial aneurysms.
Collapse
Affiliation(s)
- Kaveh Moghadasi
- School of Electrical and Mechanical Engineering, University of Adelaide, Adelaide, South Australia 5005, Australia.
| | - Mergen H Ghayesh
- School of Electrical and Mechanical Engineering, University of Adelaide, Adelaide, South Australia 5005, Australia.
| | - Jiawen Li
- School of Electrical and Mechanical Engineering, University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Eric Hu
- School of Electrical and Mechanical Engineering, University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Marco Amabili
- School of Engineering, Westlake University, Zhejiang province, PR China; Department of Mechanical Engineering, McGill University, Montreal, Canada
| | - Krzysztof Kamil Żur
- Faculty of Mechanical Engineering, Bialystok University of Technology, Bialystok, 15-351, Poland
| | - Robert Fitridge
- Vascular and Endovascular Service, Royal Adelaide Hospital, Adelaide, Australia; Discipline of Surgery, University of Adelaide, Adelaide, Australia; Basil Hetzel Institute for Translational Health Research, The Queen Elizabeth Hospital, Adelaide, Australia
| |
Collapse
|
3
|
Altundemir S, Lashkarinia SS, Pekkan K, Uğuz AK. Interstitial flow, pressure and residual stress in the aging carotid artery model in FEBio. Biomech Model Mechanobiol 2024; 23:179-192. [PMID: 37668853 DOI: 10.1007/s10237-023-01766-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 08/16/2023] [Indexed: 09/06/2023]
Abstract
Vascular smooth muscle cells (VSMCs) are subject to interstitial flow-induced shear stress, which is a critical parameter in cardiovascular disease progression. Transmural pressure loading and residual stresses alter the hydraulic conductivity of the arterial layers and modulate the interstitial fluid flux through the arterial wall. In this paper, a biphasic multilayer model of a common carotid artery (CCA) with anisotropic fiber-reinforced soft tissue and strain-dependent permeability is developed in FEBio software. After the verification of the numerical predictions, age-related arterial thickening and stiffening effects on arterial deformation and interstitial flow are computed under physiological geometry and physical parameters. We found that circumferential residual stress shifts outward in each layer and its gradient increases up to 6 times with aging. Internally pressurized CCA displays nonlinear deformation. In the aged artery, the circumferential stress becomes greater on the media layer (82-158 kPa) and lower on the intima and adventitia (19-23 kPa and 25-28 kPa, respectively). The radial compression of the intima reduces the total hydraulic conductivity by 48% in the young and 16% in the aged arterial walls. Consequently, the average radial interstitial flux increases with pressure by 14% in the young and 91% in the aged arteries. Accordingly, the flow shear stress experienced by the VSMCs becomes more significant for aged arteries, which may accelerate cardiovascular disease progression compared to young arteries.
Collapse
Affiliation(s)
- Sercan Altundemir
- Department of Chemical Engineering, Boğaziçi University, Istanbul, 34342, Turkey.
| | - S Samaneh Lashkarinia
- Department of Bioengineering, Imperial College London, London, SW7 2AZ, UK
- Department of Mechanical Engineering, Koç University, Istanbul, 34450, Turkey
| | - Kerem Pekkan
- Department of Mechanical Engineering, Koç University, Istanbul, 34450, Turkey
| | - A Kerem Uğuz
- Department of Chemical Engineering, Boğaziçi University, Istanbul, 34342, Turkey.
| |
Collapse
|
4
|
Giudici A, van der Laan KWF, van der Bruggen MM, Parikh S, Berends E, Foulquier S, Delhaas T, Reesink KD, Spronck B. Constituent-based quasi-linear viscoelasticity: a revised quasi-linear modelling framework to capture nonlinear viscoelasticity in arteries. Biomech Model Mechanobiol 2023; 22:1607-1623. [PMID: 37129690 PMCID: PMC10511394 DOI: 10.1007/s10237-023-01711-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 03/08/2023] [Indexed: 05/03/2023]
Abstract
Arteries exhibit fully nonlinear viscoelastic behaviours (i.e. both elastically and viscously nonlinear). While elastically nonlinear arterial models are well established, effective mathematical descriptions of nonlinear viscoelasticity are lacking. Quasi-linear viscoelasticity (QLV) offers a convenient way to mathematically describe viscoelasticity, but its viscous linearity assumption is unsuitable for whole-wall vascular applications. Conversely, application of fully nonlinear viscoelastic models, involving deformation-dependent viscous parameters, to experimental data is impractical and often reduces to identifying specific solutions for each tested loading condition. The present study aims to address this limitation: By applying QLV theory at the wall constituent rather than at the whole-wall level, the deformation-dependent relative contribution of the constituents allows to capture nonlinear viscoelasticity with a unique set of deformation-independent model parameters. Five murine common carotid arteries were subjected to a protocol of quasi-static and harmonic, pseudo-physiological biaxial loading conditions to characterise their viscoelastic behaviour. The arterial wall was modelled as a constrained mixture of an isotropic elastin matrix and four families of collagen fibres. Constituent-based QLV was implemented by assigning different relaxation functions to collagen- and elastin-borne parts of the wall stress. Nonlinearity in viscoelasticity was assessed via the pressure dependency of the dynamic-to-quasi-static stiffness ratio. The experimentally measured ratio increased with pressure, from 1.03 [Formula: see text] 0.03 (mean [Formula: see text] standard deviation) at 80-40 mmHg to 1.58 [Formula: see text] 0.22 at 160-120 mmHg. Constituent-based QLV captured well this trend by attributing the wall viscosity predominantly to collagen fibres, whose recruitment starts at physiological pressures. In conclusion, constituent-based QLV offers a practical and effective solution to model arterial viscoelasticity.
Collapse
Affiliation(s)
- Alessandro Giudici
- Department of Biomedical Engineering, CARIM School for Cardiovascular Diseases, Maastricht University, Universiteitssingel 40, Room C5.568, 6229 ER, Maastricht, The Netherlands.
- GROW School for Oncology and Reproduction, Maastricht University, Maastricht, The Netherlands.
| | - Koen W F van der Laan
- Department of Biomedical Engineering, CARIM School for Cardiovascular Diseases, Maastricht University, Universiteitssingel 40, Room C5.568, 6229 ER, Maastricht, The Netherlands
| | - Myrthe M van der Bruggen
- Department of Biomedical Engineering, CARIM School for Cardiovascular Diseases, Maastricht University, Universiteitssingel 40, Room C5.568, 6229 ER, Maastricht, The Netherlands
| | - Shaiv Parikh
- Department of Biomedical Engineering, CARIM School for Cardiovascular Diseases, Maastricht University, Universiteitssingel 40, Room C5.568, 6229 ER, Maastricht, The Netherlands
| | - Eline Berends
- Department of Internal Medicine, CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, The Netherlands
| | - Sébastien Foulquier
- Department of Pharmacology and Toxicology, CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, The Netherlands
| | - Tammo Delhaas
- Department of Biomedical Engineering, CARIM School for Cardiovascular Diseases, Maastricht University, Universiteitssingel 40, Room C5.568, 6229 ER, Maastricht, The Netherlands
| | - Koen D Reesink
- Department of Biomedical Engineering, CARIM School for Cardiovascular Diseases, Maastricht University, Universiteitssingel 40, Room C5.568, 6229 ER, Maastricht, The Netherlands
| | - Bart Spronck
- Department of Biomedical Engineering, CARIM School for Cardiovascular Diseases, Maastricht University, Universiteitssingel 40, Room C5.568, 6229 ER, Maastricht, The Netherlands
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, Australia
| |
Collapse
|
5
|
Giudici A, Spronck B, Wilkinson IB, Khir AW. Tri-layered constitutive modelling unveils functional differences between the pig ascending and lower thoracic aorta. J Mech Behav Biomed Mater 2023; 141:105752. [PMID: 36893688 DOI: 10.1016/j.jmbbm.2023.105752] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 02/22/2023] [Accepted: 03/01/2023] [Indexed: 03/05/2023]
Abstract
The arterial wall's tri-layered macroscopic and layer-specific microscopic structure determine its mechanical properties, which vary at different arterial locations. Combining layer-specific mechanical data and tri-layered modelling, this study aimed to characterise functional differences between the pig ascending (AA) and lower thoracic aorta (LTA). AA and LTA segments were obtained for n=9 pigs. For each location, circumferentially and axially oriented intact wall and isolated layer strips were tested uniaxially and the layer-specific mechanical response modelled using a hyperelastic strain energy function. Then, layer-specific constitutive relations and intact wall mechanical data were combined to develop a tri-layered model of an AA and LTA cylindrical vessel, accounting for the layer-specific residual stresses. AA and LTA behaviours were then characterised for in vivo pressure ranges while stretched axially to in vivo length. The media dominated the AA response, bearing>2/3 of the circumferential load both at physiological (100 mmHg) and hypertensive pressures (160 mmHg). The LTA media bore most of the circumferential load at physiological pressure only (57±7% at 100 mmHg), while adventitia and media load bearings were comparable at 160 mmHg. Furthermore, increased axial elongation affected the media/adventitia load-bearing only at the LTA. The pig AA and LTA presented strong functional differences, likely reflecting their different roles in the circulation. The media-dominated compliant and anisotropic AA stores large amounts of elastic energy in response to both circumferential and axial deformations, which maximises diastolic recoiling function. This function is reduced at the LTA, where the adventitia shields the artery against supra-physiological circumferential and axial loads.
Collapse
Affiliation(s)
- A Giudici
- Brunel Institute for Bioengineering, Brunel University London, Kingston Lane, Uxbridge, UB8 3PH, United Kingdom; Department of Biomedical Engineering, CARIM School for Cardiovascular Diseases, Maastricht University, Universiteitssingel 40, Maastricht, 6229 ER, the Netherlands
| | - B Spronck
- Department of Biomedical Engineering, CARIM School for Cardiovascular Diseases, Maastricht University, Universiteitssingel 40, Maastricht, 6229 ER, the Netherlands; Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Macquarie Park, Sydney, NSW, 2109, Australia
| | - I B Wilkinson
- Division of Experimental Medicine and Immunotherapeutics, University of Cambridge, Hills Road, Cambridge, CB2 0QO, United Kingdom
| | - A W Khir
- Brunel Institute for Bioengineering, Brunel University London, Kingston Lane, Uxbridge, UB8 3PH, United Kingdom; Department of Engineering, Durham University, Durham, DH1 3LE, United Kingdom.
| |
Collapse
|
6
|
Hurd ER, Iffrig E, Jiang D, Oshinski JN, Timmins LH. Flow-based method demonstrates improved accuracy for calculating wall shear stress in arterial flows from 4D flow MRI data. J Biomech 2023; 146:111413. [PMID: 36535100 PMCID: PMC9845191 DOI: 10.1016/j.jbiomech.2022.111413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 11/30/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022]
Abstract
Four-dimensional flow magnetic resonance imaging (i.e., 4D flow MRI) has become a valuable tool for the in vivo assessment of blood flow within large vessels and cardiac chambers. As wall shear stress (WSS) has been correlated with the development and progression of cardiovascular disease, focus has been directed at developing techniques to quantify WSS directly from 4D flow MRI data. The goal of this study was to compare the accuracy of two such techniques - termed the velocity and flow-based methods - in the setting of simplified and complex flow scenarios. Synthetic MR data were created from exact solutions to the Navier-Stokes equations for the steady and pulsatile flow of an incompressible, Newtonian fluid through a rigid cylinder. In addition, synthetic MR data were created from the predicted velocity fields derived from a fluid-structure interaction (FSI) model of pulsatile flow through a thick-walled, multi-layered model of the carotid bifurcation. Compared to the analytical solutions for steady and pulsatile flow, the flow-based method demonstrated greater accuracy than the velocity-based method in calculating WSS across all changes in fluid velocity/flow rate, tube radius, and image signal-to-noise (p < 0.001). Furthermore, the velocity-based method was more sensitive to boundary segmentation than the flow-based method. When compared to results from the FSI model, the flow-based method demonstrated greater accuracy than the velocity-based method with average differences in time-averaged WSS of 0.31 ± 1.03 Pa and 0.45 ± 1.03 Pa, respectively (p <0.005). These results have implications on the utility, accuracy, and clinical translational of methods to determine WSS from 4D flow MRI.
Collapse
Affiliation(s)
- Elliott R Hurd
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112, USA
| | - Elizabeth Iffrig
- Division of Allergy, Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA; Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
| | - David Jiang
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112, USA
| | - John N Oshinski
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA; Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Lucas H Timmins
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112, USA; Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, UT 84112, USA.
| |
Collapse
|
7
|
Image-Based Finite Element Modeling Approach for Characterizing In Vivo Mechanical Properties of Human Arteries. J Funct Biomater 2022; 13:jfb13030147. [PMID: 36135582 PMCID: PMC9505727 DOI: 10.3390/jfb13030147] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/07/2022] [Accepted: 09/07/2022] [Indexed: 11/17/2022] Open
Abstract
Mechanical properties of the arterial walls could provide meaningful information for the diagnosis, management and treatment of cardiovascular diseases. Classically, various experimental approaches were conducted on dissected arterial tissues to obtain their stress-stretch relationship, which has limited value clinically. Therefore, there is a pressing need to obtain biomechanical behaviors of these vascular tissues in vivo for personalized treatment. This paper reviews the methods to quantify arterial mechanical properties in vivo. Among these methods, we emphasize a novel approach using image-based finite element models to iteratively determine the material properties of the arterial tissues. This approach has been successfully applied to arterial walls in various vascular beds. The mechanical properties obtained from the in vivo approach were compared to those from ex vivo experimental studies to investigate whether any discrepancy in material properties exists for both approaches. Arterial tissue stiffness values from in vivo studies generally were in the same magnitude as those from ex vivo studies, but with lower average values. Some methodological issues, including solution uniqueness and robustness; method validation; and model assumptions and limitations were discussed. Clinical applications of this approach were also addressed to highlight their potential in translation from research tools to cardiovascular disease management.
Collapse
|
8
|
Nolte D, Bertoglio C. Inverse problems in blood flow modeling: A review. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2022; 38:e3613. [PMID: 35526113 PMCID: PMC9541505 DOI: 10.1002/cnm.3613] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 12/29/2021] [Accepted: 03/18/2022] [Indexed: 06/14/2023]
Abstract
Mathematical and computational modeling of the cardiovascular system is increasingly providing non-invasive alternatives to traditional invasive clinical procedures. Moreover, it has the potential for generating additional diagnostic markers. In blood flow computations, the personalization of spatially distributed (i.e., 3D) models is a key step which relies on the formulation and numerical solution of inverse problems using clinical data, typically medical images for measuring both anatomy and function of the vasculature. In the last years, the development and application of inverse methods has rapidly expanded most likely due to the increased availability of data in clinical centers and the growing interest of modelers and clinicians in collaborating. Therefore, this work aims to provide a wide and comparative overview of literature within the last decade. We review the current state of the art of inverse problems in blood flows, focusing on studies considering fully dimensional fluid and fluid-solid models. The relevant physical models and hemodynamic measurement techniques are introduced, followed by a survey of mathematical data assimilation approaches used to solve different kinds of inverse problems, namely state and parameter estimation. An exhaustive discussion of the literature of the last decade is presented, structured by types of problems, models and available data.
Collapse
Affiliation(s)
- David Nolte
- Bernoulli InstituteUniversity of GroningenGroningenThe Netherlands
- Center for Mathematical ModelingUniversidad de ChileSantiagoChile
- Department of Fluid DynamicsTechnische Universität BerlinBerlinGermany
| | | |
Collapse
|
9
|
The Role of Layer-Specific Residual Stresses in Arterial Mechanics: Analysis via a Novel Modelling Framework. Artery Res 2022. [DOI: 10.1007/s44200-022-00013-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
AbstractThe existence of residual stresses in unloaded arteries has long been known. However, their effect is often neglected in experimental studies. Using a recently developed modelling framework, we aimed to investigate the role of residual stresses in the mechanical behaviour of the tri-layered wall of the pig thoracic aorta. The mechanical behaviour of the intact wall and isolated layers of n = 3 pig thoracic aortas was investigated via uniaxial tensile testing. After modelling the layer-specific mechanical data using a hyperelastic strain energy function, the layer-specific deformations in the unloaded vessel were estimated so that the mechanical response of the computationally assembled tri-layered flat wall would match that measured experimentally. Physiological tension–inflation of the cylindrical tri-layered vessel was then simulated, analysing changes in the distribution of stresses in the three layers when neglecting residual stresses. In the tri-layered model with residual stresses, layers exhibited comparable stresses throughout the physiological range of pressure. At 100 mmHg, intimal, medial, and adventitial circumferential load bearings were 16 $$\pm$$
±
3%, 59 $$\pm$$
±
4%, and 25 $$\pm$$
±
2%, respectively. Adventitial stiffening at high pressures produced a shift in load bearing from the media to the adventitia. When neglecting residual stresses, in vivo stresses were highest at the intima and lowest at the adventitia. Consequently, the intimal and adventitial load bearings, 23 $$\pm$$
±
2% and 18 $$\pm$$
±
3% at 100 mmHg, were comparable at all pressures. Residual stresses play a crucial role in arterial mechanics guaranteeing a uniform distribution of stresses through the wall thickness. Neglecting these leads to incorrect interpretation of the layers’ role in arterial mechanics.
Collapse
|
10
|
Zhang W, Sommer G, Niestrawska JA, Holzapfel GA, Nordsletten D. The effects of viscoelasticity on residual strain in aortic soft tissues. Acta Biomater 2022; 140:398-411. [PMID: 34823042 DOI: 10.1016/j.actbio.2021.11.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 11/14/2021] [Accepted: 11/15/2021] [Indexed: 11/15/2022]
Abstract
Residual stress is thought to play a critical role in modulating stress distributions in soft biological tissues and in maintaining the mechanobiological stress environment of cells. Residual stresses in arteries and other tissues are classically assessed through opening angle experiments, which demonstrate the continuous release of residual stresses over hours. These results are then assessed through nonlinear biomechanical models to provide estimates of the residual stresses in the intact state. Although well studied, these analyses typically focus on hyperelastic material models despite significant evidence of viscoelastic phenomena over both short and long timescales. In this work, we extended the state-of-the-art structural tensor model for arterial tissues from Holzapfel and Ogden for fractional viscoelasticity. Models were tuned to capture consistent levels of hysteresis observed in biaxial experiments, while also minimizing the fractional viscoelastic weighting and opening angles to correctly capture opening angle dynamics. Results suggest that a substantial portion of the human abdominal aorta is viscoelastic, but exhibits a low fractional order (i.e. more elastically). Additionally, a significantly larger opening angle in the fully unloaded state is necessary to produce comparable hysteresis in biaxial testing. As a consequence, conventional estimates of residual stress using hyperelastic approaches over-estimate their viscoelastic counterparts by a factor of 2. Thus, a viscoelastic approach, such as the one illustrated in this study, in combination with an additional source of rate-controlled viscoelastic data is necessary to accurately analyze the residual stress distribution in soft biological tissues. STATEMENT OF SIGNIFICANCE: Residual stress plays a crucial role in achieving a homeostatic stress environment in soft biological tissues. However, the analysis of residual stress typically focuses on hyperelastic material models despite evidence of viscoelastic behavior. This work is the first attempt at analyzing the effects of viscoelasticity on residual stress. The application of viscoelasticity was crucial for producing realistic opening dynamics in arteries. The overall residual stresses were estimated to be 50% less than those from using hyperelastic material models, while the opening angles were projected to be 25% more than those measured after 16 hours, suggesting underestimated residual strain. This study highlights the importance viscoelasticity in the analysis of residual stress even in weakly dissipative materials like the human aorta.
Collapse
Affiliation(s)
- Will Zhang
- Department of Biomedical Engineering, University of Michigan, North Campus Research Center, Building 20, 2800 Plymouth Rd, Ann Arbor 48109, USA.
| | - Gerhard Sommer
- Institute of Biomechanics, Graz University of Technology, AT, Austria
| | - Justyna A Niestrawska
- Gottfried Schatz Research Center, Division of Macroscopic and Clinical Anatomy, Medical University of Graz, Harrachgasse 21, 8010 Graz, Austria
| | - Gerhard A Holzapfel
- Institute of Biomechanics, Graz University of Technology, AT, Austria; Department of Structural Engineering, Norwegian University of Science and Technology, Trondheim, NO, Norway
| | - David Nordsletten
- Division of Biomedical Engineering and Imaging Sciences, Department of Biomedical Engineering, King's College London, UK; Departments of Biomedical Engineering and Cardiac Surgery, University of Michigan, Ann Arbor, USA
| |
Collapse
|
11
|
Stretch and stress distributions in the human artery based on two-layer model considering residual stresses. Biomech Model Mechanobiol 2021; 21:135-146. [PMID: 34622379 DOI: 10.1007/s10237-021-01523-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 09/23/2021] [Indexed: 10/20/2022]
Abstract
The objective is to know the stress distributions in the arterial walls under residual stresses based on two-layer model. Human common carotid arteries were analysed to show stress distributions at physiological and supraphysiological intraluminal pressures. The analyses for the loaded states were performed with stretch ratios with reference to a Riemannian stress-free configuration which is a 3D non-Euclidean manifold due to the nonzero Riemann curvature tensor. The experimental data obtained by other literature were used for the common carotid arteries to analyse the stretch and stress distributions in the arterial wall although kinematics is different from the literature. The stretches and stresses were calculated for the unloaded state, i.e. the residual stretches and stresses. And those at the axial stretch ratio 1.1 with reference to the unloaded state were calculated at the intraluminal pressures 16, 50, and 100 kPa. The stresses increased from the inner surface to the outer surface at all pressures analysed. These results suggest that in the human arteries the mechanical loads are mainly supported with the adventitia even though the media and intima play an important role to control of physiological functions.
Collapse
|
12
|
Lisický O, Hrubanová A, Burša J. Interpretation of Experimental Data is Substantial for Constitutive Characterization of Arterial Tissue. J Biomech Eng 2021; 143:104501. [PMID: 33973008 DOI: 10.1115/1.4051120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Indexed: 11/08/2022]
Abstract
The paper aims at evaluation of mechanical tests of soft tissues and creation of their representative stress-strain responses and respective constitutive models. Interpretation of sets of experimental results depends highly on the approach to the data analysis. Their common representation through mean and standard deviation may be misleading and give nonrealistic results. In the paper, raw data of seven studies consisting of 11 experimental data sets (concerning carotid wall and atheroma tissues) are re-analyzed to show the importance of their rigorous analysis. The sets of individual uniaxial stress-stretch curves are evaluated using three different protocols: stress-based, stretch-based, and constant-based, and the population-representative response is created by their mean or median values. Except for nearly linear responses, there are substantial differences between the resulting curves, being mostly the highest for constant-based evaluation. But also the stretch-based evaluation may change the character of the response significantly. Finally, medians of the stress-based responses are recommended as the most rigorous approach for arterial and other soft tissues with significant strain stiffening.
Collapse
Affiliation(s)
- Ondřej Lisický
- Institute of Solid Mechanics, Mechatronics and Biomechanics, Brno University of Technology, Brno 601 90, Czech Republic
| | - Anna Hrubanová
- Institute of Solid Mechanics, Mechatronics and Biomechanics, Brno University of Technology, Brno 601 90, Czech Republic
| | - Jiří Burša
- Institute of Solid Mechanics, Mechatronics and Biomechanics, Brno University of Technology, Brno 601 90, Czech Republic
| |
Collapse
|
13
|
Shim JJ, Maas SA, Weiss JA, Ateshian GA. Finite Element Implementation of Biphasic-Fluid Structure Interactions in febio. J Biomech Eng 2021; 143:091005. [PMID: 33764435 PMCID: PMC8299810 DOI: 10.1115/1.4050646] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 03/09/2021] [Indexed: 11/08/2022]
Abstract
In biomechanics, solid-fluid mixtures have commonly been used to model the response of hydrated biological tissues. In cartilage mechanics, this type of mixture, where the fluid and solid constituents are both assumed to be intrinsically incompressible, is often called a biphasic material. Various physiological processes involve the interaction of a viscous fluid with a porous-hydrated tissue, as encountered in synovial joint lubrication, cardiovascular mechanics, and respiratory mechanics. The objective of this study was to implement a finite element solver in the open-source software febio that models dynamic interactions between a viscous fluid and a biphasic domain, accommodating finite deformations of both domains as well as fluid exchanges between them. For compatibility with our recent implementation of solvers for computational fluid dynamics (CFD) and fluid-structure interactions (FSI), where the fluid is slightly compressible, this study employs a novel hybrid biphasic formulation where the porous skeleton is intrinsically incompressible but the fluid is also slightly compressible. The resulting biphasic-FSI (BFSI) implementation is verified against published analytical and numerical benchmark problems, as well as novel analytical solutions derived for the purposes of this study. An illustration of this BFSI solver is presented for two-dimensional (2D) airflow through a simulated face mask under five cycles of breathing, showing that masks significantly reduce air dispersion compared to the no-mask control analysis. In addition, we model three-dimensional (3D) blood flow in a bifurcated carotid artery assuming porous arterial walls and verify that mass is conserved across all fluid-permeable boundaries. The successful formulation and implementation of this BFSI solver offers enhanced multiphysics modeling capabilities that are accessible via an open-source software platform.
Collapse
Affiliation(s)
- Jay J Shim
- Department of Mechanical Engineering, Columbia University, New York, NY 10027
| | - Steve A Maas
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112
| | - Jeffrey A Weiss
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112
| | - Gerard A Ateshian
- Department of Mechanical Engineering, Columbia University, New York, NY 10027
| |
Collapse
|
14
|
Giudici A, Khir AW, Szafron JM, Spronck B. From Uniaxial Testing of Isolated Layers to a Tri-Layered Arterial Wall: A Novel Constitutive Modelling Framework. Ann Biomed Eng 2021; 49:2454-2467. [PMID: 34081251 PMCID: PMC8455406 DOI: 10.1007/s10439-021-02775-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 03/31/2021] [Indexed: 01/15/2023]
Abstract
Mechanical testing and constitutive modelling of isolated arterial layers yields insight into the individual layers' mechanical properties, but per se fails to recapitulate the in vivo loading state, neglecting layer-specific residual stresses. The aim of this study was to develop a testing/modelling framework that integrates layer-specific uniaxial testing data into a three-layered model of the arterial wall, thereby enabling study of layer-specific mechanics under realistic (patho)physiological conditions. Circumferentially and axially oriented strips of pig thoracic aortas (n = 10) were tested uniaxially. Individual arterial layers were then isolated from the wall, tested, and their mechanical behaviour modelled using a hyperelastic strain energy function. Subsequently, the three layers were computationally assembled into a single flat-walled sample, deformed into a cylindrical vessel, and subjected to physiological tension-inflation. At the in vivo axial stretch of 1.10 ± 0.03, average circumferential wall stress was 75 ± 9 kPa at 100 mmHg, which almost doubled to 138 ± 15 kPa at 160 mmHg. A ~ 200% stiffening of the adventitia over the 60 mmHg pressure increase shifted layer-specific load-bearing from the media (65 ± 10% → 61 ± 14%) to the adventitia (28 ± 9% → 32 ± 14%). Our approach provides valuable insight into the (patho)physiological mechanical roles of individual arterial layers at different loading states, and can be implemented conveniently using simple, inexpensive and widely available uniaxial testing equipment.
Collapse
Affiliation(s)
| | - Ashraf W Khir
- Biomedical Engineering Theme, Brunel University London, Uxbridge, UK
| | - Jason M Szafron
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Bart Spronck
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA.
- Department of Biomedical Engineering, CARIM School for Cardiovascular Diseases, Maastricht University, Universiteitssingel 50, Room 3.359, 6229ER, Maastricht, The Netherlands.
| |
Collapse
|
15
|
Coccarelli A, Carson JM, Aggarwal A, Pant S. A framework for incorporating 3D hyperelastic vascular wall models in 1D blood flow simulations. Biomech Model Mechanobiol 2021; 20:1231-1249. [PMID: 33683514 PMCID: PMC8298378 DOI: 10.1007/s10237-021-01437-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 02/12/2021] [Indexed: 12/02/2022]
Abstract
We present a novel framework for investigating the role of vascular structure on arterial haemodynamics in large vessels, with a special focus on the human common carotid artery (CCA). The analysis is carried out by adopting a three-dimensional (3D) derived, fibre-reinforced, hyperelastic structural model, which is coupled with an axisymmetric, reduced order model describing blood flow. The vessel transmural pressure and lumen area are related via a Holzapfel-Ogden type of law, and the residual stresses along the thickness and length of the vessel are also accounted for. After a structural characterization of the adopted hyperelastic model, we investigate the link underlying the vascular wall response and blood-flow dynamics by comparing the proposed framework results against a popular tube law. The comparison shows that the behaviour of the model can be captured by the simpler linear surrogate only if a representative value of compliance is applied. Sobol's multi-variable sensitivity analysis is then carried out in order to identify the extent to which the structural parameters have an impact on the CCA haemodynamics. In this case, the local pulse wave velocity (PWV) is used as index for representing the arterial transmission capacity of blood pressure waveforms. The sensitivity analysis suggests that some geometrical factors, such as the stress-free inner radius and opening angle, play a major role on the system's haemodynamics. Subsequently, we quantified the differences in haemodynamic variables obtained from different virtual CCAs, tube laws and flow conditions. Although each artery presents a distinct vascular response, the differences obtained across different flow regimes are not significant. As expected, the linear tube law is unable to accurately capture all the haemodynamic features characterizing the current model. The findings from the sensitivity analysis are further confirmed by investigating the axial stretching effect on the CCA fluid dynamics. This factor does not seem to alter the pressure and flow waveforms. On the contrary, it is shown that, for an axially stretched vessel, the vascular wall exhibits an attenuation in absolute distension and an increase in circumferential stress, corroborating the findings of previous studies. This analysis shows that the new model offers a good balance between computational complexity and physics captured, making it an ideal framework for studies aiming to investigate the profound link between vascular mechanobiology and blood flow.
Collapse
Affiliation(s)
- Alberto Coccarelli
- Zienkiewicz Centre for Computational Engineering, College of Engineering, Swansea University, Swansea, UK.
| | - Jason M Carson
- Zienkiewicz Centre for Computational Engineering, College of Engineering, Swansea University, Swansea, UK
- Data Science Building, Swansea University Medical School, Swansea University, Swansea, UK
- HDR-UK Wales and Northern Ireland, Health Data Research UK, London, UK
| | - Ankush Aggarwal
- Glasgow Computational Engineering Centre, James Watt School of Engineering, University of Glasgow, Glasgow, UK
| | - Sanjay Pant
- Zienkiewicz Centre for Computational Engineering, College of Engineering, Swansea University, Swansea, UK
| |
Collapse
|
16
|
Sun Z, Gepner BD, Lee SH, Rigby J, Cottler PS, Hallman JJ, Kerrigan JR. Multidirectional mechanical properties and constitutive modeling of human adipose tissue under dynamic loading. Acta Biomater 2021; 129:188-198. [PMID: 34048975 DOI: 10.1016/j.actbio.2021.05.021] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 05/02/2021] [Accepted: 05/17/2021] [Indexed: 02/07/2023]
Abstract
The mechanical behavior of subcutaneous adipose tissue (SAT) affects the interaction between vehicle occupants and restraint systems in motor vehicle crashes (MVCs). To enhance future restraints, injury countermeasures, and other vehicle safety systems, computational simulations are often used to augment experiments because of their relative efficiency for parametric analysis. How well finite element human body models (FE-HBMs), which are often used in such simulations, predict human response has been limited by the absence of material models for human SAT that are applicable to the MVC environment. In this study, for the first time, dynamic multidirectional unconfined compression and simple shear loading tests were performed on human abdominal SAT specimens under conditions similar to MVCs. We also performed multiple ramp-hold tests to evaluate the quasilinear viscoelasticity (QLV) assumption and capture the stress relaxation behavior under both compression and shear. Our mechanical characterization was supplemented with scanning electron microscopy (SEM) performed in different orientations to investigate whether the macrostructural response can be related to the underlying microstructure. While the overall structure was shown to be visually different in different anatomical planes, a preferred orientation of any fibrous structures could not be identified. We showed that the nonlinear, viscoelastic, and direction-dependent responses under compression and shear tests could be captured by incorporating QLV in an Ogden-type hyperelastic model. Our comprehensive approach will lead to more accurate computational simulations and support the collective effort on the research of future occupant protection systems. STATEMENT OF SIGNIFICANCE: There is an urgent need to characterize the mechanical behavior of human adipose tissue under multiple dynamic loading conditions, and to identify constitutive models that are able to capture the tissue response under these conditions. We performed the first series of experiments on human adipose tissue specimens to characterize the multi-directional compression and shear behavior at impact loading rates and obtained scanning electron microscope images to investigate whether the macrostructural response can be related to the underlying microstructure. The results showed that human adipose tissue is nonlinear, viscoelastic and direction dependent, and its mechanical response under compression and shear tests at different loading rates can be captured by incorporating quasi-linear viscoelasticity in an Ogden-type hyperelastic model.
Collapse
|
17
|
Ran D, Dong J, Li H, Lee WN. Spontaneous extension wave for in vivo assessment of arterial wall anisotropy. Am J Physiol Heart Circ Physiol 2021; 320:H2429-H2437. [PMID: 33961508 DOI: 10.1152/ajpheart.00756.2020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Another type of natural wave, traced from longitudinal wall motion and propagation along the artery, is observed in our in vivo human carotid artery experiments. We coin it as extension wave (EW) and hypothesize that EW velocity (EWV) is associated with arterial longitudinal stiffness. The EW is thus assumed to complement the pulse wave (PW), whose velocity (PWV) is tracked from the radial wall displacement and linked to arterial circumferential stiffness through the Moens-Korteweg equation, as indicators for arterial mechanical anisotropy quantification by noninvasive high-frame-rate ultrasound. The relationship between directional arterial stiffnesses and the two natural wave speeds was investigated in wave theory, finite-element simulations based on isotropic and anisotropic arterial models, and in vivo human common carotid artery (n = 10) experiments. Excellent agreement between the theory and simulations showed that EWV was 2.57 and 1.03 times higher than PWV in an isotropic and an anisotropic carotid artery model, respectively, whereas in vivo EWV was consistently lower than PWV in all 10 healthy human subjects. A strong linear correlation was substantiated in vivo between EWV and arterial longitudinal stiffness quantified by a well-validated vascular-guided wave imaging technique (VGWI). We thereby proposed a novel index calculated as EWV2/PWV2 as an alternative to assess arterial mechanical anisotropy. Simulations and in vivo results corroborated the effect of mechanical anisotropy on the propagation of spontaneous waves along the arterial wall. The proposed anisotropy index demonstrated the feasibility of the concurrent EW and PW imaged by high frame-rate ultrasound in grading of arterial wall anisotropy.NEW & NOTEWORTHY An extension wave formed by longitudinal wall displacements was observed by high-frame-rate ultrasound in the human common carotid artery in vivo. A strong correlation between extension wave velocity and arterial longitudinal stiffness complements the well-established pulse wave, which is linked to circumferential stiffness, to noninvasively assess direction-dependent wall elasticity of the major artery. The proposed anisotropy index, which directly reflects arterial wall microstructure and function, might be a potential risk factor for screening (sub-) clinical cardiovascular diseases.
Collapse
Affiliation(s)
- Dan Ran
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong, China
| | - Jinping Dong
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong, China
| | - He Li
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong, China
| | - Wei-Ning Lee
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong, China.,Biomedical Engineering Programme, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
18
|
Lucinskas P, Deimantavicius M, Bartusis L, Zakelis R, Misiulis E, Dziugys A, Hamarat Y. Human ophthalmic artery as a sensor for non-invasive intracranial pressure monitoring: numerical modeling and in vivo pilot study. Sci Rep 2021; 11:4736. [PMID: 33637806 PMCID: PMC7910574 DOI: 10.1038/s41598-021-83777-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 02/05/2021] [Indexed: 01/31/2023] Open
Abstract
Intracranial pressure (ICP) monitoring is important in managing neurosurgical, neurological, and ophthalmological patients with open-angle glaucoma. Non-invasive two-depth transcranial Doppler (TCD) technique is used in a novel method for ICP snapshot measurement that has been previously investigated prospectively, and the results showed clinically acceptable accuracy and precision. The aim of this study was to investigate possibility of using the ophthalmic artery (OA) as a pressure sensor for continuous ICP monitoring. First, numerical modeling was done to investigate the possibility, and then a pilot clinical study was conducted to compare two-depth TCD-based non-invasive ICP monitoring data with readings from an invasive Codman ICP microsensor from patients with severe traumatic brain injury. The numerical modeling showed that the systematic error of non-invasive ICP monitoring was < 1.0 mmHg after eliminating the intraorbital and blood pressure gradient. In a clinical study, a total of 1928 paired data points were collected, and the extreme data points of measured differences between invasive and non-invasive ICP were - 3.94 and 4.68 mmHg (95% CI - 2.55 to 2.72). The total mean and SD were 0.086 ± 1.34 mmHg, and the correlation coefficient was 0.94. The results show that the OA can be used as a linear natural pressure sensor and that it could potentially be possible to monitor the ICP for up to 1 h without recalibration.
Collapse
Affiliation(s)
- Paulius Lucinskas
- grid.6901.e0000 0001 1091 4533Health Telematics Science Institute, Kaunas University of Technology, K. Barsausko Str. 59-A556, 51423 Kaunas, Lithuania
| | - Mantas Deimantavicius
- grid.6901.e0000 0001 1091 4533Health Telematics Science Institute, Kaunas University of Technology, K. Barsausko Str. 59-A556, 51423 Kaunas, Lithuania
| | - Laimonas Bartusis
- grid.6901.e0000 0001 1091 4533Health Telematics Science Institute, Kaunas University of Technology, K. Barsausko Str. 59-A556, 51423 Kaunas, Lithuania
| | - Rolandas Zakelis
- grid.6901.e0000 0001 1091 4533Health Telematics Science Institute, Kaunas University of Technology, K. Barsausko Str. 59-A556, 51423 Kaunas, Lithuania
| | - Edgaras Misiulis
- grid.20653.320000 0001 2228 249XLaboratory of Combustion Processes, Lithuanian Energy Institute, Breslaujos Str. 3, 44403 Kaunas, Lithuania
| | - Algis Dziugys
- grid.20653.320000 0001 2228 249XLaboratory of Combustion Processes, Lithuanian Energy Institute, Breslaujos Str. 3, 44403 Kaunas, Lithuania
| | - Yasin Hamarat
- grid.6901.e0000 0001 1091 4533Health Telematics Science Institute, Kaunas University of Technology, K. Barsausko Str. 59-A556, 51423 Kaunas, Lithuania
| |
Collapse
|
19
|
Jadidi M, Razian SA, Anttila E, Doan T, Adamson J, Pipinos M, Kamenskiy A. Comparison of morphometric, structural, mechanical, and physiologic characteristics of human superficial femoral and popliteal arteries. Acta Biomater 2021; 121:431-443. [PMID: 33227490 PMCID: PMC7855696 DOI: 10.1016/j.actbio.2020.11.025] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 11/12/2020] [Accepted: 11/17/2020] [Indexed: 01/03/2023]
Abstract
Peripheral arterial disease differentially affects the superficial femoral (SFA) and the popliteal (PA) arteries, but their morphometric, structural, mechanical, and physiologic differences are poorly understood. SFAs and PAs from 125 human subjects (age 13-92, average 52±17 years) were compared in terms of radii, wall thickness, and opening angles. Structure and vascular disease were quantified using histology, mechanical properties were determined with planar biaxial extension, and constitutive modeling was used to calculate the physiologic stress-stretch state, elastic energy, and the circumferential physiologic stiffness. SFAs had larger radii than PAs, and both segments widened with age. Young SFAs were 5% thicker, but in old subjects the PAs were thicker. Circumferential (SFA: 96→193°, PA: 105→139°) and longitudinal (SFA: 139→306°, PA: 133→320°) opening angles increased with age in both segments. PAs were more diseased than SFAs and had 11% thicker intima. With age, intimal thickness increased 8.5-fold, but medial thickness remained unchanged (620μm) in both arteries. SFAs had 30% more elastin than the PAs, and its density decreased ~50% with age. SFAs were more compliant than PAs circumferentially, but there was no difference longitudinally. Physiologic circumferential stress and stiffness were 21% and 11% higher in the SFA than in the PA across all ages. The stored elastic energy decreased with age (SFA: 1.4→0.4kPa, PA: 2.5→0.3kPa). While the SFA and PA demonstrate appreciable differences, most of them are due to vascular disease. When pathology is the same, so are the mechanical properties, but not the physiologic characteristics that remain distinct due to geometrical differences.
Collapse
Affiliation(s)
- Majid Jadidi
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Sayed Ahmadreza Razian
- Department of Biomechanics, Biomechanics Research Building, University of Nebraska Omaha, Omaha, NE, USA
| | - Eric Anttila
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Tyler Doan
- Department of Biomechanics, Biomechanics Research Building, University of Nebraska Omaha, Omaha, NE, USA
| | - Josiah Adamson
- Department of Biomechanics, Biomechanics Research Building, University of Nebraska Omaha, Omaha, NE, USA
| | - Margarita Pipinos
- Department of Biomechanics, Biomechanics Research Building, University of Nebraska Omaha, Omaha, NE, USA
| | - Alexey Kamenskiy
- Department of Biomechanics, Biomechanics Research Building, University of Nebraska Omaha, Omaha, NE, USA.
| |
Collapse
|
20
|
Jadidi M, Sherifova S, Sommer G, Kamenskiy A, Holzapfel GA. Constitutive modeling using structural information on collagen fiber direction and dispersion in human superficial femoral artery specimens of different ages. Acta Biomater 2021; 121:461-474. [PMID: 33279711 PMCID: PMC8464405 DOI: 10.1016/j.actbio.2020.11.046] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 11/27/2020] [Accepted: 11/27/2020] [Indexed: 12/29/2022]
Abstract
Arterial mechanics plays an important role in vascular pathophysiology and repair, and advanced imaging can inform constitutive models of vascular behavior. We have measured the mechanical properties of 14 human superficial femoral arteries (SFAs) (age 12-70, mean 48±19 years) using planar biaxial extension, and determined the preferred collagen fiber direction and dispersion using multiphoton microscopy. The collagen fiber direction and dispersion were evaluated using second-harmonic generation imaging and modeled using bivariate von Mises distributions. The microstructures of elastin and collagen were assessed using two-photon fluorescence imaging and conventional bidirectional histology. The mechanical and structural data were used to describe the SFA mechanical behavior using two- and four-fiber family invariant-based constitutive models. Older SFAs were stiffer and mechanically more nonlinear than younger specimens. In the adventitia, collagen fibers were undulated and diagonally-oriented, while in the media, they were straight and circumferentially-oriented. The media was rich in collagen that surrounded the circumferentially-oriented smooth muscle cells, and the elastin was present primarily in the internal and external elastic laminae. Older SFAs had a more circumferential collagen fiber alignment, a decreased circumferential-radial fiber dispersion, but the same circumferential-longitudinal fiber dispersion as younger specimens. Both the two- and the four-fiber family constitutive models were able to capture the experimental data, and the fits were better for the four-fiber family formulation. Our data provide additional details on the SFA intramural structure and inform structurally-based constitutive models.
Collapse
|
21
|
Jadidi M, Razian SA, Habibnezhad M, Anttila E, Kamenskiy A. Mechanical, structural, and physiologic differences in human elastic and muscular arteries of different ages: Comparison of the descending thoracic aorta to the superficial femoral artery. Acta Biomater 2021; 119:268-283. [PMID: 33127484 PMCID: PMC7738395 DOI: 10.1016/j.actbio.2020.10.035] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 09/28/2020] [Accepted: 10/22/2020] [Indexed: 12/23/2022]
Abstract
Elastic and muscular arteries differ in structure, function, and mechanical properties, and may adapt differently to aging. We compared the descending thoracic aortas (TA) and the superficial femoral arteries (SFA) of 27 tissue donors (average 41±18 years, range 13-73 years) using planar biaxial testing, constitutive modeling, and bidirectional histology. Both TAs and SFAs increased in size with age, with the outer radius increasing more than the inner radius, but the TAs thickened 6-fold and widened 3-fold faster than the SFAs. The circumferential opening angle did not change in the TA, but increased 2.4-fold in the SFA. Young TAs were relatively isotropic, but the anisotropy increased with age due to longitudinal stiffening. SFAs were 51% more compliant longitudinally irrespective of age. Older TAs and SFAs were stiffer, but the SFA stiffened 5.6-fold faster circumferentially than the TA. Physiologic stresses decreased with age in both arteries, with greater changes occurring longitudinally. TAs had larger circumferential, but smaller longitudinal stresses than the SFAs, larger cardiac cycle stretch, 36% lower circumferential stiffness, and 8-fold more elastic energy available for pulsation. TAs contained elastin sheets separated by smooth muscle cells (SMCs), collagen, and glycosaminoglycans, while the SFAs had SMCs, collagen, and longitudinal elastic fibers. With age, densities of elastin and SMCs decreased, collagen remained constant due to medial thickening, and the glycosaminoglycans increased. Elastic and muscular arteries demonstrate different morphological, mechanical, physiologic, and structural characteristics and adapt differently to aging. While the aortas remodel to preserve the Windkessel function, the SFAs maintain higher longitudinal compliance.
Collapse
Affiliation(s)
- Majid Jadidi
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE, USA
| | | | - Mahmoud Habibnezhad
- Department of Computer Science, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Eric Anttila
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Alexey Kamenskiy
- Department of Biomechanics, University of Nebraska Omaha, Omaha, NE, USA.
| |
Collapse
|
22
|
Lisický O, Malá A, Bednařík Z, Novotný T, Burša J. Consideration of stiffness of wall layers is decisive for patient-specific analysis of carotid artery with atheroma. PLoS One 2020; 15:e0239447. [PMID: 32991605 PMCID: PMC7523976 DOI: 10.1371/journal.pone.0239447] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 09/07/2020] [Indexed: 01/08/2023] Open
Abstract
The paper deals with the impact of chosen geometric and material factors on maximal stresses in carotid atherosclerotic plaque calculated using patient-specific finite element models. These stresses are believed to be decisive for the plaque vulnerability but all applied models suffer from inaccuracy of input data, especially when obtained in vivo only. One hundred computational models based on ex vivo MRI are used to investigate the impact of wall thickness, MRI slice thickness, lipid core and fibrous tissue stiffness, and media anisotropy on the calculated peak plaque and peak cap stresses. The investigated factors are taken as continuous in the range based on published experimental results, only the impact of anisotropy is evaluated by comparison with a corresponding isotropic model. Design of Experiment concept is applied to assess the statistical significance of these investigated factors representing uncertainties in the input data of the model. The results show that consideration of realistic properties of arterial wall in the model is decisive for the stress evaluation; assignment of properties of fibrous tissue even to media and adventitia layers as done in some studies may induce up to eightfold overestimation of peak stress. The impact of MRI slice thickness may play a key role when local thin fibrous cap is present. Anisotropy of media layer is insignificant, and the stiffness of fibrous tissue and lipid core may become significant in some combinations.
Collapse
Affiliation(s)
- Ondřej Lisický
- Institute of Solid Mechanics, Mechatronics and Biomechanics, Brno University of Technology, Brno, Czech Republic
- * E-mail:
| | - Aneta Malá
- Institute of Scientific Instruments, The Czech Academy of Science, Brno, Czech Republic
| | - Zdeněk Bednařík
- 1st Department of Pathology, St. Anne’s University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Tomáš Novotný
- 2nd Department of Surgery, St. Anne’s University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Jiří Burša
- Institute of Solid Mechanics, Mechatronics and Biomechanics, Brno University of Technology, Brno, Czech Republic
| |
Collapse
|
23
|
Comparison of porcine and human adipose tissue loading responses under dynamic compression and shear: A pilot study. J Mech Behav Biomed Mater 2020; 113:104112. [PMID: 33010697 DOI: 10.1016/j.jmbbm.2020.104112] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 09/17/2020] [Accepted: 09/21/2020] [Indexed: 11/21/2022]
Abstract
Understanding the mechanical properties of human adipose tissue, and its influence on seat belt-pelvis interaction is beneficial for computational human body models that are developed for injury prediction in the vehicle crashworthiness simulations. While various studies have characterized adipose tissue, most of the studies used porcine adipose tissue as a surrogate, and none of the studies were performed at loading rates relevant for motor vehicle collisions. In this work, the mechanical response of human and porcine adipose tissue was studied. Two dynamic loading modes (compression and simple shear) were tested in adipose tissue extracted from the human abdomen and porcine back. An Ogden hyperelastic model was used to fit the loading response, and specific material parameters were obtained for each specimen. Two-sample t-tests were performed to compare the effective shear moduli and peak stresses from porcine and human samples. The material response of the human adipose tissue was consistent with previous studies. Porcine adipose tissue was found to be significantly stiffer than human adipose tissue under compression and shear loading. Also, when material model parameters were fit to only one loading mode, the predicted response in the other mode showed a poor fit.
Collapse
|
24
|
Jadidi M, Habibnezhad M, Anttila E, Maleckis K, Desyatova A, MacTaggart J, Kamenskiy A. Mechanical and structural changes in human thoracic aortas with age. Acta Biomater 2020; 103:172-188. [PMID: 31877371 DOI: 10.1016/j.actbio.2019.12.024] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 12/12/2019] [Accepted: 12/18/2019] [Indexed: 12/22/2022]
Abstract
Aortic mechanical and structural characteristics have profound effects on pathophysiology, but many aspects of physiologic stress-stretch state and intramural changes due to aging remain poorly understood in human tissues. While difficult to assess in vivo due to residual stresses and pre-stretch, physiologic stress-stretch characteristics can be calculated using experimentally-measured mechanical properties and constitutive modeling. Mechanical properties of 76 human descending thoracic aortas (TA) from 13 to 78-year-old donors (mean age 51±18 years) were measured using multi-ratio planar biaxial extension. Constitutive parameters were derived for aortas in 7 age groups, and the physiologic stress-stretch state was calculated. Intramural characteristics were quantified from histological images and related to aortic morphometry and mechanics. TA stiffness increased with age, and aortas became more nonlinear and anisotropic. Systolic and diastolic elastic energy available for pulsation decreased with age from 30 to 8 kPa and from 18 to 5 kPa, respectively. Cardiac cycle circumferential stretch dropped from 1.14 to 1.04, and circumferential and longitudinal physiologic stresses decreased with age from 90 to 72 kPa and from 90 to 17 kPa, respectively. Aortic wall thickness and radii increased with age, while the density of elastin in the tunica media decreased. The number of elastic lamellae and circumferential physiologic stress per lamellae unit remained constant with age at 102±10 and 0.85±0.04 kPa, respectively. Characterization of mechanical, physiological, and structural features in human aortas of different ages can help understand aortic pathology, inform the development of animal models that simulate human aging, and assist with designing devices for open and endovascular aortic repairs. STATEMENT OF SIGNIFICANCE: This manuscript describes mechanical and structural changes occurring in human thoracic aortas with age, and presents material parameters for 4 commonly used constitutive models. Presented data can help better understand aortic pathology, inform the development of animal models that simulate human aging, and assist with designing devices for open and endovascular aortic repairs.
Collapse
Affiliation(s)
- Majid Jadidi
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Mahmoud Habibnezhad
- Department of Computer Science, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Eric Anttila
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Kaspars Maleckis
- Department of Surgery, University of Nebraska Medical Center, Omaha, NE, United States; Department of Biomechanics, University of Nebraska Omaha, Omaha, NE, United States
| | - Anastasia Desyatova
- Department of Surgery, University of Nebraska Medical Center, Omaha, NE, United States; Department of Biomechanics, University of Nebraska Omaha, Omaha, NE, United States
| | - Jason MacTaggart
- Department of Surgery, University of Nebraska Medical Center, Omaha, NE, United States
| | - Alexey Kamenskiy
- Department of Surgery, University of Nebraska Medical Center, Omaha, NE, United States; Department of Biomechanics, University of Nebraska Omaha, Omaha, NE, United States.
| |
Collapse
|
25
|
Mozafari H, Wang L, Lei Y, Gu L. Multi-scale modeling of the lamellar unit of arterial media. NANOTECHNOLOGY REVIEWS 2019; 8:539-547. [DOI: 10.1515/ntrev-2019-0048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/11/2024]
Abstract
AbstractThe heterogeneity of the lamellar unit (LU) of arterial media plays an important role in the biomechanics of artery. Current two-component (fibrous component and a homogenous matrix) constitutive model is inappropriate for capturing the micro-structural variations in the LU, such as contraction/relaxation of vascular smooth muscle cells (VSMCs), fragmentation of the elastin layer, and deposition/disruption of the collagen network. In this work, we developed a representative volume element (RVE) model with detailed micro-configurations, i.e., VSMCs at various phenotypes, collagen fibers, and elastin laminate embedded in the ground substance. The fiber architecture was generated based on its volume fraction and orientations. Our multi-scale model demonstrated the relation between the arterial expansion and the micro-structural variation of the lamellar unit. The obtained uniaxial response of the LU was validated against the published experimental data. The load sharing capacity of fibrous component and VSMCs of the LU were obtained. We found that the VSMC could take 30% of the circumferential load when contracted until the collagen fibers were recruited, while this value was less than 2% for the relaxed VSMC. In addition, the contribution of collagen fibers at low stretch levels was negligible but became predominant when straightened in high stretches.Moreover, aging effects by collagen deposition was modeled to estimate the arterial stiffening. It was revealed that the aortic stiffness is mainly controlled by collagen fibers, instead of VSMCs. Our findings could shed some light about the contribution of VSMCs in arterial stiffness which has been under debate in recent years.
Collapse
Affiliation(s)
- Hozhabr Mozafari
- Department of Mechanical & Materials Engineering, University of Nebraska-Lincoln, Nebraska-LincolnUnited States of America
| | - Lulu Wang
- College of Health Science and environmental Engineering, ShenZhen Technology University, ShenZhenChina
| | - Yuguo Lei
- Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, Nebraska-LincolnUnited States of America
| | - Linxia Gu
- Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, FloridaUnited States of America
| |
Collapse
|
26
|
Emuna N, Durban D, Osovski S. Sensitivity of Arterial Hyperelastic Models to Uncertainties in Stress-Free Measurements. J Biomech Eng 2019; 140:2683233. [PMID: 30029245 DOI: 10.1115/1.4040400] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Indexed: 12/14/2022]
Abstract
Despite major advances made in modeling vascular tissue biomechanics, the predictive power of constitutive models is still limited by uncertainty of the input data. Specifically, key measurements, like the geometry of the stress-free (SF) state, involve a definite, sometimes non-negligible, degree of uncertainty. Here, we introduce a new approach for sensitivity analysis of vascular hyperelastic constitutive models to uncertainty in SF measurements. We have considered two vascular hyperelastic models: the phenomenological Fung model and the structure-motivated Holzapfel-Gasser-Ogden (HGO) model. Our results indicate up to 160% errors in the identified constitutive parameters for a 5% measurement uncertainty in the SF data. Relative margins of errors of up to 30% in the luminal pressure, 36% in the axial force, and over 200% in the stress predictions were recorded for 10% uncertainties. These findings are relevant to the large body of studies involving experimentally based modeling and analysis of vascular tissues. The impact of uncertainties on calibrated constitutive parameters is significant in context of studies that use constitutive parameters to draw conclusions about the underlying microstructure of vascular tissues, their growth and remodeling processes, and aging and disease states. The propagation of uncertainties into the predictions of biophysical parameters, e.g., force, luminal pressure, and wall stresses, is of practical importance in the design and execution of clinical devices and interventions. Furthermore, insights provided by the present findings may lead to more robust parameters identification techniques, and serve as selection criteria in the trade-off between model complexity and sensitivity.
Collapse
Affiliation(s)
- Nir Emuna
- Faculty of Aerospace Engineering, Technion-Israel Institute of Technology, Haifa 32000, Israel e-mail:
| | - David Durban
- Faculty of Aerospace Engineering, Technion-Israel Institute of Technology, Haifa 32000, Israel e-mail:
| | - Shmuel Osovski
- Faculty of Mechanical Engineering, Technion-Israel Institute of Technology, Haifa 32000, Israel e-mail:
| |
Collapse
|
27
|
Coccarelli A, Edwards DH, Aggarwal A, Nithiarasu P, Parthimos D. A multiscale active structural model of the arterial wall accounting for smooth muscle dynamics. J R Soc Interface 2019; 15:rsif.2017.0732. [PMID: 29436507 PMCID: PMC5832725 DOI: 10.1098/rsif.2017.0732] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 01/12/2018] [Indexed: 12/13/2022] Open
Abstract
Arterial wall dynamics arise from the synergy of passive mechano-elastic properties of the vascular tissue and the active contractile behaviour of smooth muscle cells (SMCs) that form the media layer of vessels. We have developed a computational framework that incorporates both these components to account for vascular responses to mechanical and pharmacological stimuli. To validate the proposed framework and demonstrate its potential for testing hypotheses on the pathogenesis of vascular disease, we have employed a number of pharmacological probes that modulate the arterial wall contractile machinery by selectively inhibiting a range of intracellular signalling pathways. Experimental probes used on ring segments from the rabbit central ear artery are: phenylephrine, a selective α1-adrenergic receptor agonist that induces vasoconstriction; cyclopiazonic acid (CPA), a specific inhibitor of sarcoplasmic/endoplasmic reticulum Ca2+-ATPase; and ryanodine, a diterpenoid that modulates Ca2+ release from the sarcoplasmic reticulum. These interventions were able to delineate the role of membrane versus intracellular signalling, previously identified as main factors in smooth muscle contraction and the generation of vessel tone. Each SMC was modelled by a system of nonlinear differential equations that account for intracellular ionic signalling, and in particular Ca2+ dynamics. Cytosolic Ca2+ concentrations formed the catalytic input to a cross-bridge kinetics model. Contractile output from these cellular components forms the input to the finite-element model of the arterial rings under isometric conditions that reproduces the experimental conditions. The model does not account for the role of the endothelium, as the nitric oxide production was suppressed by the action of L-NAME, and also due to the absence of shear stress on the arterial ring, as the experimental set-up did not involve flow. Simulations generated by the integrated model closely matched experimental observations qualitatively, as well as quantitatively within a range of physiological parametric values. The model also illustrated how increased intercellular coupling led to smooth muscle coordination and the genesis of vascular tone.
Collapse
Affiliation(s)
- Alberto Coccarelli
- Division of Cancer and Genetics, School of Medicine, Cardiff University, Cardiff, UK
| | | | - Ankush Aggarwal
- Zienkiewicz Centre for Computational Engineering, College of Engineering, Swansea University, Swansea, UK
| | - Perumal Nithiarasu
- Zienkiewicz Centre for Computational Engineering, College of Engineering, Swansea University, Swansea, UK
| | - Dimitris Parthimos
- Division of Cancer and Genetics, School of Medicine, Cardiff University, Cardiff, UK
| |
Collapse
|
28
|
Misiulis E, Džiugys A, Navakas R, Petkus V. A comparative study of methods used to generate the arterial fiber structure in a clinically relevant numerical analysis. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2019; 35:e3194. [PMID: 30817080 DOI: 10.1002/cnm.3194] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 02/13/2019] [Accepted: 02/16/2019] [Indexed: 06/09/2023]
Abstract
The advanced constitutive material models of artery wall require the definition of the mean collagen fiber directions in the material configuration. There are several proposed methods; however, it is unclear how much does the fiber structures obtained by these methods differ one from the other and how much this difference may affect the results of the structural analysis of a clinically relevant scenario. Therefore, in this paper, we address this issue by presenting the results of the comparative study of our developed and currently state-of-the-art fiber definition methods. In addition, we present the verification of our developed numerical model that incorporates the extended Holzapfel-Gasser-Ogden (HGO) constitutive material model and the generalized prestressing algorithm (GPA). In the case of the patient-specific internal carotid artery (ICA), the percentage error of the mean fiber directions defined by different methods does not exceed 17.73% (at least 0.05%, at most 81.82%) and has negligible effect on the stress levels, as the percentage error of the mean circumferential Cauchy stress does not exceed 0.1%. Both fiber definition methods produce comparable fiber structure, but our proposed method has an advantage, as it does not depend on method and software used to model the arterial wall mechanics.
Collapse
Affiliation(s)
- Edgaras Misiulis
- Laboratory of Combustion Processes, Lithuanian Energy Institute, Kaunas, Lithuania
- Kaunas University of Technology, K. Donelaičio St. 73, 44249, Kaunas, Lithuania
| | - Algis Džiugys
- Laboratory of Combustion Processes, Lithuanian Energy Institute, Kaunas, Lithuania
- Kaunas University of Technology, K. Donelaičio St. 73, 44249, Kaunas, Lithuania
| | - Robertas Navakas
- Laboratory of Combustion Processes, Lithuanian Energy Institute, Kaunas, Lithuania
| | - Vytautas Petkus
- Health Telematics Science Institute, Kaunas University of Technology, Kaunas, Lithuania
| |
Collapse
|
29
|
Jadidi M, Desyatova A, MacTaggart J, Kamenskiy A. Mechanical stresses associated with flattening of human femoropopliteal artery specimens during planar biaxial testing and their effects on the calculated physiologic stress-stretch state. Biomech Model Mechanobiol 2019; 18:1591-1605. [PMID: 31069592 DOI: 10.1007/s10237-019-01162-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 04/26/2019] [Indexed: 02/07/2023]
Abstract
Planar biaxial testing is commonly used to characterize the mechanical properties of arteries, but stresses associated with specimen flattening during this test are unknown. We quantified flattening effects in human femoropopliteal arteries (FPAs) of different ages and determined how they affect the calculated arterial physiologic stress-stretch state. Human FPAs from 472 tissue donors (age 12-82 years, mean 53 ± 16 years) were tested using planar biaxial extension, and morphometric and mechanical characteristics were used to assess the flattening effects. Constitutive parameters for the invariant-based model were adjusted to account for specimen flattening and used to calculate the physiologic stresses, stretches, axial force, circumferential stiffness, and stored energy for the FPAs in seven age groups. Flattened specimens were overall 12 ± 4% stiffer longitudinally and 19 ± 11% stiffer circumferentially when biaxially tested. Differences between the stress-stretch curves adjusted and non-adjusted for the effects of flattening were relatively constant across all age groups longitudinally, but increased with age circumferentially. In all age groups, these differences were smaller than the intersubject variability. Physiologic stresses, stretches, axial force, circumferential stiffness, and stored energy were all qualitatively and quantitatively similar when calculated with and without the flattening effects. Stresses, stretches, axial force, and stored energy reduced with age, but circumferential stiffness remained relatively constant between 25 and 65 years of age suggesting a homeostatic target of 0.75 ± 0.02 MPa. Flattening effects associated with planar biaxial testing are smaller than the intersubject variability and have little influence on the calculated physiologic stress-stretch state of human FPAs.
Collapse
Affiliation(s)
- Majid Jadidi
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Anastasia Desyatova
- Department of Surgery, 987690 Nebraska Medical Center, University of Nebraska Medical Center, Omaha, NE, 68198-7690, USA
| | - Jason MacTaggart
- Department of Surgery, 987690 Nebraska Medical Center, University of Nebraska Medical Center, Omaha, NE, 68198-7690, USA
| | - Alexey Kamenskiy
- Department of Surgery, 987690 Nebraska Medical Center, University of Nebraska Medical Center, Omaha, NE, 68198-7690, USA.
| |
Collapse
|
30
|
Shim JJ, Maas SA, Weiss JA, Ateshian GA. A Formulation for Fluid Structure-Interactions in FEBio Using Mixture Theory. J Biomech Eng 2019; 141:2727817. [PMID: 30835271 DOI: 10.1115/1.4043031] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Indexed: 11/08/2022]
Abstract
Many physiological systems involve strong interactions between fluids and solids, posing a signicant challenge when modeling biomechanics. The objective of this study was to implement a fluid-structure interaction (FSI) solver in the free, open-source finite element code FEBio (febio.org), that combined the existing solid mechanics and rigid body dynamics solver with a recently-developed computational fluid dynamics (CFD) solver. A novel Galerkin-based finite element FSI formulation was introduced based on mixture theory, where the FSI domain was described as a mixture of fluid and solid constituents that have distinct motions. The mesh was defined on the solid domain, specialized to have zero mass, negligible stiffness and zero frictional interactions with the fluid, whereas the fluid was modeled as isothermal and compressible. The mixture framework provided the foundation for evaluating material time derivatives in a material frame for the solid and in a spatial frame for the fluid. Similar to our recently reported CFD solver, our FSI formulation did not require stabilization methods to achieve good convergence, producing a compact set of equations and code implementation. The code was successfully verified against benchmark problems and an analytical solution for squeeze-film lubrication. It was validated against experimental measurements of the flow rate in a peristaltic pump, and illustrated using non-Newtonian blood flow through a bifurcated carotid artery with a thick arterial wall. The successful formulation and implementation of this FSI solver enhances the multiphysics modeling capabilities in FEBio relevant to the biomechanics and biophysics communities.
Collapse
Affiliation(s)
- Jay J Shim
- Department of Mechanical Engineering, Columbia University, New York, NY 10027
| | - Steve A Maas
- Department of Bioengineering, University of Utah, Salt Lake City, UT 84112
| | - Jeffrey A Weiss
- Department of Bioengineering, University of Utah, Salt Lake City, UT 84112
| | - Gerard A Ateshian
- Department of Mechanical Engineering, Columbia University, New York, NY 10027
| |
Collapse
|
31
|
Sigaeva T, Sommer G, Holzapfel GA, Di Martino ES. Anisotropic residual stresses in arteries. J R Soc Interface 2019; 16:20190029. [PMID: 30958201 PMCID: PMC6408350 DOI: 10.1098/rsif.2019.0029] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 02/06/2019] [Indexed: 12/29/2022] Open
Abstract
The paper provides a deepened insight into the role of anisotropy in the analysis of residual stresses in arteries. Residual deformations are modelled following Holzapfel and Ogden (Holzapfel and Ogden 2010, J. R. Soc. Interface 7, 787-799. ( doi:10.1098/rsif.2009.0357 )), which is based on extensive experimental data on human abdominal aortas (Holzapfel et al. 2007, Ann. Biomed. Eng. 35, 530-545. ( doi:10.1007/s10439-006-9252-z )) and accounts for both circumferential and axial residual deformations of the individual layers of arteries-intima, media and adventitia. Each layer exhibits distinctive nonlinear and anisotropic mechanical behaviour originating from its unique microstructure; therefore, we use the most general form of strain-energy function (Holzapfel et al. 2015, J. R. Soc. Interface 12, 20150188. ( doi:10.1098/rsif.2015.0188 )) to derive residual stresses for each layer individually. Finally, the systematic experimental data (Niestrawska et al. 2016, J. R. Soc. Interface 13, 20160620. ( doi:10.1098/rsif.2016.0620 )) on both mechanical and structural properties of the different layers of the human abdominal aorta facilitate our discussion on (i) the importance of anisotropy in modelling residual stresses; (ii) the variability of residual stresses within the same class of tissue, the abdominal aorta; (iii) the limitations of conventional opening angle method to account for complex residual deformations; and (iv) the effect of residual stresses on the loaded configuration of the aorta mimicking in vivo conditions.
Collapse
Affiliation(s)
- Taisiya Sigaeva
- Department of Civil Engineering and Centre for Bioengineering Research and Education, Schulich School of Engineering, University of Calgary, Calgary, Canada
| | - Gerhard Sommer
- Institute of Biomechanics, Graz University of Technology, Graz, Austria
| | - Gerhard A. Holzapfel
- Institute of Biomechanics, Graz University of Technology, Graz, Austria
- Faculty of Engineering Science and Technology, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Elena S. Di Martino
- Department of Civil Engineering and Centre for Bioengineering Research and Education, Schulich School of Engineering, University of Calgary, Calgary, Canada
| |
Collapse
|
32
|
Ahuja A, Noblet JN, Trudnowski T, Patel B, Krieger JF, Chambers S, Kassab GS. Biomechanical Material Characterization of Stanford Type-B Dissected Porcine Aortas. Front Physiol 2018; 9:1317. [PMID: 30319438 PMCID: PMC6169260 DOI: 10.3389/fphys.2018.01317] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 08/30/2018] [Indexed: 11/24/2022] Open
Abstract
Aortic dissection (AD) involves tearing of the medial layer, creating a blood-filled channel called false lumen (FL). To treat dissections, clinicians are using endovascular therapy using stent grafts to seal the FL. This procedure has been successful in reducing mortality but has failed in completely re-attaching the torn intimal layer. The use of computational analysis can predict the radial forces needed to devise stents that can treat ADs. To quantify the hyperelastic material behavior for therapy development, we harvested FL wall, true lumen (TL) wall, and intimal flap from the middle and distal part of five dissected aortas. Planar biaxial testing using multiple stretch protocols were conducted on tissue samples to quantify their deformation behavior. A novel non-linear regression model was used to fit data against Holzapfel–Gasser–Ogden hyperelastic strain energy function. The fitting analysis correlated the behavior of the FL and TL walls and the intimal flap to the stiffness observed during tensile loading. It was hypothesized that there is a variability in the stresses generated during loading among tissue specimens derived from different regions of the dissected aorta and hence, one should use region-specific material models when simulating type-B AD. From the data on material behavior analysis, the variability in the tissue specimens harvested from pigs was tabulated using stress and coefficient of variation (CV). The material response curves also compared the changes in compliance observed in the FL wall, TL wall, and intimal flap for middle and distal regions of the dissection. It was observed that for small stretch ratios, all the tissue specimens behaved isotropically with overlapping stress–stretch curves in both circumferential and axial directions. As the stretch ratios increased, we observed that most tissue specimens displayed different structural behaviors in axial and circumferential directions. This observation was very apparent in tissue specimens from mid FL region, less apparent in mid TL, distal FL, and distal flap tissues and least noticeable in tissue specimens harvested from mid flap. Lastly, using mixed model ANOVAS, it was concluded that there were significant differences between mid and distal regions along axial direction which were absent in the circumferential direction.
Collapse
Affiliation(s)
- Aashish Ahuja
- Cardiovascular Mechanics and Diseases, California Medical Innovations Institute, San Diego, CA, United States
| | | | | | - Bhavesh Patel
- Cardiovascular Mechanics and Diseases, California Medical Innovations Institute, San Diego, CA, United States
| | | | | | - Ghassan S Kassab
- Cardiovascular Mechanics and Diseases, California Medical Innovations Institute, San Diego, CA, United States
| |
Collapse
|
33
|
Gaul R, Nolan D, Ristori T, Bouten C, Loerakker S, Lally C. Strain mediated enzymatic degradation of arterial tissue: Insights into the role of the non-collagenous tissue matrix and collagen crimp. Acta Biomater 2018; 77:301-310. [PMID: 30126592 DOI: 10.1016/j.actbio.2018.06.037] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 06/04/2018] [Accepted: 06/29/2018] [Indexed: 02/07/2023]
Abstract
Collagen fibre remodelling is a strain dependent process which is stimulated by the degradation of existing collagen. To date, literature has focussed on strain dependent degradation of pure collagen or structurally simple collagenous tissues, often overlooking degradation within more complex, heterogenous soft tissues. The aim of this study is to identify, for the first time, the strain dependent degradation behaviour and mechanical factors influencing collagen degradation in arterial tissue using a combined experimental and numerical approach. To achieve this, structural analysis was carried out using small angle light scattering to determine the fibre level response due to strain induced degradation. Next, strain dependent degradation rates were determined from stress relaxation experiments in the presence of crude and purified collagenase to determine the tissue level degradation response. Finally, a 1D theoretical model was developed, incorporating matrix stiffness and a gradient of collagen fibre crimp to decouple the mechanism behind strain dependent arterial degradation. SALS structural analysis identified a strain mediated degradation response in arterial tissue at the fibre level not dissimilar to that found in literature for pure collagen. Interestingly, two distinctly different strain mediated degradation responses were identified experimentally at the tissue level, not seen in other collagenous tissues. Our model was able to accurately predict these experimental findings, but only once the load bearing matrix, its degradation response and the gradient of collagen fibre crimp across the arterial wall were incorporated. These findings highlight the critical role that the various tissue constituents play in the degradation response of arterial tissue. STATEMENT OF SIGNIFICANCE Collagen fibre architecture is the dominant load bearing component of arterial tissue. Remodelling of this architecture is a strain dependent process stimulated by the degradation of existing collagen. Despite this, degradation of arterial tissue and in particular, arterial collagen, is not fully understood or studied. In the current study, we identified for the first time, the strain dependent degradation response of arterial tissue, which has not been observed in other collagenous tissues in literature. We hypothesised that this unique degradation response was due to the complex structure observed in arterial tissue. Based on this hypothesis, we developed a novel numerical model capable of explaining this unique degradation response which may provide critical insights into disease development and aid in the design of interventional medical devices.
Collapse
|
34
|
Prim DA, Mohamed MA, Lane BA, Poblete K, Wierzbicki MA, Lessner SM, Shazly T, Eberth JF. Comparative mechanics of diverse mammalian carotid arteries. PLoS One 2018; 13:e0202123. [PMID: 30096185 PMCID: PMC6086448 DOI: 10.1371/journal.pone.0202123] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 07/27/2018] [Indexed: 01/07/2023] Open
Abstract
The prevalence of diverse animal models as surrogates for human vascular pathologies necessitate a comprehensive understanding of the differences that exist between species. Comparative passive mechanics are presented here for the common carotid arteries taken from bovine, porcine, ovine, leporine, murine-rat, and murine-mouse specimens. Data is generated using a scalable biaxial mechanical testing device following consistent circumferential (pressure-diameter) and axial (force-length) testing protocols. The structural mechanical response of carotids under equivalent loading, quantified by the deformed inner radius, deformed wall thickness, lumen area compliance and axial force, varies significantly among species but generally follows allometric scaling. Conversely, descriptors of the local mechanical response within the deformed arterial wall, including mean circumferential stress, mid-wall circumferential stretch, and mean axial stress, are relatively consistent across species. Unlike the larger animals studied, the diameter distensibility curves of murine specimens are non-monotonic and have a significantly higher value at 100 mmHg. Taken together, our results provide baseline structural and mechanical information for carotid arteries across a broad range of common animal models.
Collapse
Affiliation(s)
- David A. Prim
- College of Engineering and Computing, Biomedical Engineering Program, University of South Carolina, Columbia, SC, United States of America
| | - Mohamed A. Mohamed
- Cullen College of Engineering, Biomedical Engineering Department, University of Houston, Houston, TX, United States of America
| | - Brooks A. Lane
- College of Engineering and Computing, Biomedical Engineering Program, University of South Carolina, Columbia, SC, United States of America
| | - Kelley Poblete
- College of Health Sciences, Physical Therapy Program, Texas Women’s University, Houston, TX, United States of America
| | - Mark A. Wierzbicki
- Dwight Look College of Engineering, Biomedical Engineering Department, Texas A&M University, College Station, TX, United States of America
| | - Susan M. Lessner
- College of Engineering and Computing, Biomedical Engineering Program, University of South Carolina, Columbia, SC, United States of America
- School of Medicine, Department of Cell Biology and Anatomy, University of South Carolina, Columbia, SC, United States of America
| | - Tarek Shazly
- College of Engineering and Computing, Biomedical Engineering Program, University of South Carolina, Columbia, SC, United States of America
- College of Engineering and Computing, Mechanical Engineering Department, University of South Carolina, Columbia, SC, United States of America
| | - John F. Eberth
- College of Engineering and Computing, Biomedical Engineering Program, University of South Carolina, Columbia, SC, United States of America
- School of Medicine, Department of Cell Biology and Anatomy, University of South Carolina, Columbia, SC, United States of America
- * E-mail:
| |
Collapse
|
35
|
Patel B, Chen H, Ahuja A, Krieger JF, Noblet J, Chambers S, Kassab GS. Constitutive modeling of the passive inflation-extension behavior of the swine colon. J Mech Behav Biomed Mater 2017; 77:176-186. [PMID: 28922650 DOI: 10.1016/j.jmbbm.2017.08.031] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 08/24/2017] [Accepted: 08/28/2017] [Indexed: 12/14/2022]
Abstract
In the present work, we propose the first structural constitutive model of the passive mechanical behavior of the swine colon that is validated against physiological inflation-extension tests, and accounts for residual strains. Sections from the spiral colon and the descending colon were considered to investigate potential regional variability. We found that the proposed constitutive model accurately captures the passive inflation-extension behavior of both regions of the swine colon (coefficient of determination R2=0.94±0.02). The model revealed that the circumferential muscle layer does not provide significant mechanical support under passive conditions and the circumferential load is actually carried by the submucosa layer. The stress analysis permitted by the model showed that the colon tissue can distend up to 30% radially without significant increase in the wall stresses suggesting a highly compliant behavior of the tissue. This is in-line with the requirement for the tissue to easily accommodate variable quantities of fecal matter. The analysis also showed that the descending colon is significantly more compliant than the spiral colon, which is relevant to the storage function of the descending colon. Histological analysis showed that the swine colon possesses a four-layer structure similar to the human colon, where the longitudinal muscle layer is organized into bands called taeniae, a typical feature of the human colon. The model and the estimated parameters can be used in a Finite Element framework to conduct simulations with realistic geometry of the swine colon. The resulting computational model will provide a foundation for virtual assessment of safe and effective devices for the treatment of colonic diseases.
Collapse
Affiliation(s)
- Bhavesh Patel
- California Medical Innovations Institute, 11107 Roselle st., San Diego, CA 92121, United States
| | - Huan Chen
- California Medical Innovations Institute, 11107 Roselle st., San Diego, CA 92121, United States
| | - Aashish Ahuja
- California Medical Innovations Institute, 11107 Roselle st., San Diego, CA 92121, United States
| | | | | | | | - Ghassan S Kassab
- California Medical Innovations Institute, 11107 Roselle st., San Diego, CA 92121, United States.
| |
Collapse
|
36
|
Uncertainty quantification and sensitivity analysis of an arterial wall mechanics model for evaluation of vascular drug therapies. Biomech Model Mechanobiol 2017; 17:55-69. [PMID: 28755237 PMCID: PMC5807551 DOI: 10.1007/s10237-017-0944-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2017] [Accepted: 07/17/2017] [Indexed: 02/07/2023]
Abstract
Quantification of the uncertainty in constitutive model predictions describing arterial wall mechanics is vital towards non-invasive assessment of vascular drug therapies. Therefore, we perform uncertainty quantification to determine uncertainty in mechanical characteristics describing the vessel wall response upon loading. Furthermore, a global variance-based sensitivity analysis is performed to pinpoint measurements that are most rewarding to be measured more precisely. We used previously published carotid diameter–pressure and intima–media thickness (IMT) data (measured in triplicate), and Holzapfel–Gasser–Ogden models. A virtual data set containing 5000 diastolic and systolic diameter–pressure points, and IMT values was generated by adding measurement error to the average of the measured data. The model was fitted to single-exponential curves calculated from the data, obtaining distributions of constitutive parameters and constituent load bearing parameters. Additionally, we (1) simulated vascular drug treatment to assess the relevance of model uncertainty and (2) evaluated how increasing the number of measurement repetitions influences model uncertainty. We found substantial uncertainty in constitutive parameters. Simulating vascular drug treatment predicted a 6% point reduction in collagen load bearing (\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$L_\mathrm {coll}$$\end{document}Lcoll), approximately 50% of its uncertainty. Sensitivity analysis indicated that the uncertainty in \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$L_{\mathrm {coll}}$$\end{document}Lcoll was primarily caused by noise in distension and IMT measurements. Spread in \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$L_{\mathrm {coll}}$$\end{document}Lcoll could be decreased by 50% when increasing the number of measurement repetitions from 3 to 10. Model uncertainty, notably that in \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$L_{\mathrm {coll}}$$\end{document}Lcoll, could conceal effects of vascular drug therapy. However, this uncertainty could be reduced by increasing the number of measurement repetitions of distension and wall thickness measurements used for model parameterisation.
Collapse
|
37
|
Misiulis E, Džiugys A, Navakas R, Striūgas N. A fluid-structure interaction model of the internal carotid and ophthalmic arteries for the noninvasive intracranial pressure measurement method. Comput Biol Med 2017; 84:79-88. [DOI: 10.1016/j.compbiomed.2017.03.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 03/15/2017] [Accepted: 03/17/2017] [Indexed: 01/09/2023]
|
38
|
Askari F, Shafieian M, Solouk A, Hashemi A. A comparison of the material properties of natural and synthetic vascular walls. J Mech Behav Biomed Mater 2017; 71:209-215. [PMID: 28347955 DOI: 10.1016/j.jmbbm.2017.03.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 03/12/2017] [Accepted: 03/22/2017] [Indexed: 10/19/2022]
Abstract
Characterization of the mechanical properties of native and synthetic vascular grafts is an essential task in the process of designing novel vascular constructs. The aim in this study was to compare the mechanical behavior of ovine left Subclavian artery with that of POSS-PCU (a commercial biomaterial which is currently under clinical investigation. ClinicalTrials.gov Identifier: NCT02301312). We used Delfino's strain energy potential within the framework of quasilinear viscoelasticity theory to capture the viscoelastic response of the considered materials. The material parameters of the quasilinear viscoelastic constitutive equation were determined through a combination of experimental and computational method. First, a uniaxial tensile testing device was used to perform a series of stress relaxation tests on ring samples. Then, the derived quasilinear viscoelastic models were implemented into finite element system. With the aid of mechanical experimentation and finite element simulation, the material parameters were obtained, modified and used for comparison of the mechanical properties of vascular walls. The results showed that the stiffness and the long term viscoelastic parameters of POSS-PCU may lead to different stress responses of the vascular walls. These two factors can be improved by modifications in manufacturing parameters of the synthetic vessel.
Collapse
Affiliation(s)
- Forough Askari
- Department of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), 424 Hafez Ave, Tehran, Iran
| | - Mehdi Shafieian
- Department of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), 424 Hafez Ave, Tehran, Iran.
| | - Atefeh Solouk
- Department of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), 424 Hafez Ave, Tehran, Iran
| | - Ata Hashemi
- Department of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), 424 Hafez Ave, Tehran, Iran
| |
Collapse
|
39
|
Ramadan S, Paul N, Naguib HE. Standardized static and dynamic evaluation of myocardial tissue properties. ACTA ACUST UNITED AC 2017; 12:025013. [PMID: 28065929 DOI: 10.1088/1748-605x/aa57a5] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
INTRODUCTION Quantifying the mechanical behaviors of soft biological tissues is of considerable research interest. However, validity and reproducibility between different researchers and apparatus is questionable. This study aims to quantify the mechanical properties of myocardium while investigating methodologies that can standardize biological tissue testing. MATERIALS AND METHODS Tensile testing was performed to obtain Young's modulus and a dynamic mechanical analysis (DMA) determined the viscoelastic properties. A frequency range of 0.5 Hz (30bpm) to 3.5 Hz (210bpm) was analyzed. For tensile testing three different preconditioning settings were tested: no load, 0.05 N preload, and a cyclic preload at 2.5% strain and 10 cycles. Samples were placed in saline and tested at 37 °C. Five ovine and five porcine hearts were tested. RESULTS AND DISCUSSION Cyclic loading results in the most consistent moduli values. The modulus of ovine/porcine tissue was mean = 0.05/.06 MPa, SD = 0.02/0.03 MPa. The storage/loss modulus varied from = 0.02/0.003 MPa at 0.5 Hz to 0.04/0.008 MPa at 3.5 Hz; Stiffness increases linearly from 400 to 800 N m-1 with a tan delta around 0.175. CONCLUSIONS Static analysis of the mechanical properties of myocardial tissue confirms that; preconditioning is necessary for reproducibility, and DMA provides a platform for reproducible testing of soft biological tissues.
Collapse
Affiliation(s)
- Sherif Ramadan
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Rosebrugh Building (RS), 164 College Street, Room 407, Toronto, Ontario M5S 3G9, Canada
| | | | | |
Collapse
|
40
|
Pancheri FQ, Peattie RA, Reddy ND, Ahamed T, Lin W, Ouellette TD, Iafrati MD, Luis Dorfmann A. Histology and Biaxial Mechanical Behavior of Abdominal Aortic Aneurysm Tissue Samples. J Biomech Eng 2017; 139:2588203. [DOI: 10.1115/1.4035261] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Indexed: 12/20/2022]
Abstract
Abdominal aortic aneurysms (AAAs) represent permanent, localized dilations of the abdominal aorta that can be life-threatening if progressing to rupture. Evaluation of risk of rupture depends on understanding the mechanical behavior of patient AAA walls. In this project, a series of patient AAA wall tissue samples have been evaluated through a combined anamnestic, mechanical, and histopathologic approach. Mechanical properties of the samples have been characterized using a novel, strain-controlled, planar biaxial testing protocol emulating the in vivo deformation of the aorta. Histologically, the tissue ultrastructure was highly disrupted. All samples showed pronounced mechanical stiffening with stretch and were notably anisotropic, with greater stiffness in the circumferential than the axial direction. However, there were significant intrapatient variations in wall stiffness and stress. In biaxial tests in which the longitudinal stretch was held constant at 1.1 as the circumferential stretch was extended to 1.1, the maximum average circumferential stress was 330 ± 70 kPa, while the maximum average axial stress was 190 ± 30 kPa. A constitutive model considering the wall as anisotropic with two preferred directions fit the measured data well. No statistically significant differences in tissue mechanical properties were found based on patient gender, age, maximum bulge diameter, height, weight, body mass index, or smoking history. Although a larger patient cohort is merited to confirm these conclusions, the project provides new insight into the relationships between patient natural history, histopathology, and mechanical behavior that may be useful in the development of accurate methods for rupture risk evaluation.
Collapse
Affiliation(s)
| | - Robert A. Peattie
- Department of Surgery, Tufts Medical Center, Boston, MA 02111 e-mail:
| | - Nithin D. Reddy
- Department of Surgery, Tufts Medical Center, Boston, MA 02111
| | - Touhid Ahamed
- Department of Civil and Environmental Engineering, Tufts University, Medford, MA 02155
| | - Wenjian Lin
- Department of Civil and Environmental Engineering, Tufts University, Medford, MA 02155
| | | | - Mark D. Iafrati
- Department of Surgery, Tufts Medical Center, Boston, MA 02111
| | - A. Luis Dorfmann
- Department of Civil and Environmental Engineering, Tufts University, Medford, MA 02155; Department of Biomedical Engineering, Tufts University, Medford, MA 02155
| |
Collapse
|
41
|
Olivares AL, González Ballester MA, Noailly J. Virtual exploration of early stage atherosclerosis. Bioinformatics 2016; 32:3798-3806. [DOI: 10.1093/bioinformatics/btw551] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Revised: 08/10/2016] [Accepted: 08/21/2016] [Indexed: 01/09/2023] Open
|
42
|
Ge L. A Characteristic-Based Constitutive Law for Dispersed Fibers. J Biomech Eng 2016; 138:2520869. [PMID: 27138358 DOI: 10.1115/1.4033517] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Indexed: 11/08/2022]
Abstract
Biological tissues are typically constituted of dispersed fibers. Modeling the constitutive laws of such tissues remains a challenge. Direct integration over all fibers is considered to be accurate but requires very expensive numerical integration. A general structure tensor (GST) model was previously developed to bypass this costly numerical integration step, but there are concerns about the model's accuracy. Here we estimate the approximation error of the GST model. We further reveal that the GST model ignores strain energy induced by shearing motions. Subsequently, we propose a new characteristic-based constitutive law to better approximate the direct integration model. The new model is very cost-effective and closely approximates the "true" strain energy as calculated by the direct integration when stress-strain nonlinearity or fiber dispersion angle is small.
Collapse
|
43
|
A Novel Parameter for Predicting Arterial Fusion and Cutting in Finite Element Models. Ann Biomed Eng 2016; 44:3295-3306. [DOI: 10.1007/s10439-016-1588-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 03/04/2016] [Indexed: 11/25/2022]
|
44
|
Fluid-structure interaction modeling of calcific aortic valve disease using patient-specific three-dimensional calcification scans. Med Biol Eng Comput 2016; 54:1683-1694. [PMID: 26906280 DOI: 10.1007/s11517-016-1458-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 01/29/2016] [Indexed: 01/08/2023]
Abstract
Calcific aortic valve disease (CAVD) is characterized by calcification accumulation and thickening of the aortic valve cusps, leading to stenosis. The importance of fluid flow shear stress in the initiation and regulation of CAVD progression is well known and has been studied recently using fluid-structure interaction (FSI) models. While cusp calcifications are three-dimensional (3D) masses, previously published FSI models have represented them as either stiffened or thickened two-dimensional (2D) cusps. This study investigates the hemodynamic effect of these calcifications employing FSI models using 3D patient-specific calcification masses. A new reverse calcification technique (RCT) is used for modeling different stages of calcification growth based on the spatial distribution of calcification density. The RCT is applied to generate the 3D calcification deposits reconstructed from a patient-specific CT scans. Our results showed that consideration of 3D calcification deposits led to both higher fluid shear stresses and unique fluid shear stress distribution on the aortic side of the cusps that may have an impact on the calcification growth rate. However, the flow did not seem to affect the geometry of the calcification during the growth phase.
Collapse
|
45
|
Leng X, Davis LA, Deng X, Sutton MA, Lessner SM. Numerical modeling of experimental human fibrous cap delamination. J Mech Behav Biomed Mater 2016; 59:322-336. [PMID: 26897094 DOI: 10.1016/j.jmbbm.2016.02.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2015] [Revised: 01/25/2016] [Accepted: 02/04/2016] [Indexed: 11/25/2022]
Abstract
Fibrous cap delamination is a critical process during the rupture of atherosclerotic plaque, which often leads to severe life-threatening clinical consequences such as myocardial infarction or stroke. In this study a finite element modeling and simulation approach is presented that enables the study of fibrous cap delamination experiments for the purpose of understanding the fibrous cap delamination process. A cohesive zone model (CZM) approach is applied to simulate delamination of the fibrous cap from the underlying plaque tissue. A viscoelastic anisotropic (VA) model for the bulk arterial material behavior is extended from existing studies so that the hysteresis phenomenon observed in the fibrous cap delamination experiments can be captured. A finite element model is developed for the fibrous cap delamination experiments, in which arterial layers (including the fibrous cap and the underlying plaque tissue) are represented by solid elements based on the VA model and the fibrous cap-underlying plaque tissue interface is characterized by interfacial CZM elements. In the CZM, the delamination process is governed by an exponential traction-separation law which utilizes critical energy release rates obtained directly from the fibrous cap delamination experiments. A set of VA model parameter values and CZM parameter values is determined based on values suggested in the literature and through matching simulation predictions of the load vs. load-point displacement curve with one set of experimental measurements. Using this set of parameter values, simulation predictions for other sets of experimental measurements are obtained and good agreement between simulation predictions and experimental measurements is observed. Results of this study demonstrate the applicability of the viscoelastic anisotropic model and the CZM approach for the simulation of diseased arterial tissue failure processes.
Collapse
Affiliation(s)
- Xiaochang Leng
- Department of Mechanical Engineering, University of South Carolina, Columbia, SC 29208, USA
| | - Lindsey A Davis
- Department of Cell Biology & Anatomy, University of South Carolina, Columbia, SC 29208, USA
| | - Xiaomin Deng
- Department of Mechanical Engineering, University of South Carolina, Columbia, SC 29208, USA.
| | - Michael A Sutton
- Department of Mechanical Engineering, University of South Carolina, Columbia, SC 29208, USA
| | - Susan M Lessner
- Department of Cell Biology & Anatomy, University of South Carolina, Columbia, SC 29208, USA
| |
Collapse
|
46
|
Zhou B, Ravindran S, Ferdous J, Kidane A, Sutton MA, Shazly T. Using Digital Image Correlation to Characterize Local Strains on Vascular Tissue Specimens. J Vis Exp 2016:e53625. [PMID: 26862936 DOI: 10.3791/53625] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Characterization of the mechanical behavior of biological and engineered soft tissues is a central component of fundamental biomedical research and product development. Stress-strain relationships are typically obtained from mechanical testing data to enable comparative assessment among samples and in some cases identification of constitutive mechanical properties. However, errors may be introduced through the use of average strain measures, as significant heterogeneity in the strain field may result from geometrical non-uniformity of the sample and stress concentrations induced by mounting/gripping of soft tissues within the test system. When strain field heterogeneity is significant, accurate assessment of the sample mechanical response requires measurement of local strains. This study demonstrates a novel biomechanical testing protocol for calculating local surface strains using a mechanical testing device coupled with a high resolution camera and a digital image correlation technique. A series of sample surface images are acquired and then analyzed to quantify the local surface strain of a vascular tissue specimen subjected to ramped uniaxial loading. This approach can improve accuracy in experimental vascular biomechanics and has potential for broader use among other native soft tissues, engineered soft tissues, and soft hydrogel/polymeric materials. In the video, we demonstrate how to set up the system components and perform a complete experiment on native vascular tissue.
Collapse
Affiliation(s)
- Boran Zhou
- Biomedical Engineering Program, University of South Carolina
| | - Suraj Ravindran
- Department of Mechanical Engineering, University of South Carolina
| | - Jahid Ferdous
- Department of Mechanical Engineering, University of South Carolina
| | - Addis Kidane
- Department of Mechanical Engineering, University of South Carolina
| | - Michael A Sutton
- Department of Mechanical Engineering, University of South Carolina
| | - Tarek Shazly
- Biomedical Engineering Program, University of South Carolina; Department of Mechanical Engineering, University of South Carolina;
| |
Collapse
|
47
|
Esmaeili Monir H, Yamada H, Sakata N. Finite element modelling of the common carotid artery in the elderly with physiological intimal thickening using layer-specific stress-released geometries and nonlinear elastic properties. Comput Methods Biomech Biomed Engin 2015; 19:1286-96. [DOI: 10.1080/10255842.2015.1128530] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
48
|
Qi N, Gao H, Ogden RW, Hill NA, Holzapfel GA, Han HC, Luo X. Investigation of the optimal collagen fibre orientation in human iliac arteries. J Mech Behav Biomed Mater 2015. [PMID: 26195342 PMCID: PMC4795464 DOI: 10.1016/j.jmbbm.2015.06.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The distribution of collagen fibres plays a significant role in the mechanical behaviour of artery walls. Experimental data show that in most artery wall layers there are two (or more) in-plane symmetrically disposed families of fibres. However, a recent investigation revealed that some artery wall layers have only one preferred fibre direction, notably in the medial layer of human common iliac arteries. This paper aims to provide a possible explanation for this intriguing phenomenon. An invariant-based constitutive model is utilized to characterize the mechanical behaviour of tissues. We then use three different hypotheses to determine the 'optimal fibre angle' in an iliac artery model. All three hypotheses lead to the same result that the optimal fibre angle in the medial layer of the iliac artery is close to the circumferential direction. The axial pre-stretch, in particular, is found to play an essential role in determining the optimal fibre angle.
Collapse
Affiliation(s)
- Nan Qi
- School of Mathematics and Statistics, University of Glasgow, 15 University Gardens, Glasgow G12 8QW, UK
| | - Hao Gao
- School of Mathematics and Statistics, University of Glasgow, 15 University Gardens, Glasgow G12 8QW, UK
| | - Raymond W Ogden
- School of Mathematics and Statistics, University of Glasgow, 15 University Gardens, Glasgow G12 8QW, UK
| | - Nicholas A Hill
- School of Mathematics and Statistics, University of Glasgow, 15 University Gardens, Glasgow G12 8QW, UK
| | - Gerhard A Holzapfel
- Institute of Biomechanics, Graz University of Technology, Kronesgasse 5-I, 8010 Graz, Austria
| | - Hai-Chao Han
- Department of Mechanical Engineering, The University of Texas at San Antonio, San Antonio, TX 78249, USA
| | - Xiaoyu Luo
- School of Mathematics and Statistics, University of Glasgow, 15 University Gardens, Glasgow G12 8QW, UK.
| |
Collapse
|
49
|
Structure-based constitutive model can accurately predict planar biaxial properties of aortic wall tissue. Acta Biomater 2015; 14:133-45. [PMID: 25458466 DOI: 10.1016/j.actbio.2014.11.043] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Revised: 10/13/2014] [Accepted: 11/20/2014] [Indexed: 11/21/2022]
Abstract
Structure-based constitutive models might help in exploring mechanisms by which arterial wall histology is linked to wall mechanics. This study aims to validate a recently proposed structure-based constitutive model. Specifically, the model's ability to predict mechanical biaxial response of porcine aortic tissue with predefined collagen structure was tested. Histological slices from porcine thoracic aorta wall (n=9) were automatically processed to quantify the collagen fiber organization, and mechanical testing identified the non-linear properties of the wall samples (n=18) over a wide range of biaxial stretches. Histological and mechanical experimental data were used to identify the model parameters of a recently proposed multi-scale constitutive description for arterial layers. The model predictive capability was tested with respect to interpolation and extrapolation. Collagen in the media was predominantly aligned in circumferential direction (planar von Mises distribution with concentration parameter bM=1.03 ± 0.23), and its coherence decreased gradually from the luminal to the abluminal tissue layers (inner media, b=1.54 ± 0.40; outer media, b=0.72 ± 0.20). In contrast, the collagen in the adventitia was aligned almost isotropically (bA=0.27 ± 0.11), and no features, such as families of coherent fibers, were identified. The applied constitutive model captured the aorta biaxial properties accurately (coefficient of determination R(2)=0.95 ± 0.03) over the entire range of biaxial deformations and with physically meaningful model parameters. Good predictive properties, well outside the parameter identification space, were observed (R(2)=0.92 ± 0.04). Multi-scale constitutive models equipped with realistic micro-histological data can predict macroscopic non-linear aorta wall properties. Collagen largely defines already low strain properties of media, which explains the origin of wall anisotropy seen at this strain level. The structure and mechanical properties of adventitia are well designed to protect the media from axial and circumferential overloads.
Collapse
|
50
|
Sáez P, Peña E, Tarbell JM, Martínez MA. Computational model of collagen turnover in carotid arteries during hypertension. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2015; 31:e02705. [PMID: 25643608 DOI: 10.1002/cnm.2705] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 01/15/2015] [Accepted: 01/15/2015] [Indexed: 06/04/2023]
Abstract
It is well known that biological tissues adapt their properties because of different mechanical and chemical stimuli. The goal of this work is to study the collagen turnover in the arterial tissue of hypertensive patients through a coupled computational mechano-chemical model. Although it has been widely studied experimentally, computational models dealing with the mechano-chemical approach are not. The present approach can be extended easily to study other aspects of bone remodeling or collagen degradation in heart diseases. The model can be divided into three different stages. First, we study the smooth muscle cell synthesis of different biological substances due to over-stretching during hypertension. Next, we study the mass-transport of these substances along the arterial wall. The last step is to compute the turnover of collagen based on the amount of these substances in the arterial wall which interact with each other to modify the turnover rate of collagen. We simulate this process in a finite element model of a real human carotid artery. The final results show the well-known stiffening of the arterial wall due to the increase in the collagen content.
Collapse
Affiliation(s)
- P Sáez
- Group of Applied Mechanics and Bioengineering. Aragón Institute of Engineering Research, University of Zaragoza, Zaragoza, Spain; Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Zaragoza, Spain; Mathematical Institute, University of Oxford, Oxford, UK
| | | | | | | |
Collapse
|