1
|
Deng RZ, Zheng X, Lu ZL, Yuan M, Meng QC, Wu T, Tian Y. Effect of colorectal cancer stem cells on the development and metastasis of colorectal cancer. World J Gastrointest Oncol 2024; 16:4354-4368. [PMID: 39554751 PMCID: PMC11551631 DOI: 10.4251/wjgo.v16.i11.4354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/24/2024] [Accepted: 09/09/2024] [Indexed: 10/25/2024] Open
Abstract
The relevant mechanism of tumor-associated macrophages (TAMs) in the treatment of colorectal cancer patients with immune checkpoint inhibitors (ICIs) is discussed, and the application prospects of TAMs in reversing the treatment tolerance of ICIs are discussed to provide a reference for related studies. As a class of drugs widely used in clinical tumor immunotherapy, ICIs can act on regulatory molecules on cells that play an inhibitory role - immune checkpoints - and kill tumors in the form of an immune response by activating a variety of immune cells in the immune system. The sensitivity of patients with different types of colorectal cancer to ICI treatment varies greatly. The phenotype and function of TAMs in the colorectal cancer microenvironment are closely related to the efficacy of ICIs. ICIs can regulate the phenotypic function of TAMs, and TAMs can also affect the tolerance of colorectal cancer to ICI therapy. TAMs play an important role in ICI resistance, and making full use of this target as a therapeutic strategy is expected to improve the immunotherapy efficacy and prognosis of patients with colorectal cancer.
Collapse
Affiliation(s)
- Run-Zhi Deng
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, Fujian Province, China
| | - Xin Zheng
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, Fujian Province, China
| | - Zhong-Lei Lu
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, Fujian Province, China
| | - Ming Yuan
- Department of Hepatobiliary Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, Guangdong Province, China
| | - Qi-Chang Meng
- Department of General Surgery, Peking University First Hospital, Beijing 100034, China
| | - Tao Wu
- Department of General Surgery, West China Hospital of Sichuan University, Chengdu 610044, Sichuan Province, China
| | - Yu Tian
- Department of Thoracic Surgery, Yancheng No. 1 People’s Hospital, Affiliated Hospital of Nanjing University Medical School, The First People’s Hospital of Yancheng, Yancheng 224000, Jiangsu Province, China
| |
Collapse
|
2
|
Xiong L, Liu FC. Immune function status of postoperative patients with colon cancer for predicting liver metastasis. World J Gastrointest Surg 2024; 16:463-470. [PMID: 38463357 PMCID: PMC10921213 DOI: 10.4240/wjgs.v16.i2.463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/04/2024] [Accepted: 01/30/2024] [Indexed: 02/25/2024] Open
Abstract
BACKGROUND Colon cancer (CC) has a high incidence rate. Radical resection is the main treatment method for CC; however, liver metastasis (LM) often occurs post-surgery. The liver contains both innate and adaptive immune cells that monitor and remove abnormal cells and pathogens. Before LM, tumor cells secrete cytokines and exosomes to adjust the immune microenvironment of the liver, thus forming an inhibitory immune microenvironment for colonization by circulating tumor cells. This indicates that the immune state of patients with CC plays a crucial role in the occurrence and progression of LM. AIM To observe and analyze the relationship between immune status and expression of tumor factors in patients with LM of CC, and to provide a scientific intervention method for promoting the patient prognosis. METHODS A retrospective analysis was performed. The baseline data of 100 patients with CC and 100 patients with CC who suffered from postoperative LM and were admitted to our hospital from May 2021 to May 2023 were included in the non-occurrence and occurrence groups, respectively. The immune status of the patients and the expression of tumor factor-related indicators in the two groups were compared, and the predictive value of the indicators for postoperative LM in patients with CC was analyzed. RESULTS Compared with the non-occurrence group, the expression of serum carcinoembryonic antigen (CEA), CA19-9, CA242, CA72-4 and CA50 in patients in the occurrence group were significantly higher, while the expression of CD3+, CD4+, CD8+, natural killer (NK) and CD4+/CD25 in patients in the occurrence group were significantly lower (P < 0.05). No significant difference was observed in other baseline data between groups (P > 0.05). Multivariate logistic regression model analysis revealed that the expressions of CEA, CA19-9, CA242, CA72-4, CA50, CD3+, CD4+, CD8+, NK, and CD4+/CD25 were associated with the LM in patients with CC. High expressions of serum CEA, CA19-9, CA242, CA72-4 and CA50, and low expressions of CD3+, CD4+, CD8+, NK, and CD4+/CD25 in patients with CC were risk factors for LM (OR > 1, P < 0.05). The receiver operating characteristic curve showed that the area under curve for CEA, CA19-9, CA242, CA72-4, CA50, CD3+, CD4+, CD8+, NK, and CD4+/CD25 in the prediction of LM in patients with CC were all > 0.80, with a high predictive value. CONCLUSION The expression of tumor factors and immune state-related indices in patients with CC is closely associated with the occurrence of LM.
Collapse
Affiliation(s)
- Le Xiong
- Department of Clinical Laboratory, Xiangyang No. 1 People’s Hospital, Hubei University of Medicine, Xiangyang 441000, Hubei Province, China
| | - Fang-Chen Liu
- Department of Blood Transfusion, Xiangyang No. 1 People’s Hospital, Hubei University of Medicine, Xiangyang 441000, Hubei Province, China
| |
Collapse
|
3
|
Luo J, He MW, Luo T, Lv GQ. Identification of multiple risk factors for colorectal cancer relapse after laparoscopic radical resection. World J Gastrointest Surg 2023; 15:2211-2221. [PMID: 37969700 PMCID: PMC10642461 DOI: 10.4240/wjgs.v15.i10.2211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/08/2023] [Accepted: 08/18/2023] [Indexed: 10/27/2023] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is a common life-threatening disease that often requires surgical intervention, such as laparoscopic radical resection. However, despite successful surgeries, some patients experience disease relapse. Identifying the risk factors for CRC relapse can help guide clinical interventions and improve patient outcomes. AIM To determine the risk factors that may lead to CRC relapse after laparoscopic radical resection. METHODS We performed a retrospective analysis using the baseline data of 140 patients with CRC admitted to our hospital between January 2018 and January 2020. All included participants were followed up until death or for 3 years. The baseline data and laboratory indicators were compared between the patients who experienced relapse and those who did not experienced relapse. RESULTS Among the 140 patients with CRC, 30 experienced relapse within 3 years after laparoscopic radical resection and 110 did not experience relapse. The relapse group had a higher frequency of rectal tumors with low differentiation and lymphatic vessel invasion than that of the non-relapse group. The expression of serum markers and the prognostic nutritional index were lower, whereas the neutrophil-to-lymphocyte ratio, expression of cytokeratin 19 fragment antigen 21-1, vascular endothelial growth factor, and Chitinase-3-like protein 1 were significantly higher in the relapse group than those in the non-relapse group. The groups did not differ significantly based on other parameters. Logistic regression analysis revealed that all the above significantly altered factors were independent risk factors for CRC relapse. CONCLUSION We identified multiple risk factors for CRC relapse following surgery, which can be considered for the clinical monitoring of patients to reduce disease recurrence and improve patient survival.
Collapse
Affiliation(s)
- Jun Luo
- Department of Gastrointestinal Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, Guangdong Province, China
| | - Mei-Wen He
- Department of Gastrointestinal Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, Guangdong Province, China
| | - Ting Luo
- Department of Operating Room, Peking University Shenzhen Hospital, Shenzhen 518036, Guangdong Province, China
| | - Guo-Qing Lv
- Department of Gastrointestinal Surgery, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Peking University Shenzhen Hospital, Shenzhen 518036, Guangdong Province, China
| |
Collapse
|
4
|
Levy JJ, Zavras JP, Veziroglu EM, Nasir-Moin M, Kolling FW, Christensen BC, Salas LA, Barney RE, Palisoul SM, Ren B, Liu X, Kerr DA, Pointer KB, Tsongalis GJ, Vaickus LJ. Identification of Spatial Proteomic Signatures of Colon Tumor Metastasis: A Digital Spatial Profiling Approach. THE AMERICAN JOURNAL OF PATHOLOGY 2023; 193:778-795. [PMID: 37037284 PMCID: PMC10284031 DOI: 10.1016/j.ajpath.2023.02.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 01/29/2023] [Accepted: 02/24/2023] [Indexed: 04/12/2023]
Abstract
Over 150,000 Americans are diagnosed with colorectal cancer (CRC) every year, and annually >50,000 individuals are estimated to die of CRC, necessitating improvements in screening, prognostication, disease management, and therapeutic options. CRC tumors are removed en bloc with surrounding vasculature and lymphatics. Examination of regional lymph nodes at the time of surgical resection is essential for prognostication. Developing alternative approaches to indirectly assess recurrence risk would have utility in cases where lymph node yield is incomplete or inadequate. Spatially dependent, immune cell-specific (eg, tumor-infiltrating lymphocytes), proteomic, and transcriptomic expression patterns inside and around the tumor-the tumor immune microenvironment-can predict nodal/distant metastasis and probe the coordinated immune response from the primary tumor site. The comprehensive characterization of tumor-infiltrating lymphocytes and other immune infiltrates is possible using highly multiplexed spatial omics technologies, such as the GeoMX Digital Spatial Profiler. In this study, machine learning and differential co-expression analyses helped identify biomarkers from Digital Spatial Profiler-assayed protein expression patterns inside, at the invasive margin, and away from the tumor, associated with extracellular matrix remodeling (eg, granzyme B and fibronectin), immune suppression (eg, forkhead box P3), exhaustion and cytotoxicity (eg, CD8), Programmed death ligand 1-expressing dendritic cells, and neutrophil proliferation, among other concomitant alterations. Further investigation of these biomarkers may reveal independent risk factors of CRC metastasis that can be formulated into low-cost, widely available assays.
Collapse
Affiliation(s)
- Joshua J Levy
- Emerging Diagnostic and Investigative Technologies, Department of Pathology and Laboratory Medicine, Dartmouth Health, Lebanon, New Hampshire; Department of Dermatology, Dartmouth Health, Lebanon, New Hampshire; Department of Epidemiology, Dartmouth College Geisel School of Medicine, Hanover, New Hampshire; Program in Quantitative Biomedical Sciences, Dartmouth College Geisel School of Medicine, Hanover, New Hampshire.
| | | | - Eren M Veziroglu
- Dartmouth College Geisel School of Medicine, Hanover, New Hampshire
| | | | | | - Brock C Christensen
- Department of Epidemiology, Dartmouth College Geisel School of Medicine, Hanover, New Hampshire; Department of Molecular and Systems Biology, Dartmouth College Geisel School of Medicine, Hanover, New Hampshire; Department of Community and Family Medicine, Dartmouth College Geisel School of Medicine, Hanover, New Hampshire
| | - Lucas A Salas
- Department of Epidemiology, Dartmouth College Geisel School of Medicine, Hanover, New Hampshire; Department of Molecular and Systems Biology, Dartmouth College Geisel School of Medicine, Hanover, New Hampshire; Integrative Neuroscience at Dartmouth Graduate Program, Dartmouth College Geisel School of Medicine, Hanover, New Hampshire
| | - Rachael E Barney
- Emerging Diagnostic and Investigative Technologies, Department of Pathology and Laboratory Medicine, Dartmouth Health, Lebanon, New Hampshire
| | - Scott M Palisoul
- Emerging Diagnostic and Investigative Technologies, Department of Pathology and Laboratory Medicine, Dartmouth Health, Lebanon, New Hampshire
| | - Bing Ren
- Emerging Diagnostic and Investigative Technologies, Department of Pathology and Laboratory Medicine, Dartmouth Health, Lebanon, New Hampshire
| | - Xiaoying Liu
- Emerging Diagnostic and Investigative Technologies, Department of Pathology and Laboratory Medicine, Dartmouth Health, Lebanon, New Hampshire
| | - Darcy A Kerr
- Emerging Diagnostic and Investigative Technologies, Department of Pathology and Laboratory Medicine, Dartmouth Health, Lebanon, New Hampshire
| | - Kelli B Pointer
- Section of Radiation Oncology, Department of Medicine, Dartmouth College Geisel School of Medicine, Hanover, New Hampshire
| | - Gregory J Tsongalis
- Emerging Diagnostic and Investigative Technologies, Department of Pathology and Laboratory Medicine, Dartmouth Health, Lebanon, New Hampshire.
| | - Louis J Vaickus
- Emerging Diagnostic and Investigative Technologies, Department of Pathology and Laboratory Medicine, Dartmouth Health, Lebanon, New Hampshire
| |
Collapse
|
5
|
Zhang Y, Wang LJ, Li QY, Yuan Z, Zhang DC, Xu H, Yang L, Gu XH, Xu ZK. Prognostic value of preoperative immune-nutritional scoring systems in remnant gastric cancer patients undergoing surgery. World J Gastrointest Surg 2023; 15:211-221. [PMID: 36896300 PMCID: PMC9988643 DOI: 10.4240/wjgs.v15.i2.211] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 12/14/2022] [Accepted: 01/01/2023] [Indexed: 02/27/2023] Open
Abstract
BACKGROUND Remnant gastric cancer (GC) is defined as GC that occurs five years or more after gastrectomy. Systematically evaluating the preoperative immune and nutritional status of patients and analyzing its prognostic impact on postoperative remnant gastric cancer (RGC) patients are crucial. A simple scoring system that combines multiple immune or nutritional indicators to identify nutritional or immune status before surgery is necessary.
AIM To evaluate the value of preoperative immune-nutritional scoring systems in predicting the prognosis of patients with RGC.
METHODS The clinical data of 54 patients with RGC were collected and analyzed retrospectively. Prognostic nutritional index (PNI), controlled nutritional status (CONUT), and Naples prognostic score (NPS) were calculated by preoperative blood indicators, including absolute lymphocyte count, lymphocyte to monocyte ratio, neutrophil to lymphocyte ratio, serum albumin, and serum total cholesterol. Patients with RGC were divided into groups according to the immune-nutritional risk. The relationship between the three preoperative immune-nutritional scores and clinical characteristics was analyzed. Cox regression and Kaplan–Meier analysis was performed to analyze the difference in overall survival (OS) rate between various immune-nutritional score groups.
RESULTS The median age of this cohort was 70.5 years (ranging from 39 to 87 years). No significant correlation was found between most pathological features and immune-nutritional status (P > 0.05). Patients with a PNI score < 45, CONUT score or NPS score ≥ 3 were considered to be at high immune-nutritional risk. The areas under the receiver operating characteristic curves of PNI, CONUT, and NPS systems for predicting postoperative survival were 0.611 [95% confidence interval (CI): 0.460–0.763; P = 0.161], 0.635 (95%CI: 0.485–0.784; P = 0.090), and 0.707 (95%CI: 0.566–0.848; P = 0.009), respectively. Cox regression analysis showed that the three immune-nutritional scoring systems were significantly correlated with OS (PNI: P = 0.002; CONUT: P = 0.039; NPS: P < 0.001). Survival analysis revealed a significant difference in OS between different immune-nutritional groups (PNI: 75 mo vs 42 mo, P = 0.001; CONUT: 69 mo vs 48 mo, P = 0.033; NPS: 77 mo vs 40 mo, P < 0.001).
CONCLUSION These preoperative immune-nutritional scores are reliable multidimensional prognostic scoring systems for predicting the prognosis of patients with RGC, in which the NPS system has relatively effective predictive performance.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Gastrointestinal Surgery, Suzhou Municipal Hospital, Affiliated Suzhou Hospital of Nanjing Medical University, Gusu School of Nanjing Medical University, Suzhou 215000, Jiangsu Province, China
| | - Lin-Jun Wang
- Department of General Surgery, Jiangsu Province Hospital, First Affiliated Hospital of Nanjing Medical University, Nanjing 210003, Jiangsu Province, China
| | - Qin-Ya Li
- Department of General Surgery, Jiangsu Province Hospital, First Affiliated Hospital of Nanjing Medical University, Nanjing 210003, Jiangsu Province, China
| | - Zhen Yuan
- Department of Gastrointestinal Surgery, Suzhou Municipal Hospital, Affiliated Suzhou Hospital of Nanjing Medical University, Gusu School of Nanjing Medical University, Suzhou 215000, Jiangsu Province, China
| | - Dian-Cai Zhang
- Department of General Surgery, Jiangsu Province Hospital, First Affiliated Hospital of Nanjing Medical University, Nanjing 210003, Jiangsu Province, China
| | - Hao Xu
- Department of General Surgery, Jiangsu Province Hospital, First Affiliated Hospital of Nanjing Medical University, Nanjing 210003, Jiangsu Province, China
| | - Li Yang
- Department of General Surgery, Jiangsu Province Hospital, First Affiliated Hospital of Nanjing Medical University, Nanjing 210003, Jiangsu Province, China
| | - Xin-Hua Gu
- Department of Gastrointestinal Surgery, Suzhou Municipal Hospital, Affiliated Suzhou Hospital of Nanjing Medical University, Gusu School of Nanjing Medical University, Suzhou 215000, Jiangsu Province, China
| | - Ze-Kuan Xu
- Department of General Surgery, Jiangsu Province Hospital, First Affiliated Hospital of Nanjing Medical University, Nanjing 210003, Jiangsu Province, China
| |
Collapse
|
6
|
D’Angelo A, Kilili H, Chapman R, Generali D, Tinhofer I, Luminari S, Donati B, Ciarrocchi A, Giannini R, Moretto R, Cremolini C, Pietrantonio F, Sobhani N, Bonazza D, Prins R, Song SG, Jeon YK, Pisignano G, Cinelli M, Bagby S, Urrutia AO. Immune-related pan-cancer gene expression signatures of patient survival revealed by NanoString-based analyses. PLoS One 2023; 18:e0280364. [PMID: 36649303 PMCID: PMC9844904 DOI: 10.1371/journal.pone.0280364] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 12/28/2022] [Indexed: 01/18/2023] Open
Abstract
The immune system plays a central role in the onset and progression of cancer. A better understanding of transcriptional changes in immune cell-related genes associated with cancer progression, and their significance in disease prognosis, is therefore needed. NanoString-based targeted gene expression profiling has advantages for deployment in a clinical setting over RNA-seq technologies. We analysed NanoString PanCancer Immune Profiling panel gene expression data encompassing 770 genes, and overall survival data, from multiple previous studies covering 10 different cancer types, including solid and blood malignancies, across 515 patients. This analysis revealed an immune gene signature comprising 39 genes that were upregulated in those patients with shorter overall survival; of these 39 genes, three (MAGEC2, SSX1 and ULBP2) were common to both solid and blood malignancies. Most of the genes identified have previously been reported as relevant in one or more cancer types. Using Cibersort, we investigated immune cell levels within individual cancer types and across groups of cancers, as well as in shorter and longer overall survival groups. Patients with shorter survival had a higher proportion of M2 macrophages and γδ T cells. Patients with longer overall survival had a higher proportion of CD8+ T cells, CD4+ T memory cells, NK cells and, unexpectedly, T regulatory cells. Using a transcriptomics platform with certain advantages for deployment in a clinical setting, our multi-cancer meta-analysis of immune gene expression and overall survival data has identified a specific transcriptional profile associated with poor overall survival.
Collapse
Affiliation(s)
- Alberto D’Angelo
- Department of Life Sciences, University of Bath, Bath, United Kingdom
- Oncology Department, Royal United Hospital, Bath, United Kingdom
- * E-mail:
| | - Huseyin Kilili
- Milner Centre, Department of Life Sciences, University of Bath, Bath, United Kingdom
| | - Robert Chapman
- Department of Medicine, The Princess Alexandra Hospital, Harlow, United Kingdom
| | - Daniele Generali
- Multidisciplinary Unit of Breast Pathology and Translational Research, Cremona Hospital, Cremona, Italy
| | - Ingeborg Tinhofer
- Department of Radiooncology and Radiotherapy, Charite´ University Hospital, Berlin, Germany
| | - Stefano Luminari
- Hematology Unit, Azienda USL-IRCCS, Reggio Emilia, Italy
- Surgical, Medical and Dental Department of Morphological Sciences Related to Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, Reggio Emilia, Italy
| | - Benedetta Donati
- Translational Research Laboratory, Azienda USL-IRCCS, Reggio Emilia, Italy
| | - Alessia Ciarrocchi
- Translational Research Laboratory, Azienda USL-IRCCS, Reggio Emilia, Italy
| | - Riccardo Giannini
- Department of Surgery, Clinical, Molecular and Critical Care Pathology, University of Pisa, Pisa, Italy
| | - Roberto Moretto
- Unit of Medical Oncology 2, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy
| | - Chiara Cremolini
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | | | - Navid Sobhani
- Section of Epidemiology and Population Science, Department of Medicine, Baylor College of Medicine, Houston, Texas, United States of America
| | - Debora Bonazza
- Department of Medical, Surgical and Health Sciences, Cattinara Hospital, University of Trieste, Trieste, Italy
| | - Robert Prins
- Department of Neurosurgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Seung Geun Song
- Department of Pathology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Yoon Kyung Jeon
- Department of Pathology, Seoul National University College of Medicine, Seoul, Republic of Korea
- Cancer Research Institute, Seoul National University, Seoul, Republic of Korea
| | | | - Mattia Cinelli
- Department of Life Sciences, University of Bath, Bath, United Kingdom
| | - Stefan Bagby
- Department of Life Sciences, University of Bath, Bath, United Kingdom
| | - Araxi O. Urrutia
- Milner Centre, Department of Life Sciences, University of Bath, Bath, United Kingdom
- Instituto de Ecologia, UNAM, Ciudad de Mexico, Mexico
| |
Collapse
|
7
|
Jung M, Lee JA, Yoo SY, Bae JM, Kang GH, Kim JH. Intratumoral spatial heterogeneity of tumor-infiltrating lymphocytes is a significant factor for precisely stratifying prognostic immune subgroups of microsatellite instability-high colorectal carcinomas. Mod Pathol 2022; 35:2011-2022. [PMID: 35869301 DOI: 10.1038/s41379-022-01137-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/20/2022] [Accepted: 06/28/2022] [Indexed: 02/07/2023]
Abstract
Although the density of tumor-infiltrating lymphocytes (TILs) is known to be linked to prognosis in various cancers, the prognostic impact and immunologic significance of the spatial heterogeneity of TILs have been rarely investigated. In this study, CD3+ and CD8+ TILs were quantified in independent cohorts (discovery, n = 73; and external validation, n = 93) of colorectal carcinomas (CRCs) with microsatellite instability-high (MSI-H) utilizing whole-slide image analysis of CD3/CD8 immunohistochemistry. The Shannon and Simpson indices, which measure intratumoral patch-to-patch evenness of TIL densities, were used to quantitatively assess the spatial heterogeneity of TILs in each case. To uncover immune-related gene expression signatures of spatial heterogeneity-based TIL subgroups of MSI-H CRCs, representative cases were subjected to GeoMx digital spatial profiler (DSP) analysis. As expected, a low density of TILs was significantly associated with poor disease-free survival (DFS) in MSI-H CRCs. The TIL-low tumors were further classified into two subgroups based on the spatial heterogeneity of TILs: TIL-low/heterogeneity-high and TIL-low/heterogeneity-low subgroups. In both discovery and validation cohorts, the TIL-low/heterogeneity-high, TIL-low/heterogeneity-low, and TIL-high subgroups were significantly associated with poor, intermediate, and good DFS, respectively. In the DSP analysis, the TIL-low/heterogeneity-high subgroup showed higher spatial diversity in the expression of immune-related genes than that of the TIL-low/heterogeneity-low subgroup and exhibited upregulation of genes related to immune checkpoints, chemokine/cytokine receptors, and myeloid cells. TIL-low/heterogeneity-high tumors were also enriched with gene sets related to good response to immune checkpoint inhibitor therapy. In conclusion, TIL-low MSI-H CRCs are prognostically heterogeneous and can be divided into prognostically and immunologically distinct subgroups by considering the spatial heterogeneity of TILs. Our data suggest that intratumoral spatial heterogeneity of TILs can be used as a key element for clinically relevant immunologic subtyping of tumors.
Collapse
Affiliation(s)
- Minsun Jung
- Department of Pathology, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Ji Ae Lee
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea.,Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Seung-Yeon Yoo
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea.,Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea.,Seegene Medical Foundation, Seoul, Republic of Korea
| | - Jeong Mo Bae
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea.,Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Gyeong Hoon Kang
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea.,Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jung Ho Kim
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea. .,Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
8
|
Identification of a Genomic Instability-Related Long Noncoding RNA Prognostic Model in Colorectal Cancer Based on Bioinformatic Analysis. DISEASE MARKERS 2022; 2022:4556585. [PMID: 35711569 PMCID: PMC9197617 DOI: 10.1155/2022/4556585] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 05/17/2022] [Indexed: 11/17/2022]
Abstract
Background. In recent years, a growing body of research has revealed that long noncoding RNAs (lncRNAs) participate in regulating genomic instability. Materials and Methods. We obtained RNA expression profiles, somatic mutation profiles, clinical information, and pathological features of colorectal cancer (CRC) from The Cancer Genome Atlas project. We divided the cohort into two groups based on mutation frequency and identified genomic instability-related lncRNAs (GI-lncRNAs) using R software. We further analyzed the function of identified GI-lncRNAs and established a prognostic model through Cox regression. Using the established prognostic model, we divided the cohort into the high- and low-risk groups and further verified the prognostic differences between the two groups as well as the predictive power of prognosis-related lncRNAs in the genomic instability of CRC. Results. We identified a total of 143 GI-lncRNAs that were differentially expressed between the higher mutation frequency group and the lower mutation frequency group. According to Kyoto Encyclopedia of Genes and Genomes pathway and Gene Ontology analyses, a series of cancer-associated terms were enriched. We further constructed a prognostic model that included five GI-lncRNAs (lncRNA PTPRD-AS1, lncRNA AC009237.14, lncRNA LINC00543, lncRNA AP003555.1, and lncRNA AL109615.3). We confirmed that the expression of the five GI-lncRNAs was associated with prognosis and the mutation of critical genes in the CRC patient cohort. Conclusions. The present research further confirmed the vital function of GI-lncRNAs in the genomic instability of CRC. The five GI-lncRNAs identified in our study are potential biomarkers and need to be studied in more depth.
Collapse
|
9
|
Kim JH, Seo MK, Lee JA, Yoo SY, Oh HJ, Kang H, Cho NY, Bae JM, Kang GH, Kim S. Genomic and transcriptomic characterization of heterogeneous immune subgroups of microsatellite instability-high colorectal cancers. J Immunother Cancer 2021; 9:jitc-2021-003414. [PMID: 34903553 PMCID: PMC8672019 DOI: 10.1136/jitc-2021-003414] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/16/2021] [Indexed: 02/06/2023] Open
Abstract
Background Colorectal cancers (CRCs) with microsatellite instability-high (MSI-H) are hypermutated tumors and are generally regarded as immunogenic. However, their heterogeneous immune responses and underlying molecular characteristics remain largely unexplained. Methods We conducted a retrospective analysis of 73 primary MSI-H CRC tissues to characterize heterogeneous immune subgroups. Based on combined tumor-infiltrating lymphocyte (TIL) immunoscore and tertiary lymphoid structure (TLS) activity, MSI-H CRCs were classified into immune-high, immune-intermediate, and immune-low subgroups. Of these, the immune-high and immune-low subgroups were further analyzed using whole-exome and transcriptome sequencing. Results We found considerable variations in immune parameters between MSI-H CRCs, and immune subgrouping of MSI-H CRCs was performed accordingly. The TIL densities and TLS activities of immune-low MSI-H CRCs were comparable to those of an immune-low or immune-intermediate subgroup of microsatellite-stable CRCs. There were remarkable differences between immune-high and immune-low MSI-H CRCs, including their pathological features (medullary vs mucinous), genomic alterations (tyrosine kinase fusions vs KRAS mutations), and activated signaling pathways (immune-related vs Wnt and Notch signaling), whereas no significant differences were found in tumor mutational burden (TMB) and neoantigen load. The immune-low MSI-H CRCs were subdivided by the consensus molecular subtype (CMS1 vs CMS3) with different gene expression signatures (mesenchymal/stem-like vs epithelial/goblet-like), suggesting distinct immune evasion mechanisms. Angiogenesis and CD200 were identified as potential therapeutic targets in immune-low CMS1 and CMS3 MSI-H CRCs, respectively. Conclusions MSI-H CRCs are immunologically heterogeneous, regardless of TMB. The unusual immune-low MSI-H CRCs are characterized by mucinous histology, KRAS mutations, and Wnt/Notch activation, and can be further divided into distinct gene expression subtypes, including CMS4-like CMS1 and CMS3. Our data provide novel insights into precise immunotherapeutic strategies for subtypes of MSI-H tumors.
Collapse
Affiliation(s)
- Jung Ho Kim
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea.,Laboratory of Epigenetics, Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Mi-Kyoung Seo
- Department of Biomedical Systems Informatics, Yonsei University College of Medicine, Seoul, Republic of Korea.,Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Republic of Korea.,Department of Nuclear Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Ji Ae Lee
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea.,Laboratory of Epigenetics, Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Seung-Yeon Yoo
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea.,Laboratory of Epigenetics, Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Hyeon Jeong Oh
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea.,Laboratory of Epigenetics, Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Hyundeok Kang
- Department of Biomedical Systems Informatics, Yonsei University College of Medicine, Seoul, Republic of Korea.,Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Nam-Yun Cho
- Laboratory of Epigenetics, Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jeong Mo Bae
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea.,Laboratory of Epigenetics, Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Gyeong Hoon Kang
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea .,Laboratory of Epigenetics, Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Sangwoo Kim
- Department of Biomedical Systems Informatics, Yonsei University College of Medicine, Seoul, Republic of Korea .,Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
10
|
Yin H, Li W, Mo L, Deng S, Lin W, Ma C, Luo Z, Luo C, Hong H. Adipose triglyceride lipase promotes the proliferation of colorectal cancer cells via enhancing the lipolytic pathway. J Cell Mol Med 2021; 25:3963-3975. [PMID: 33621408 PMCID: PMC8051714 DOI: 10.1111/jcmm.16349] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 01/04/2021] [Accepted: 01/28/2021] [Indexed: 12/15/2022] Open
Abstract
Abnormal lipid metabolism is the sign of tumour cells. Previous researches have revealed that the lipolytic pathway may contribute to the progression of colorectal cancer (CRC). However, adipose triglyceride lipase (ATGL) role in CRC cells remains unclear. Here, we find that elevated ATGL positively correlates with CRC clinical stages and negatively associates with overall survival. Overexpression of ATGL significantly promotes CRC cell proliferation, while knockdown of ATGL inhibits the proliferation and promotes the apoptosis of CRC cells in vitro. Moreover, in vivo experiments, ATGL promotes the growth of CRC cells. Mechanistically, ATGL enhances the carcinogenic function of CRC cells via promoting sphingolipid metabolism and CoA biosynthesis pathway‐related gene levels by degrading triglycerides, which provides adequate nutrition for the progression of CRC. Our researches clarify for the first time that ATGL is a novel oncogene in CRC and may provide an important prognostic factor and therapeutic target for CRC.
Collapse
Affiliation(s)
- Haofan Yin
- Department of Clinical Laboratory, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Wentao Li
- Department of Clinical Laboratory, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Laiming Mo
- Department of Clinical Laboratory, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Shaotuan Deng
- Department of Clinical Laboratory, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Weijia Lin
- Department of Clinical Laboratory, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Caiqi Ma
- Reproductive Medical Center, Guangzhou Women and Children's Medical Center of Sun Yat-sen University, Guangzhou, China
| | - Zhaofan Luo
- Department of Clinical Laboratory, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Chuanghua Luo
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Honghai Hong
- Department of Clinical Laboratory, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
11
|
Cohen R, Shi Q, André T. Immunotherapy for Early Stage Colorectal Cancer: A Glance into the Future. Cancers (Basel) 2020; 12:E1990. [PMID: 32708216 PMCID: PMC7409300 DOI: 10.3390/cancers12071990] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/10/2020] [Accepted: 07/17/2020] [Indexed: 12/16/2022] Open
Abstract
Immune checkpoint inhibitors (ICI) have reshaped therapeutic strategies for cancer patients. The development of ICI for early stage colorectal cancer is accompanied by specific challenges: (i) the selection of patients who are likely to benefit from these treatments, i.e., patients with tumors harboring predictive factors of efficacy of ICI, such as microsatellite instability and/or mismatch repair deficiency (MSI/dMMR), or other potential parameters (increased T cell infiltration using Immunoscore® or others, high tumor mutational burden, POLE mutation), (ii) the selection of patients at risk of disease recurrence (poor prognostic features), and (iii) the choice of an accurate clinical trial methodological framework. In this review, we will discuss the ins and outs of clinical research of ICI for early stage MSI/dMMR CC patients in adjuvant and neoadjuvant settings. We will then summarize data that might support the development of ICI in localized colorectal cancer beyond MSI/dMMR.
Collapse
Affiliation(s)
- Romain Cohen
- Department of Medical Oncology, Hôpital Saint-Antoine, Sorbonne Université, Assistance Publique-Hôpitaux de Paris (AP-HP), F-75012 Paris, France;
- Department of Health Science Research, Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN 55905, USA;
| | - Qian Shi
- Department of Health Science Research, Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN 55905, USA;
| | - Thierry André
- Department of Medical Oncology, Hôpital Saint-Antoine, Sorbonne Université, Assistance Publique-Hôpitaux de Paris (AP-HP), F-75012 Paris, France;
| |
Collapse
|