1
|
Wegner S, Belle MDC, Chang P, Hughes ATL, Conibear AE, Muir C, Samuels RE, Piggins HD. Loss of neuropeptide signalling alters temporal expression of mouse suprachiasmatic neuronal state and excitability. Eur J Neurosci 2024; 60:6617-6633. [PMID: 39551976 PMCID: PMC11612845 DOI: 10.1111/ejn.16590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 10/13/2024] [Accepted: 10/16/2024] [Indexed: 11/19/2024]
Abstract
Individual neurons of the hypothalamic suprachiasmatic nuclei (SCN) contain an intracellular molecular clock that drives these neurons to exhibit day-night variation in excitability. The neuropeptide vasoactive intestinal polypeptide (VIP) and its cognate receptor, VPAC2, are synthesized by SCN neurons and this intercellular VIP-VPAC2 receptor signal facilitates coordination of SCN neuronal activity and timekeeping. How the loss of VPAC2 receptor signalling affects the electrophysiological properties and states of SCN neurons as well as their responses to excitatory inputs is unclear. Here we used patch-clamp electrophysiology and made recordings of SCN neurons in brain slices prepared from transgenic animals that do not express VPAC2 receptors (Vipr2-/- mice) as well as animals that do (Vipr2+/+ mice). We report that while Vipr2+/+ neurons exhibit coordinated day-night variation in their electrical state, Vipr2-/- neurons lack this and instead manifest a range of states during both day and night. Further, at the population level, Vipr2+/+ neurons vary the membrane threshold potential at which they start to fire action potentials from day to night, while Vipr2-/- neurons do not. We provide evidence that Vipr2-/- neurons lack a component of voltage-gated sodium currents that contribute to SCN neuronal excitability. Moreover, we determine that this aberrant temporal control of neuronal state and excitability alters neuronal responses to a neurochemical mimic of the light-input pathway to the SCN. These results highlight the critical role VIP-VPAC2 receptor signalling plays in the temporal expression of individual neuronal states as well as appropriate ensemble activity and input gating of the SCN neural network.
Collapse
Affiliation(s)
- Sven Wegner
- Faculty of Biology, Medicine, and HealthUniversity of ManchesterManchesterUK
| | - Mino D. C. Belle
- Faculty of Biology, Medicine, and HealthUniversity of ManchesterManchesterUK
| | - Pi‐Shan Chang
- School of Physiology, Pharmacology, and NeuroscienceUniversity of BristolBristolUK
| | - Alun T. L. Hughes
- Faculty of Biology, Medicine, and HealthUniversity of ManchesterManchesterUK
- School of Biological and Environmental ScienceLiverpool John Moores UniversityLiverpoolUK
| | | | - Charlotte Muir
- School of Physiology, Pharmacology, and NeuroscienceUniversity of BristolBristolUK
| | - Rayna E. Samuels
- Faculty of Biology, Medicine, and HealthUniversity of ManchesterManchesterUK
| | - Hugh D. Piggins
- Faculty of Biology, Medicine, and HealthUniversity of ManchesterManchesterUK
- School of Physiology, Pharmacology, and NeuroscienceUniversity of BristolBristolUK
| |
Collapse
|
2
|
Hartsock MJ, Strnad HK, Spencer RL. Iterative Metaplasticity Across Timescales: How Circadian, Ultradian, and Infradian Rhythms Modulate Memory Mechanisms. J Biol Rhythms 2021; 37:29-42. [PMID: 34781753 DOI: 10.1177/07487304211058256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Work in recent years has provided strong evidence for the modulation of memory function and neuroplasticity mechanisms across circadian (daily), ultradian (shorter-than-daily), and infradian (longer-than-daily) timescales. Despite rapid progress, however, the field has yet to adopt a general framework to describe the overarching role of biological rhythms in memory. To this end, Iyer and colleagues introduced the term iterative metaplasticity, which they define as the "gating of receptivity to subsequent signals that repeats on a cyclic timebase." The central concept is that the cyclic regulation of molecules involved in neuroplasticity may produce cycles in neuroplastic capacity-that is, the ability of neural cells to undergo activity-dependent change. Although Iyer and colleagues focus on the circadian timescale, we think their framework may be useful for understanding how biological rhythms influence memory more broadly. In this review, we provide examples and terminology to explain how the idea of iterative metaplasticity can be readily applied across circadian, ultradian, and infradian timescales. We suggest that iterative metaplasticity may not only support the temporal niching of neuroplasticity processes but also serve an essential role in the maintenance of memory function.
Collapse
Affiliation(s)
- Matthew J Hartsock
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, Colorado
| | | | | |
Collapse
|
3
|
Michel S, Nakamura TJ, Meijer JH, Colwell CS. Electrophysiological Approaches to Studying the Suprachiasmatic Nucleus. Methods Mol Biol 2021; 2130:303-324. [PMID: 33284454 DOI: 10.1007/978-1-0716-0381-9_23] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
In mammals, the part of the nervous system responsible for most circadian behavior can be localized to a bilaterally paired structure in the hypothalamus known as the suprachiasmatic nucleus (SCN). Understanding the mammalian circadian system will require a detailed multilevel analysis of neural SCN circuits ex vivo and in vivo. Many of the techniques and approaches that are used for the analysis of the circuitry driving circadian oscillations in the SCN are similar to those employed in other brain regions. There is, however, one fundamental difference that needs to be taken into consideration, that is, the physiological, cell, and molecular properties of SCN neurons vary with the time of day. In this chapter, we will consider the preparations and electrophysiological techniques that we have used to analyze the SCN circuit focusing on the acute brain slice and intact, freely moving animal.
Collapse
Affiliation(s)
- Stephan Michel
- Laboratory for Neurophysiology, Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands.
| | - Takahiro J Nakamura
- Laboratory of Animal Physiology, Department of Life Sciences, School of Agriculture, Meiji University, Tama-ku Kawasaki, Kanagawa, Japan
| | - Johanna H Meijer
- Laboratory for Neurophysiology, Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Christopher S Colwell
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
4
|
Kostarakos K, Hedwig B. Surface electrodes record and label brain neurons in insects. J Neurophysiol 2017; 118:2884-2889. [PMID: 28904103 PMCID: PMC5680355 DOI: 10.1152/jn.00490.2017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 09/06/2017] [Accepted: 09/06/2017] [Indexed: 11/22/2022] Open
Abstract
We used suction electrodes to reliably record the activity of identified ascending auditory interneurons from the anterior surface of the brain in crickets. Electrodes were gently attached to the sheath covering the projection area of the ascending interneurons and the ringlike auditory neuropil in the protocerebrum. The specificity and selectivity of the recordings were determined by the precise electrode location, which could easily be changed without causing damage to the tissue. Different nonauditory fibers were recorded at other spots of the brain surface; stable recordings lasted for several hours. The same electrodes were used to deliver fluorescent tracers into the nervous system by means of electrophoresis. This allowed us to retrograde label the recorded auditory neurons and to reveal their cell body and dendritic structure in the first thoracic ganglion. By adjusting the amount of dye injected, we specifically stained the ringlike auditory neuropil in the brain, demonstrating the clusters of cell bodies contributing to it. Our data provide a proof that surface electrodes are a versatile tool to analyze neural processing in small brains of invertebrates.NEW & NOTEWORTHY We show that surface suction electrodes can be used to monitor the activity of auditory neurons in the cricket brain. They also allow delivering electrophoretically a fluorescent tracer to label the structure of the recorded neurons and the local neuropil to which the electrode was attached. This new extracellular recording and labeling technique is a versatile and useful method to explore neural processing in invertebrate sensory and motor systems.
Collapse
Affiliation(s)
| | - Berthold Hedwig
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
5
|
Mishra I, Kumar V. Circadian basis of seasonal timing in higher vertebrates. BIOL RHYTHM RES 2017. [DOI: 10.1080/09291016.2017.1345447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Ila Mishra
- Department of Zoology, University of Delhi, Delhi, India
| | - Vinod Kumar
- Department of Zoology, University of Delhi, Delhi, India
| |
Collapse
|
6
|
Hanna L, Walmsley L, Pienaar A, Howarth M, Brown TM. Geniculohypothalamic GABAergic projections gate suprachiasmatic nucleus responses to retinal input. J Physiol 2017; 595:3621-3649. [PMID: 28217893 DOI: 10.1113/jp273850] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 02/13/2017] [Indexed: 01/28/2023] Open
Abstract
KEY POINTS Visual input to the suprachiasmatic nucleus circadian clock is critical for animals to adapt their physiology and behaviour in line with the solar day. In addition to direct retinal projections, the clock receives input from the visual thalamus, although the role of this geniculohypothalamic pathway in circadian photoreception is poorly understood. In the present study, we develop a novel brain slice preparation that preserves the geniculohypothalamic pathway to show that GABAergic thalamic neurons inhibit retinally-driven activity in the central clock in a circadian time-dependent manner. We also show that in vivo manipulation of thalamic signalling adjusts specific features of the hypothalamic light response, indicating that the geniculohypothalamic pathway is primarily activated by crossed retinal inputs. Our data provide a mechanism by which geniculohypothalamic signals can adjust the magnitude of circadian and more acute hypothalamic light responses according to time-of-day and establish an important new model for future investigations of the circadian visual system. ABSTRACT Sensory input to the master mammalian circadian clock, the suprachiasmatic nucleus (SCN), is vital in allowing animals to optimize physiology and behaviour alongside daily changes in the environment. Retinal inputs encoding changes in external illumination provide the principle source of such information. The SCN also receives input from other retinorecipient brain regions, primarily via the geniculohypothalamic tract (GHT), although the contribution of these indirect projections to circadian photoreception is currently poorly understood. To address this deficit, in the present study, we established an in vitro mouse brain slice preparation that retains connectivity across the extended circadian system. Using multi-electrode recordings, we first confirm that this preparation retains intact optic projections to the SCN, thalamus and pretectum and a functional GHT. We next show that optogenetic activation of GHT neurons selectively suppresses SCN responses to retinal input, and also that this effect exhibits a pronounced day/night variation and involves a GABAergic mechanism. This inhibitory action was not associated with overt circadian rhythmicity in GHT output, indicating modulation at the SCN level. Finally, we use in vivo electrophysiological recordings alongside pharmacological inactivation or optogenetic excitation to show that GHT signalling actively modulates specific features of the SCN light response, indicating that GHT cells are primarily activated by crossed retinal projections. Taken together, our data establish a new model for studying network communication in the extended circadian system and provide novel insight into the roles of GHT-signalling, revealing a mechanism by which thalamic activity can help gate retinal input to the SCN according to time of day.
Collapse
Affiliation(s)
- Lydia Hanna
- Faculty of Biology Medicine and Health, University of Manchester, Manchester, UK
| | - Lauren Walmsley
- Faculty of Biology Medicine and Health, University of Manchester, Manchester, UK
| | - Abigail Pienaar
- Faculty of Biology Medicine and Health, University of Manchester, Manchester, UK
| | - Michael Howarth
- Faculty of Biology Medicine and Health, University of Manchester, Manchester, UK
| | - Timothy M Brown
- Faculty of Biology Medicine and Health, University of Manchester, Manchester, UK
| |
Collapse
|
7
|
Evans JA, Gorman MR. In synch but not in step: Circadian clock circuits regulating plasticity in daily rhythms. Neuroscience 2016; 320:259-80. [PMID: 26861419 DOI: 10.1016/j.neuroscience.2016.01.072] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 01/26/2016] [Accepted: 01/27/2016] [Indexed: 11/16/2022]
Abstract
The suprachiasmatic nucleus (SCN) is a network of neural oscillators that program daily rhythms in mammalian behavior and physiology. Over the last decade much has been learned about how SCN clock neurons coordinate together in time and space to form a cohesive population. Despite this insight, much remains unknown about how SCN neurons communicate with one another to produce emergent properties of the network. Here we review the current understanding of communication among SCN clock cells and highlight a collection of formal assays where changes in SCN interactions provide for plasticity in the waveform of circadian rhythms in behavior. Future studies that pair analytical behavioral assays with modern neuroscience techniques have the potential to provide deeper insight into SCN circuit mechanisms.
Collapse
Affiliation(s)
- J A Evans
- Department of Biomedical Sciences, Marquette University, Milwaukee, WI, USA.
| | - M R Gorman
- Department of Psychology, University of San Diego, La Jolla, CA, USA
| |
Collapse
|
8
|
Electrophysiological Monitoring of Brain Injury and Recovery after Cardiac Arrest. Int J Mol Sci 2015; 16:25999-6018. [PMID: 26528970 PMCID: PMC4661797 DOI: 10.3390/ijms161125938] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Revised: 10/19/2015] [Accepted: 10/21/2015] [Indexed: 11/16/2022] Open
Abstract
Reliable prognostic methods for cerebral functional outcome of post cardiac-arrest (CA) patients are necessary, especially since therapeutic hypothermia (TH) as a standard treatment. Traditional neurophysiological prognostic indicators, such as clinical examination and chemical biomarkers, may result in indecisive outcome predictions and do not directly reflect neuronal activity, though they have remained the mainstay of clinical prognosis. The most recent advances in electrophysiological methods--electroencephalography (EEG) pattern, evoked potential (EP) and cellular electrophysiological measurement--were developed to complement these deficiencies, and will be examined in this review article. EEG pattern (reactivity and continuity) provides real-time and accurate information for early-stage (particularly in the first 24 h) hypoxic-ischemic (HI) brain injury patients with high sensitivity. However, the signal is easily affected by external stimuli, thus the measurements of EP should be combined with EEG background to validate the predicted neurologic functional result. Cellular electrophysiology, such as multi-unit activity (MUA) and local field potentials (LFP), has strong potential for improving prognostication and therapy by offering additional neurophysiologic information to understand the underlying mechanisms of therapeutic methods. Electrophysiology provides reliable and precise prognostication on both global and cellular levels secondary to cerebral injury in cardiac arrest patients treated with TH.
Collapse
|
9
|
Coomans CP, Ramkisoensing A, Meijer JH. The suprachiasmatic nuclei as a seasonal clock. Front Neuroendocrinol 2015; 37:29-42. [PMID: 25451984 DOI: 10.1016/j.yfrne.2014.11.002] [Citation(s) in RCA: 112] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Revised: 11/07/2014] [Accepted: 11/09/2014] [Indexed: 12/23/2022]
Abstract
In mammals, the suprachiasmatic nucleus (SCN) contains a central clock that synchronizes daily (i.e., 24-h) rhythms in physiology and behavior. SCN neurons are cell-autonomous oscillators that act synchronously to produce a coherent circadian rhythm. In addition, the SCN helps regulate seasonal rhythmicity. Photic information is perceived by the SCN and transmitted to the pineal gland, where it regulates melatonin production. Within the SCN, adaptations to changing photoperiod are reflected in changes in neurotransmitters and clock gene expression, resulting in waveform changes in rhythmic electrical activity, a major output of the SCN. Efferent pathways regulate the seasonal timing of breeding and hibernation. In humans, seasonal physiology and behavioral rhythms are also present, and the human SCN has seasonally rhythmic neurotransmitter levels and morphology. In summary, the SCN perceives and encodes changes in day length and drives seasonal changes in downstream pathways and structures in order to adapt to the changing seasons.
Collapse
Affiliation(s)
- Claudia P Coomans
- Department of Molecular Cell Biology, Laboratory for Neurophysiology, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden, The Netherlands
| | - Ashna Ramkisoensing
- Department of Molecular Cell Biology, Laboratory for Neurophysiology, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden, The Netherlands
| | - Johanna H Meijer
- Department of Molecular Cell Biology, Laboratory for Neurophysiology, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden, The Netherlands.
| |
Collapse
|
10
|
Meijer JH, Michel S. Neurophysiological Analysis of the Suprachiasmatic Nucleus. Methods Enzymol 2015; 552:75-102. [DOI: 10.1016/bs.mie.2014.11.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
11
|
Sakhi K, Wegner S, Belle MDC, Howarth M, Delagrange P, Brown TM, Piggins HD. Intrinsic and extrinsic cues regulate the daily profile of mouse lateral habenula neuronal activity. J Physiol 2014; 592:5025-45. [PMID: 25194046 DOI: 10.1113/jphysiol.2014.280065] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The epithalamic lateral habenula (LHb) is implicated as part of the mammalian brain's circadian system. Anatomical evidence suggests that the LHb receives extrinsic circadian timing cues from retinal ganglion cells and the master clock in the suprachiasmatic nuclei (SCN). Intriguingly, some LHb neurones contain the molecular circadian clock, but it is unclear if and how intrinsic and extrinsic circadian processes influence neuronal activity in the mouse LHb. Here, using an in vitro brain slice preparation isolating the LHb from the SCN, we show through whole-cell patch-clamp recordings that LHb neurones exhibit heterogeneity in their resting state, but the majority spontaneously fire action potentials (APs). Discharge rate of APs varied from low firing in the early day to higher firing later in the day and was absent in LHb brain slices prepared from Cry1(-/-)Cry2(-/-) mice that lack a functional molecular clock. Low amplitude circadian oscillations in the molecular circadian clock were also monitored in LHb brain slices, but were absent in Cry1(-/-)Cry2(-/-) LHb brain tissue. A putative neurochemical output signal of the SCN, prokineticin 2 (PK2), inhibited some LHb neurones by elevating the frequency of GABA release in the LHb. Using multi-electrode recordings in vivo, we found that LHb neurones sluggishly respond to retinal illumination, suggesting that they receive such information through polysynaptic processes. In summary, our results show for the first time that intrinsic circadian signals are important for regulating LHb neuronal state, while the SCN-derived signal PK2 is less influential. Moreover, we demonstrate that mouse LHb neurones have access to and can respond to visual input, but such signals are unlikely to be directly communicated to the LHb. Broadly, these findings raise the possibility that intrinsic circadian signals are likely to be influential in shaping LHb contributions to cognition and emotionality.
Collapse
Affiliation(s)
- Kanwal Sakhi
- Faculty of Life Sciences, University of Manchester, Manchester, UK
| | - Sven Wegner
- Faculty of Life Sciences, University of Manchester, Manchester, UK
| | - Mino D C Belle
- Faculty of Life Sciences, University of Manchester, Manchester, UK
| | - Michael Howarth
- Faculty of Life Sciences, University of Manchester, Manchester, UK
| | - Philippe Delagrange
- Unité de Recherches et Découvertes en Neurosciences, Institut de Recherches Servier, 78290, Croissy-sur-Seine, France
| | - Timothy M Brown
- Faculty of Life Sciences, University of Manchester, Manchester, UK
| | - Hugh D Piggins
- Faculty of Life Sciences, University of Manchester, Manchester, UK
| |
Collapse
|
12
|
Hu K, Meijer JH, Shea SA, vanderLeest HT, Pittman-Polletta B, Houben T, van Oosterhout F, Deboer T, Scheer FAJL. Fractal patterns of neural activity exist within the suprachiasmatic nucleus and require extrinsic network interactions. PLoS One 2012. [PMID: 23185285 PMCID: PMC3502397 DOI: 10.1371/journal.pone.0048927] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The mammalian central circadian pacemaker (the suprachiasmatic nucleus, SCN) contains thousands of neurons that are coupled through a complex network of interactions. In addition to the established role of the SCN in generating rhythms of ~24 hours in many physiological functions, the SCN was recently shown to be necessary for normal self-similar/fractal organization of motor activity and heart rate over a wide range of time scales--from minutes to 24 hours. To test whether the neural network within the SCN is sufficient to generate such fractal patterns, we studied multi-unit neural activity of in vivo and in vitro SCNs in rodents. In vivo SCN-neural activity exhibited fractal patterns that are virtually identical in mice and rats and are similar to those in motor activity at time scales from minutes up to 10 hours. In addition, these patterns remained unchanged when the main afferent signal to the SCN, namely light, was removed. However, the fractal patterns of SCN-neural activity are not autonomous within the SCN as these patterns completely broke down in the isolated in vitro SCN despite persistence of circadian rhythmicity. Thus, SCN-neural activity is fractal in the intact organism and these fractal patterns require network interactions between the SCN and extra-SCN nodes. Such a fractal control network could underlie the fractal regulation observed in many physiological functions that involve the SCN, including motor control and heart rate regulation.
Collapse
Affiliation(s)
- Kun Hu
- Medical Biodynamics Program, Division of Sleep Medicine, Brigham and Women's Hospital, Boston, Massachusetts, United States of America
- Medical Chronobiology Program, Division of Sleep Medicine, Brigham and Women's Hospital, Boston, Massachusetts, United States of America
- Division of Sleep Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail: (KH); (FAJLS)
| | - Johanna H. Meijer
- Department of Molecular Cell Biology, Laboratory for Neurophysiology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Steven A. Shea
- Medical Chronobiology Program, Division of Sleep Medicine, Brigham and Women's Hospital, Boston, Massachusetts, United States of America
- Division of Sleep Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
- Center for Research on Occupational and Environmental Toxicology, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Henk Tjebbe vanderLeest
- Department of Molecular Cell Biology, Laboratory for Neurophysiology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Benjamin Pittman-Polletta
- Medical Biodynamics Program, Division of Sleep Medicine, Brigham and Women's Hospital, Boston, Massachusetts, United States of America
- Medical Chronobiology Program, Division of Sleep Medicine, Brigham and Women's Hospital, Boston, Massachusetts, United States of America
- Division of Sleep Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Thijs Houben
- Department of Molecular Cell Biology, Laboratory for Neurophysiology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Floor van Oosterhout
- Department of Molecular Cell Biology, Laboratory for Neurophysiology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Tom Deboer
- Department of Molecular Cell Biology, Laboratory for Neurophysiology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Frank A. J. L. Scheer
- Medical Chronobiology Program, Division of Sleep Medicine, Brigham and Women's Hospital, Boston, Massachusetts, United States of America
- Division of Sleep Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail: (KH); (FAJLS)
| |
Collapse
|
13
|
Ruby NF. Rethinking temperature sensitivity of the suprachiasmatic nucleus. J Biol Rhythms 2011; 26:368-70; author reply 371-3. [PMID: 21775296 DOI: 10.1177/0748730411411678] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A report by Buhr et al. (2010) proposed that the suprachiasmatic nucleus (SCN) is resistant to phase shifts induced by heat pulses and to entrainment by temperature cycles. These findings are inconsistent with those from studies by other laboratories in which the SCN readily phase shifts in response to heat pulses. I propose that their negative findings are not due to the SCN being temperature insensitive but are based on an explant culture preparation that does not fully express the properties of the SCN that are present in other in vitro preparations.
Collapse
|
14
|
Brown TM, Wynne J, Piggins HD, Lucas RJ. Multiple hypothalamic cell populations encoding distinct visual information. J Physiol 2011; 589:1173-94. [PMID: 21224225 DOI: 10.1113/jphysiol.2010.199877] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Environmental illumination profoundly influences mammalian physiology and behaviour through actions on a master circadian oscillator in the suprachiasmatic nuclei (SCN) and other hypothalamic nuclei. The retinal and central mechanisms that shape daily patterns of light-evoked and spontaneous activity in this network of hypothalamic cells are still largely unclear. Similarly, the exact nature of the sensory information conveyed by such cells is unresolved. Here we set out to address these issues, through multielectrode recordings from the hypothalamus of red cone knockin mice (Opn1mwR). With this powerful mouse model, the photoreceptive origins of any response can be readily identified on the basis of their relative sensitivity to short and long wavelength light. Our experiments revealed that the firing pattern of many hypothalamic cells was influenced by changes in light levels and/or according to the steady state level of illumination. These ‘contrast' and ‘irradiance' responses were driven primarily by cone and melanopsin photoreceptors respectively, with rods exhibiting a much more subtle influence. Individual hypothalamic neurons differentially sampled from these information streams, giving rise to four distinct response types. The most common response phenotype in the SCN itself was sustained activation. Cells with this behaviour responded to all three photoreceptor classes in a manner consistent with their distinct contributions to circadian photoentrainment. These ‘sustained' cells were also unique in our sample in expressing circadian firing patterns with highest activity during the mid projected day. Surprisingly, we also found a minority of SCN neurons that lacked the melanopsin-derived irradiance signal and responded only to light transitions, allowing for the possibility that rod–cone contrast signals may be routed to SCN output targets without influencing neighbouring circadian oscillators. Finally, an array of cells extending throughout the periventricular hypothalamus and ventral thalamus were excited or inhibited solely according to the activity of melanopsin. These cells appeared to convey a filtered version of the visual signal, suitable for modulating physiology/behaviour purely according to environmental irradiance. In summary, these findings reveal unexpectedly widespread hypothalamic cell populations encoding distinct qualities of visual information.
Collapse
Affiliation(s)
- Timothy M Brown
- Faculty of Life Sciences, AV Hill Building, University of Manchester, Manchester M13 9PT, UK
| | | | | | | |
Collapse
|
15
|
Guilding C, Hughes ATL, Piggins HD. Circadian oscillators in the epithalamus. Neuroscience 2010; 169:1630-9. [PMID: 20547209 PMCID: PMC2928449 DOI: 10.1016/j.neuroscience.2010.06.015] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2010] [Revised: 06/04/2010] [Accepted: 06/08/2010] [Indexed: 12/28/2022]
Abstract
The habenula complex is implicated in a range of cognitive, emotional and reproductive behaviors, and recently this epithalamic structure was suggested to be a component of the brain's circadian system. Circadian timekeeping is driven in cells by the cyclical activity of core clock genes and proteins such as per2/PER2. There are currently no reports of rhythmic clock gene/protein expression in the habenula and therefore the question of whether this structure has an intrinsic molecular clock remains unresolved. Here, using videomicroscopy imaging and photon-counting of a PER2::luciferase (LUC) fusion protein together with multiunit electrophysiological recordings, we tested the endogenous circadian properties of the mouse habenula in vitro. We show that a circadian oscillator is localized primarily to the medial portion of the lateral habenula. Rhythms in PER2:: LUC bioluminescence here are visualized in single cells and oscillations continue in the presence of the sodium channel blocker, tetrodotoxin, indicating that individual cells have intrinsic timekeeping properties. Ependymal cells lining the dorsal third ventricle also express circadian oscillations of PER2. These findings establish that neurons and non-neuronal cells in the epithalamus express rhythms in cellular and molecular activities, indicating a role for circadian oscillators in the temporal regulation of habenula controlled processes and behavior.
Collapse
Affiliation(s)
- C Guilding
- Faculty of Life Sciences, University of Manchester, Manchester, UK
| | | | | |
Collapse
|
16
|
Bottum K, Poon E, Haley B, Karmarkar S, Tischkau SA. Suprachiasmatic nucleus neurons display endogenous resistance to excitotoxicity. Exp Biol Med (Maywood) 2010; 235:237-46. [PMID: 20404040 DOI: 10.1258/ebm.2009.009244] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A comprehensive understanding of neuroprotective pathways is essential to progress in the battle against numerous neurodegenerative conditions. The hypothalamic suprachiasmatic nucleus (SCN) is endogenously resistant to glutamate (Glu) excitotoxicity in vivo. This study was designed to determine whether immortalized SCN neurons (SCN2.2 cells) retain this characteristic. We first established that SCN2.2 cells retained the ability to respond to Glu. SCN2.2 cells expressed N-methyl-d-aspartate (NMDA) receptor subtypes NR1 and NR2A/2B, suggesting the presence of functional receptors. mRNA for the NMDA receptor subunits NR2A and NR2B were higher in the SCN2.2 than in the control hypothalamic neurons (GT1-7). Specific NMDA receptor antagonists (+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine maleate and d-(-)-2-amino-5-phosphonovaleric acid blocked Glu-induced activation of gene expression. SCN2.2 cells were resistant to Glu excitotoxicity compared with GT1-7 neurons as assessed with a mitochondrial function assay, cell death by trypan blue exclusion and apoptosis by terminal deoxynucleotidyl transferase dUTP nick end labeling. SCN2.2 resistance to Glu excitoxicity was retained in the presence of the broad spectrum Glu transport inhibitor, l-trans-pyrrolidine-2,4 dicarboxylate, excluding glial Glu uptake as a major neuroprotective mechanism. Collectively, these observations demonstrate endogenous neuroprotection in SCN2.2 cells; this cell line is resistant to excitotoxicity under conditions that are toxic to other immortalized cell lines. Thus, the SCN2.2 cell line may provide insights into the molecular mechanisms that confer endogenous neuroprotection in the SCN.
Collapse
Affiliation(s)
- Kathleen Bottum
- Department of Medicine, Division of Internal Medicine and Psychiatry, Southern Illinois School of Medicine, Springfield, IL 62794-9636, USA
| | | | | | | | | |
Collapse
|
17
|
Phase organization of circadian oscillators in extended gate and oscillator models. J Theor Biol 2010; 264:367-76. [PMID: 20144621 DOI: 10.1016/j.jtbi.2010.02.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2009] [Revised: 01/22/2010] [Accepted: 02/02/2010] [Indexed: 11/21/2022]
Abstract
The suprachiasmatic nuclei (SCN) control daily oscillations in physiology and behavior. The gate-oscillator model captures functional heterogeneity in SCN and has been successful in reproducing many features of SCN. This paper investigates the mechanism of phase organization in the gate-oscillator model and finds that only stable fixed points of the phase transition function are essential to phase organization. This obvious finding forms the basis for understanding the complex phase distribution in the gate-oscillator scheme. Extending the model with a dead zone of the phase transition function and the propagation delay of the gate signal which may represent the spatial structure of SCN, the author discusses how some features of experimentally reported phase distribution, such as the existence of anti-phase neurons and fixed phase difference between neurons, could be understood in the framework of the gate-oscillator model. The extended model shows clearly the way in which the interplay between the single-cell property and the property of the network organization influence the phase distribution of SCN neurons.
Collapse
|
18
|
Houben T, Deboer T, van Oosterhout F, Meijer JH. Correlation with behavioral activity and rest implies circadian regulation by SCN neuronal activity levels. J Biol Rhythms 2010; 24:477-87. [PMID: 19926807 DOI: 10.1177/0748730409349895] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The SCN of the hypothalamus contains a major pacemaker, which exhibits 24-h rhythms in electrical impulse frequency. Although it is known that SCN electrical activity is high during the day and low during the night, the precise relationship between electrical activity and behavioral rhythms is almost entirely unknown. The authors performed long-term recordings of SCN multiple unit activity with the aid of implanted microelectrodes in parallel with the drinking activity in freely moving mice. The animals were kept in a 12h:12h light-dark cycle (LD 12:12) and in short-day (LD 8:16) and long-day photoperiods (LD 16:8). Onsets and offsets of behavioral activity occurred when SCN discharge was around half-maximum value. Of the onsets 80%, and of the offsets 62%, occurred when SCN electrical activity differed less than 15% from the half-maximum electrical activity levels. Transitions between rest and activity could be described by a sigmoid shaped probability curve with Hill coefficients of 7.0 for onsets and 5.7 for offsets. The similarity in the onset and offset levels shows an absence of hysteresis in the control of behavioral activity by the SCN. Exposure to short- or long-day photoperiods induced significant alterations in the waveform of electrical activity but did not affect SCN electrical activity levels at which behavioral transitions occurred. In all photoperiods, the SCN signal was skewed with more rapid discharge changes during onsets (19% per hour) than offsets (11% per hour). The precision of the circadian system appears optimized, as transitions between behavioral activity and rest occur when the change in SCN electrical activity is maximal, both during the declining and rising phase. The authors conclude that transitions in behavioral state can be described by a probability function around half-maximum electrical activity levels and that the parameters of the SCN, predicting onset and offset of behavior, are remarkably insensitive to environmental conditions.
Collapse
Affiliation(s)
- Thijs Houben
- Department of Molecular Cell Biology, Leiden University Medical Centre, the Netherlands
| | | | | | | |
Collapse
|
19
|
Guilding C, Hughes ATL, Brown TM, Namvar S, Piggins HD. A riot of rhythms: neuronal and glial circadian oscillators in the mediobasal hypothalamus. Mol Brain 2009; 2:28. [PMID: 19712475 PMCID: PMC2745382 DOI: 10.1186/1756-6606-2-28] [Citation(s) in RCA: 138] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2009] [Accepted: 08/27/2009] [Indexed: 11/20/2022] Open
Abstract
Background In mammals, the synchronized activity of cell autonomous clocks in the suprachiasmatic nuclei (SCN) enables this structure to function as the master circadian clock, coordinating daily rhythms in physiology and behavior. However, the dominance of this clock has been challenged by the observations that metabolic duress can over-ride SCN controlled rhythms, and that clock genes are expressed in many brain areas, including those implicated in the regulation of appetite and feeding. The recent development of mice in which clock gene/protein activity is reported by bioluminescent constructs (luciferase or luc) now enables us to track molecular oscillations in numerous tissues ex vivo. Consequently we determined both clock activities and responsiveness to metabolic perturbations of cells and tissues within the mediobasal hypothalamus (MBH), a site pivotal for optimal internal homeostatic regulation. Results Here we demonstrate endogenous circadian rhythms of PER2::LUC expression in discrete subdivisions of the arcuate (Arc) and dorsomedial nuclei (DMH). Rhythms resolved to single cells did not maintain long-term synchrony with one-another, leading to a damping of oscillations at both cell and tissue levels. Complementary electrophysiology recordings revealed rhythms in neuronal activity in the Arc and DMH. Further, PER2::LUC rhythms were detected in the ependymal layer of the third ventricle and in the median eminence/pars tuberalis (ME/PT). A high-fat diet had no effect on the molecular oscillations in the MBH, whereas food deprivation resulted in an altered phase in the ME/PT. Conclusion Our results provide the first single cell resolution of endogenous circadian rhythms in clock gene expression in any intact tissue outside the SCN, reveal the cellular basis for tissue level damping in extra-SCN oscillators and demonstrate that an oscillator in the ME/PT is responsive to changes in metabolism.
Collapse
Affiliation(s)
- Clare Guilding
- Faculty of Life Sciences, University of Manchester, Manchester, UK.
| | | | | | | | | |
Collapse
|
20
|
Kim SM, Power A, Brown TM, Constance CM, Coon SL, Nishimura T, Hirai H, Cai T, Eisner C, Weaver DR, Piggins HD, Klein DC, Schnermann J, Notkins AL. Deletion of the secretory vesicle proteins IA-2 and IA-2beta disrupts circadian rhythms of cardiovascular and physical activity. FASEB J 2009; 23:3226-32. [PMID: 19433624 DOI: 10.1096/fj.09-132019] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Targeted deletion of IA-2 and IA-2beta, major autoantigens in type 1 diabetes and transmembrane secretory vesicle proteins, results in impaired secretion of hormones and neurotransmitters. In the present study, we evaluated the effect of these deletions on daily rhythms in blood pressure, heart rate, core body temperature, and spontaneous physical and neuronal activity. We found that deletion of both IA-2 and IA-2beta profoundly disrupts the usual diurnal variation of each of these parameters, whereas the deletion of either IA-2 or IA-2beta alone did not produce a major change. In situ hybridization revealed that IA-2 and IA-2beta transcripts are highly but nonrhythmically expressed in the suprachiasmatic nuclei, the site of the brain's master circadian oscillator. Electrophysiological studies on tissue slices from the suprachiasmatic nuclei showed that disruption of both IA-2 and IA-2beta results in significant alterations in neuronal firing. From these studies, we concluded that deletion of IA-2 and IA-2beta, structural proteins of secretory vesicles and modulators of neuroendocrine secretion, has a profound effect on the circadian system.
Collapse
Affiliation(s)
- Soo Mi Kim
- Kidney Disease Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Brown T, Piggins H. Spatiotemporal Heterogeneity in the Electrical Activity of Suprachiasmatic Nuclei Neurons and their Response to Photoperiod. J Biol Rhythms 2009; 24:44-54. [DOI: 10.1177/0748730408327918] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The coordinated activity of thousands of cellular oscillators in the suprachiasmatic nuclei (SCN) temporally regulates mammalian physiology to anticipate daily environmental changes across the seasons. The phasing of clock gene expression varies according to anatomical location in the SCN and is thought to encode photoperiodic information. However, it is unclear whether similar variations in phase occur in the electrical activity of SCN neurons, a measure of both intraSCN signaling and clock output. To address this, we recorded single-unit and multiunit activity (SUA/MUA) from dorsal and ventral subregions of the middle level of the rostrocaudal axis of the SCN in coronal brain slices prepared from mice housed under different photoperiods. We demonstrate that under a symmetrical (12 h light:12 h dark) photoperiod, cells in the dorsal SCN are less tightly synchronized than those in the ventral SCN. Comparison of recordings made from mice under short (8 h light:16 h dark) or long (16 h light:8 h dark) photoperiods shows that the phase distribution of ventral, but not dorsal, SCN neurons expands with increasing day length. Conversely, the duration that individual neurons are active increases in dorsal, but not ventral, SCN under long days. These data indicate that in the ventral SCN photoperiod is encoded at the network level, while this coding occurs at the level of individual cells in the dorsal SCN.
Collapse
Affiliation(s)
- T.M. Brown
- Faculty of Life Sciences, University of Manchester, Manchester, UK,
| | - H.D. Piggins
- Faculty of Life Sciences, University of Manchester, Manchester, UK
| |
Collapse
|
22
|
Kent J, Meredith AL. BK channels regulate spontaneous action potential rhythmicity in the suprachiasmatic nucleus. PLoS One 2008; 3:e3884. [PMID: 19060951 PMCID: PMC2586654 DOI: 10.1371/journal.pone.0003884] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2008] [Accepted: 11/13/2008] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Circadian ( approximately 24 hr) rhythms are generated by the central pacemaker localized to the suprachiasmatic nucleus (SCN) of the hypothalamus. Although the basis for intrinsic rhythmicity is generally understood to rely on transcription factors encoded by "clock genes", less is known about the daily regulation of SCN neuronal activity patterns that communicate a circadian time signal to downstream behaviors and physiological systems. Action potentials in the SCN are necessary for the circadian timing of behavior, and individual SCN neurons modulate their spontaneous firing rate (SFR) over the daily cycle, suggesting that the circadian patterning of neuronal activity is necessary for normal behavioral rhythm expression. The BK K(+) channel plays an important role in suppressing spontaneous firing at night in SCN neurons. Deletion of the Kcnma1 gene, encoding the BK channel, causes degradation of circadian behavioral and physiological rhythms. METHODOLOGY/PRINCIPAL FINDINGS To test the hypothesis that loss of robust behavioral rhythmicity in Kcnma1(-/-) mice is due to the disruption of SFR rhythms in the SCN, we used multi-electrode arrays to record extracellular action potentials from acute wild-type (WT) and Kcnma1(-/-) slices. Patterns of activity in the SCN were tracked simultaneously for up to 3 days, and the phase, period, and synchronization of SFR rhythms were examined. Loss of BK channels increased arrhythmicity but also altered the amplitude and period of rhythmic activity. Unexpectedly, Kcnma1(-/-) SCNs showed increased variability in the timing of the daily SFR peak. CONCLUSIONS/SIGNIFICANCE These results suggest that BK channels regulate multiple aspects of the circadian patterning of neuronal activity in the SCN. In addition, these data illustrate the characteristics of a disrupted SCN rhythm downstream of clock gene-mediated timekeeping and its relationship to behavioral rhythms.
Collapse
Affiliation(s)
- Jack Kent
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Andrea L. Meredith
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
23
|
Brown T, Coogan A, Cutler D, Hughes A, Piggins H. Electrophysiological actions of orexins on rat suprachiasmatic neurons in vitro. Neurosci Lett 2008; 448:273-8. [DOI: 10.1016/j.neulet.2008.10.058] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2008] [Revised: 10/16/2008] [Accepted: 10/17/2008] [Indexed: 11/26/2022]
|
24
|
Meng QJ, Logunova L, Maywood ES, Gallego M, Lebiecki J, Brown TM, Sládek M, Semikhodskii AS, Glossop NRJ, Piggins HD, Chesham JE, Bechtold DA, Yoo SH, Takahashi JS, Virshup DM, Boot-Handford RP, Hastings MH, Loudon ASI. Setting clock speed in mammals: the CK1 epsilon tau mutation in mice accelerates circadian pacemakers by selectively destabilizing PERIOD proteins. Neuron 2008; 58:78-88. [PMID: 18400165 PMCID: PMC3756141 DOI: 10.1016/j.neuron.2008.01.019] [Citation(s) in RCA: 296] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2007] [Revised: 12/17/2007] [Accepted: 01/24/2008] [Indexed: 10/22/2022]
Abstract
The intrinsic period of circadian clocks is their defining adaptive property. To identify the biochemical mechanisms whereby casein kinase1 (CK1) determines circadian period in mammals, we created mouse null and tau mutants of Ck1 epsilon. Circadian period lengthened in CK1epsilon-/-, whereas CK1epsilon(tau/tau) shortened circadian period of behavior in vivo and suprachiasmatic nucleus firing rates in vitro, by accelerating PERIOD-dependent molecular feedback loops. CK1epsilon(tau/tau) also accelerated molecular oscillations in peripheral tissues, revealing its global role in circadian pacemaking. CK1epsilon(tau) acted by promoting degradation of both nuclear and cytoplasmic PERIOD, but not CRYPTOCHROME, proteins. Together, these whole-animal and biochemical studies explain how tau, as a gain-of-function mutation, acts at a specific circadian phase to promote degradation of PERIOD proteins and thereby accelerate the mammalian clockwork in brain and periphery.
Collapse
Affiliation(s)
- Qing-Jun Meng
- Faculty of Life Sciences, University of Manchester, Stopford Building, Oxford Road, Manchester, M13 9PT
| | - Larisa Logunova
- Faculty of Life Sciences, University of Manchester, Stopford Building, Oxford Road, Manchester, M13 9PT
| | - Elizabeth S Maywood
- MRC Laboratory of Molecular Biology, Neurobiology Division, Hills Rd. Cambridge CB2 2QH, U.K
| | - Monica Gallego
- Department of Pediatrics, University of Utah, Salt Lake City, Utah 84112, USA
| | - Jake Lebiecki
- Faculty of Life Sciences, University of Manchester, Stopford Building, Oxford Road, Manchester, M13 9PT
| | - Timothy M Brown
- Faculty of Life Sciences, University of Manchester, Stopford Building, Oxford Road, Manchester, M13 9PT
| | - Martin Sládek
- MRC Laboratory of Molecular Biology, Neurobiology Division, Hills Rd. Cambridge CB2 2QH, U.K
| | - Andrei S Semikhodskii
- Faculty of Life Sciences, University of Manchester, Stopford Building, Oxford Road, Manchester, M13 9PT
| | - Nicholas R J Glossop
- Faculty of Life Sciences, University of Manchester, Stopford Building, Oxford Road, Manchester, M13 9PT
| | - Hugh D Piggins
- Faculty of Life Sciences, University of Manchester, Stopford Building, Oxford Road, Manchester, M13 9PT
| | - Johanna E Chesham
- MRC Laboratory of Molecular Biology, Neurobiology Division, Hills Rd. Cambridge CB2 2QH, U.K
| | - David A Bechtold
- Faculty of Life Sciences, University of Manchester, Stopford Building, Oxford Road, Manchester, M13 9PT
| | - Seung-Hee Yoo
- Howard Hughes Medical Institute, Dept. of Neurobiology & Physiology, Northwestern University, 2205 Tech Drive, Evanston, IL 60208-3520, USA
| | - Joseph S Takahashi
- Howard Hughes Medical Institute, Dept. of Neurobiology & Physiology, Northwestern University, 2205 Tech Drive, Evanston, IL 60208-3520, USA
| | - David M Virshup
- Program in Cancer and Stem Cell Biology, Duke/NUS Graduate Medical School Singapore, 2 Jalan Bukit Merah, Singapore 169547
| | - Raymond P Boot-Handford
- Faculty of Life Sciences, University of Manchester, Stopford Building, Oxford Road, Manchester, M13 9PT
| | - Michael H Hastings
- Faculty of Life Sciences, University of Manchester, Stopford Building, Oxford Road, Manchester, M13 9PT
- MRC Laboratory of Molecular Biology, Neurobiology Division, Hills Rd. Cambridge CB2 2QH, U.K
| | - Andrew S I Loudon
- Faculty of Life Sciences, University of Manchester, Stopford Building, Oxford Road, Manchester, M13 9PT
| |
Collapse
|
25
|
Brown TM, McLachlan E, Piggins HD. Angiotensin II regulates the activity of mouse suprachiasmatic nuclei neurons. Neuroscience 2008; 154:839-47. [PMID: 18479832 DOI: 10.1016/j.neuroscience.2008.03.068] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2008] [Revised: 03/13/2008] [Accepted: 03/25/2008] [Indexed: 10/22/2022]
Abstract
Neuropeptide signaling plays key roles in coordinating cellular activity within the suprachiasmatic nuclei (SCN), site of the master circadian oscillator in mammals. The neuropeptide angiotensin II (ANGII) and its cognate receptor AT1, are both expressed by SCN cells, but unlike other SCN neurochemicals, very little is known about the cellular actions of ANGII within this circadian clock. We used multi-electrode, multiunit, extracellular electrophysiology, coupled with whole-cell voltage and current clamp techniques to investigate the actions of ANGII in mouse SCN slices. ANGII (0.001-10 microM) dose dependently stimulated and inhibited extracellularly recorded neuronal discharge in many SCN neurons ( approximately 60%). Both actions were blocked by pre-treatment with the AT1 receptor antagonist ZD7155 (0.03 microM), while suppressions but not activations were prevented by pre-treatment with the GABA A receptor antagonist bicuculline (20 microM). AT1 receptor blockade itself suppressed discharge in a subset ( approximately 30%) of SCN neurons, and this action was not blocked by bicuculline. In voltage-clamped SCN neurons (-70 mV), AT1 receptor activation dose-dependently enhanced the frequency of action potential-driven, GABA A receptor-mediated currents, but did not alter their responses to exogenously applied GABA. In current-clamped SCN neurons perfused with tetrodotoxin, ANGII induced a membrane depolarization with a concomitant decrease in input resistance. In conclusion we show that AT1 receptor activation by ANGII depolarizes SCN neurons and stimulates action potential firing, leading to increased GABA release in the mouse SCN. Additionally we provide the first evidence that endogenous AT1 receptor signaling tonically regulates the activities of some SCN neurons.
Collapse
Affiliation(s)
- T M Brown
- Faculty of Life Sciences, 1.124 Stopford Building, University of Manchester, Oxford Road, Manchester, UK
| | | | | |
Collapse
|
26
|
Brown TM, Piggins HD. Electrophysiology of the suprachiasmatic circadian clock. Prog Neurobiol 2007; 82:229-55. [PMID: 17646042 DOI: 10.1016/j.pneurobio.2007.05.002] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2006] [Revised: 03/29/2007] [Accepted: 05/30/2007] [Indexed: 01/28/2023]
Abstract
In mammals, an internal timekeeping mechanism located in the suprachiasmatic nuclei (SCN) orchestrates a diverse array of neuroendocrine and physiological parameters to anticipate the cyclical environmental fluctuations that occur every solar day. Electrophysiological recording techniques have proved invaluable in shaping our understanding of how this endogenous clock becomes synchronized to salient environmental cues and appropriately coordinates the timing of a multitude of physiological rhythms in other areas of the brain and body. In this review we discuss the pioneering studies that have shaped our understanding of how this biological pacemaker functions, from input to output. Further, we highlight insights from new studies indicating that, more than just reflecting its oscillatory output, electrical activity within individual clock cells is a vital part of SCN clockwork itself.
Collapse
Affiliation(s)
- Timothy M Brown
- Faculty of Life Sciences, Stopford Building, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | | |
Collapse
|
27
|
Guilding C, Piggins HD. Challenging the omnipotence of the suprachiasmatic timekeeper: are circadian oscillators present throughout the mammalian brain? Eur J Neurosci 2007; 25:3195-216. [PMID: 17552989 DOI: 10.1111/j.1460-9568.2007.05581.x] [Citation(s) in RCA: 245] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The suprachiasmatic nucleus of the hypothalamus (SCN) is the master circadian pacemaker or clock in the mammalian brain. Canonical theory holds that the output from this single, dominant clock is responsible for driving most daily rhythms in physiology and behaviour. However, important recent findings challenge this uniclock model and reveal clock-like activities in many neural and non-neural tissues. Thus, in addition to the SCN, a number of areas of the mammalian brain including the olfactory bulb, amygdala, lateral habenula and a variety of nuclei in the hypothalamus, express circadian rhythms in core clock gene expression, hormone output and electrical activity. This review examines the evidence for extra-SCN circadian oscillators in the mammalian brain and highlights some of the essential properties and key differences between brain oscillators. The demonstration of neural pacemakers outside the SCN has wide-ranging implications for models of the circadian system at a whole-organism level.
Collapse
Affiliation(s)
- Clare Guilding
- 3.614 Stopford Building, Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | | |
Collapse
|
28
|
Meijer JH, Michel S, Vansteensel MJ. Processing of daily and seasonal light information in the mammalian circadian clock. Gen Comp Endocrinol 2007; 152:159-64. [PMID: 17324426 DOI: 10.1016/j.ygcen.2007.01.018] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2006] [Revised: 01/12/2007] [Accepted: 01/19/2007] [Indexed: 11/17/2022]
Abstract
It is necessary for an organism's survival that many physiological functions and behaviours demonstrate daily and seasonal variations. A crucial component for the temporal control in mammals is the circadian clock located in the suprachiasmatic nucleus (SCN) of the hypothalamus. Neurons in the SCN generate a rhythm in electrical activity with a period of about 24h. The SCN receives photic information from photoreceptive ganglion cells in the retina and processes the information, detecting dawn and dusk as well as encoding day-length. Information processing by the SCN is optimized to extract relevant irradiance information and reduce interferences. Neuronal coupling pathways, including GABAergic signalling, are employed to distribute information and synchronize SCN subregions to form a uniform timing signal. Encoding of day-length is manifested in SCN neuronal activity patterns and may be the product of network interactions rather than being based on the single cell.
Collapse
Affiliation(s)
- Johanna H Meijer
- Laboratory for Neurophysiology, Department of Molecular Cell Biology, Leiden University Medical Center, Postal Zone S5-P, P.O. Box 9600, 2300 RC Leiden, The Netherlands.
| | | | | |
Collapse
|
29
|
Brown TM, Colwell CS, Waschek JA, Piggins HD. Disrupted neuronal activity rhythms in the suprachiasmatic nuclei of vasoactive intestinal polypeptide-deficient mice. J Neurophysiol 2007; 97:2553-8. [PMID: 17151217 PMCID: PMC2570696 DOI: 10.1152/jn.01206.2006] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Vasoactive intestinal polypeptide (VIP), acting via the VPAC(2) receptor, is a key signaling pathway in the suprachiasmatic nuclei (SCN), the master clock controlling daily rhythms in mammals. Most mice lacking functional VPAC(2) receptors are unable to sustain behavioral rhythms and lack detectable SCN electrical rhythms in vitro. Adult mice that do not produce VIP (VIP/PHI(-/-)) exhibit less severe alterations in wheel-running rhythms, but the effects of this deficiency on the amplitude, phasing, or periodicity of their SCN cellular rhythms are unknown. To investigate this, we used suction electrodes to extracellularly record multiple- and single-unit electrical activity in SCN brain slices from mice with varying degrees of VIP deficiency, ranging from wild-type (VIP/PHI(+/+)) to heterozygous (VIP/PHI(+/-)) and VIP/PHI(-/-) animals. We found decreasing proportions of rhythmic cells in SCN slices from VIP/PHI(+/+) ( approximately 91%, n = 23) through VIP/PHI(-/+) ( approximately 71%, n = 28) to VIP/PHI(-/-) mice (62%; n = 37) and a parallel trend toward decreasing amplitude in the remaining rhythmic cells. SCN neurons from VIP/PHI(-/-) mice exhibited a broad range in the period and phasing of electrical rhythms, concordant with the known alterations in their behavioral rhythms. Further, treatment of VIP/PHI(-/-) slices with a VPAC(2) receptor antagonist significantly reduced the proportion of oscillating neurons, suggesting that VPAC(2) receptors still become activated in the SCN of these mice. The results establish that VIP is important for appropriate periodicity and phasing of SCN neuronal rhythms and suggest that residual VPAC(2) receptor signaling promotes rhythmicity in adult VIP/PHI(-/-) mice.
Collapse
Affiliation(s)
- T. M. Brown
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - C. S. Colwell
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, California
| | - J. A. Waschek
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, California
| | - H. D. Piggins
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| |
Collapse
|