1
|
Hakimzadeh N, Pinas VA, Molenaar G, de Waard V, Lutgens E, van Eck-Smit BLF, de Bruin K, Piek JJ, Eersels JLH, Booij J, Verberne HJ, Windhorst AD. Novel molecular imaging ligands targeting matrix metalloproteinases 2 and 9 for imaging of unstable atherosclerotic plaques. PLoS One 2017; 12:e0187767. [PMID: 29190653 PMCID: PMC5708805 DOI: 10.1371/journal.pone.0187767] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 10/25/2017] [Indexed: 12/19/2022] Open
Abstract
Molecular imaging of matrix metalloproteinases (MMPs) may allow detection of atherosclerotic lesions vulnerable to rupture. In this study, we develop a novel radiolabelled compound that can target gelatinase MMP subtypes (MMP2/9) with high selectivity and inhibitory potency. Inhibitory potencies of several halogenated analogues of MMP subtype-selective inhibitors (N-benzenesulfonyliminodiacetyl monohydroxamates and N-halophenoxy-benzenesulfonyl iminodiacetyl monohydroxamates) were in the nanomolar range for MMP2/9. The analogue with highest inhibitory potency and selectivity was radiolabelled with [123I], resulting in moderate radiochemical yield, and high radiochemical purity. Biodistribution studies in mice, revealed stabilization in blood 1 hour after intravenous bolus injection. Intravenous infusion of the radioligand and subsequent autoradiography of excised aortas showed tracer uptake in atheroprone mice. Distribution of the radioligand showed co-localization with MMP2/9 immunohistochemical staining. In conclusion, we have developed a novel selective radiolabeled MMP2/9 inhibitor, suitable for single photon emission computed tomography (SPECT) imaging that effectively targets atherosclerotic lesions in mice.
Collapse
Affiliation(s)
- Nazanin Hakimzadeh
- Department of Biomedical Engineering & Physics, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
- Department of Cardiology, Academic Medical Center, Amsterdam, The Netherlands
| | - Victorine A. Pinas
- Department of Radiology and Nuclear Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
- Department of Radiology & Nuclear Medicine, VU University Medical Center, Amsterdam, The Netherlands
| | | | - Vivian de Waard
- Department of Medical Biochemistry, Academic Medical Center, Amsterdam, The Netherlands
| | - Esther Lutgens
- Department of Medical Biochemistry, Academic Medical Center, Amsterdam, The Netherlands
- Institute for Cardiovascular Prevention (IPEK) Ludwig Maximilian's University, Munich, Germany
| | - Berthe L. F. van Eck-Smit
- Department of Radiology and Nuclear Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Kora de Bruin
- Department of Radiology and Nuclear Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Jan J. Piek
- Department of Cardiology, Academic Medical Center, Amsterdam, The Netherlands
| | - Jos L. H. Eersels
- Department of Radiology & Nuclear Medicine, VU University Medical Center, Amsterdam, The Netherlands
| | - Jan Booij
- Department of Radiology and Nuclear Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Hein J. Verberne
- Department of Radiology and Nuclear Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Albert D. Windhorst
- Department of Radiology & Nuclear Medicine, VU University Medical Center, Amsterdam, The Netherlands
- * E-mail:
| |
Collapse
|
2
|
Schrantee A, Tremoleda JL, Wylezinska-Arridge M, Bouet V, Hesseling P, Meerhoff GF, de Bruin KM, Koeleman J, Freret T, Boulouard M, Desfosses E, Galineau L, Gozzi A, Dauphin F, Gsell W, Booij J, Lucassen PJ, Reneman L. Repeated dexamphetamine treatment alters the dopaminergic system and increases the phMRI response to methylphenidate. PLoS One 2017; 12:e0172776. [PMID: 28241065 PMCID: PMC5328278 DOI: 10.1371/journal.pone.0172776] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 02/09/2017] [Indexed: 12/12/2022] Open
Abstract
Dexamphetamine (AMPH) is a psychostimulant drug that is used both recreationally and as medication for attention deficit hyperactivity disorder. Preclinical studies have demonstrated that repeated exposure to AMPH can induce damage to nerve terminals of dopamine (DA) neurons. We here assessed the underlying neurobiological changes in the DA system following repeated AMPH exposure and pre-treated rats with AMPH or saline (4 times 5 mg/kg s.c., 2 hours apart), followed by a 1-week washout period. We then used pharmacological MRI (phMRI) with a methylphenidate (MPH) challenge, as a sensitive and non-invasive in-vivo measure of DAergic function. We subsequently validated the DA-ergic changes post-mortem, using a.o. high-performance liquid chromatography (HPLC) and autoradiography. In the AMPH pre-treated group, we observed a significantly larger BOLD response to the MPH challenge, particularly in DA-ergic brain areas and their downstream projections. Subsequent autoradiography studies showed that AMPH pre-treatment significantly reduced DA transporter (DAT) density in the caudate-putamen (CPu) and nucleus accumbens, whereas HPLC analysis revealed increases in the DA metabolite homovanillic acid in the CPu. Our results suggest that AMPH pre-treatment alters DAergic responsivity, a change that can be detected with phMRI in rats. These phMRI changes likely reflect increased DA release together with reduced DAT binding. The ability to assess subtle synaptic changes using phMRI is promising for both preclinical studies of drug discovery, and for clinical studies where phMRI can be a useful tool to non-invasively investigate DA abnormalities, e.g. in neuropsychiatric disorders.
Collapse
Affiliation(s)
- Anouk Schrantee
- Department of Radiology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
- Biological Imaging Centre, Imperial College London, White City, London, United Kingdom
- * E-mail:
| | - Jordi L. Tremoleda
- Biological Imaging Centre, Imperial College London, White City, London, United Kingdom
- Centre for Trauma Sciences, The Blizard Institute, London, United Kingdom
| | - Marzena Wylezinska-Arridge
- Biological Imaging Centre, Imperial College London, White City, London, United Kingdom
- Neuroradiological Academic Unit, Department of Brain Repair and Rehabilitation, UCL Institute of Neurology, Queen Square, London, United Kingdom
| | - Valentine Bouet
- Normandie-Université, GMPc, EA 4259, Université de Caen Basse-Normandie, Caen, France
| | - Peter Hesseling
- Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, Amsterdam, The Netherlands
| | - Gideon F. Meerhoff
- Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, Amsterdam, The Netherlands
| | - Kora M. de Bruin
- Department of Nuclear Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Jan Koeleman
- Department of Radiology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Thomas Freret
- Normandie-Université, GMPc, EA 4259, Université de Caen Basse-Normandie, Caen, France
| | - Michel Boulouard
- Normandie-Université, GMPc, EA 4259, Université de Caen Basse-Normandie, Caen, France
| | - Emilie Desfosses
- UMR Inserm U930, Université François-Rabelais de Tours, Tours, France
| | - Laurent Galineau
- UMR Inserm U930, Université François-Rabelais de Tours, Tours, France
| | - Alessandro Gozzi
- Functional Neuroimaging Laboratory, Istituto Italiano di Tecnologia, Center for Neuroscience and Cognitive Systems @ UNITN, Rovereto, Italy
| | - François Dauphin
- Normandie-Université, GMPc, EA 4259, Université de Caen Basse-Normandie, Caen, France
| | - Willy Gsell
- Biological Imaging Centre, Imperial College London, White City, London, United Kingdom
- Biomedical MRI, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - Jan Booij
- Department of Nuclear Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Paul J. Lucassen
- Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, Amsterdam, The Netherlands
| | - Liesbeth Reneman
- Department of Radiology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
3
|
Moyes AB, Kueppers LM, Pett-Ridge J, Carper DL, Vandehey N, O'Neil J, Frank AC. Evidence for foliar endophytic nitrogen fixation in a widely distributed subalpine conifer. THE NEW PHYTOLOGIST 2016; 210:657-68. [PMID: 27000956 DOI: 10.1111/nph.13850] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 12/06/2015] [Indexed: 05/22/2023]
Abstract
Coniferous forest nitrogen (N) budgets indicate unknown sources of N. A consistent association between limber pine (Pinus flexilis) and potential N2 -fixing acetic acid bacteria (AAB) indicates that native foliar endophytes may supply subalpine forests with N. To assess whether the P. flexilis-AAB association is consistent across years, we re-sampled P. flexilis twigs at Niwot Ridge, CO and characterized needle endophyte communities via 16S rRNA Illumina sequencing. To investigate whether endophytes have access to foliar N2 , we incubated twigs with (13) N2 -enriched air and imaged radioisotope distribution in needles, the first experiment of its kind using (13) N. We used the acetylene reduction assay to test for nitrogenase activity within P. flexilis twigs four times from June to September. We found evidence for N2 fixation in P. flexilis foliage. N2 diffused readily into needles and nitrogenase activity was positive across sampling dates. We estimate that this association could provide 6.8-13.6 μg N m(-2) d(-1) to P. flexilis stands. AAB dominated the P. flexilis needle endophyte community. We propose that foliar endophytes represent a low-cost, evolutionarily stable N2 -fixing strategy for long-lived conifers. This novel source of biological N2 fixation has fundamental implications for understanding forest N budgets.
Collapse
Affiliation(s)
- Andrew B Moyes
- Sierra Nevada Research Institute, University of California Merced, 5200 N. Lake Road, Merced, CA, 95343, USA
- Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA
| | - Lara M Kueppers
- Sierra Nevada Research Institute, University of California Merced, 5200 N. Lake Road, Merced, CA, 95343, USA
- Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA
| | - Jennifer Pett-Ridge
- Physical and Life Sciences Directorate, Lawrence Livermore National Lab, 7000 East Avenue, Livermore, CA, 94550, USA
| | - Dana L Carper
- Life and Environmental Sciences, School of Natural Sciences, University of California Merced, 5200 N. Lake Road, Merced, CA, 95343, USA
| | - Nick Vandehey
- Molecular Biophysics and Integrated Bioimaging Division, 1 Cyclotron Road, Berkeley, CA, 94720, USA
| | - James O'Neil
- Molecular Biophysics and Integrated Bioimaging Division, 1 Cyclotron Road, Berkeley, CA, 94720, USA
| | - A Carolin Frank
- Sierra Nevada Research Institute, University of California Merced, 5200 N. Lake Road, Merced, CA, 95343, USA
- Life and Environmental Sciences, School of Natural Sciences, University of California Merced, 5200 N. Lake Road, Merced, CA, 95343, USA
| |
Collapse
|
4
|
Zaaijer ER, de Bruin K, la Fleur SE, Goudriaan AE, van den Brink W, Booij J. Subchronic administration of short-acting naltrexone has no effect on striatal dopamine transporter availability, food intake or body weight gain in rats. J Psychopharmacol 2015; 29:344-8. [PMID: 25586403 DOI: 10.1177/0269881114565380] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The opioid receptor antagonist naltrexone is successfully used in the treatment of opioid and alcohol dependence. However, questions have been raised about possible anhedonic side effects, because the opioid system is directly involved in hedonic responses to natural rewarding activities, possibly due to its indirect effects on the striatal dopamine transporter (DAT). In order to test this hypothesis, 30 rats were randomized to either a 10-day treatment with 3 mg/kg short-acting naltrexone or vehicle. No significant differences between the groups were found in striatal DAT availability, cumulative food intake (for 48 or 72 h), body weight gain and abdominal fatpad weight. Thus, the results of this study suggest that (sub)chronic treatment with short-acting naltrexone does not induce possible anhedonic effects. However, it cannot be ruled out the anhedonic effect of naltrexone is only short-lived and thus not detected in the current study. Therefore, future studies are needed to study possible acute anhedonic effects at several time points shortly after short-acting naltrexone administration and to directly compare the possible anhedonic effects of long-acting with those of short-acting opioid antagonists.
Collapse
Affiliation(s)
- Eline R Zaaijer
- Department of Nuclear Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands Amsterdam Institute for Addiction Research, Department of Psychiatry, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Kora de Bruin
- Department of Nuclear Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Susanne E la Fleur
- Department of Endocrinology and Metabolism, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Anna E Goudriaan
- Amsterdam Institute for Addiction Research, Department of Psychiatry, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands Arkin Mental Health Care, Amsterdam, The Netherlands
| | - Wim van den Brink
- Amsterdam Institute for Addiction Research, Department of Psychiatry, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Jan Booij
- Department of Nuclear Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
5
|
Uhl P, Fricker G, Haberkorn U, Mier W. Radionuclides in drug development. Drug Discov Today 2015; 20:198-208. [DOI: 10.1016/j.drudis.2014.09.027] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Revised: 09/29/2014] [Accepted: 09/30/2014] [Indexed: 12/30/2022]
|
6
|
Ex Vivo Characterization of a Novel Iodine-123-Labelled Aminomethylchroman as a Potential Agonist Ligand for SPECT Imaging of Dopamine D2/3 Receptors. INTERNATIONAL JOURNAL OF MOLECULAR IMAGING 2015; 2014:507012. [PMID: 25610643 PMCID: PMC4291083 DOI: 10.1155/2014/507012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 11/18/2014] [Accepted: 11/27/2014] [Indexed: 11/17/2022]
Abstract
For imaging of dopamine D2/3 receptors, agonist tracers are favoured over antagonists because they are more sensitive to detection of dopamine release and because they may selectively label the high-affinity receptor state. We have developed novel D2/3 receptor selective agonists that can be radiolabelled with [(123)I], which label is advantageous over most other labels, such as carbon-11, as it has a longer half-life. Particularly, we considered (R) N-[7-hydroxychroman-2-yl]-methyl 4-iodobenzyl amine (compound 1) as an attractive candidate for development as it shows high binding affinity to D2/3 receptors in vitro, and here we report on the characterization of this first [(123)I]-labelled D2/3 receptor agonist radiopharmaceutical intended for SPECT imaging. The appropriate tin precursor for [(123)I]-1 was developed and was successfully radiolabelled with iodine-123 giving a moderate yield (30-35%) and a good purity (>95%) for [(123)I]-1. In biodistribution experiments in Wistar rats intravenous injection of [(123)I]-1 resulted in a fast brain uptake, where the observed binding in the D2/3 receptor-rich striatum was slightly higher than that in the cerebellum 30 min to 4 h p.i. Storage phosphor imaging experiments, however, did not show specific D2/3 receptor binding. In conclusion, despite promising in vitro data for 1, neither specific ex vivo binding nor high signal-to-noise ratios were found in rodents for [(123)I]-1.
Collapse
|
7
|
Bakker G, Vingerhoets WA, Wieringen JV, de Bruin K, Eersels J, de Jong J, Chahid Y, Rutten BP, DuBois S, Watson M, Mogg AJ, Xiao H, Crabtree M, Collier DA, Felder CC, Barth VN, Broad LM, Bloemen OJ, van Amelsvoort TA, Booij J. 123I-Iododexetimide Preferentially Binds to the Muscarinic Receptor Subtype M1 In Vivo. J Nucl Med 2015; 56:317-22. [DOI: 10.2967/jnumed.114.147488] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
8
|
Inoue K, Gibbs SL, Liu F, Lee JH, Xie Y, Ashitate Y, Fujii H, Frangioni JV, Choi HS. Microscopic validation of macroscopic in vivo images enabled by same-slide optical and nuclear fusion. J Nucl Med 2014; 55:1899-904. [PMID: 25324521 DOI: 10.2967/jnumed.114.141606] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
UNLABELLED It is currently difficult to determine the molecular and cellular basis for radioscintigraphic signals obtained during macroscopic in vivo imaging. The field is in need of technology that helps bridge the macroscopic and microscopic regimes. To solve this problem, we developed a fiducial marker (FM) simultaneously compatible with 2-color near-infrared (NIR) fluorescence (700 and 800 nm), autoradiography, and conventional hematoxylin-eosin (HE) histology. METHODS The FM was constructed from an optimized concentration of commercially available human serum albumin, 700- and 800-nm NIR fluorophores, (99m)Tc-pertechnetate, dimethyl sulfoxide, and glutaraldehyde. Lymphangioleiomyomatosis cells coexpressing the sodium iodide symporter and green fluorescent protein were labeled with 700-nm fluorophore and (99m)Tc-pertechnatate and then administered intratracheally into CD-1 mice. After in vivo SPECT imaging and ex vivo SPECT and NIR fluorescence imaging of the lungs, 30-μm frozen sections were prepared and processed for 800-nm NIR fluorophore costaining, autoradiography, and HE staining on the same slide using the FMs to coregister all datasets. RESULTS Optimized FMs, composed of 100 μM unlabeled human serum albumin, 1 μM NIR fluorescent human serum albumin, 15% dimethyl sulfoxide, and 3% glutaraldehyde in phosphate-buffered saline (pH 7.4), were prepared within 15 min, displayed homogeneity and stability, and were visible by all imaging modalities, including HE staining. Using these FMs, tissue displaying high signal by SPECT could be dissected and analyzed on the same slide and at the microscopic level for 700-nm NIR fluorescence, 800-nm NIR fluorescence, autoradiography, and HE histopathologic staining. CONCLUSION When multimodal FMs are combined with a new technique for simultaneous same-slide NIR fluorescence imaging, autoradiography, and HE staining, macroscopic in vivo images can now be studied unambiguously at the microscopic level.
Collapse
Affiliation(s)
- Kazumasa Inoue
- Division of Hematology/Oncology, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts Department of Radiological Sciences, Tokyo Metropolitan University, Tokyo, Japan
| | - Summer L Gibbs
- Division of Hematology/Oncology, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts
| | - Fangbing Liu
- Division of Hematology/Oncology, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts
| | - Jeong Heon Lee
- Division of Hematology/Oncology, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts
| | - Yang Xie
- Division of Hematology/Oncology, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts
| | - Yoshitomo Ashitate
- Division of Hematology/Oncology, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts
| | - Hirofumi Fujii
- Functional Imaging Division, Research Center for Innovative Oncology, National Cancer Center Hospital East, Chiba, Japan
| | - John V Frangioni
- Division of Hematology/Oncology, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts Department of Radiology, Beth Israel Deaconess Medical Center, Boston, Massachusetts; and Curadel, LLC, Worcester, Massachusetts
| | - Hak Soo Choi
- Division of Hematology/Oncology, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
9
|
Slowey AJ, Vandehey NT, O'Neil JP, Boutchko R, Moses WW, Nico PS. Chemical stability of (99m)Tc-DTPA under aerobic and microbially mediated Fe(III)-reducing conditions in porous media. Appl Radiat Isot 2014; 94:175-181. [PMID: 25213084 DOI: 10.1016/j.apradiso.2014.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Revised: 07/17/2014] [Accepted: 08/09/2014] [Indexed: 10/24/2022]
Abstract
(99m)Tc-DTPA has been used as a conservative tracer to quantify water transport through porous media. However, more information on the reactivity of this (99m)Tc compound under varying geochemical conditions is desirable to better understand its potential uses. We measured the speciation of Tc following amendment of (99m)Tc-DTPA to batch systems spanning a range of controlled biogeochemical conditions. Our results suggest that (99m)Tc-DTPA is stable under the reducing conditions tested. However, freshly precipitated Al-ferrihydrite may displace Tc(IV) from DTPA in the absence of Fe(III)-reducing conditions.
Collapse
Affiliation(s)
- Aaron J Slowey
- Geochemistry Department, Earth Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94207, United States
| | - Nicholas T Vandehey
- Department of Radiotracer Development & Imaging Technology, Life Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, United States
| | - James P O'Neil
- Department of Radiotracer Development & Imaging Technology, Life Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, United States
| | - Rostyslav Boutchko
- Department of Radiotracer Development & Imaging Technology, Life Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, United States
| | - William W Moses
- Department of Radiotracer Development & Imaging Technology, Life Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, United States
| | - Peter S Nico
- Geochemistry Department, Earth Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94207, United States.
| |
Collapse
|
10
|
Booij J, van Loon G, de Bruin K, Voorn P. Acute Administration of Haloperidol Does Not Influence 123I-FP-CIT Binding to the Dopamine Transporter. J Nucl Med 2014; 55:647-9. [DOI: 10.2967/jnumed.113.132340] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
11
|
Decreased ipsilateral [¹²³I]iododexetimide binding to cortical muscarinic receptors in unilaterally 6-hydroxydopamine lesioned rats. Nucl Med Biol 2013; 41:90-5. [PMID: 24267055 DOI: 10.1016/j.nucmedbio.2013.10.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Revised: 08/22/2013] [Accepted: 10/03/2013] [Indexed: 11/20/2022]
Abstract
INTRODUCTION Dysfunction of the cholinergic neurotransmitter system is present in Parkinson's disease, Parkinson's disease related dementia and dementia with Lewy bodies, and is thought to contribute to cognitive deficits in these patients. In vivo imaging of the cholinergic system in these diseases may be of value to monitor central cholinergic disturbances and to select cases in which treatment with cholinesterase inhibitors could be beneficial. The muscarinic receptor tracer [(123)I]iododexetimide, predominantly reflecting M1 receptor binding, may be an appropriate tool for imaging of the cholinergic system by means of SPECT. In this study, we used [(123)I]iododexetimide to study the effects of a 6-hydroxydopamine lesion (an animal model of Parkinson's disease) on the muscarinic receptor availability in the rat brain. METHODS Rats (n=5) were injected in vivo at 10-13 days after a confirmed unilateral 6-hydroxydopamine lesion. Muscarinic receptor availability was measured bilaterally in multiple brain areas on storage phosphor images by region of interest analysis. RESULTS Autoradiography revealed a consistent and statistically significant lower [(123)I]iododexetimide binding in all examined neocortical areas on the ipsilateral side of the lesion as compared to the contralateral side. In hippocampal and subcortical areas, such asymmetry was not detected. CONCLUSIONS This study suggests that evaluation of muscarinic receptor availability in dopamine depleted brains using [(123)I]iododexetimide is feasible. We conclude that 6-hydroxydopamine lesions induce a decrease of neocortical muscarinic receptor availability. We hypothesize that this arises from down regulation of muscarinic postsynaptic M1 receptors due to hyperactivation of the cortical cholinergic system in response to dopamine depletion. ADVANCES IN KNOWLEDGE In rats, dopamine depletion provokes a decrease in neocortical muscarinic receptor availability, which is evaluable by [(123)I]iododexetimide imaging. IMPLICATIONS FOR PATIENT CARE This study may further underline the role of a dysregulated muscarinic system in patients with Lewy body disorders.
Collapse
|
12
|
Chen YC, Liao LC, Lu PL, Lo CL, Tsai HC, Huang CY, Wei KC, Yen TC, Hsiue GH. The accumulation of dual pH and temperature responsive micelles in tumors. Biomaterials 2012; 33:4576-88. [DOI: 10.1016/j.biomaterials.2012.02.059] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2012] [Accepted: 02/14/2012] [Indexed: 12/24/2022]
|
13
|
van de Giessen E, de Bruin K, la Fleur SE, van den Brink W, Booij J. Triple monoamine inhibitor tesofensine decreases food intake, body weight, and striatal dopamine D2/D3 receptor availability in diet-induced obese rats. Eur Neuropsychopharmacol 2012; 22:290-9. [PMID: 21889317 DOI: 10.1016/j.euroneuro.2011.07.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Revised: 07/18/2011] [Accepted: 07/22/2011] [Indexed: 11/25/2022]
Abstract
The novel triple monoamine inhibitor tesofensine blocks dopamine, serotonin and norepinephrine re-uptake and is a promising candidate for the treatment of obesity. Obesity is associated with lower striatal dopamine D2 receptor availability, which may be related to disturbed regulation of food intake. This study assesses the effects of chronic tesofensine treatment on food intake and body weight in association with changes in striatal dopamine D2/D3 receptor (D2/3R) availability of diet-induced obese (DIO) rats. Four groups of 15 DIO rats were randomized to one of the following treatments for 28 days: 1. tesofensine (2.0 mg/kg), 2. vehicle, 3. vehicle+restricted diet isocaloric to caloric intake of group 1, and 4. tesofensine (2.0 mg/kg)+ a treatment-free period of 28 days. Caloric intake and weight gain decreased significantly more in the tesofensine-treated rats compared to vehicle-treated rats, which confirms previous findings. After treatment discontinuation, caloric intake and body weight gain gradually increased again. Tesofensine-treated rats showed significantly lower D2/3R availability in nucleus accumbens and dorsal striatum than both vehicle-treated rats and vehicle-treated rats on restricted isocaloric diet. No correlations were observed between food intake or body weight and D2/3R availability. Thus, chronic tesofensine treatment leads to decreased food intake and weight gain. However, this appears not to be directly related to the decreased striatal D2/3R availability, which is mainly a pharmacological effect.
Collapse
Affiliation(s)
- Elsmarieke van de Giessen
- Department of Nuclear Medicine, Academic Medical Center University of Amsterdam, Amsterdam, The Netherlands.
| | | | | | | | | |
Collapse
|
14
|
Crunelle CL, Schulz S, de Bruin K, Miller ML, van den Brink W, Booij J. Dose-dependent and sustained effects of varenicline on dopamine D2/3 receptor availability in rats. Eur Neuropsychopharmacol 2011; 21:205-10. [PMID: 21130610 DOI: 10.1016/j.euroneuro.2010.11.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2010] [Revised: 10/26/2010] [Accepted: 11/03/2010] [Indexed: 10/18/2022]
Abstract
Imaging studies in drug-dependent subjects show reduced striatal dopamine D(2/3) receptor (DRD2/3) availability, and it is hypothesized that increasing DRD2/3 availability is a promising strategy to treat drug dependence. We recently showed that rats treated for two weeks with 2mg/kg/day varenicline (a partial agonist at α4β2 nicotinic acetylcholine receptors) showed higher striatal DRD2/3 availability compared to control rats. The present study examined the effects of lower varenicline doses as well as the duration of the effect after treatment discontinuation. DRD2/3 availability in striatal areas was studied in 80 rats following two-week treatment with 0.5, 1 or 2mg/kg/day varenicline or vehicle and survival of the effects of varenicline on DRD2/3 availability up to 2 weeks after treatment discontinuation using (123)I-IBZM storage phosphor imaging. For all varenicline doses, varenicline treated rats showed a comparable significantly higher DRD2/3 availability in the ventral striatum of approximately 11% compared to control rats, while only the rats treated with 1 and 2mg/kg/day dose showed significantly higher DRD2/3 availability in the dorsal striatum by 12.5% and 13.2% compared to control rats, respectively. Two weeks after discontinuation of the active treatment with 2mg/kg/day varenicline, DRD2/3 binding in ventral, but not dorsal, striatum was still significantly higher (11.7%) compared to vehicle. Varenicline induces dose-dependent and sustained increases in striatal DRD2/3 in rats, particularly in the ventral striatum. These observations suggest that increased DRD2/3 availability may contribute to varenicline's efficacy for smoking cessation and show promise for varenicline as a treatment of other types of drug dependence.
Collapse
Affiliation(s)
- Cleo L Crunelle
- Amsterdam Institute for Addiction Research and Department of Psychiatry, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.
| | | | | | | | | | | |
Collapse
|
15
|
Campian ME, Hardziyenka M, de Bruin K, van Eck-Smit BLF, de Bakker JMT, Verberne HJ, Tan HL. Early inflammatory response during the development of right ventricular heart failure in a rat model. Eur J Heart Fail 2010; 12:653-8. [PMID: 20495202 DOI: 10.1093/eurjhf/hfq066] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
AIMS Inflammatory activation plays an important role in the pathogenesis and progression of left ventricular (LV) heart failure. In right ventricular (RV) heart failure, little is known about the role of inflammatory activation. We aimed to study the role of inflammatory activation in RV heart failure by serial monitoring during disease progression. METHODS AND RESULTS Right ventricular heart failure was induced in male Wistar rats by intraperitoneal injection of monocrotaline (MCT). Two groups were studied: MCT-treated rats (MCT-rats), and age-matched controls (CON-rats). Serial echocardiography and in vivo 67-Gallium ((67)Ga) scintigraphy were performed. Local inflammation in the RV was assessed by (i) ex vivo semi-quantitative (67)Ga autoradiography, (ii) immunohistochemistry of myeloperoxidase (MPO), a marker of neutrophil activity, and (iii) mRNA assays of tumour necrosis factor-alpha (TNF-alpha). In MCT-rats, (67)Ga scintigraphy showed increased myocardial uptake which started during the early stages of RV disease. (67)Ga autoradiography revealed that this increased (67)Ga uptake occurred in the RV and inter-ventricular septum, but not in the LV. The stage-dependent increases of in vivo (67)Ga RV myocardial uptake were paralleled by increases in mRNA gene expression for TNF-alpha in RV, and increased MPO staining in RV. CONCLUSION Development and progression of RV heart failure is associated with an early increase in RV inflammation. (67)Ga scintigraphy may be used for the serial assessment of inflammation and monitoring of disease progression in RV heart failure.
Collapse
Affiliation(s)
- Maria E Campian
- Heart Failure Research Center, Academic Medical Center, University of Amsterdam, Meibergdreef 9, Amsterdam 1105 AZ, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
16
|
Crunelle CL, Miller ML, de Bruin K, van den Brink W, Booij J. Varenicline increases striatal dopamine D(2/3) receptor binding in rats. Addict Biol 2009; 14:500-2. [PMID: 19650815 DOI: 10.1111/j.1369-1600.2009.00168.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Increasing dopamine D(2/3) receptor availability is postulated to be a treatment for drug addiction. Varenicline, an alpha4beta2-nicotinic partial agonist, is effective for nicotine dependence. We hypothesize that varenicline increases dopamine D(2/3) receptor availability. Twenty male drug-naïve rats were randomized to varenicline (2 mg/kg) or placebo for 14 days, and then injected with the dopamine D(2/3) radiotracer 123I-IBZM. We found significantly higher striatum-to-cerebellum binding ratios in both dorsal and ventral striatum for the varenicline group compared with placebo. Varenicline increases dopamine D(2/3) receptor availability in drug-naïve rats. Therefore, varenicline may be an effective treatment for addictions other than smoking.
Collapse
Affiliation(s)
- Cleo L Crunelle
- Amsterdam Institute for Addiction Research and Department of Psychiatry, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | | | | | | | | |
Collapse
|
17
|
Knol RJJ, de Bruin K, van Eck-Smit BLF, Pimlott S, Wyper DJ, Booij J. In vivo [(123)I]CNS-1261 binding to D-serine-activated and MK801-blocked NMDA receptors: A storage phosphor imaging study in rats. Synapse 2009; 63:557-64. [PMID: 19288577 DOI: 10.1002/syn.20629] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Disturbances of activity of the glutamatergic neurotransmitter system in the brain are present in many neuropsychiatric disorders. The N-methyl-D-aspartate (NMDA) receptor is the most abundant receptor of the glutamatergic system. In the neurodegenerative events of Alzheimer's disease, excessive activation of NMDA receptors may contribute to neuronal death. Inhibition of NMDA receptor activation may have neuroprotective effects and (semi)quantitative imaging of the activated system may help in the selection of patients for such inhibition therapies. In this study we evaluated [(123)I]CNS-1261 binding in the rat brain. This radiotracer binds in vivo to the MK801 binding site of activated NMDA receptors. To determine the optimal time point for ex vivo assessments after bolus injection [(123)I]CNS-1261 binding in rats, we performed a time course biodistribution study using dissection techniques. [(123)I]CNS-1261 binding was also studied in the rat brain using autoradiography by means of storage phosphor imaging, with prior facilitation of NMDA receptor activation by injection of the potent coagonist D-serine and after blocking of the NMDA receptor binding site by MK801 injection in D-serine pretreated rats. Measurements of [(123)I]CNS-1261 uptake matched the distribution of similar tracers for the MK801 binding site of the NMDA receptor and revealed an optimal time point of 2 h post injection for the assessment of tracer distribution in the rat brain. The blocking experiments indicated specific binding of [(123)I]CNS-1261 to NMDA receptors but also a considerable amount of nonspecific binding. Facilitation of NMDA receptor activation by D-serine did not result in an enhancement of binding of the radiotracer in the NMDA receptor-rich rat hippocampus compared to the untreated group, as measured by autoradiography. In conclusion, our study has shown that [(123)I]CNS-1261 binding is influenced by NMDA receptor availability. However, high nonspecific binding limits quantification and small changes in receptor availability are unlikely to be detected.
Collapse
Affiliation(s)
- Remco J J Knol
- Department of Nuclear Medicine, University of Amsterdam, Academic Medical Center, Amsterdam, The Netherlands.
| | | | | | | | | | | |
Collapse
|
18
|
Campian ME, Verberne HJ, Hardziyenka M, de Bruin K, Selwaness M, van den Hoff MJ, Ruijter JM, van Eck-Smit BL, de Bakker JM, Tan HL. Serial Noninvasive Assessment of Apoptosis During Right Ventricular Disease Progression in Rats. J Nucl Med 2009; 50:1371-7. [DOI: 10.2967/jnumed.108.061366] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
19
|
Russo P, Lauria A, Mettivier G, Montesi MC, Marotta M, Aloj L, Lastoria S. 18F-FDG positron autoradiography with a particle counting silicon pixel detector. Phys Med Biol 2008; 53:6227-43. [DOI: 10.1088/0031-9155/53/21/022] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|