1
|
Delgado-Coello B, Luna-Reyes I, Méndez-Acevedo KM, Bravo-Martínez J, Montalvan-Sorrosa D, Mas-Oliva J. Analysis of cholesterol-recognition motifs of the plasma membrane Ca 2+-ATPase. J Bioenerg Biomembr 2024; 56:205-219. [PMID: 38436904 PMCID: PMC11116186 DOI: 10.1007/s10863-024-10010-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 02/26/2024] [Indexed: 03/05/2024]
Abstract
The plasma membrane Ca2+-ATPase (PMCA) is crucial for the fine tuning of intracellular calcium levels in eukaryotic cells. In this study, we show the presence of CARC sequences in all human and rat PMCA isoforms and we performed further analysis by molecular dynamics simulations. This analysis focuses on PMCA1, containing three CARC motifs, and PMCA4, with four CARC domains. In PMCA1, two CARC motifs reside within transmembrane domains, while the third is situated at the intracellular interface. The simulations depict more stable RMSD values and lower RMSF fluctuations in the presence of cholesterol, emphasizing its potential stabilizing effect. In PMCA4, a distinct dynamic was found. Notably, the total energy differences between simulations with cholesterol and phospholipids are pronounced in PMCA4 compared to PMCA1. RMSD values for PMCA4 indicate a more energetically favorable conformation in the presence of cholesterol, suggesting a robust interaction between CARCs and this lipid in the membranes. Furthermore, RMSF analysis for CARCs in both PMCA isoforms exhibit lower values in the presence of cholesterol compared to POPC alone. The analysis of H-bond occupancy and total energy values strongly suggests the potential interaction of CARCs with cholesterol. Given the crucial role of PMCAs in physiological calcium regulation and their involvement in diverse pathological processes, this study underscores the significance of CARC motifs and their interaction with cholesterol in elucidating PMCA function. These insights into the energetic preferences associated with CARC-cholesterol interactions offer valuable implications for understanding PMCA function in maintaining calcium homeostasis and addressing potential associated pathologies.
Collapse
Affiliation(s)
- Blanca Delgado-Coello
- Departamento de Bioquímica y Biología Estructural, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Apdo. Postal 70-243, Ciudad de México, C.P. 04510, México.
| | - Ismael Luna-Reyes
- Departamento de Bioquímica y Biología Estructural, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Apdo. Postal 70-243, Ciudad de México, C.P. 04510, México
| | - Kevin M Méndez-Acevedo
- Departamento de Bioquímica y Biología Estructural, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Apdo. Postal 70-243, Ciudad de México, C.P. 04510, México
- University of Cambridge Metabolic Research Laboratories and NIHR Cambridge Biomedical Research Centre, Wellcome-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, UK
| | - Jorge Bravo-Martínez
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Danai Montalvan-Sorrosa
- Departamento de Química de Biomacromoléculas, Instituto de Química, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Jaime Mas-Oliva
- Departamento de Bioquímica y Biología Estructural, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Apdo. Postal 70-243, Ciudad de México, C.P. 04510, México.
| |
Collapse
|
2
|
Costas-Ferreira C, Faro LRF. Systematic Review of Calcium Channels and Intracellular Calcium Signaling: Relevance to Pesticide Neurotoxicity. Int J Mol Sci 2021; 22:13376. [PMID: 34948173 PMCID: PMC8704302 DOI: 10.3390/ijms222413376] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/06/2021] [Accepted: 12/08/2021] [Indexed: 12/25/2022] Open
Abstract
Pesticides of different chemical classes exert their toxic effects on the nervous system by acting on the different regulatory mechanisms of calcium (Ca2+) homeostasis. Pesticides have been shown to alter Ca2+ homeostasis, mainly by increasing its intracellular concentration above physiological levels. The pesticide-induced Ca2+ overload occurs through two main mechanisms: the entry of Ca2+ from the extracellular medium through the different types of Ca2+ channels present in the plasma membrane or its release into the cytoplasm from intracellular stocks, mainly from the endoplasmic reticulum. It has also been observed that intracellular increases in the Ca2+ concentrations are maintained over time, because pesticides inhibit the enzymes involved in reducing its levels. Thus, the alteration of Ca2+ levels can lead to the activation of various signaling pathways that generate oxidative stress, neuroinflammation and, finally, neuronal death. In this review, we also discuss some proposed strategies to counteract the detrimental effects of pesticides on Ca2+ homeostasis.
Collapse
Affiliation(s)
| | - Lilian R. F. Faro
- Departamento de Biología Funcional y Ciencias de la Salud, Facultad de Biología, Universidade de Vigo, Campus Universitario As Lagoas Marcosende, 36310 Vigo, Spain;
| |
Collapse
|
3
|
Berrocal M, Saez L, Mata AM. Sorcin Activates the Brain PMCA and Blocks the Inhibitory Effects of Molecular Markers of Alzheimer's Disease on the Pump Activity. Int J Mol Sci 2021; 22:ijms22116055. [PMID: 34205207 PMCID: PMC8200006 DOI: 10.3390/ijms22116055] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/26/2021] [Accepted: 06/01/2021] [Indexed: 11/16/2022] Open
Abstract
Since dysregulation of intracellular calcium (Ca2+) levels is a common occurrence in neurodegenerative diseases, including Alzheimer’s disease (AD), the study of proteins that can correct neuronal Ca2+ dysregulation is of great interest. In previous work, we have shown that plasma membrane Ca2+-ATPase (PMCA), a high-affinity Ca2+ pump, is functionally impaired in AD and is inhibited by amyloid-β peptide (Aβ) and tau, two key components of pathological AD hallmarks. On the other hand, sorcin is a Ca2+-binding protein highly expressed in the brain, although its mechanism of action is far from being clear. Sorcin has been shown to interact with the intracellular sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA), and other modulators of intracellular Ca2+ signaling, such as the ryanodine receptor or presenilin 2, which is closely associated with AD. The present work focuses on sorcin in search of new regulators of PMCA and antagonists of Aβ and tau toxicity. Results show sorcin as an activator of PMCA, which also prevents the inhibitory effects of Aβ and tau on the pump, and counteracts the neurotoxicity of Aβ and tau by interacting with them.
Collapse
|
4
|
Marcec MJ, Gilroy S, Poovaiah BW, Tanaka K. Mutual interplay of Ca 2+ and ROS signaling in plant immune response. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 283:343-354. [PMID: 31128705 DOI: 10.1016/j.plantsci.2019.03.004] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 03/07/2019] [Accepted: 03/08/2019] [Indexed: 05/20/2023]
Abstract
Second messengers are cellular chemicals that act as "language codes", allowing cells to pass outside information to the cell interior. The cells then respond through triggering downstream reactions, including transcriptional reprograming to affect appropriate adaptive responses. The spatiotemporal patterning of these stimuli-induced signal changes has been referred to as a "signature", which is detected, decoded, and transmitted to elicit these downstream cellular responses. Recent studies have suggested that dynamic changes in second messengers, such as calcium (Ca2+), reactive oxygen species (ROS), and nitric oxide (NO), serve as signatures for both intracellular signaling and cell-to-cell communications. These second messenger signatures work in concert with physical signal signatures (such as electrical and hydraulic waves) to create a "lock and key" mechanism that triggers appropriate response to highly varied stresses. In plants, detailed information of how these signatures deploy their downstream signaling networks remains to be elucidated. Recent evidence suggests a mutual interplay between Ca2+ and ROS signaling has important implications for fine-tuning cellular signaling networks in plant immunity. These two signaling mechanisms amplify each other and this interaction may be a critical element of their roles in information processing for plant defense responses.
Collapse
Affiliation(s)
- Matthew J Marcec
- Department of Plant Pathology, Washington State University, Pullman, WA, 99164, USA; Molecular Plant Sciences Program, Washington State University, Pullman, WA, 99164, USA
| | - Simon Gilroy
- Department of Botany, University of Wisconsin, Madison, WI, 53706, USA
| | - B W Poovaiah
- Molecular Plant Sciences Program, Washington State University, Pullman, WA, 99164, USA; Department of Horticulture, Washington State University, Pullman, WA, 99164, USA
| | - Kiwamu Tanaka
- Department of Plant Pathology, Washington State University, Pullman, WA, 99164, USA; Molecular Plant Sciences Program, Washington State University, Pullman, WA, 99164, USA.
| |
Collapse
|
5
|
Hajieva P, Baeken MW, Moosmann B. The role of Plasma Membrane Calcium ATPases (PMCAs) in neurodegenerative disorders. Neurosci Lett 2019; 663:29-38. [PMID: 29452613 DOI: 10.1016/j.neulet.2017.09.033] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 09/11/2017] [Accepted: 09/14/2017] [Indexed: 01/27/2023]
Abstract
Selective degeneration of differentiated neurons in the brain is the unifying feature of neurodegenerative disorders such as Parkinson's disease (PD) or Alzheimer's disease (AD). A broad spectrum of evidence indicates that initially subtle, but temporally early calcium dysregulation may be central to the selective neuronal vulnerability observed in these slowly progressing, chronic disorders. Moreover, it has long been evident that excitotoxicity and its major toxic effector mechanism, neuronal calcium overload, play a decisive role in the propagation of secondary neuronal death after acute brain injury from trauma or ischemia. Under physiological conditions, neuronal calcium homeostasis is maintained by a fine-tuned interplay between calcium influx and releasing mechanisms (Ca2+-channels), and calcium efflux mechanisms (Ca2+-pumps and -exchangers). Central functional components of the calcium efflux machinery are the Plasma Membrane Calcium ATPases (PMCAs), which represent high-affinity calcium pumps responsible for the ATP-dependent removal of calcium out of the cytosol. Beyond a growing body of experimental evidence, it is their high expression level, their independence of secondary ions or membrane potential, their profound redox regulation and autoregulation, their postsynaptic localization in close proximity to the primary mediators of pathological calcium influx, i.e. NMDA receptors, as well as evolutionary considerations which all suggest a pivotal role of the PMCAs in the etiology of neurodegeneration and make them equally challenging and alluring candidates for drug development. This review aims to summarize the recent literature on the role of PMCAs in the pathogenesis of neurodegenerative disorders.
Collapse
Affiliation(s)
- Parvana Hajieva
- Institute for Pathobiochemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany.
| | - Marius W Baeken
- Institute for Pathobiochemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Bernd Moosmann
- Institute for Pathobiochemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| |
Collapse
|
6
|
Mirzakhalili E, Epureanu BI, Gourgou E. A mathematical and computational model of the calcium dynamics in Caenorhabditis elegans ASH sensory neuron. PLoS One 2018; 13:e0201302. [PMID: 30048509 PMCID: PMC6062085 DOI: 10.1371/journal.pone.0201302] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 05/28/2018] [Indexed: 12/31/2022] Open
Abstract
We propose a mathematical and computational model that captures the stimulus-generated Ca2+ transients in the C. elegans ASH sensory neuron. The rationale is to develop a tool that will enable a cross-talk between modeling and experiments, using modeling results to guide targeted experimental efforts. The model is built based on biophysical events and molecular cascades known to unfold as part of neurons' Ca2+ homeostasis mechanism, as well as on Ca2+ signaling events. The state of ion channels is described by their probability of being activated or inactivated, and the remaining molecular states are based on biochemically defined kinetic equations or known biochemical motifs. We estimate the parameters of the model using experimental data of hyperosmotic stimulus-evoked Ca2+ transients detected with a FRET sensor in young and aged worms, unstressed and exposed to oxidative stress. We use a hybrid optimization method composed of a multi-objective genetic algorithm and nonlinear least-squares to estimate the model parameters. We first obtain the model parameters for young unstressed worms. Next, we use these values of the parameters as a starting point to identify the model parameters for stressed and aged worms. We show that the model, in combination with experimental data, corroborates literature results. In addition, we demonstrate that our model can be used to predict ASH response to complex combinations of stimulation pulses. The proposed model includes for the first time the ASH Ca2+ dynamics observed during both "on" and "off" responses. This mathematical and computational effort is the first to propose a dynamic model of the Ca2+ transients' mechanism in C. elegans neurons, based on biochemical pathways of the cell's Ca2+ homeostasis machinery. We believe that the proposed model can be used to further elucidate the Ca2+ dynamics of a key C. elegans neuron, to guide future experiments on C. elegans neurobiology, and to pave the way for the development of more mathematical models for neuronal Ca2+ dynamics.
Collapse
Affiliation(s)
- Ehsan Mirzakhalili
- Mechanical Engineering Department, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Bogdan I. Epureanu
- Mechanical Engineering Department, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Eleni Gourgou
- Mechanical Engineering Department, University of Michigan, Ann Arbor, Michigan, United States of America
- Department of Internal Medicine, Division of Geriatrics, Medical School, University of Michigan, Ann Arbor, Michigan, United States of America
- * E-mail:
| |
Collapse
|
7
|
Berrocal M, Corbacho I, Sepulveda MR, Gutierrez-Merino C, Mata AM. Phospholipids and calmodulin modulate the inhibition of PMCA activity by tau. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1864:1028-1035. [PMID: 27818274 DOI: 10.1016/j.bbamcr.2016.10.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 10/26/2016] [Accepted: 10/27/2016] [Indexed: 12/18/2022]
Abstract
The disruption of Ca2+ signaling in neurons, together with a failure to keep optimal intracellular Ca2+ concentrations, have been proposed as significant factors for neuronal dysfunction in the Ca2+ hypothesis of Alzheimer's disease (AD). Tau is a protein that plays an essential role in axonal transport and can form abnormal structures such as neurofibrillary tangles that constitute one of the hallmarks of AD. We have recently shown that plasma membrane Ca2+-ATPase (PMCA), a key enzyme in the maintenance of optimal cytosolic Ca2+ levels in cells, is inhibited by tau in membrane vesicles. In the present study we show that tau inhibits synaptosomal PMCA purified from pig cerebrum, and reconstituted in phosphatidylserine-containing lipid bilayers, with a Ki value of 1.5±0.2nM tau. Noteworthy, the inhibitory effect of tau is dependent on the charge of the phospholipid used for PMCA reconstitution. In addition, nanomolar concentrations of calmodulin, the major endogenous activator of PMCA, protects against inhibition of the Ca2+-ATPase activity by tau. Our results in a cellular model such as SH-SY5Y human neuroblastoma cells yielded an inhibition of PMCA by nanomolar tau concentrations and protection by calmodulin against this inhibition similar to those obtained with purified synaptosomal PMCA. Functional studies were also performed with native and truncated versions of human cerebral PMCA4b, an isoform that has been showed to be functionally regulated by amyloid peptides, whose aggregates constitutes another hallmark of AD. Kinetic assays point out that tau binds to the C-terminal tail of PMCA, at a site distinct but close to the calmodulin binding domain. In conclusion, PMCA can be seen as a molecular target for tau-induced cytosolic calcium dysregulation in synaptic terminals. This article is part of a Special Issue entitled: ECS Meeting edited by Claus Heizmann, Joachim Krebs and Jacques Haiech.
Collapse
Affiliation(s)
- María Berrocal
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Ciencias, Universidad de Extremadura, 06006 Badajoz, Spain
| | - Isaac Corbacho
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Ciencias, Universidad de Extremadura, 06006 Badajoz, Spain
| | - M Rosario Sepulveda
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Ciencias, Universidad de Extremadura, 06006 Badajoz, Spain
| | - Carlos Gutierrez-Merino
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Ciencias, Universidad de Extremadura, 06006 Badajoz, Spain
| | - Ana M Mata
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Ciencias, Universidad de Extremadura, 06006 Badajoz, Spain.
| |
Collapse
|
8
|
Rivet CA, Kniss-James AS, Gran MA, Potnis A, Hill A, Lu H, Kemp ML. Calcium Dynamics of Ex Vivo Long-Term Cultured CD8+ T Cells Are Regulated by Changes in Redox Metabolism. PLoS One 2016; 11:e0159248. [PMID: 27526200 PMCID: PMC4985122 DOI: 10.1371/journal.pone.0159248] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 06/29/2016] [Indexed: 12/16/2022] Open
Abstract
T cells reach a state of replicative senescence characterized by a decreased ability to proliferate and respond to foreign antigens. Calcium release associated with TCR engagement is widely used as a surrogate measure of T cell response. Using an ex vivo culture model that partially replicates features of organismal aging, we observe that while the amplitude of Ca2+ signaling does not change with time in culture, older T cells exhibit faster Ca2+ rise and a faster decay. Gene expression analysis of Ca2+ channels and pumps expressed in T cells by RT-qPCR identified overexpression of the plasma membrane CRAC channel subunit ORAI1 and PMCA in older T cells. To test whether overexpression of the plasma membrane Ca2+ channel is sufficient to explain the kinetic information, we adapted a previously published computational model by Maurya and Subramaniam to include additional details on the store-operated calcium entry (SOCE) process to recapitulate Ca2+ dynamics after T cell receptor stimulation. Simulations demonstrated that upregulation of ORAI1 and PMCA channels is not sufficient to explain the observed alterations in Ca2+ signaling. Instead, modeling analysis identified kinetic parameters associated with the IP3R and STIM1 channels as potential causes for alterations in Ca2+ dynamics associated with the long term ex vivo culturing protocol. Due to these proteins having known cysteine residues susceptible to oxidation, we subsequently investigated and observed transcriptional remodeling of metabolic enzymes, a shift to more oxidized redox couples, and post-translational thiol oxidation of STIM1. The model-directed findings from this study highlight changes in the cellular redox environment that may ultimately lead to altered T cell calcium dynamics during immunosenescence or organismal aging.
Collapse
Affiliation(s)
- Catherine A. Rivet
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | - Ariel S. Kniss-James
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, United States of America
| | - Margaret A. Gran
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, United States of America
| | - Anish Potnis
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, United States of America
| | - Abby Hill
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, United States of America
| | - Hang Lu
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, United States of America
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia, United States of America
- The Parker H. Petit Institute for Bioengineering and Bioscience, Atlanta, Georgia, United States of America
| | - Melissa L. Kemp
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, United States of America
- The Parker H. Petit Institute for Bioengineering and Bioscience, Atlanta, Georgia, United States of America
| |
Collapse
|
9
|
ROS and ROS-Mediated Cellular Signaling. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:4350965. [PMID: 26998193 PMCID: PMC4779832 DOI: 10.1155/2016/4350965] [Citation(s) in RCA: 1212] [Impact Index Per Article: 134.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 12/01/2015] [Accepted: 12/20/2015] [Indexed: 12/22/2022]
Abstract
It has long been recognized that an increase of reactive oxygen species (ROS) can modify the cell-signaling proteins and have functional consequences, which successively mediate pathological processes such as atherosclerosis, diabetes, unchecked growth, neurodegeneration, inflammation, and aging. While numerous articles have demonstrated the impacts of ROS on various signaling pathways and clarify the mechanism of action of cell-signaling proteins, their influence on the level of intracellular ROS, and their complex interactions among multiple ROS associated signaling pathways, the systemic summary is necessary. In this review paper, we particularly focus on the pattern of the generation and homeostasis of intracellular ROS, the mechanisms and targets of ROS impacting on cell-signaling proteins (NF-κB, MAPKs, Keap1-Nrf2-ARE, and PI3K-Akt), ion channels and transporters (Ca(2+) and mPTP), and modifying protein kinase and Ubiquitination/Proteasome System.
Collapse
|
10
|
Abstract
SIGNIFICANCE The pulmonary circulation is a low-pressure, low-resistance, highly compliant vasculature. In contrast to the systemic circulation, it is not primarily regulated by a central nervous control mechanism. The regulation of resting membrane potential due to ion channels is of integral importance in the physiology and pathophysiology of the pulmonary vasculature. RECENT ADVANCES Redox-driven ion conductance changes initiated by direct oxidation, nitration, and S-nitrosylation of the cysteine thiols and indirect phosphorylation of the threonine and serine residues directly affect pulmonary vascular tone. CRITICAL ISSUES Molecular mechanisms of changes in ion channel conductance, especially the identification of the sites of action, are still not fully elucidated. FUTURE DIRECTIONS Further investigation of the interaction between redox status and ion channel gating, especially the physiological significance of S-glutathionylation and S-nitrosylation, could result in a better understanding of the physiological and pathophysiological importance of these mediators in general and the implications of such modifications in cellular functions and related diseases and their importance for targeted treatment strategies.
Collapse
Affiliation(s)
- Andrea Olschewski
- 1 Ludwig Boltzmann Institute for Lung Vascular Research , Graz, Austria
| | | |
Collapse
|
11
|
Abstract
Much of the biochemistry that underlies health, medicine, and numerous biotechnology applications is regulated by proteins, whereby the ability of proteins to effect such processes is dictated by the three-dimensional structural assembly of the proteins. Thus, a detailed understanding of biochemistry requires not only knowledge of the constituent sequence of proteins, but also a detailed understanding of how that sequence folds spatially. Three-dimensional analysis of protein structures is thus proving to be a critical mode of biological and medical discovery in the early twenty-first century, providing fundamental insight into function that produces useful biochemistry and dysfunction that leads to disease. The large number of distinct proteins precludes rigorous laboratory characterization of the complete structural proteome, but fortunately efficient in silico structure prediction is possible for many proteins that have not been experimentally characterized. One technique that continues to provide accurate and efficient protein structure predictions, called comparative modeling, has become a critical tool in many biological disciplines. The discussion herein is an updated version of a previous 2008 treatise focusing on the general philosophy of comparative modeling methods and on specific strategies for successfully achieving reliable and accurate models. The chapter discusses basic aspects of template selection, sequence alignment, spatial alignment, loop and gap modeling, side chain modeling, structural refinement and validation, and provides an important new discussion on automated computational tools for protein structure prediction.
Collapse
|
12
|
Abstract
SIGNIFICANCE Store-operated Ca2+ entry (SOCE) is a ubiquitous Ca2+ signaling mechanism triggered by Ca2+ depletion of the endoplasmic reticulum (ER) and by a variety of cellular stresses. Reactive oxygen species (ROS) are often concomitantly produced in response to these stresses, however, the relationship between redox signaling and SOCE is not completely understood. Various cardiovascular, neurological, and immune diseases are associated with alterations in both Ca2+ signaling and ROS production, and thus understanding this relationship has therapeutic implications. RECENT ADVANCES Several reactive cysteine modifications in stromal interaction molecule (STIM) and Orai proteins comprising the core SOCE machinery were recently shown to modulate SOCE in a redox-dependent manner. Moreover, STIM1 and Orai1 expression levels may reciprocally regulate and be affected by responses to oxidative stress. ER proteins involved in oxidative protein folding have gained increased recognition as important sources of ROS, and the recent discovery of their accumulation in contact sites between the ER and mitochondria provides a further link between ROS production and intracellular Ca2+ handling. CRITICAL ISSUES AND FUTURE DIRECTIONS Future research should aim to establish the complete set of SOCE controlling molecules, to determine their redox-sensitive residues, and to understand how intracellular Ca2+ stores dynamically respond to different types of stress. Mapping the precise nature and functional consequence of key redox-sensitive components of the pre- and post-translational control of SOCE machinery and of proteins regulating ER calcium content will be pivotal in advancing our understanding of the complex cross-talk between redox and Ca2+ signaling.
Collapse
Affiliation(s)
- Paula Nunes
- Department of Cell Physiology and Metabolism, University of Geneva , Geneva, Switzerland
| | | |
Collapse
|
13
|
Wang D, Guo D, Bi H, Wu Q, Tian Q, Du Y. Zinc oxide nanoparticles inhibit Ca2+-ATPase expression in human lens epithelial cells under UVB irradiation. Toxicol In Vitro 2013; 27:2117-26. [PMID: 24060544 DOI: 10.1016/j.tiv.2013.09.015] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2013] [Revised: 08/07/2013] [Accepted: 09/12/2013] [Indexed: 10/26/2022]
Abstract
Epidemiological and experimental studies have revealed that lens epithelial cells exposed to ultraviolet B (UVB) light could be induced apoptosis, and lens epithelial cell apoptosis can initiate cataractogenesis. Posterior capsular opacification (PCO), the most frequent complication after cataract surgery, is induced by the proliferation, differentiation, migration of lens epithelial cells. Thus, inhibiting the proliferation of lens epithelial cells could reduce the occurrence of PCO. It is reported that zinc oxide (ZnO) nanoparticles have great potential for the application of biomedical field including cancer treatment. In the present study, we investigated the cytotoxic effect of ZnO nanoparticles on human lens epithelial cell (HLEC) viability. In addition, changes in cell nuclei, apoptosis, reactive oxygen species and intracellular calcium ion levels were also investigated after cells treated with ZnO nanoparticles in the presence and absence of UVB irradiation. Meanwhile, the expression of plasma membrane calcium ATPase 1 (PMCA1) was also determined at gene and protein levels. The results indicate that ZnO nanoparticles and UVB irradiation have synergistic inhibitory effect on HLEC proliferation in a concentration-dependent manner. ZnO nanoparticles can increase the intracellular calcium ion level, disrupt the intracellular calcium homeostasis, and decrease the expression level of PMCA1. UVB irradiation can strengthen the effect of reduced expression of PMCA1, suggesting that both UVB irradiation and ZnO nanoparticles could exert inhibitory effect on HLECs via calcium-mediated signaling pathway. ZnO nanoparticles have great potential for the treatment of PCO under UVB irradiation.
Collapse
Affiliation(s)
- Daoguang Wang
- Affiliated Eye Hospital of Shandong University of Traditional Chinese Medicine, No. 48#, Yingxiongshan Road, Jinan 250002, China
| | | | | | | | | | | |
Collapse
|
14
|
Abstract
The need for drugs with fewer side effects cannot be overemphasized. Today, most drugs modify the actions of enzymes, receptors, transporters and other molecules by directly binding to their active (orthosteric) sites. However, orthosteric site configuration is similar in several proteins performing related functions and this leads to a lower specificity of a drug for the desired protein. Consequently, such drugs may have adverse side effects. A new basis of drug discovery is emerging based on the binding of the drug molecules to sites away (allosteric) from the orthosteric sites. It is possible to find allosteric sites which are unique and hence more specific as targets for drug discovery. Of many available examples, two are highlighted here. The first is caloxins - a new class of highly specific inhibitors of plasma membrane Ca²⁺ pumps. The second concerns the modulation of receptors for the neurotransmitter acetylcholine, which binds to 12 types of receptors. Exploitation of allosteric sites has led to the discovery of drugs which can selectively modulate the activation of only 1 (M1 muscarinic) out of the 12 different types of acetylcholine receptors. These drugs are being tested for schizophrenia treatment. It is anticipated that the drug discovery exploiting allosteric sites will lead to more effective therapeutic agents with fewer side effects.
Collapse
Affiliation(s)
- Ashok Kumar Grover
- Departments of Medicine and Biology, McMaster University, Hamilton, Ont., Canada
| |
Collapse
|
15
|
Moore CM, Hoey EM, Trudgett A, Timson DJ. A plasma membrane Ca2+-ATPase (PMCA) from the liver fluke, Fasciola hepatica. Int J Parasitol 2012; 42:851-8. [DOI: 10.1016/j.ijpara.2012.06.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Revised: 06/20/2012] [Accepted: 06/21/2012] [Indexed: 12/08/2022]
|
16
|
Berrocal M, Sepulveda MR, Vazquez-Hernandez M, Mata AM. Calmodulin antagonizes amyloid-β peptides-mediated inhibition of brain plasma membrane Ca(2+)-ATPase. Biochim Biophys Acta Mol Basis Dis 2012; 1822:961-9. [PMID: 22525477 DOI: 10.1016/j.bbadis.2012.02.013] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2011] [Revised: 02/09/2012] [Accepted: 02/14/2012] [Indexed: 10/28/2022]
Abstract
The synaptosomal plasma membrane Ca(2+)-ATPase (PMCA) plays an essential role in regulating intracellular Ca(2+) concentration in brain. We have recently found that PMCA is the only Ca(2+) pump in brain which is inhibited by amyloid-β peptide (Aβ), a neurotoxic peptide implicated in the pathology of Alzheimer's disease (AD) [1], but the mechanism of inhibition is lacking. In the present study we have characterized the inhibition of PMCA by Aβ. Results from kinetic assays indicate that Aβ aggregates are more potent inhibitors of PMCA activity than monomers. The inhibitory effect of Aβ could be blocked by pretreating the purified protein with Ca(2+)-calmodulin, the main endogenous activator of PMCA, and the activity of truncated PMCA lacking the calmodulin binding domain was not affected by Aβ. Dot-overlay experiments indicated a physical association of Aβ with PMCA and also with calmodulin. Thus, calmodulin could protect PMCA from inhibition by Aβ by burying exposed sites on PMCA, making them inaccessible to Aβ, and also by direct binding to the peptide. These results suggest a protective role of calmodulin against neuronal Ca(2+) dysregulation by PMCA inhibition induced by Aβ.
Collapse
Affiliation(s)
- Maria Berrocal
- Departmento de Bioquímica y Biogía Molecular y Genética, FAculta de Ciencias, Unviersidad de Extremadura, Avda de Elvas s/n, 06006 Badjaz, Sapin
| | | | | | | |
Collapse
|
17
|
Song MY, Makino A, Yuan JXJ. Role of reactive oxygen species and redox in regulating the function of transient receptor potential channels. Antioxid Redox Signal 2011; 15:1549-65. [PMID: 21126186 PMCID: PMC3151422 DOI: 10.1089/ars.2010.3648] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Cellular redox status, regulated by production of reactive oxygen species (ROS), greatly contributes to the regulation of vascular smooth muscle cell contraction, migration, proliferation, and apoptosis by modulating the function of transient receptor potential (TRP) channels in the plasma membrane. ROS functionally interact with the channel protein via oxidizing the redox-sensitive residues, whereas nitric oxide (NO) regulates TRP channel function by cyclic GMP/protein kinase G-dependent and -independent pathways. Based on the structural differences among different TRP isoforms, the effects of ROS and NO are also different. In addition to regulating TRP channels in the plasma membrane, ROS and NO also modulate Ca(2+) release channels (e.g., IP(3) and ryanodine receptors) on the sarcoplasmic/endoplasmic reticulum membrane. This review aims at briefly describing (a) the role of TRP channels in receptor-operated and store-operated Ca(2+) entry, and (b) the role of ROS and redox status in regulating the function and structure of TRP channels.
Collapse
Affiliation(s)
- Michael Y Song
- Biomedical Sciences Graduate Program, University of California-San Diego, La Jolla, CA, USA
| | | | | |
Collapse
|
18
|
Galan C, Jardín I, Dionisio N, Salido G, Rosado JA. Role of oxidant scavengers in the prevention of Ca²+ homeostasis disorders. Molecules 2010; 15:7167-87. [PMID: 20953160 PMCID: PMC6259185 DOI: 10.3390/molecules15107167] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2010] [Revised: 09/09/2010] [Accepted: 10/14/2010] [Indexed: 02/07/2023] Open
Abstract
A number of disorders, such as Alzheimer disease and diabetes mellitus, have in common the alteration of the redox balance, resulting in an increase in reactive oxygen species (ROS) generation that might lead to the development of apoptosis and cell death. It has long been known that ROS can significantly alter Ca²+ mobilization, an intracellular signal that is involved in the regulation of a wide variety of cellular functions. Cells have a limited capability to counteract the effects of oxidative stress, but evidence has been provided supporting the beneficial effects of exogenous ROS scavengers. Here, we review the effects of oxidative stress on intracellular Ca²+ homeostasis and the role of antioxidants in the prevention and treatment of disorders associated to abnormal Ca²+ mobilization induced by ROS.
Collapse
Affiliation(s)
| | | | | | | | - Juan A. Rosado
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +34 927257139; Fax: +34 927257110
| |
Collapse
|
19
|
Zaidi A, Fernandes D, Bean JL, Michaelis ML. Effects of paraquat-induced oxidative stress on the neuronal plasma membrane Ca(2+)-ATPase. Free Radic Biol Med 2009; 47:1507-14. [PMID: 19715754 PMCID: PMC2789485 DOI: 10.1016/j.freeradbiomed.2009.08.018] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2009] [Revised: 08/17/2009] [Accepted: 08/20/2009] [Indexed: 12/25/2022]
Abstract
Oxidative stress leads to the disruption of calcium homeostasis in brain neurons; however, the direct effects of oxidants on proteins that regulate intracellular calcium ([Ca(2+)](i)) are not known. The calmodulin (CaM)-stimulated plasma membrane Ca(2+)-ATPase (PMCA) plays a critical role in regulating [Ca(2+)](i). Our previous in vitro studies showed that PMCA present in brain synaptic membranes is readily inactivated by a variety of reactive oxygen species (ROS). The present studies were conducted to determine the vulnerability of PMCA to ROS generated in neurons as would probably occur in vivo. Primary cortical neurons were exposed to paraquat (PQ), a redox cycling agent that generates intracellular ROS. Low concentrations of PQ (5-10 microM) increased PMCA basal activity by two-fold but abolished its sensitivity to CaM. Higher concentrations (25-100 microM) inhibited both components of PMCA activity. Immunoblots showed the formation of high-molecular-weight PMCA aggregates. Additionally, PMCA showed evidence of proteolytic degradation. PMCA proteolysis was prevented by a calpain inhibitor, suggesting a role for calpain. Our findings suggest that PMCA is a sensitive target of oxidative stress in primary neurons. Inactivation of this Ca(2+) transporter under prolonged oxidative stress could alter neuronal Ca(2+) signaling.
Collapse
Affiliation(s)
- Asma Zaidi
- Department of Pharmacology and Toxicology, University of Kansas, Lawrence, KS 66045, USA.
| | | | | | | |
Collapse
|
20
|
Vangheluwe P, Sepúlveda MR, Missiaen L, Raeymaekers L, Wuytack F, Vanoevelen J. Intracellular Ca2+- and Mn2+-Transport ATPases. Chem Rev 2009; 109:4733-59. [DOI: 10.1021/cr900013m] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Peter Vangheluwe
- Laboratory of Ca2+-transport ATPases and Laboratory of Molecular and Cellular Signaling, Department of Molecular Cell Biology, Katholieke Universiteit Leuven, Leuven, Belgium
| | - M. Rosario Sepúlveda
- Laboratory of Ca2+-transport ATPases and Laboratory of Molecular and Cellular Signaling, Department of Molecular Cell Biology, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Ludwig Missiaen
- Laboratory of Ca2+-transport ATPases and Laboratory of Molecular and Cellular Signaling, Department of Molecular Cell Biology, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Luc Raeymaekers
- Laboratory of Ca2+-transport ATPases and Laboratory of Molecular and Cellular Signaling, Department of Molecular Cell Biology, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Frank Wuytack
- Laboratory of Ca2+-transport ATPases and Laboratory of Molecular and Cellular Signaling, Department of Molecular Cell Biology, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Jo Vanoevelen
- Laboratory of Ca2+-transport ATPases and Laboratory of Molecular and Cellular Signaling, Department of Molecular Cell Biology, Katholieke Universiteit Leuven, Leuven, Belgium
| |
Collapse
|
21
|
Jardín I, Redondo PC, Salido GM, Pariente JA, Rosado JA. Endogenously generated reactive oxygen species reduce PMCA activity in platelets from patients with non-insulin-dependent diabetes mellitus. Platelets 2009; 17:283-8. [PMID: 16928598 DOI: 10.1080/09537100600745187] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Intracellular Ca2+ homeostasis in platelets of patients with non-insulin-dependent diabetes mellitus (NIDDM) has been reported to be altered, leading to an increased adhesiveness and spontaneous aggregation. Among the disturbed Ca2+ mechanism in platelets from NIDDM subjects, a reduced Ca2+ extrusion by the plasma membrane Ca2+-ATPase (PMCA) is especially relevant, maintaining an elevated cytosolic free Ca2+ concentration that results in platelet hypersensitivity. Here we show that treatment of platelets from NIDDM patients with 300 U/mL catalase or 5 mM D-mannitol, which prevent H2O2- and hydroxyl radicals-mediated oxidative stress, respectively, increases Ca2+ extrusion after treatment with thapsigargin (TG) plus ionomycin (Iono). In contrast, 1 mM trolox, a scavenger of ONOO-, did not alter TG + Iono-induced response. Catalase and D-mannitol reversed the enhanced tyrosine phosphorylation of PMCA induced by TG + Iono in NIDDM patients. These findings open up new horizon for the development of therapeutic strategies to palliate cardiovascular disorders in NIDDM.
Collapse
Affiliation(s)
- Isaac Jardín
- Department of Physiology, University of Extremadura, 10071 Cáceres, Spain
| | | | | | | | | |
Collapse
|
22
|
Long LH, Liu J, Liu RL, Wang F, Hu ZL, Xie N, Fu H, Chen JG. Differential effects of methionine and cysteine oxidation on [Ca2+] i in cultured hippocampal neurons. Cell Mol Neurobiol 2009; 29:7-15. [PMID: 18581229 PMCID: PMC11506106 DOI: 10.1007/s10571-008-9289-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2008] [Accepted: 06/06/2008] [Indexed: 12/23/2022]
Abstract
Methionine and cysteine residues in proteins are the major targets of reactive oxygen species (ROS). The present work was designed to characterize the impact of methionine and cysteine oxidation upon [Ca(2+)](i) in hippocampal neurons. We investigated the effects of H(2)O(2) and chloramine T(Ch-T) agents known to oxidize both cysteine and methionine residues, and 5, 5'-dithio-bis (2-nitrobenzoic acid) (DTNB)--a cysteine-specific oxidant, on the intracellular calcium in hippocampal neurons. The results showed that these three oxidants, 1 mM H(2)O(2), 1 mM Ch-T, and 500 microM DTNB, induced an sustained elevation of [Ca(2+)](i) by 76.1 +/- 3.9%, 86.5 +/- 5.0%, and 24.4 +/- 3.2% over the basal level, respectively. The elevation induced by H(2)O(2) and Ch-T was significantly higher than DTNB. Pretreatment with reductant DTT at 1 mM for 10 min completely prevented the action of DTNB on [Ca(2+)](i), but only partially reduced the effects of H(2)O(2) and Ch-T on [Ca(2+)](i), the reductions were 44.6 +/- 4.2% and 29.6 +/- 6.1% over baseline, respectively. The elevation of [Ca(2+)](i) induced by H(2)O(2) and Ch-T after pretreatment with DTT were statistically higher than that induced by single administration of DTNB. Further investigation showed that the elevation of [Ca(2+)](i) mainly resulted from internal calcium stores. From our data, we propose that methionine oxidation plays an important role in the regulation of intracellular calcium and this regulation may mainly be due to internal calcium stores.
Collapse
Affiliation(s)
- Li-Hong Long
- Department of Pharmacology, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei 430030 China
- Hubei Key Laboratory of Neurological Diseases, Huazhong University of Science and Technology, Ministry of Education, Wuhan, 430030 China
| | - Jue Liu
- Department of Pharmacology, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei 430030 China
- Hubei Key Laboratory of Neurological Diseases, Huazhong University of Science and Technology, Ministry of Education, Wuhan, 430030 China
| | - Rui-Li Liu
- Department of Pharmacology, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei 430030 China
- Hubei Key Laboratory of Neurological Diseases, Huazhong University of Science and Technology, Ministry of Education, Wuhan, 430030 China
| | - Fang Wang
- Department of Pharmacology, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei 430030 China
- Hubei Key Laboratory of Neurological Diseases, Huazhong University of Science and Technology, Ministry of Education, Wuhan, 430030 China
| | - Zhuang-Li Hu
- Department of Pharmacology, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei 430030 China
- Hubei Key Laboratory of Neurological Diseases, Huazhong University of Science and Technology, Ministry of Education, Wuhan, 430030 China
| | - Na Xie
- Department of Pharmacology, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei 430030 China
- Hubei Key Laboratory of Neurological Diseases, Huazhong University of Science and Technology, Ministry of Education, Wuhan, 430030 China
| | - Hui Fu
- Department of Pharmacology, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei 430030 China
- Hubei Key Laboratory of Neurological Diseases, Huazhong University of Science and Technology, Ministry of Education, Wuhan, 430030 China
| | - Jian-Guo Chen
- Department of Pharmacology, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei 430030 China
- Hubei Key Laboratory of Neurological Diseases, Huazhong University of Science and Technology, Ministry of Education, Wuhan, 430030 China
| |
Collapse
|
23
|
Hidalgo C, Donoso P. Crosstalk between calcium and redox signaling: from molecular mechanisms to health implications. Antioxid Redox Signal 2008; 10:1275-312. [PMID: 18377233 DOI: 10.1089/ars.2007.1886] [Citation(s) in RCA: 145] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Studies done many years ago established unequivocally the key role of calcium as a universal second messenger. In contrast, the second messenger roles of reactive oxygen and nitrogen species have emerged only recently. Therefore, their contributions to physiological cell signaling pathways have not yet become universally accepted, and many biological researchers still regard them only as cellular noxious agents. Furthermore, it is becoming increasingly apparent that there are significant interactions between calcium and redox species, and that these interactions modify a variety of proteins that participate in signaling transduction pathways and in other fundamental cellular functions that determine cell life or death. This review article addresses first the central aspects of calcium and redox signaling pathways in animal cells, and continues with the molecular mechanisms that underlie crosstalk between calcium and redox signals under a number of physiological or pathological conditions. To conclude, the review focuses on conditions that, by promoting cellular oxidative stress, lead to the generation of abnormal calcium signals, and how this calcium imbalance may cause a variety of human diseases including, in particular, degenerative diseases of the central nervous system and cardiac pathologies.
Collapse
Affiliation(s)
- Cecilia Hidalgo
- Centro FONDAP de Estudios Moleculares de la Célula and Programa de Biología Molecular y Celular, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile.
| | | |
Collapse
|
24
|
Abstract
Three-dimensional analysis of protein structures is proving to be one of the most fruitful modes of biological and medical discovery in the early 21st century, providing fundamental insight into many (perhaps most) biochemical functions of relevance to the cause and treatment of diseases. Fully realizing such insight, however, would require analysis of too many distinct proteins for thorough laboratory analysis of all proteins to be feasible, thus, any method capable of accurate, efficient in silico structure prediction should prove highly expeditious. The technique generally acknowledged to provide the most accurate protein structure predictions, called comparative modeling, has, thus, attracted substantial attention and is the focus of this chapter. Although other reviews have reported on the method development and research history of comparative modeling, our discussion herein focuses on the general philosophy of the method and specific strategies for successfully achieving reliable and accurate models. The chapter, thus, relates aspects of template selection, sequence alignment, spatial alignment, loop and gap modeling, side chain modeling, structural refinement, and validation.
Collapse
Affiliation(s)
- Gerald H Lushington
- Molecular Graphics and Modeling Laboratory, University of Kansas, Lawrence, KS
| |
Collapse
|
25
|
Sharov VS, Schöneich C. Chapter 6 Oxidative Modification of Ca2+ Channels, Ryanodine Receptors, and the Sarco/Endoplasmic Reticulum Ca2+-ATPase. CURRENT TOPICS IN MEMBRANES 2008. [DOI: 10.1016/s1063-5823(08)00206-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
26
|
Jiang L, Fernandes D, Mehta N, Bean JL, Michaelis ML, Zaidi A. Partitioning of the plasma membrane Ca2+-ATPase into lipid rafts in primary neurons: effects of cholesterol depletion. J Neurochem 2007; 102:378-88. [PMID: 17596212 DOI: 10.1111/j.1471-4159.2007.04480.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Spatial and temporal alterations in intracellular calcium [Ca(2+)](i) play a pivotal role in a wide array of neuronal functions. Disruption in Ca(2+) homeostasis has been implicated in the decline in neuronal function in brain aging and in neurodegenerative disorders. The plasma membrane Ca(2+)-ATPase (PMCA) is a high affinity Ca(2+) transporter that plays a crucial role in the termination of [Ca(2+)](i) signals and in the maintenance of low [Ca(2+)](i) essential for signaling. Recent evidence indicates that PMCA is uniquely sensitive to its lipid environment and is stimulated by lipids with ordered acyl chains. Here we show that both PMCA and its activator calmodulin (CaM) are partitioned into liquid-ordered, cholesterol-rich plasma membrane microdomains or 'lipid rafts' in primary cultured neurons. Association of PMCA with rafts was demonstrated in preparations isolated by sucrose density gradient centrifugation and in intact neurons by confocal microscopy. Total raft-associated PMCA activity was much higher than the PMCA activity excluded from these microdomains. Depletion of cellular cholesterol dramatically inhibited the activity of the raft-associated PMCA with no effect on the activity of the non-raft pool. We propose that association of PMCA with rafts represents a novel mechanism for its regulation and, consequently, of Ca(2+) signaling in the central nervous system.
Collapse
Affiliation(s)
- Lei Jiang
- Department of Pharmacology and Toxicology, University of Kansas, Lawrence, Kansas 66045, USA
| | | | | | | | | | | |
Collapse
|
27
|
Fernandes D, Zaidi A, Bean J, Hui D, Michaelis ML. RNA--induced silencing of the plasma membrane Ca2+-ATPase 2 in neuronal cells: effects on Ca2+ homeostasis and cell viability. J Neurochem 2007; 102:454-65. [PMID: 17488275 DOI: 10.1111/j.1471-4159.2007.04592.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Intraneuronal calcium ([Ca(2+)](i)) regulation is altered in aging brain, possibly because of the changes in critical Ca(2+) transporters. We previously reported that the levels of the plasma membrane Ca(2+)-ATPase (PMCA) and the V(max) for enzyme activity are significantly reduced in synaptic membranes in aging rat brain. The goal of these studies was to use RNA(i) techniques to suppress expression of a major neuronal isoform, PMCA2, in neurons in culture to determine the potential functional consequences of a decrease in PMCA activity. Embryonic rat brain neurons and SH-SY5Y neuroblastoma cells were transfected with in vitro--transcribed short interfering RNA or a short hairpin RNA expressing vector, respectively, leading to 80% suppression of PMCA2 expression within 48 h. Fluorescence ratio imaging of free [Ca(2+)](i) revealed that primary neurons with reduced PMCA2 expression had higher basal [Ca(2+)](i), slower recovery from KCl-induced Ca(2+) transients, and incomplete return to pre-stimulation Ca(2+) levels. Primary neurons and SH-SY5Y cells with PMCA2 suppression both exhibited significantly greater vulnerability to the toxicity of various stresses. Our results indicate that a loss of PMCA such as occurs in aging brain likely leads to subtle disruptions in normal Ca(2+) signaling and enhanced susceptibility to stresses that can alter the regulation of Ca(2+) homeostasis.
Collapse
|
28
|
Gatto C, Helms JB, Prasse MC, Huang SY, Zou X, Arnett KL, Milanick MA. Similarities and differences between organic cation inhibition of the Na,K-ATPase and PMCA. Biochemistry 2006; 45:13331-45. [PMID: 17073454 DOI: 10.1021/bi060667j] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The effects of three classes of organic cations on the inhibition of the plasma membrane Ca pump (PMCA) were determined and compared to inhibition of the Na pump. Quaternary amines (tetramethylammonium, tetraethylammonium, and tetrapropylammonium, TMA, TEA, and TPA, respectively) did not inhibit PMCA. This is not to imply that PMCA is inherently selective against monovalent cations because guanidine and tetramethylguanidine inhibited PMCA by competing with Ca(2+). The divalent organic cation, ethyl diamine, inhibited PMCA but was not competitive with Ca(2+). In contrast, propyl diamine did compete with Ca(2+) and was about 10-fold more potent than butyl diamine in inhibiting PMCA. For the Na pump, both TEA and TPA inhibited, but TMA did not. TEA, guanidine, and tetramethylguanidine inhibition was competitive with Na(+) for ATPase activation and with K(+) for pNPPase activation, both of which are cytoplasmic substrate cation effects. Thus, these findings are consistent with TEA, guanidine, and tetramethylguanidine inhibiting from the cytoplasmic side of the Na pump; in contrast, we have previously shown that TPA did not inhibit from the cytoplasmic side. The divalent alkane diamines ethyl, propyl, and butyl diamine all inhibited the Na pump and all competed at the intracellular surface. The order of potency was ED > PD > BD consistent with an optimal size for binding; similarly, for the quaternary amines TMA is apparently too small to make appropriate contacts, and TPA is too large. Homology models based upon the high-resolution SERCA structure are included to contextualize the kinetic observations.
Collapse
Affiliation(s)
- Craig Gatto
- Division of Biomedical Sciences, Department of Biological Sciences, Illinois State University, Normal, Illinois 61790-4120, USA
| | | | | | | | | | | | | |
Collapse
|
29
|
Johnson CK. Calmodulin, conformational states, and calcium signaling. A single-molecule perspective. Biochemistry 2006; 45:14233-46. [PMID: 17128963 PMCID: PMC2533622 DOI: 10.1021/bi061058e] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Single-molecule fluorescence measurements can provide a new perspective on the conformations, dynamics, and interactions of proteins. Recent examples are described illustrating the application of single-molecule fluorescence spectroscopy to calcium signaling proteins with an emphasis on the new information available in single-molecule fluorescence burst measurements, resonance energy transfer, and polarization modulation methods. Calcium signaling pathways are crucial in many cellular processes. The calcium binding protein calmodulin (CaM) serves as a molecular switch to regulate a network of calcium signaling pathways. Single-molecule spectroscopic methods can yield insights into conformations and dynamics of CaM and CaM-regulated proteins. Examples include studies of the conformations and dynamics of CaM, binding of target peptides, and interaction with the plasma-membrane Ca2+ pump. Single-molecule resonance energy transfer measurements revealed conformational substates of CaM, and single-molecule polarization modulation spectroscopy was used to probe interactions between CaM and the plasma-membrane Ca2+-ATPase.
Collapse
Affiliation(s)
- Carey K Johnson
- Department of Chemistry, 1251 Wescoe Drive, University of Kansas, Lawrence, Kansas 66045-7582, USA.
| |
Collapse
|