1
|
Gutiérrez-González A, Del Hierro I, Cariaga-Martínez AE. Advancements in Multiple Myeloma Research: High-Throughput Sequencing Technologies, Omics, and the Role of Artificial Intelligence. BIOLOGY 2024; 13:923. [PMID: 39596878 PMCID: PMC11592186 DOI: 10.3390/biology13110923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 11/01/2024] [Accepted: 11/10/2024] [Indexed: 11/29/2024]
Abstract
Multiple myeloma is a complex and challenging type of blood cancer that affects plasma cells in the bone marrow. In recent years, the development of advanced research techniques, such as omics approaches-which involve studying large sets of biological data like genes and proteins-and high-throughput sequencing technologies, has allowed researchers to analyze vast amounts of genetic information rapidly and gain new insights into the disease. Additionally, the advent of artificial intelligence tools has accelerated data analysis, enabling more accurate predictions and improved treatment strategies. This review aims to highlight recent research advances in multiple myeloma made possible by these novel techniques and to provide guidance for researchers seeking effective approaches in this field.
Collapse
Affiliation(s)
| | | | - Ariel Ernesto Cariaga-Martínez
- DS-OMICS—Data Science and Omics, AI-Driven Biomedicine Group, Universidad Alfonso X el Sabio, 28619 Villanueva de la Cañada, Spain; (A.G.-G.); (I.D.H.)
| |
Collapse
|
2
|
Alcoceba M, Stewart JP, García-Álvarez M, Díaz LG, Jiménez C, Medina A, Chillón MC, Gazdova J, Blanco O, Díaz FJ, Peñarrubia MJ, Fernández S, Montes C, Cabero A, Caballero MD, García-Sanz R, González M, González D, Tamayo P, Gutiérrez NC, García-Sancho AM, Sarasquete ME. Liquid biopsy for molecular characterization of diffuse large B-cell lymphoma and early assessment of minimal residual disease. Br J Haematol 2024; 205:109-121. [PMID: 38811363 DOI: 10.1111/bjh.19458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 03/01/2024] [Accepted: 04/01/2024] [Indexed: 05/31/2024]
Abstract
Circulating tumour DNA (ctDNA) allows genotyping and minimal residual disease (MRD) detection in lymphomas. Using a next-generation sequencing (NGS) approach (EuroClonality-NDC), we evaluated the clinical and prognostic value of ctDNA in a series of R-CHOP-treated diffuse large B-cell lymphoma (DLBCL) patients at baseline (n = 68) and after two cycles (n = 59), monitored by metabolic imaging (positron emission tomography combined with computed tomography [PET/CT]). A molecular marker was identified in 61/68 (90%) ctDNA samples at diagnosis. Pretreatment high ctDNA levels significantly correlated with elevated lactate dehydrogenase, advanced stage, high-risk International Prognostic Index and a trend to shorter 2-year progression-free survival (PFS). Valuable NGS data after two cycles of treatment were obtained in 44 cases, and 38 achieved major molecular response (MMR; 2.5-log drop in ctDNA). PFS curves displayed statistically significant differences among those achieving MMR versus those not achieving MMR (2-year PFS of 76% vs. 0%, p < 0.001). Similarly, more than 66% reduction in ΔSUVmax by PET/CT identified two subgroups with different prognosis (2-year PFS of 83% vs. 38%; p < 0.001). Combining both approaches MMR and ΔSUVmax reduction, a better stratification was observed (2-year PFS of 84% vs. 17% vs. 0%, p < 0.001). EuroClonality-NDC panel allows the detection of a molecular marker in the ctDNA in 90% of DLBCL. ctDNA reduction at two cycles and its combination with interim PET results improve patient prognosis stratification.
Collapse
MESH Headings
- Humans
- Lymphoma, Large B-Cell, Diffuse/genetics
- Lymphoma, Large B-Cell, Diffuse/diagnosis
- Lymphoma, Large B-Cell, Diffuse/drug therapy
- Lymphoma, Large B-Cell, Diffuse/blood
- Lymphoma, Large B-Cell, Diffuse/mortality
- Lymphoma, Large B-Cell, Diffuse/pathology
- Neoplasm, Residual/diagnosis
- Female
- Male
- Middle Aged
- Aged
- Adult
- Circulating Tumor DNA/blood
- Circulating Tumor DNA/genetics
- Liquid Biopsy/methods
- Antineoplastic Combined Chemotherapy Protocols/therapeutic use
- Aged, 80 and over
- Positron Emission Tomography Computed Tomography
- Rituximab/therapeutic use
- Rituximab/administration & dosage
- Cyclophosphamide/therapeutic use
- Cyclophosphamide/administration & dosage
- Biomarkers, Tumor/blood
- Vincristine/therapeutic use
- Vincristine/administration & dosage
- Prognosis
- Doxorubicin/therapeutic use
- Doxorubicin/administration & dosage
- High-Throughput Nucleotide Sequencing
- Prednisone/therapeutic use
- Prednisone/administration & dosage
Collapse
Affiliation(s)
- Miguel Alcoceba
- Servicio de Hematologia, Hospital Universitario de Salamanca (HUS/IBSAL), CIBERONC, y Centro de Investigacion del Cancer de Salamanca-IBMCC (USAL-CSIC), Salamanca, Spain
- Grupo de trabajo cooperativo de linfomas y procesos linfoproliferativos de la SCLHH, Castilla y León, Spain
| | - James P Stewart
- Patrick G Johnston Centre for Cancer Research, Queens University Belfast, Belfast, UK
| | - María García-Álvarez
- Servicio de Hematologia, Hospital Universitario de Salamanca (HUS/IBSAL), CIBERONC, y Centro de Investigacion del Cancer de Salamanca-IBMCC (USAL-CSIC), Salamanca, Spain
| | - Luis G Díaz
- Servicio de Medicina Nuclear, Hospital Universitario de Salamanca (HUS/IBSAL), Salamanca, Spain
| | - Cristina Jiménez
- Servicio de Hematologia, Hospital Universitario de Salamanca (HUS/IBSAL), CIBERONC, y Centro de Investigacion del Cancer de Salamanca-IBMCC (USAL-CSIC), Salamanca, Spain
| | - Alejandro Medina
- Servicio de Hematologia, Hospital Universitario de Salamanca (HUS/IBSAL), CIBERONC, y Centro de Investigacion del Cancer de Salamanca-IBMCC (USAL-CSIC), Salamanca, Spain
| | - M Carmen Chillón
- Servicio de Hematologia, Hospital Universitario de Salamanca (HUS/IBSAL), CIBERONC, y Centro de Investigacion del Cancer de Salamanca-IBMCC (USAL-CSIC), Salamanca, Spain
| | - Jana Gazdova
- Patrick G Johnston Centre for Cancer Research, Queens University Belfast, Belfast, UK
| | - Oscar Blanco
- Servicio de Anatomía Patológica, Hospital Universitario de Salamanca (HUS/IBSAL), Salamanca, Spain
| | - Francisco J Díaz
- Servicio de Hematologia, Complejo Asistencial de Burgos, Burgos, Spain
| | - María J Peñarrubia
- Servicio de Hematologia, Hospital Clínico Universitario de Valladolid, Valladolid, Spain
| | - Silvia Fernández
- Servicio de Hematologia, Complejo Asistencial Universitario de León, León, Spain
| | - Carlos Montes
- Servicio de Radiofísica y Protección Radiológica, Hospital Universitario de Salamanca (HUS/IBSAL), Salamanca, Spain
| | - Almudena Cabero
- Servicio de Hematologia, Hospital Universitario de Salamanca (HUS/IBSAL), CIBERONC, y Centro de Investigacion del Cancer de Salamanca-IBMCC (USAL-CSIC), Salamanca, Spain
- Grupo de trabajo cooperativo de linfomas y procesos linfoproliferativos de la SCLHH, Castilla y León, Spain
| | - María D Caballero
- Servicio de Hematologia, Hospital Universitario de Salamanca (HUS/IBSAL), CIBERONC, y Centro de Investigacion del Cancer de Salamanca-IBMCC (USAL-CSIC), Salamanca, Spain
- Grupo de trabajo cooperativo de linfomas y procesos linfoproliferativos de la SCLHH, Castilla y León, Spain
| | - Ramón García-Sanz
- Servicio de Hematologia, Hospital Universitario de Salamanca (HUS/IBSAL), CIBERONC, y Centro de Investigacion del Cancer de Salamanca-IBMCC (USAL-CSIC), Salamanca, Spain
- Grupo de trabajo cooperativo de linfomas y procesos linfoproliferativos de la SCLHH, Castilla y León, Spain
| | - Marcos González
- Servicio de Hematologia, Hospital Universitario de Salamanca (HUS/IBSAL), CIBERONC, y Centro de Investigacion del Cancer de Salamanca-IBMCC (USAL-CSIC), Salamanca, Spain
- Grupo de trabajo cooperativo de linfomas y procesos linfoproliferativos de la SCLHH, Castilla y León, Spain
| | - David González
- Patrick G Johnston Centre for Cancer Research, Queens University Belfast, Belfast, UK
| | - Pilar Tamayo
- Servicio de Medicina Nuclear, Hospital Universitario de Salamanca (HUS/IBSAL), Salamanca, Spain
| | - Norma C Gutiérrez
- Servicio de Hematologia, Hospital Universitario de Salamanca (HUS/IBSAL), CIBERONC, y Centro de Investigacion del Cancer de Salamanca-IBMCC (USAL-CSIC), Salamanca, Spain
| | - Alejandro Martín García-Sancho
- Servicio de Hematologia, Hospital Universitario de Salamanca (HUS/IBSAL), CIBERONC, y Centro de Investigacion del Cancer de Salamanca-IBMCC (USAL-CSIC), Salamanca, Spain
- Grupo de trabajo cooperativo de linfomas y procesos linfoproliferativos de la SCLHH, Castilla y León, Spain
| | - M Eugenia Sarasquete
- Servicio de Hematologia, Hospital Universitario de Salamanca (HUS/IBSAL), CIBERONC, y Centro de Investigacion del Cancer de Salamanca-IBMCC (USAL-CSIC), Salamanca, Spain
| |
Collapse
|
3
|
Setayesh SM, Ndacayisaba LJ, Rappard KE, Hennes V, Rueda LYM, Tang G, Lin P, Orlowski RZ, Symer DE, Manasanch EE, Shishido SN, Kuhn P. Targeted single-cell proteomic analysis identifies new liquid biopsy biomarkers associated with multiple myeloma. NPJ Precis Oncol 2023; 7:95. [PMID: 37723227 PMCID: PMC10507120 DOI: 10.1038/s41698-023-00446-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 09/05/2023] [Indexed: 09/20/2023] Open
Abstract
Multiple myeloma (MM) is accompanied by alterations to the normal plasma cell (PC) proteome, leading to changes to the tumor microenvironment and disease progression. There is a great need for understanding the consequences that lead to MM progression and for the discovery of new biomarkers that can aid clinical diagnostics and serve as targets for therapeutics. This study demonstrates the applicability of utilizing the single-cell high-definition liquid biopsy assay (HDSCA) and imaging mass cytometry to characterize the proteomic profile of myeloma. In our study, we analyzed ~87,000 cells from seven patient samples (bone marrow and peripheral blood) across the myeloma disease spectrum and utilized our multiplexed panel to characterize the expression of clinical markers for PC classification, additional potential therapeutic targets, and the tumor microenvironment cells. Our analysis showed BCMA, ICAM3 (CD50), CD221, and CS1 (SLAMF7) as the most abundantly expressed markers on PCs across all myeloma stages, with BCMA, ICAM3, and CD221 having significantly higher expression levels on disease versus precursor PCs. Additionally, we identify significantly elevated levels of expression for CD74, MUM1, CD229, CD44, IGLL5, Cyclin D1, UBA52, and CD317 on PCs from overt disease conditions compared to those from precursor states.
Collapse
Affiliation(s)
- Sonia M Setayesh
- Convergent Science Institute in Cancer, Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, CA, 90089, USA
| | - Libere J Ndacayisaba
- Convergent Science Institute in Cancer, Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, CA, 90089, USA
| | - Kate E Rappard
- Convergent Science Institute in Cancer, Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, CA, 90089, USA
| | - Valerie Hennes
- Convergent Science Institute in Cancer, Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, CA, 90089, USA
| | - Luz Yurany Moreno Rueda
- Department of Lymphoma and Myeloma, Division of Cancer Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Guilin Tang
- Department of Hematopathology, University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Pei Lin
- Department of Hematopathology, University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Robert Z Orlowski
- Department of Lymphoma and Myeloma, Division of Cancer Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - David E Symer
- Department of Lymphoma and Myeloma, Division of Cancer Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Elisabet E Manasanch
- Department of Lymphoma and Myeloma, Division of Cancer Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Stephanie N Shishido
- Convergent Science Institute in Cancer, Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, CA, 90089, USA.
| | - Peter Kuhn
- Convergent Science Institute in Cancer, Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, CA, 90089, USA.
- Catherine & Joseph Aresty Department of Urology, Institute of Urology, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA.
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA.
- Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, 90089, USA.
- Department of Aerospace and Mechanical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, 90089, USA.
- Department of Biological Sciences, Dornsife College of Letters, Arts, and Sciences, University of Southern California, Los Angeles, CA, 90089, USA.
| |
Collapse
|
4
|
Genetic Alterations in Members of the Proteasome 26S Subunit, AAA-ATPase ( PSMC) Gene Family in the Light of Proteasome Inhibitor Resistance in Multiple Myeloma. Cancers (Basel) 2023; 15:cancers15020532. [PMID: 36672481 PMCID: PMC9856285 DOI: 10.3390/cancers15020532] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/08/2023] [Accepted: 01/13/2023] [Indexed: 01/19/2023] Open
Abstract
For the treatment of Multiple Myeloma, proteasome inhibitors are highly efficient and widely used, but resistance is a major obstacle to successful therapy. Several underlying mechanisms have been proposed but were only reported for a minority of resistant patients. The proteasome is a large and complex machinery. Here, we focus on the AAA ATPases of the 19S proteasome regulator (PSMC1-6) and their implication in PI resistance. As an example of cancer evolution and the acquisition of resistance, we conducted an in-depth analysis of an index patient by applying FISH, WES, and immunoglobulin-rearrangement sequencing in serial samples, starting from MGUS to newly diagnosed Multiple Myeloma to a PI-resistant relapse. The WES analysis uncovered an acquired PSMC2 Y429S mutation at the relapse after intensive bortezomib-containing therapy, which was functionally confirmed to mediate PI resistance. A meta-analysis comprising 1499 newly diagnosed and 447 progressed patients revealed a total of 36 SNVs over all six PSMC genes that were structurally accumulated in regulatory sites for activity such as the ADP/ATP binding pocket. Other alterations impact the interaction between different PSMC subunits or the intrinsic conformation of an individual subunit, consequently affecting the folding and function of the complex. Interestingly, several mutations were clustered in the central channel of the ATPase ring, where the unfolded substrates enter the 20S core. Our results indicate that PSMC SNVs play a role in PI resistance in MM.
Collapse
|
5
|
Rosa-Rosa JM, Cuenca I, Medina A, Vázquez I, Sánchez-delaCruz A, Buenache N, Sánchez R, Jiménez C, Rosiñol L, Gutiérrez NC, Ruiz-Heredia Y, Barrio S, Oriol A, Martin-Ramos ML, Blanchard MJ, Ayala R, Ríos-Tamayo R, Sureda A, Hernández MT, de la Rubia J, Alkorta-Aranburu G, Agirre X, Bladé J, Mateos MV, Lahuerta JJ, San-Miguel JF, Calasanz MJ, Garcia-Sanz R, Martínez-Lopez J. NGS-Based Molecular Karyotyping of Multiple Myeloma: Results from the GEM12 Clinical Trial. Cancers (Basel) 2022; 14:cancers14205169. [PMID: 36291952 PMCID: PMC9601262 DOI: 10.3390/cancers14205169] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/07/2022] [Accepted: 10/12/2022] [Indexed: 12/01/2022] Open
Abstract
Simple Summary Multiple Myeloma (MM) is considered an incurable chronic disease, which prognosis depends on the presence of different genomic alterations. To accomplish a complete molecular diagnosis in a single essay, we have designed and validated a capture-based NGS approach to reliably identify pathogenic mutations (SNVs and indels), genomic alterations (CNVs and chromosomic translocations), and IGH rearrangements. We have observed a good correlation of the results obtained using our capture panel with data obtained by both FISH and WES techniques. In this study, the molecular classification performed using our approach was significantly associated with the stratification and outcome of MM patients. Additionally, this panel has been proven to detect specific IGH rearrangements that could be used as biomarkers in patient follow-ups through minimal residual disease (MRD) assays. In conclusion, we think that MM patients could benefit from the use of this capture-based NGS approach with a more accurate, single-essay molecular diagnosis. Abstract Next-generation sequencing (NGS) has greatly improved our ability to detect the genomic aberrations occurring in multiple myeloma (MM); however, its transfer to routine clinical labs and its validation in clinical trials remains to be established. We designed a capture-based NGS targeted panel to identify, in a single assay, known genetic alterations for the prognostic stratification of MM. The NGS panel was designed for the simultaneous study of single nucleotide and copy number variations, insertions and deletions, chromosomal translocations and V(D)J rearrangements. The panel was validated using a cohort of 149 MM patients enrolled in the GEM2012MENOS65 clinical trial. The results showed great global accuracy, with positive and negative predictive values close to 90% when compared with available data from fluorescence in situ hybridization and whole-exome sequencing. While the treatments used in the clinical trial showed high efficacy, patients defined as high-risk by the panel had shorter progression-free survival (p = 0.0015). As expected, the mutational status of TP53 was significant in predicting patient outcomes (p = 0.021). The NGS panel also efficiently detected clonal IGH rearrangements in 81% of patients. In conclusion, molecular karyotyping using a targeted NGS panel can identify relevant prognostic chromosomal abnormalities and translocations for the clinical management of MM patients.
Collapse
Affiliation(s)
- Juan Manuel Rosa-Rosa
- Hematology Department, Hospital 12 de Octubre, 28041 Madrid, Spain
- H12O–CNIO Hematological Malignancies Clinical Research Unit, Spanish National Cancer Research (CNIO), 29029 Madrid, Spain
- Correspondence: (J.M.R.-R.); (J.M.-L.)
| | - Isabel Cuenca
- Hematology Department, Hospital 12 de Octubre, 28041 Madrid, Spain
- H12O–CNIO Hematological Malignancies Clinical Research Unit, Spanish National Cancer Research (CNIO), 29029 Madrid, Spain
| | - Alejandro Medina
- Unidad de Biología Molecular-HLA, Laboratorio de Hematología, Hospital Universitario de Salamanca, 37007 Salamanca, Spain
| | - Iria Vázquez
- Center for Applied Medical Research (CIMA) LAB Diagnostics, Universidad de Navarra, 31008 Pamplona, Spain
| | - Andrea Sánchez-delaCruz
- H12O–CNIO Hematological Malignancies Clinical Research Unit, Spanish National Cancer Research (CNIO), 29029 Madrid, Spain
| | - Natalia Buenache
- Hematology Department, Hospital 12 de Octubre, 28041 Madrid, Spain
- H12O–CNIO Hematological Malignancies Clinical Research Unit, Spanish National Cancer Research (CNIO), 29029 Madrid, Spain
| | - Ricardo Sánchez
- Hematology Department, Hospital 12 de Octubre, 28041 Madrid, Spain
- H12O–CNIO Hematological Malignancies Clinical Research Unit, Spanish National Cancer Research (CNIO), 29029 Madrid, Spain
| | - Cristina Jiménez
- Unidad de Biología Molecular-HLA, Laboratorio de Hematología, Hospital Universitario de Salamanca, 37007 Salamanca, Spain
- Cancer Research Institute of Salamanca-IBMCC (USAL-CSIC), 37007 Salamanca, Spain
- Centro de Investigación Biomédica en Red Cáncer (CIBERONC), 28029 Madrid, Spain
| | - Laura Rosiñol
- Hospital Clinic de Barcelona, 08036 Barcelona, Spain
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), 08036 Barcelona, Spain
| | - Norma C. Gutiérrez
- Unidad de Biología Molecular-HLA, Laboratorio de Hematología, Hospital Universitario de Salamanca, 37007 Salamanca, Spain
- Cancer Research Institute of Salamanca-IBMCC (USAL-CSIC), 37007 Salamanca, Spain
- Centro de Investigación Biomédica en Red Cáncer (CIBERONC), 28029 Madrid, Spain
| | - Yanira Ruiz-Heredia
- Hematology Department, Hospital 12 de Octubre, 28041 Madrid, Spain
- H12O–CNIO Hematological Malignancies Clinical Research Unit, Spanish National Cancer Research (CNIO), 29029 Madrid, Spain
- Centro de Investigación Biomédica en Red Cáncer (CIBERONC), 28029 Madrid, Spain
| | - Santiago Barrio
- Hematology Department, Hospital 12 de Octubre, 28041 Madrid, Spain
- H12O–CNIO Hematological Malignancies Clinical Research Unit, Spanish National Cancer Research (CNIO), 29029 Madrid, Spain
- Centro de Investigación Biomédica en Red Cáncer (CIBERONC), 28029 Madrid, Spain
| | - Albert Oriol
- Clinical Research Support Unit, Institut Català d’Oncologia, 08036 Barcelona, Spain
| | | | | | - Rosa Ayala
- Hematology Department, Hospital 12 de Octubre, 28041 Madrid, Spain
| | | | - Anna Sureda
- Institut Catalá d’Oncologia-l’Hospitalet, Institut de Investigació Biomèdica de Bellvitge (IDIBELL), Universitat de Barcelona, 08908 Barcelona, Spain
| | | | | | - Gorka Alkorta-Aranburu
- Center for Applied Medical Research (CIMA) LAB Diagnostics, Universidad de Navarra, 31008 Pamplona, Spain
| | - Xabier Agirre
- Center for Applied Medical Research (CIMA) LAB Diagnostics, Universidad de Navarra, 31008 Pamplona, Spain
- Centro de Investigación Biomédica en Red Cáncer (CIBERONC), 28029 Madrid, Spain
- Instituto de Investigaciones Sanitarias de Navarra (IdiSNA), Universidad de Navarra, 31008 Pamplona, Spain
| | - Joan Bladé
- Hospital Clinic de Barcelona, 08036 Barcelona, Spain
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), 08036 Barcelona, Spain
| | - María-Victoria Mateos
- Unidad de Biología Molecular-HLA, Laboratorio de Hematología, Hospital Universitario de Salamanca, 37007 Salamanca, Spain
- Cancer Research Institute of Salamanca-IBMCC (USAL-CSIC), 37007 Salamanca, Spain
- Centro de Investigación Biomédica en Red Cáncer (CIBERONC), 28029 Madrid, Spain
| | - Juan-José Lahuerta
- Centro de Investigación Biomédica en Red Cáncer (CIBERONC), 28029 Madrid, Spain
| | - Jesús F. San-Miguel
- Center for Applied Medical Research (CIMA) LAB Diagnostics, Universidad de Navarra, 31008 Pamplona, Spain
- Centro de Investigación Biomédica en Red Cáncer (CIBERONC), 28029 Madrid, Spain
- Instituto de Investigaciones Sanitarias de Navarra (IdiSNA), Universidad de Navarra, 31008 Pamplona, Spain
| | - María-José Calasanz
- Center for Applied Medical Research (CIMA) LAB Diagnostics, Universidad de Navarra, 31008 Pamplona, Spain
| | - Ramón Garcia-Sanz
- Unidad de Biología Molecular-HLA, Laboratorio de Hematología, Hospital Universitario de Salamanca, 37007 Salamanca, Spain
- Cancer Research Institute of Salamanca-IBMCC (USAL-CSIC), 37007 Salamanca, Spain
- Centro de Investigación Biomédica en Red Cáncer (CIBERONC), 28029 Madrid, Spain
| | - Joaquín Martínez-Lopez
- Hematology Department, Hospital 12 de Octubre, 28041 Madrid, Spain
- H12O–CNIO Hematological Malignancies Clinical Research Unit, Spanish National Cancer Research (CNIO), 29029 Madrid, Spain
- Centro de Investigación Biomédica en Red Cáncer (CIBERONC), 28029 Madrid, Spain
- Correspondence: (J.M.R.-R.); (J.M.-L.)
| |
Collapse
|
6
|
Aksenova AY, Zhuk AS, Lada AG, Zotova IV, Stepchenkova EI, Kostroma II, Gritsaev SV, Pavlov YI. Genome Instability in Multiple Myeloma: Facts and Factors. Cancers (Basel) 2021; 13:5949. [PMID: 34885058 PMCID: PMC8656811 DOI: 10.3390/cancers13235949] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/20/2021] [Accepted: 11/22/2021] [Indexed: 02/06/2023] Open
Abstract
Multiple myeloma (MM) is a malignant neoplasm of terminally differentiated immunoglobulin-producing B lymphocytes called plasma cells. MM is the second most common hematologic malignancy, and it poses a heavy economic and social burden because it remains incurable and confers a profound disability to patients. Despite current progress in MM treatment, the disease invariably recurs, even after the transplantation of autologous hematopoietic stem cells (ASCT). Biological processes leading to a pathological myeloma clone and the mechanisms of further evolution of the disease are far from complete understanding. Genetically, MM is a complex disease that demonstrates a high level of heterogeneity. Myeloma genomes carry numerous genetic changes, including structural genome variations and chromosomal gains and losses, and these changes occur in combinations with point mutations affecting various cellular pathways, including genome maintenance. MM genome instability in its extreme is manifested in mutation kataegis and complex genomic rearrangements: chromothripsis, templated insertions, and chromoplexy. Chemotherapeutic agents used to treat MM add another level of complexity because many of them exacerbate genome instability. Genome abnormalities are driver events and deciphering their mechanisms will help understand the causes of MM and play a pivotal role in developing new therapies.
Collapse
Affiliation(s)
- Anna Y. Aksenova
- Laboratory of Amyloid Biology, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Anna S. Zhuk
- International Laboratory “Computer Technologies”, ITMO University, 197101 St. Petersburg, Russia;
| | - Artem G. Lada
- Department of Microbiology and Molecular Genetics, University of California, Davis, CA 95616, USA;
| | - Irina V. Zotova
- Department of Genetics and Biotechnology, St. Petersburg State University, 199034 St. Petersburg, Russia; (I.V.Z.); (E.I.S.)
- Vavilov Institute of General Genetics, St. Petersburg Branch, Russian Academy of Sciences, 199034 St. Petersburg, Russia
| | - Elena I. Stepchenkova
- Department of Genetics and Biotechnology, St. Petersburg State University, 199034 St. Petersburg, Russia; (I.V.Z.); (E.I.S.)
- Vavilov Institute of General Genetics, St. Petersburg Branch, Russian Academy of Sciences, 199034 St. Petersburg, Russia
| | - Ivan I. Kostroma
- Russian Research Institute of Hematology and Transfusiology, 191024 St. Petersburg, Russia; (I.I.K.); (S.V.G.)
| | - Sergey V. Gritsaev
- Russian Research Institute of Hematology and Transfusiology, 191024 St. Petersburg, Russia; (I.I.K.); (S.V.G.)
| | - Youri I. Pavlov
- Eppley Institute for Research in Cancer, Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Departments of Biochemistry and Molecular Biology, Microbiology and Pathology, Genetics Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
7
|
Alaterre E, Vikova V, Kassambara A, Bruyer A, Robert N, Requirand G, Bret C, Herbaux C, Vincent L, Cartron G, Elemento O, Moreaux J. RNA-Sequencing-Based Transcriptomic Score with Prognostic and Theranostic Values in Multiple Myeloma. J Pers Med 2021; 11:jpm11100988. [PMID: 34683129 PMCID: PMC8541503 DOI: 10.3390/jpm11100988] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 09/23/2021] [Accepted: 09/26/2021] [Indexed: 12/11/2022] Open
Abstract
Multiple myeloma (MM) is the second most frequent hematological cancer and is characterized by the clonal proliferation of malignant plasma cells. Genome-wide expression profiling (GEP) analysis with DNA microarrays has emerged as a powerful tool for biomedical research, generating a huge amount of data. Microarray analyses have improved our understanding of MM disease and have led to important clinical applications. In MM, GEP has been used to stratify patients, define risk, identify therapeutic targets, predict treatment response, and understand drug resistance. In this study, we built a gene risk score for 267 genes using RNA-seq data that demonstrated a prognostic value in two independent cohorts (n = 674 and n = 76) of newly diagnosed MM patients treated with high-dose Melphalan and autologous stem cell transplantation. High-risk patients were associated with the expression of genes involved in several major pathways implicated in MM pathophysiology, including interferon response, cell proliferation, hypoxia, IL-6 signaling pathway, stem cell genes, MYC, and epigenetic deregulation. The RNA-seq-based risk score was correlated with specific MM somatic mutation profiles and responses to targeted treatment including EZH2, MELK, TOPK/PBK, and Aurora kinase inhibitors, outlining potential utility for precision medicine strategies in MM.
Collapse
Affiliation(s)
- Elina Alaterre
- Institute of Human Genetics, UMR 9002 CNRS-UM, 34395 Montpellier, France; (E.A.); (V.V.); (A.K.); (A.B.); (C.B.); (C.H.)
| | - Veronika Vikova
- Institute of Human Genetics, UMR 9002 CNRS-UM, 34395 Montpellier, France; (E.A.); (V.V.); (A.K.); (A.B.); (C.B.); (C.H.)
| | - Alboukadel Kassambara
- Institute of Human Genetics, UMR 9002 CNRS-UM, 34395 Montpellier, France; (E.A.); (V.V.); (A.K.); (A.B.); (C.B.); (C.H.)
- Diag2Tec, 34395 Montpellier, France
| | - Angélique Bruyer
- Institute of Human Genetics, UMR 9002 CNRS-UM, 34395 Montpellier, France; (E.A.); (V.V.); (A.K.); (A.B.); (C.B.); (C.H.)
- Diag2Tec, 34395 Montpellier, France
| | - Nicolas Robert
- Department of Biological Hematology, CHU Montpellier, 34395 Montpellier, France; (N.R.); (G.R.)
| | - Guilhem Requirand
- Department of Biological Hematology, CHU Montpellier, 34395 Montpellier, France; (N.R.); (G.R.)
| | - Caroline Bret
- Institute of Human Genetics, UMR 9002 CNRS-UM, 34395 Montpellier, France; (E.A.); (V.V.); (A.K.); (A.B.); (C.B.); (C.H.)
- Department of Biological Hematology, CHU Montpellier, 34395 Montpellier, France; (N.R.); (G.R.)
- UFR de Médecine, University of Montpellier, 34003 Montpellier, France;
| | - Charles Herbaux
- Institute of Human Genetics, UMR 9002 CNRS-UM, 34395 Montpellier, France; (E.A.); (V.V.); (A.K.); (A.B.); (C.B.); (C.H.)
- UFR de Médecine, University of Montpellier, 34003 Montpellier, France;
- Department of Clinical Hematology, CHU Montpellier, 34395 Montpellier, France;
| | - Laure Vincent
- Department of Clinical Hematology, CHU Montpellier, 34395 Montpellier, France;
| | - Guillaume Cartron
- UFR de Médecine, University of Montpellier, 34003 Montpellier, France;
- Department of Clinical Hematology, CHU Montpellier, 34395 Montpellier, France;
- IGMM, UMR CNRS-UM 5535, 34090 Montpellier, France
| | - Olivier Elemento
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY 10021, USA;
| | - Jérôme Moreaux
- Institute of Human Genetics, UMR 9002 CNRS-UM, 34395 Montpellier, France; (E.A.); (V.V.); (A.K.); (A.B.); (C.B.); (C.H.)
- Department of Biological Hematology, CHU Montpellier, 34395 Montpellier, France; (N.R.); (G.R.)
- UFR de Médecine, University of Montpellier, 34003 Montpellier, France;
- IUF, Institut Universitaire de France, 75005 Paris, France
- Correspondence: ; Tel.: +33-(0)4-67-33-79-03
| |
Collapse
|
8
|
Next-Generation Biomarkers in Multiple Myeloma: Understanding the Molecular Basis for Potential Use in Diagnosis and Prognosis. Int J Mol Sci 2021; 22:ijms22147470. [PMID: 34299097 PMCID: PMC8305153 DOI: 10.3390/ijms22147470] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 06/25/2021] [Accepted: 07/02/2021] [Indexed: 12/19/2022] Open
Abstract
Multiple myeloma (MM) is considered to be the second most common blood malignancy and it is characterized by abnormal proliferation and an accumulation of malignant plasma cells in the bone marrow. Although the currently utilized markers in the diagnosis and assessment of MM are showing promising results, the incidence and mortality rate of the disease are still high. Therefore, exploring and developing better diagnostic or prognostic biomarkers have drawn global interest. In the present review, we highlight some of the recently reported and investigated novel biomarkers that have great potentials as diagnostic and/or prognostic tools in MM. These biomarkers include angiogenic markers, miRNAs as well as proteomic and immunological biomarkers. Moreover, we present some of the advanced methodologies that could be utilized in the early and competent diagnosis of MM. The present review also focuses on understanding the molecular concepts and pathways involved in these biomarkers in order to validate and efficiently utilize them. The present review may also help in identifying areas of improvement for better diagnosis and superior outcomes of MM.
Collapse
|
9
|
Diamond BT, Rustad E, Maclachlan K, Thoren K, Ho C, Roshal M, Ulaner GA, Landgren CO. Defining the undetectable: The current landscape of minimal residual disease assessment in multiple myeloma and goals for future clarity. Blood Rev 2021; 46:100732. [PMID: 32771227 PMCID: PMC9928431 DOI: 10.1016/j.blre.2020.100732] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 06/05/2020] [Accepted: 07/06/2020] [Indexed: 01/19/2023]
Abstract
Multiple Myeloma, the second most prevalent hematologic malignancy, yet lacks an established curative therapy. However, overall response rate to modern four-drug regimens approaches 100%. Major efforts have thus focused on the measurement of minute quantities of residual disease (minimal residual disease or MRD) for prognostic metrics and therapeutic response evaluation. Currently, MRD is assessed by flow cytometry or by next generation sequencing to track tumor-specific immunoglobulin V(D)J rearrangements. These bone marrow-based methods can reach sensitivity thresholds of the identification of one neoplastic cell in 1,000,000 (10-6). New technologies are being developed to be used alone or in conjunction with established methods, including peripheral blood-based assays, mass spectrometry, and targeted imaging. Data is also building for MRD as a surrogate endpoint for overall survival. Here, we will address the currently utilized MRD assays, challenges in validation across labs and clinical trials, techniques in development, and future directions for successful clinical application of MRD in multiple myeloma.
Collapse
Affiliation(s)
| | | | | | | | - Caleb Ho
- Memorial Sloan Kettering Cancer Center, USA
| | | | | | | |
Collapse
|
10
|
Plackett B. Will the reclassification of multiple myeloma change how people are treated? Nature 2020. [DOI: 10.1038/d41586-020-03224-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
11
|
Manzoni M, Marchica V, Storti P, Ziccheddu B, Sammarelli G, Todaro G, Pelizzoni F, Salerio S, Notarfranchi L, Pompa A, Baldini L, Bolli N, Neri A, Giuliani N, Lionetti M. Application of Next-Generation Sequencing for the Genomic Characterization of Patients with Smoldering Myeloma. Cancers (Basel) 2020; 12:cancers12051332. [PMID: 32456143 PMCID: PMC7281620 DOI: 10.3390/cancers12051332] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 05/12/2020] [Accepted: 05/20/2020] [Indexed: 12/12/2022] Open
Abstract
Genomic analysis could contribute to a better understanding of the biological determinants of the evolution of multiple myeloma (MM) precursor disease and an improved definition of high-risk patients. To assess the feasibility and value of next-generation sequencing approaches in an asymptomatic setting, we performed a targeted gene mutation analysis and a genome-wide assessment of copy number alterations (CNAs) by ultra-low-pass whole genome sequencing (ULP-WGS) in six patients with monoclonal gammopathy of undetermined significance and 25 patients with smoldering MM (SMM). Our comprehensive genomic characterization highlighted heterogeneous but substantial values of the tumor fraction, especially in SMM; a rather high degree of genomic complexity, in terms of both mutations and CNAs, and inter-patient variability; a higher incidence of gene mutations and CNAs in SMM, confirming ongoing evolution; intraclonal heterogeneity; and instances of convergent evolution. ULP-WGS of these patients proved effective in revealing the marked genome-wide level of their CNAs, most of which are not routinely investigated. Finally, the analysis of our small SMM cohort suggested that chr(8p) deletions, the DNA tumor fraction, and the number of alterations may have clinical relevance in the progression to overt MM. Although validation in larger series is mandatory, these findings highlight the promising impact of genomic approaches in the clinical management of SMM.
Collapse
Affiliation(s)
- Martina Manzoni
- Department of Oncology and Hemato-oncology, University of Milan, 20122 Milan, Italy; (M.M.); (L.B.); (N.B.); (M.L.)
| | - Valentina Marchica
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (V.M.); (P.S.); (L.N.); (N.G.)
| | - Paola Storti
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (V.M.); (P.S.); (L.N.); (N.G.)
| | - Bachisio Ziccheddu
- Department of Clinical Oncology and Hematology, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy;
| | - Gabriella Sammarelli
- Hematology, “Azienda Ospedaliero-Universitaria di Parma”, 43126 Parma, Italy; (G.S.); (G.T.)
| | - Giannalisa Todaro
- Hematology, “Azienda Ospedaliero-Universitaria di Parma”, 43126 Parma, Italy; (G.S.); (G.T.)
| | - Francesca Pelizzoni
- Hematology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (F.P.); (S.S.); (A.P.)
| | - Simone Salerio
- Hematology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (F.P.); (S.S.); (A.P.)
| | - Laura Notarfranchi
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (V.M.); (P.S.); (L.N.); (N.G.)
| | - Alessandra Pompa
- Hematology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (F.P.); (S.S.); (A.P.)
| | - Luca Baldini
- Department of Oncology and Hemato-oncology, University of Milan, 20122 Milan, Italy; (M.M.); (L.B.); (N.B.); (M.L.)
- Hematology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (F.P.); (S.S.); (A.P.)
| | - Niccolò Bolli
- Department of Oncology and Hemato-oncology, University of Milan, 20122 Milan, Italy; (M.M.); (L.B.); (N.B.); (M.L.)
- Department of Clinical Oncology and Hematology, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy;
| | - Antonino Neri
- Department of Oncology and Hemato-oncology, University of Milan, 20122 Milan, Italy; (M.M.); (L.B.); (N.B.); (M.L.)
- Hematology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (F.P.); (S.S.); (A.P.)
- Correspondence:
| | - Nicola Giuliani
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (V.M.); (P.S.); (L.N.); (N.G.)
- Hematology, “Azienda Ospedaliero-Universitaria di Parma”, 43126 Parma, Italy; (G.S.); (G.T.)
| | - Marta Lionetti
- Department of Oncology and Hemato-oncology, University of Milan, 20122 Milan, Italy; (M.M.); (L.B.); (N.B.); (M.L.)
| |
Collapse
|
12
|
Hultcrantz M, Yellapantula V, Rustad EH. Genomic profiling of multiple myeloma: New insights and modern technologies. Best Pract Res Clin Haematol 2020; 33:101153. [PMID: 32139018 DOI: 10.1016/j.beha.2020.101153] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 01/23/2020] [Indexed: 02/06/2023]
Abstract
Advances in technologies for genomic profiling, primarily with next generation sequencing, have lead to a better understanding of the complex genomic landscape in multiple myeloma. Integrated analysis of whole genome, exome and transcriptome sequencing has lead to new insights on disease drivers including translocations, copy number alterations, somatic mutations, and altered gene expression. Disease progression in multiple myeloma is largely driven by structural variations including the traditional immunoglobulin heavy chain (IGH) translocations and hyperdiploidy which are early events in myelomagenesis as well as more complex events spanning over multiple chromosomes and involving amplifications and deletions. In this review, we will discuss recent insights on the genomic landscape of multiple myeloma and their implications for disease progression and personalized treatment. We will review how sequencing assays compare to current clinical methods and give an overview of modern technologies for interrogating genomic aberrations.
Collapse
Affiliation(s)
- Malin Hultcrantz
- Myeloma Service, Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, NY, USA.
| | - Venkata Yellapantula
- Myeloma Service, Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Even H Rustad
- Myeloma Service, Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
13
|
The combination of WGS and RNA-Seq is superior to conventional diagnostic tests in multiple myeloma: Ready for prime time? Cancer Genet 2020; 242:15-24. [PMID: 31980417 DOI: 10.1016/j.cancergen.2020.01.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 01/09/2020] [Accepted: 01/09/2020] [Indexed: 12/13/2022]
Abstract
The diagnosis and risk stratification of multiple myeloma (MM) is based on clinical and cytogenetic tests. Magnetic CD138 enrichment followed by interphase FISH (fluorescence in situ hybridisation) is the gold standard to identify prognostic translocations and copy number alterations (CNA). Although clinical implications of gene expression profiling (GEP) or panel based sequencing results are evident, those tests have not yet reached routine clinical application. We set up a single workflow to analyse MM of 211 patients at first diagnosis by whole genome sequencing (WGS) and RNA-Seq and validate the results by FISH analysis. We observed a 96% concordance of FISH and WGS results when assessing translocations involving the IGH locus and an overall concordance of FISH and WGS of 92% when assessing CNA. WGS analysis resulted in the identification of 17 additional MYC-translocations that were missed by FISH analysis. RNA-Seq followed by supervised clustering grouped patients in their expected genetically defined subgroup and prompted the assessment of WGS data in cases that were not congruent with FISH. This allowed the identification of additional IGH-translocations and hyperdiploid cases. We show the reliability of WGS an RNA-Seq in a clinical setting, which is a prerequisite for a novel routine diagnostic test.
Collapse
|
14
|
Smadbeck J, Peterson JF, Pearce KE, Pitel BA, Figueroa AL, Timm M, Jevremovic D, Shi M, Stewart AK, Braggio E, Riggs DL, Bergsagel PL, Vasmatzis G, Kearney HM, Hoppman NL, Ketterling RP, Kumar S, Rajkumar SV, Greipp PT, Baughn LB. Mate pair sequencing outperforms fluorescence in situ hybridization in the genomic characterization of multiple myeloma. Blood Cancer J 2019; 9:103. [PMID: 31844041 PMCID: PMC6914798 DOI: 10.1038/s41408-019-0255-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 10/21/2019] [Accepted: 11/04/2019] [Indexed: 02/07/2023] Open
Abstract
Fluorescence in situ hybridization (FISH) is currently the gold-standard assay to detect recurrent genomic abnormalities of prognostic significance in multiple myeloma (MM). Since most translocations in MM involve a position effect with heterogeneous breakpoints, we hypothesize that FISH has the potential to miss translocations involving these regions. We evaluated 70 bone marrow samples from patients with plasma cell dyscrasia by FISH and whole-genome mate-pair sequencing (MPseq). Thirty cases (42.9%) displayed at least one instance of discordance between FISH and MPseq for each primary and secondary abnormality evaluated. Nine cases had abnormalities detected by FISH that went undetected by MPseq including 6 tetraploid clones and three cases with missed copy number abnormalities. In contrast, 19 cases had abnormalities detected by MPseq that went undetected by FISH. Seventeen were MYC rearrangements and two were 17p deletions. MPseq identified 36 MYC abnormalities and 17 (50.0% of MYC abnormal group with FISH results) displayed a false negative FISH result. MPseq identified 10 cases (14.3%) with IgL rearrangements, a recent marker of poor outcome, and 10% with abnormalities in genes associated with lenalidomide response or resistance. In summary, MPseq was superior in the characterization of rearrangement complexity and identification of secondary abnormalities demonstrating increased clinical value compared to FISH.
Collapse
Affiliation(s)
- James Smadbeck
- Center for Individualized Medicine-Biomarker Discovery, Mayo Clinic, Rochester, MN, USA
| | - Jess F Peterson
- Division of Laboratory Genetics, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Kathryn E Pearce
- Division of Laboratory Genetics, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Beth A Pitel
- Division of Laboratory Genetics, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Andrea Lebron Figueroa
- Division of Laboratory Genetics, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Michael Timm
- Division of Hematopathology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Dragan Jevremovic
- Division of Hematopathology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Min Shi
- Division of Hematopathology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - A Keith Stewart
- Division of Hematology, Department of Internal Medicine, Mayo Clinic, Scottsdale, AZ, USA
| | - Esteban Braggio
- Division of Hematology, Department of Internal Medicine, Mayo Clinic, Scottsdale, AZ, USA
| | - Daniel L Riggs
- Division of Hematology, Department of Internal Medicine, Mayo Clinic, Scottsdale, AZ, USA
| | - P Leif Bergsagel
- Division of Hematology, Department of Internal Medicine, Mayo Clinic, Scottsdale, AZ, USA
| | - George Vasmatzis
- Center for Individualized Medicine-Biomarker Discovery, Mayo Clinic, Rochester, MN, USA
| | - Hutton M Kearney
- Division of Laboratory Genetics, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Nicole L Hoppman
- Division of Laboratory Genetics, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Rhett P Ketterling
- Division of Laboratory Genetics, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Shaji Kumar
- Division of Hematology, Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | - S Vincent Rajkumar
- Division of Hematology, Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | - Patricia T Greipp
- Division of Laboratory Genetics, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Linda B Baughn
- Division of Laboratory Genetics, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
15
|
Harding T, Baughn L, Kumar S, Van Ness B. The future of myeloma precision medicine: integrating the compendium of known drug resistance mechanisms with emerging tumor profiling technologies. Leukemia 2019; 33:863-883. [PMID: 30683909 DOI: 10.1038/s41375-018-0362-z] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 10/25/2018] [Accepted: 11/12/2018] [Indexed: 02/07/2023]
Abstract
Multiple myeloma (MM) is a hematologic malignancy that is considered mostly incurable in large part due to the inability of standard of care therapies to overcome refractory disease and inevitable drug-resistant relapse. The post-genomic era has been a productive period of discovery where modern sequencing methods have been applied to large MM patient cohorts to modernize our current perception of myeloma pathobiology and establish an appreciation for the vast heterogeneity that exists between and within MM patients. Numerous pre-clinical studies conducted in the last two decades have unveiled a compendium of mechanisms by which malignant plasma cells can escape standard therapies, many of which have potentially quantifiable biomarkers. Exhaustive pre-clinical efforts have evaluated countless putative anti-MM therapeutic agents and many of these have begun to enter clinical trial evaluation. While the palette of available anti-MM therapies is continuing to expand it is also clear that malignant plasma cells still have mechanistic avenues by which they can evade even the most promising new therapies. It is therefore becoming increasingly clear that there is an outstanding need to develop and employ precision medicine strategies in MM management that harness emerging tumor profiling technologies to identify biomarkers that predict efficacy or resistance within an individual's sub-clonally heterogeneous tumor. In this review we present an updated overview of broad classes of therapeutic resistance mechanisms and describe selected examples of putative biomarkers. We also outline several emerging tumor profiling technologies that have the potential to accurately quantify biomarkers for therapeutic sensitivity and resistance at genomic, transcriptomic and proteomic levels. Finally, we comment on the future of implementation for precision medicine strategies in MM and the clear need for a paradigm shift in clinical trial design and disease management.
Collapse
Affiliation(s)
- Taylor Harding
- Department of Genetics, Cell Biology & Development, University of Minnesota, Minneapolis, MN, USA
| | - Linda Baughn
- Department of Laboratory Medicine and Pathology, Division of Laboratory Genetics, Mayo Clinic, Rochester, MN, USA
| | - Shaji Kumar
- Division of Hematology, Department of Internal Medicine, Mayo Clinic Rochester, Rochester, USA
| | - Brian Van Ness
- Department of Genetics, Cell Biology & Development, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
16
|
Two Cases of γ-Heavy Chain Disease and a Review of the Literature. Case Rep Hematol 2018; 2018:4832619. [PMID: 30186642 PMCID: PMC6109557 DOI: 10.1155/2018/4832619] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Revised: 07/04/2018] [Accepted: 07/12/2018] [Indexed: 11/17/2022] Open
Abstract
Gamma heavy chain disease (γ-HCD) is a rare lymphoproliferative disorder characterised by the production of a truncated immunoglobulin heavy chain. Fewer than 200 cases have been reported in the literature. In some cases, γ-HCD occurs with other lymphoid neoplasms. This study reports clinical, biochemical, haematological, and histological findings in two cases of γ-HCD. We describe newer biochemical diagnostic tools (HevyLite measurement, capillary electrophoresis, and immunotyping) that can aid in the characterisation of γ-HCD. The first case is an 88-year-old woman with γ-HCD. The second case is an 81-year-old woman who developed γ-HCD during treatment for Waldenstrom's macroglobulinemia. In the second patient, histopathology identified a separate clone responsible for the secretion of the gamma heavy chain. Studies on the clonal evolution of the disease may provide insight into therapeutic implications and the genomic complexity of the disease.
Collapse
|
17
|
Kumar SK, Rajkumar SV. The multiple myelomas — current concepts in cytogenetic classification and therapy. Nat Rev Clin Oncol 2018; 15:409-421. [DOI: 10.1038/s41571-018-0018-y] [Citation(s) in RCA: 141] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
18
|
Smetana J, Oppelt J, Štork M, Pour L, Kuglík P. Chromothripsis 18 in multiple myeloma patient with rapid extramedullary relapse. Mol Cytogenet 2018; 11:7. [PMID: 29375670 PMCID: PMC5774134 DOI: 10.1186/s13039-018-0357-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 01/10/2018] [Indexed: 12/15/2022] Open
Abstract
Background Catastrophic chromosomal event known as chromothripsis was proven to be a significant hallmark of poor prognosis in several cancer diseases. While this phenomenon is very rare in among multiple myeloma (MM) patients, its presence in karyotype is associated with very poor prognosis. Case presentation In our case, we report a 62 year female patient with rapid progression of multiple myeloma (MM) into extramedullary disease and short overall survival (OS = 23 months). I-FISH investigation revealed presence of gain 1q21 and hyperdiploidy (+ 5,+ 9,+ 15) in 82% and 86%, respectively, while IgH rearrangements, del(17)(p13) and del(13)(q14) were evaluated as negative.Whole-genome profiling using array-CGH showed complex genomic changes including hyperdiploidy (+ 3,+ 5,+ 9,+ 11, + 15,+ 19), monosomy X, structural gains (1q21-1q23.1, 1q32-1q44, 16p13.13-16p11.2) and losses (1q23.1-1q32.1; 8p23.3-8p11.21) of genetic material and chromothripsis in chromosome 18 with 6 breakpoint areas. Next-generation sequencing showed a total of 338 variants with 1.8% (6/338) of pathological mutations in NRAS (c.181C > A; p.Gln61Lys) or variants of unknown significance in TP53, CUX1 and POU4F1. Conclusions Our findings suggest that presence of chromothripsis should be considered as another important genetic hallmark of poor prognosis in MM patients and utilization of genome-wide screening techniques such as array-CGH and NGS improves the clinical diagnostics of the disease.
Collapse
Affiliation(s)
- Jan Smetana
- 1Laboratory of Molecular Cytogenetics, Institute of Experimental Biology, Faculty of Science, Masaryk University, Kotlářská 2, 602 00 Brno, Czech Republic.,2Department of Medical Genetics, University Hospital, Brno, Czech Republic, Černopolní 9, Brno, Czech Republic
| | - Jan Oppelt
- 3CEITEC-Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic.,4National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic
| | - Martin Štork
- 5Department of Internal Medicine-Hematooncology, University Hospital Brno, Jihlavská 20, 62500 Brno, Czech Republic
| | - Luděk Pour
- 5Department of Internal Medicine-Hematooncology, University Hospital Brno, Jihlavská 20, 62500 Brno, Czech Republic
| | - Petr Kuglík
- 1Laboratory of Molecular Cytogenetics, Institute of Experimental Biology, Faculty of Science, Masaryk University, Kotlářská 2, 602 00 Brno, Czech Republic.,2Department of Medical Genetics, University Hospital, Brno, Czech Republic, Černopolní 9, Brno, Czech Republic
| |
Collapse
|
19
|
Gillardin PS, Descamps G, Maiga S, Tessoulin B, Djamai H, Lucani B, Chiron D, Moreau P, Le Gouill S, Amiot M, Pellat-Deceunynck C, Moreau-Aubry A. Decitabine and Melphalan Fail to Reactivate p73 in p53 Deficient Myeloma Cells. Int J Mol Sci 2017; 19:ijms19010040. [PMID: 29295500 PMCID: PMC5795990 DOI: 10.3390/ijms19010040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2017] [Revised: 12/20/2017] [Accepted: 12/22/2017] [Indexed: 12/12/2022] Open
Abstract
(1) Background: TP53 deficiency remains a major adverse event in Multiple Myeloma (MM) despite therapeutic progresses. As it is not possible to target TP53 deficiency with pharmacological agents, we explored the possibility of activating another p53 family member, p73, which has not been well studied in myeloma. (2) Methods: Using human myeloma cell lines (HMCLs) with normal or abnormal TP53 status, we assessed TP73 methylation and expression. (3) Results: Using microarray data, we reported that TP73 is weakly expressed in 47 HMCLs and mostly in TP53 wild type (TP53wt) HMCLs (p = 0.0029). Q-RT-PCR assays showed that TP73 was expressed in 57% of TP53wt HMCLs (4 out of 7) and 11% of TP53 abnormal (TP53abn) HMCLs (2 out of 18) (p = 0.0463). We showed that TP73 is silenced by methylation in TP53abn HMCLs and that decitabine increased its expression, which, however, remained insufficient for significant protein expression. Alkylating drugs increased expression of TP73 only in TP53wt HMCLs but failed to synergize with decitabine in TP53abn HMCLs. (4) Conclusions: Decitabine and melphalan does not appear as a promising combination for inducing p73 and bypassing p53 deficiency in myeloma cells.
Collapse
Affiliation(s)
| | - Géraldine Descamps
- CRCINA, INSERM, CNRS, Université d'Angers, Université de Nantes, 44007 Nantes, France.
| | - Sophie Maiga
- CRCINA, INSERM, CNRS, Université d'Angers, Université de Nantes, 44007 Nantes, France.
| | - Benoit Tessoulin
- CRCINA, INSERM, CNRS, Université d'Angers, Université de Nantes, 44007 Nantes, France.
| | - Hanane Djamai
- CRCINA, INSERM, CNRS, Université d'Angers, Université de Nantes, 44007 Nantes, France.
| | - Benedetta Lucani
- CRCINA, INSERM, CNRS, Université d'Angers, Université de Nantes, 44007 Nantes, France.
| | - David Chiron
- CRCINA, INSERM, CNRS, Université d'Angers, Université de Nantes, 44007 Nantes, France.
| | - Philippe Moreau
- CRCINA, INSERM, CNRS, Université d'Angers, Université de Nantes, 44007 Nantes, France.
- Service d'Hématologie Clinique, Unité d'Investigation Clinique, CHU, 44093 Nantes, France.
| | - Steven Le Gouill
- CRCINA, INSERM, CNRS, Université d'Angers, Université de Nantes, 44007 Nantes, France.
- Service d'Hématologie Clinique, Unité d'Investigation Clinique, CHU, 44093 Nantes, France.
| | - Martine Amiot
- CRCINA, INSERM, CNRS, Université d'Angers, Université de Nantes, 44007 Nantes, France.
| | | | - Agnès Moreau-Aubry
- CRCINA, INSERM, CNRS, Université d'Angers, Université de Nantes, 44007 Nantes, France.
| |
Collapse
|
20
|
Innao V, Allegra A, Russo S, Gerace D, Vaddinelli D, Alonci A, Allegra AG, Musolino C. Standardisation of minimal residual disease in multiple myeloma. Eur J Cancer Care (Engl) 2017; 26. [PMID: 28671297 DOI: 10.1111/ecc.12732] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/01/2017] [Indexed: 12/16/2022]
Abstract
The assessment of the effectiveness of chemotherapy in oncology cannot disregard the concept of minimal residual disease (MRD). In fact, the efforts of numerous scientific groups all over the world are currently focusing on this issue, with the sole purpose of defining sensitive, effective assessment criteria that are, above all, able to give acceptable, easily repeatable results worldwide. Regarding this issue, especially with the advent of new drugs, multiple myeloma is one of the haematologic malignancies for which a consensus has not yet been reached. In this review, we analyse various techniques that have been used to improve the sensitivity of response, aimed at reducing the cut-off values previously allowed, as well as serological values like serum-free light chain, or immunophenotypic tools on bone marrow or peripheral blood, like multi-parameter flow cytometry, or molecular ones such as allele-specific oligonucleotide (ASO)-qPCR and next-generation/high-throughput sequencing technologies (NGS). Moreover, our discussion makes a brief reference to promising techniques, such as mass spectrometry for identifying Ig light chain (LC) in peripheral blood, and the assessment of gene expression profile not only in defining prognostic risk at the diagnosis but also as a tool for evaluation of response.
Collapse
Affiliation(s)
- V Innao
- Division of Hematology, Dipartimento di Patologia Umana dell'Adulto e dell'Età Evolutiva, Policlinico G Martino, University of Messina, Messina, Italy
| | - A Allegra
- Division of Hematology, Dipartimento di Patologia Umana dell'Adulto e dell'Età Evolutiva, Policlinico G Martino, University of Messina, Messina, Italy
| | - S Russo
- Division of Hematology, Dipartimento di Patologia Umana dell'Adulto e dell'Età Evolutiva, Policlinico G Martino, University of Messina, Messina, Italy
| | - D Gerace
- Division of Hematology, Dipartimento di Patologia Umana dell'Adulto e dell'Età Evolutiva, Policlinico G Martino, University of Messina, Messina, Italy
| | - D Vaddinelli
- Division of Hematology, Dipartimento di Patologia Umana dell'Adulto e dell'Età Evolutiva, Policlinico G Martino, University of Messina, Messina, Italy
| | - A Alonci
- Division of Hematology, Dipartimento di Patologia Umana dell'Adulto e dell'Età Evolutiva, Policlinico G Martino, University of Messina, Messina, Italy
| | - A G Allegra
- Division of Hematology, Dipartimento di Patologia Umana dell'Adulto e dell'Età Evolutiva, Policlinico G Martino, University of Messina, Messina, Italy
| | - C Musolino
- Division of Hematology, Dipartimento di Patologia Umana dell'Adulto e dell'Età Evolutiva, Policlinico G Martino, University of Messina, Messina, Italy
| |
Collapse
|
21
|
González-Calle V, Keane N, Braggio E, Fonseca R. Precision Medicine in Myeloma: Challenges in Defining an Actionable Approach. CLINICAL LYMPHOMA MYELOMA & LEUKEMIA 2017; 17:621-630. [PMID: 28743429 DOI: 10.1016/j.clml.2017.06.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 06/08/2017] [Indexed: 12/18/2022]
Abstract
Recently, large sequencing studies have provided insights into the mutational landscape of multiple myeloma (MM), identifying actionable mutations and giving a precious opportunity for exploring new targeted therapies. The main goal of precision medicine, matching patients with the right drug, seems to be closer than ever. However, no targeted therapies in MM are approved yet. Several clinical trials testing targeted drugs and enrolling patients with MM are currently ongoing and will provide predictive biomarkers that might support clinical decision making. In this review, we evaluate the evidence supporting the implementation of precision medicine in MM and we discuss the challenges that should be dealt with in this imminent and promising new era.
Collapse
Affiliation(s)
| | - Niamh Keane
- Division of Hematology and Oncology, Mayo Clinic, Scottsdale, AZ
| | - Esteban Braggio
- Division of Hematology and Oncology, Mayo Clinic, Scottsdale, AZ
| | - Rafael Fonseca
- Division of Hematology and Oncology, Mayo Clinic, Scottsdale, AZ.
| |
Collapse
|
22
|
Lionetti M, Neri A. Utilizing next-generation sequencing in the management of multiple myeloma. Expert Rev Mol Diagn 2017; 17:653-663. [PMID: 28524737 DOI: 10.1080/14737159.2017.1332996] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
INTRODUCTION Multiple myeloma (MM) is a bone marrow plasma cell malignancy characterized by wide clinical presentation and heterogeneous genetic background. Despite the recent advances in patient outcome, new markers are needed for improving risk prediction and choice of a more appropriate therapy. In this perspective, the genetic makeup of MM cells is being better characterized by means of next-generation sequencing (NGS) technologies. Areas covered: The authors discuss how the application of NGS has improved our knowledge of MM biology by discovering its mutational landscape, identifying the operating mutational processes, and revealing the clonal composition of tumors and the dynamics of its evolution; and how this can have important clinical implications in terms of prognostication, therapeutic choices, and response assessment. Finally, the authors provide a quick outlook of future applications of these technologies that could help in the management of the disease in the next years. Expert commentary: The clinical exploitation of NGS-based characterization of MM patients has as its ultimate goal the precision medicine. Considerable obstacles to its implementation in myeloma management exist; therefore, the concerted effort of all involved stakeholders is mandatory to ensure that it will become a reality in routine clinical practice in the next future.
Collapse
Affiliation(s)
- Marta Lionetti
- a Department of Oncology and Hemato-oncology , Università degli Studi di Milano , Milano , Italy.,b Hematology , Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico , Milano , Italy
| | - Antonino Neri
- a Department of Oncology and Hemato-oncology , Università degli Studi di Milano , Milano , Italy.,b Hematology , Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico , Milano , Italy
| |
Collapse
|
23
|
Kalkat M, De Melo J, Hickman KA, Lourenco C, Redel C, Resetca D, Tamachi A, Tu WB, Penn LZ. MYC Deregulation in Primary Human Cancers. Genes (Basel) 2017; 8:genes8060151. [PMID: 28587062 PMCID: PMC5485515 DOI: 10.3390/genes8060151] [Citation(s) in RCA: 272] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 05/19/2017] [Accepted: 05/19/2017] [Indexed: 12/12/2022] Open
Abstract
MYC regulates a complex biological program by transcriptionally activating and repressing its numerous target genes. As such, MYC is a master regulator of many processes, including cell cycle entry, ribosome biogenesis, and metabolism. In cancer, the activity of the MYC transcriptional network is frequently deregulated, contributing to the initiation and maintenance of disease. Deregulation often leads to constitutive overexpression of MYC, which can be achieved through gross genetic abnormalities, including copy number alterations, chromosomal translocations, increased enhancer activity, or through aberrant signal transduction leading to increased MYC transcription or increased MYC mRNA and protein stability. Herein, we summarize the frequency and modes of MYC deregulation and describe both well-established and more recent findings in a variety of cancer types. Notably, these studies have highlighted that with an increased appreciation for the basic mechanisms deregulating MYC in cancer, new therapeutic vulnerabilities can be discovered and potentially exploited for the inhibition of this potent oncogene in cancer.
Collapse
Affiliation(s)
- Manpreet Kalkat
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada.
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2M9, Canada.
| | - Jason De Melo
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2M9, Canada.
| | - Katherine Ashley Hickman
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada.
- Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada.
| | - Corey Lourenco
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada.
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2M9, Canada.
| | - Cornelia Redel
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada.
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2M9, Canada.
| | - Diana Resetca
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada.
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2M9, Canada.
| | - Aaliya Tamachi
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2M9, Canada.
| | - William B Tu
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada.
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2M9, Canada.
| | - Linda Z Penn
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada.
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2M9, Canada.
| |
Collapse
|