1
|
Guo J, Chen J, Li T, Gao L, Jiang C, Wu W. Integration of transcriptomics, proteomics, and metabolomics data for the detection of the human pathogenic Prototheca wickerhamii from a One Health perspective. Front Cell Infect Microbiol 2023; 13:1152198. [PMID: 37216181 PMCID: PMC10196235 DOI: 10.3389/fcimb.2023.1152198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 03/31/2023] [Indexed: 05/24/2023] Open
Abstract
Prototheca species are the only microalgae known to cause opportunistic infections in vertebrates and humans. Most cases of protothecosis in humans are caused by Prototheca wickerhamii, but knowledge of the pathogenicity and biology of Prototheca is limited. Globally, the diagnostic rate of Prototheca species infection is much lower than the actual rate of P. wickerhamii. The precise mechanisms underlying the pathogenesis of Prototheca infections remain unclear. In this study, we identified a strain of P. wickerhamii with atypical colony morphology. To reveal the morphological differences between P. wickerhamii S1 (mucous) and the molecular basis of its pathogenicity, the transcriptomics, proteomics, and metabolomics of two pathogenic P. wickerhamii strains and one environmental strain were analysed. Interestingly, mannan endo-1,4-β-mannosidase was significantly downregulated in P. wickerhamii S1, which contributes to a thinner cell wall in S1 compared to strains with typical colony morphology, and the toxicity of macrophages is reduced. Metabolite analysis revealed that the mucoid appearance of P. wickerhamii S1 may have been caused by an increase in linoleic acid, glycerol, and other metabolites. There is still a need to better understand the ecology, aetiology, and pathogenesis of P. wickerhamii, and in particular, its transmission between humans, animals, and the environment, from a One Health perspective.
Collapse
Affiliation(s)
- Jian Guo
- Department of Laboratory Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Juan Chen
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Teng Li
- Department of Laboratory Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Lei Gao
- Microscopy Core Facility, Biomedical Research Core Facilities, Westlake University, Hangzhou, Zhejiang, China
| | - Cizhong Jiang
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Wenjuan Wu
- Department of Laboratory Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| |
Collapse
|
2
|
Bakuła Z, Siedlecki P, Gromadka R, Gawor J, Gromadka A, Pomorski JJ, Panagiotopoulou H, Jagielski T. A first insight into the genome of Prototheca wickerhamii, a major causative agent of human protothecosis. BMC Genomics 2021; 22:168. [PMID: 33750287 PMCID: PMC7941945 DOI: 10.1186/s12864-021-07491-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 02/26/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Colourless microalgae of the Prototheca genus are the only known plants that have consistently been implicated in a range of clinically relevant opportunistic infections in both animals and humans. The Prototheca algae are emerging pathogens, whose incidence has increased importantly over the past two decades. Prototheca wickerhamii is a major human pathogen, responsible for at least 115 cases worldwide. Although the algae are receiving more attention nowadays, there is still a substantial knowledge gap regarding their biology, and pathogenicity in particular. Here we report, for the first time, the complete nuclear genome, organelle genomes, and transcriptome of the P. wickerhamii type strain ATCC 16529. RESULTS The assembled genome size was of 16.7 Mbp, making it the smallest and most compact genome sequenced so far among the protothecans. Key features of the genome included a high overall GC content (64.5%), a high number (6081) and proportion (45.9%) of protein-coding genes, and a low repetitive sequence content (2.2%). The vast majority (90.6%) of the predicted genes were confirmed with the corresponding transcripts upon RNA-sequencing analysis. Most (93.2%) of the genes had their putative function assigned when searched against the InterProScan database. A fourth (23.3%) of the genes were annotated with an enzymatic activity possibly associated with the adaptation to the human host environment. The P. wickerhamii genome encoded a wide array of possible virulence factors, including those already identified in two model opportunistic fungal pathogens, i.e. Candida albicans and Trichophyton rubrum, and thought to be involved in invasion of the host or elicitation of the adaptive stress response. Approximately 6% of the P. wickerhamii genes matched a Pathogen-Host Interaction Database entry and had a previously experimentally proven role in the disease development. Furthermore, genes coding for proteins (e.g. ATPase, malate dehydrogenase) hitherto considered as potential virulence factors of Prototheca spp. were demonstrated in the P. wickerhamii genome. CONCLUSIONS Overall, this study is the first to describe the genetic make-up of P. wickerhamii and discovers proteins possibly involved in the development of protothecosis.
Collapse
Affiliation(s)
- Zofia Bakuła
- Department of Medical Microbiology, Institute of Microbiology, Faculty of Biology, University of Warsaw, I. Miecznikowa 1, 02-096, Warsaw, Poland
| | - Paweł Siedlecki
- Department of Systems Biology, University of Warsaw, I. Miecznikowa 1, 02-096, Warsaw, Poland.,Department of Bioinformatics, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, A. Pawińskiego 5a, 02-106, Warsaw, Poland
| | - Robert Gromadka
- DNA Sequencing and Synthesis Facility, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, A. Pawińskiego 5a, 02-106, Warsaw, Poland
| | - Jan Gawor
- DNA Sequencing and Synthesis Facility, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, A. Pawińskiego 5a, 02-106, Warsaw, Poland
| | - Agnieszka Gromadka
- Department of Bioinformatics, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, A. Pawińskiego 5a, 02-106, Warsaw, Poland
| | - Jan J Pomorski
- Museum and Institute of Zoology, Polish Academy of Sciences, Wilcza 64, 00-679, Warsaw, Poland
| | - Hanna Panagiotopoulou
- Museum and Institute of Zoology, Polish Academy of Sciences, Wilcza 64, 00-679, Warsaw, Poland
| | - Tomasz Jagielski
- Department of Medical Microbiology, Institute of Microbiology, Faculty of Biology, University of Warsaw, I. Miecznikowa 1, 02-096, Warsaw, Poland.
| |
Collapse
|
3
|
Wang WH, Lin CY, Chang MR, Urbina AN, Assavalapsakul W, Thitithanyanont A, Chen YH, Liu FT, Wang SF. The role of galectins in virus infection - A systemic literature review. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2020; 53:925-935. [PMID: 31630962 DOI: 10.1016/j.jmii.2019.09.005] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 09/05/2019] [Accepted: 09/08/2019] [Indexed: 01/03/2023]
Abstract
BACKGROUND Galectins are β-Galactose binding lectins expressed in numerous cells and play multiple roles in various physiological and cellular functions. However, few information is available regarding the role of galectins in virus infections. Here, we conducted a systemic literature review to analyze the role of galectins in human virus infection. METHODS This study uses a systematic method to identify and select eligible articles according to the PRISMA guidelines. References were selected from PubMed, Web of Science and Google Scholar database covering publication dated from August 1995 to December 2018. RESULTS Results indicate that galectins play multiple roles in regulation of virus infections. Galectin-1 (Gal-1), galectin-3 (Gal-3), galectin-8 (Gal-8), and galectin-9 (Gal-9) were found as the most predominant galectins reported to participate in virus infection. The regulatory function of galectins occurs by extracellularly binding to viral glycosylated envelope proteins, interacting with ligands or receptors on immune cells, or acting intracellularly with viral or cellular components in the cytoplasm. Several galectins express either positive or negative regulatory role, while some had dual regulatory capabilities on virus propagation based on the conditions and their localization. However, limited information about the endogenous function of galectins were found. Therefore, the endogenous effects of galectins in host-virus regulation remains valuable to investigate. CONCLUSIONS This study offers information regarding the various roles galectins shown in viral infection and suggest that galectins can potentially be used as viral therapeutic targets or antagonists.
Collapse
Affiliation(s)
- Wen-Hung Wang
- Division of Infectious Disease, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan; Center for Tropical Medicine and Infectious Disease, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Chih-Yen Lin
- Center for Tropical Medicine and Infectious Disease, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan; Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Max R Chang
- Program in Tropical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung City, 80708, Taiwan
| | - Aspiro Nayim Urbina
- Program in Tropical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung City, 80708, Taiwan
| | - Wanchai Assavalapsakul
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Arunee Thitithanyanont
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Yen-Hsu Chen
- Division of Infectious Disease, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan; Center for Tropical Medicine and Infectious Disease, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan; Department of Internal Medicine, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University, 80145, Taiwan; Department of Biological Science and Technology, College of Biological Science and Technology, National Chiao Tung University, HsinChu, 300, Taiwan.
| | - Fu-Tong Liu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 11529, Taiwan
| | - Sheng-Fan Wang
- Center for Tropical Medicine and Infectious Disease, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan; Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan.
| |
Collapse
|
4
|
Zeng X, Kudinha T, Kong F, Zhang QQ. Comparative Genome and Transcriptome Study of the Gene Expression Difference Between Pathogenic and Environmental Strains of Prototheca zopfii. Front Microbiol 2019; 10:443. [PMID: 30899253 PMCID: PMC6416184 DOI: 10.3389/fmicb.2019.00443] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Accepted: 02/20/2019] [Indexed: 01/20/2023] Open
Abstract
Prototheca zopfii commonly exists in the environment, and causes invasive infections (protothecosis) in humans. The morbidity of protothecosis has increased rapidly in recent years, especially in systemic infections of patients with an impaired immune system. The infection in immunocompromised patients has a poor prognosis due to limited understanding of the pathogenesis of the disease, as most previous studies mainly focused on classification and recognition of pathogenic strains. In this study, we constructed the genome and transcriptome of two pathogenic strains and one environmental strain, by next generation sequencing methods. Based on our preliminary gene expression findings, genes in P. zopfii pathogenic strains are significantly up-regulated in metabolism in peroxisome, such as glyoxylate cycle, which may improve the organism's resistance to the harsh environment in phagolysosome of macrophage and its ability to survive in an anaerobic environment. We also found some significant up-regulated genes, which are related to adherence and penetration in dermatophytes, and we speculate that this may enhance the virulence capacity of pathogenic strains. Finally, the genomes and transcriptomes of P. zopfii described here provide some base for further studies on the pathogenesis of this organism.
Collapse
Affiliation(s)
- Xuanhao Zeng
- Division of Mycology, Huashan Hospital, Fudan University, Shanghai, China
| | - Timothy Kudinha
- Charles Sturt University, Leeds Parade, Orange, NSW, Australia
| | - Fanrong Kong
- Centre for Infectious Diseases and Microbiology Laboratory Services, ICPMR-Pathology West, Westmead Hospital, The University of Sydney, Sydney, NSW, Australia
| | - Qiang-Qiang Zhang
- Division of Mycology, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
5
|
Zeng X, Pan Q, Guo Y, Wu Z, Sun Y, Dang Y, Cao J, He J, Pan D. Potential mechanism of nitrite degradation by Lactobacillus fermentum RC4 based on proteomic analysis. J Proteomics 2019; 194:70-78. [DOI: 10.1016/j.jprot.2018.12.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 12/03/2018] [Accepted: 12/18/2018] [Indexed: 02/06/2023]
|
6
|
Narayanan N, Vaidehi D, Dhanurekha L, Therese KL, Rajagopal R, Natarajan R, Lakshmipathy M. Unusual ulcerative keratitis caused by Prototheca wickerhamii in a diabetic patient. Indian J Ophthalmol 2018; 66:311-314. [PMID: 29380790 PMCID: PMC5819127 DOI: 10.4103/ijo.ijo_644_17] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The purpose of the study was to report a case of ulcerative keratitis caused by an unusual algae Prototheca wickerhamii in a diabetic patient. This study design was a case report. A 46-year-old male, who was a known diabetic for 3 years, had an injury to the left cornea with the sparks of fire from wielding at work that developed into an ulcerative keratitis over a period of next 3 months as the patient was not on any medication. Corneal scraping culture report and Vitek 2 system investigation result confirmed it to be a P. wickerhamii infection. The patient was started on intensive topical 1% voriconazole and 5% natamycin for 1 month and with no improvement subsequently underwent penetrating keratoplasty. No recurrence of infection postoperatively was noted. This opportunistic algae rarely known to cause human eye infections is so far reported in either patients with severe systemic immunosuppression causing posterior segment eye involvement or as postcorneal surgery infections. We report an ulcerative keratitis by P. wickerhamii in a diabetic patient post corneal trauma with no prior ocular surgery.
Collapse
Affiliation(s)
- Niveditha Narayanan
- Department of Cornea and Refractive Surgery, Sankara Nethralaya, Chennai, Tamil Nadu, India
| | - D Vaidehi
- Department of Cornea and Refractive Surgery, Sankara Nethralaya, Chennai, Tamil Nadu, India
| | - L Dhanurekha
- Department of Cornea and Refractive Surgery, Sankara Nethralaya, Chennai, Tamil Nadu, India
| | - K Lily Therese
- Department of Cornea and Refractive Surgery, Sankara Nethralaya, Chennai, Tamil Nadu, India
| | - Rama Rajagopal
- Department of Cornea and Refractive Surgery, Sankara Nethralaya, Chennai, Tamil Nadu, India
| | - Radhika Natarajan
- Department of Cornea and Refractive Surgery, Sankara Nethralaya, Chennai, Tamil Nadu, India
| | - Meena Lakshmipathy
- Department of Cornea and Refractive Surgery, Sankara Nethralaya, Chennai, Tamil Nadu, India
| |
Collapse
|
7
|
Hirose N, Hua Z, Kato Y, Zhang Q, Li R, Nishimura K, Masuda M. Molecular Characterization of Prototheca strains isolated in China revealed the first cases of protothecosis associated with Prototheca zopfii genotype 1. Med Mycol 2017; 56:279-287. [DOI: 10.1093/mmy/myx039] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Noriyuki Hirose
- Department of Microbiology, Dokkyo Medical University School of Medicine, Tochigi 321-0293, Japan
- BD Japan, Co., Ltd., Tokyo 107-0052, Japan
| | - Zhensheng Hua
- Department of Microbiology, Dokkyo Medical University School of Medicine, Tochigi 321-0293, Japan
| | - Yuichi Kato
- Department of Microbiology, Dokkyo Medical University School of Medicine, Tochigi 321-0293, Japan
| | - Qiangqiang Zhang
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Ruoyu Li
- Department of Dermatology, Peking University First Hospital, Beijing, China
| | - Kazuko Nishimura
- Department of Microbiology, Dokkyo Medical University School of Medicine, Tochigi 321-0293, Japan
- First Laboratories, Co. Ltd., Kanagawa 211-0013, Japan
| | - Michiaki Masuda
- Department of Microbiology, Dokkyo Medical University School of Medicine, Tochigi 321-0293, Japan
| |
Collapse
|
8
|
Label-Free Quantitative Proteomic Analysis of Harmless and Pathogenic Strains of Infectious Microalgae, Prototheca spp. Int J Mol Sci 2016; 18:ijms18010059. [PMID: 28036087 PMCID: PMC5297694 DOI: 10.3390/ijms18010059] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 12/16/2016] [Accepted: 12/23/2016] [Indexed: 01/13/2023] Open
Abstract
Microalgae of the genus Prototheca (P.) spp are associated with rare algal infections of invertebrates termed protothecosis. Among the seven generally accepted species, P. zopfii genotype 2 (GT2) is associated with a severe form of bovine mastitis while P. blaschkeae causes the mild and sub-clinical form of mastitis. The reason behind the infectious nature of P. zopfii GT2, while genotype 1 (GT1) remains non-infectious, is not known. Therefore, in the present study we investigated the protein expression level difference between the genotypes of P. zopfii and P. blaschkeae. Cells were cultured to the mid-exponential phase, harvested, and processed for LC-MS analysis. Peptide data was acquired on an LTQ Orbitrap Velos, raw spectra were quantitatively analyzed with MaxQuant software and matching with the reference database of Chlorella variabilis and Auxenochlorella protothecoides resulted in the identification of 226 proteins. Comparison of an environmental strain with infectious strains resulted in the identification of 51 differentially expressed proteins related to carbohydrate metabolism, energy production and protein translation. The expression level of Hsp70 proteins and their role in the infectious process is worth further investigation. All mass spectrometry data are available via ProteomeXchange with identifier PXD005305.
Collapse
|