1
|
Hou F, Yang H, Dong J, Wang X, Wang R, Yu T, Deng Q, Dong M, Crabbe MJC, Wang Z. Light-Induced Electrode Scanning Microscopy. Anal Chem 2025. [PMID: 40232738 DOI: 10.1021/acs.analchem.4c05588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2025]
Abstract
Patch clamps and microelectrode arrays have been widely used to detect the electrical properties of cells in biomedicine. Yet, both technologies can record signals only in an invasive manner or at fixed positions. Based on the resolution (LAPS) and optically induced dielectrophoretic, we present a novel light-induced electrode scanning microscopy. It works like a "radar", scans the whole area with living cells in culture, and detects the electrical signals of single cells on a photosensitive chip. In the system, a light pattern projected onto the chip is used to form the corresponding light-induced electrode, and the electrode scanning mode is implemented by moving the light pattern or the chip position for the measurement of the electrical characteristics of biological cells and cell localizations. It provides a new tool for the detection of cell electrical properties and is expected to become the next generation of electrophysiological detection technology.
Collapse
Affiliation(s)
- Fengyan Hou
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun 130022, China
- Centre for Opto/Bio-Nano Measurement and Manufacturing, Zhongshan Institute of Changchun University of Science and Technology, Zhongshan 528437, China
- Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun 130022, China
| | - Huanzhou Yang
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun 130022, China
- Centre for Opto/Bio-Nano Measurement and Manufacturing, Zhongshan Institute of Changchun University of Science and Technology, Zhongshan 528437, China
- Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun 130022, China
| | - Jianjun Dong
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun 130022, China
- Centre for Opto/Bio-Nano Measurement and Manufacturing, Zhongshan Institute of Changchun University of Science and Technology, Zhongshan 528437, China
- Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun 130022, China
| | - Xia Wang
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun 130022, China
- Centre for Opto/Bio-Nano Measurement and Manufacturing, Zhongshan Institute of Changchun University of Science and Technology, Zhongshan 528437, China
- Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun 130022, China
| | - Rui Wang
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun 130022, China
- Centre for Opto/Bio-Nano Measurement and Manufacturing, Zhongshan Institute of Changchun University of Science and Technology, Zhongshan 528437, China
- Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun 130022, China
| | - Tianzhu Yu
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun 130022, China
- Centre for Opto/Bio-Nano Measurement and Manufacturing, Zhongshan Institute of Changchun University of Science and Technology, Zhongshan 528437, China
- Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun 130022, China
| | - Qiuyang Deng
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun 130022, China
- Centre for Opto/Bio-Nano Measurement and Manufacturing, Zhongshan Institute of Changchun University of Science and Technology, Zhongshan 528437, China
- Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun 130022, China
| | - Mingdong Dong
- Interdisciplinary Nanoscience Center, Aarhus University, Aarhus DK-8000, Denmark
| | - M James C Crabbe
- Wolfson College, University of Oxford, Oxford OX2 6UD, U.K
- iBEST & IRAC, University of Bedfordshire, Luton LU1 3JU, U.K
| | - Zuobin Wang
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun 130022, China
- Centre for Opto/Bio-Nano Measurement and Manufacturing, Zhongshan Institute of Changchun University of Science and Technology, Zhongshan 528437, China
- Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun 130022, China
- iBEST & IRAC, University of Bedfordshire, Luton LU1 3JU, U.K
| |
Collapse
|
2
|
Kale MB, Wankhede NL, Bishoyi AK, Ballal S, Kalia R, Arya R, Kumar S, Khalid M, Gulati M, Umare M, Taksande BG, Upaganlawar AB, Umekar MJ, Kopalli SR, Fareed M, Koppula S. Emerging biophysical techniques for probing synaptic transmission in neurodegenerative disorders. Neuroscience 2025; 565:63-79. [PMID: 39608699 DOI: 10.1016/j.neuroscience.2024.11.055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/07/2024] [Accepted: 11/22/2024] [Indexed: 11/30/2024]
Abstract
Plethora of research has shed light on the critical role of synaptic dysfunction in various neurodegenerative disorders (NDDs), including Alzheimer's disease (AD), Parkinson's disease (PD), Amyotrophic lateral sclerosis (ALS), and Huntington's disease (HD). Synapses, the fundamental units for neural communication in the brain, are highly vulnerable to pathological conditions and are central to the progression of neurological diseases. The presynaptic terminal, a key component of synapses responsible for neurotransmitter release and synaptic communication, undergoes structural and functional alterations in these disorders. Understanding synaptic transmission abnormalities is crucial for unravelling the pathophysiological mechanisms underlying neurodegeneration. In the quest to probe synaptic transmission in NDDs, emerging biophysical techniques play a pivotal role. These advanced methods offer insights into the structural and functional changes occurring at nerve terminals in conditions like AD, PD, HD & ALS. By investigating synaptic plasticity and alterations in neurotransmitter release dynamics, researchers can uncover valuable information about disease progression and potential therapeutic targets. The review articles highlighted provide a comprehensive overview of how synaptic vulnerability and pathology are shared mechanisms across a spectrum of neurological disorders. In major neurodegenerative diseases, synaptic dysfunction is a common thread linking these conditions. The intricate molecular machinery involved in neurotransmitter release, synaptic vesicle dynamics, and presynaptic protein regulation are key areas of focus for understanding synaptic alterations in neurodegenerative diseases.
Collapse
Affiliation(s)
- Mayur B Kale
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra 441002, India
| | - Nitu L Wankhede
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra 441002, India
| | - Ashok Kumar Bishoyi
- Marwadi University Research Center, Department of Microbiology, Faculty of Science, Marwadi University, Rajkot 360003, Gujarat, India
| | - Suhas Ballal
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - Rishiv Kalia
- Centre for Research Impact & Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura 140401, Punjab, India
| | - Renu Arya
- Department of Pharmacy, Chandigarh Pharmacy College, Chandigarh Group of Colleges-Jhanjeri, Mohali 140307, Punjab, India
| | - Sachin Kumar
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, India
| | - Mohammad Khalid
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University Alkharj, Saudi Arabia
| | - Monica Gulati
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 1444411, India; ARCCIM, Faculty of Health, University of Technology Sydney, Ultimo, NSW 20227, Australia
| | - Mohit Umare
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra 441002, India
| | - Brijesh G Taksande
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra 441002, India
| | - Aman B Upaganlawar
- SNJB's Shriman Sureshdada Jain College of Pharmacy, Neminagar, Chandwad, Nashik, Maharashtra, India
| | - Milind J Umekar
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra 441002, India
| | - Spandana Rajendra Kopalli
- Department of Bioscience and Biotechnology, Sejong University, Gwangjin-gu, Seoul 05006, Republic of Korea
| | - Mohammad Fareed
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, P.O. Box- 71666, Riyadh 11597, Saudi Arabia
| | - Sushruta Koppula
- College of Biomedical and Health Sciences, Konkuk University, Chungju-Si, Chungcheongbuk Do 27478, Republic of Korea.
| |
Collapse
|
3
|
Badshah I, Anwar M, Murtaza B, Khan MI. Molecular mechanisms of morphine tolerance and dependence; novel insights and future perspectives. Mol Cell Biochem 2024; 479:1457-1485. [PMID: 37470850 DOI: 10.1007/s11010-023-04810-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 07/06/2023] [Indexed: 07/21/2023]
Abstract
Drug addiction is a devastating condition that poses a serious burden on the society. The use of some drugs like morphine for their tremendous analgesic properties is also accompanied with developing tolerance, dependence and the withdrawal symptoms. These symptoms are frequently severe enough to reinforce the person in recovery to start over the use of drug again and hinder the clinical use of drugs like morphine for chronic pain. Research into opioid receptors and related molecular pathways has seen resurgence in the wake of the growing opioid epidemic. The current study provides a comprehensive scientific exploration of the molecular mechanisms and underlying signalling in morphine tolerance and dependence. It also critically evaluates current therapeutic approaches, shedding light on their efficacy and limitations, and future prospects.
Collapse
Affiliation(s)
- Ismail Badshah
- Riphah Institute of Pharmaceutical Sciences, G-7/4 Campus, Islamabad, Pakistan
| | - Maira Anwar
- Riphah Institute of Pharmaceutical Sciences, G-7/4 Campus, Islamabad, Pakistan
| | - Babar Murtaza
- Riphah Institute of Pharmaceutical Sciences, G-7/4 Campus, Islamabad, Pakistan.
| | - Muhammad Imran Khan
- Department of Biomedical Sciences, Pak Austria Fachhochschule: Institute of Applied Sciences and Technology, Haripur, Khyber Pakhtunkhwa, Pakistan.
| |
Collapse
|
4
|
Mateus JC, Sousa MM, Burrone J, Aguiar P. Beyond a Transmission Cable-New Technologies to Reveal the Richness in Axonal Electrophysiology. J Neurosci 2024; 44:e1446232023. [PMID: 38479812 PMCID: PMC10941245 DOI: 10.1523/jneurosci.1446-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 12/13/2023] [Accepted: 12/14/2023] [Indexed: 03/17/2024] Open
Abstract
The axon is a neuronal structure capable of processing, encoding, and transmitting information. This assessment contrasts with a limiting, but deeply rooted, perspective where the axon functions solely as a transmission cable of somatodendritic activity, sending signals in the form of stereotypical action potentials. This perspective arose, at least partially, because of the technical difficulties in probing axons: their extreme length-to-diameter ratio and intricate growth paths preclude the study of their dynamics through traditional techniques. Recent findings are challenging this view and revealing a much larger repertoire of axonal computations. Axons display complex signaling processes and structure-function relationships, which can be modulated via diverse activity-dependent mechanisms. Additionally, axons can exhibit patterns of activity that are dramatically different from those of their corresponding soma. Not surprisingly, many of these recent discoveries have been driven by novel technology developments, which allow for in vitro axon electrophysiology with unprecedented spatiotemporal resolution and signal-to-noise ratio. In this review, we outline the state-of-the-art in vitro toolset for axonal electrophysiology and summarize the recent discoveries in axon function it has enabled. We also review the increasing repertoire of microtechnologies for controlling axon guidance which, in combination with the available cutting-edge electrophysiology and imaging approaches, have the potential for more controlled and high-throughput in vitro studies. We anticipate that a larger adoption of these new technologies by the neuroscience community will drive a new era of experimental opportunities in the study of axon physiology and consequently, neuronal function.
Collapse
Affiliation(s)
- J C Mateus
- i3S- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
| | - M M Sousa
- i3S- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
| | - J Burrone
- MRC Centre for Neurodevelopmental Disorders, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, United Kingdom
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, United Kingdom
| | - P Aguiar
- i3S- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
| |
Collapse
|
5
|
Rantataro S, Parkkinen I, Airavaara M, Laurila T. Real-time selective detection of dopamine and serotonin at nanomolar concentration from complex in vitro systems. Biosens Bioelectron 2023; 241:115579. [PMID: 37690355 DOI: 10.1016/j.bios.2023.115579] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/30/2023] [Accepted: 08/05/2023] [Indexed: 09/12/2023]
Abstract
Electrochemical sensors provide means for real-time monitoring of neurotransmitter release events, which is a relatively easy process in simple electrolytes. However, this does not apply to in vitro environments. In cell culture media, competitively adsorbing molecules are present at concentrations up to 350 000-fold excess compared to the neurotransmitter-of-interest. Because detection of dopamine and serotonin requires direct adsorption of the analyte to electrode surface, a significant loss of sensitivity occurs when recording is performed in the in vitro environment. Despite these challenges, our single-walled carbon nanotube (SWCNT) sensor was capable of selectively measuring dopamine and serotonin from cell culture medium at nanomolar concentration in real-time. A primary midbrain culture was used to prove excellent biocompatibility of our SWCNT electrodes, which is a necessity for brain-on-a-chip models. Most importantly, our sensor was able to electrochemically record spontaneous transient activity from dopaminergic cell culture without altering the culture conditions, which has not been possible earlier. Drug discovery and development requires high-throughput screening of in vitro models, being hindered by the challenges in non-invasive characterization of complex neuronal models such as organoids. Our neurotransmitter sensors could be used for real-time monitoring of complex neuronal models, providing an alternative tool for their characterization non-invasively.
Collapse
Affiliation(s)
- Samuel Rantataro
- Department of Electrical Engineering and Automation, Aalto University, Maarintie 8, Espoo, 02150, Finland.
| | - Ilmari Parkkinen
- Institute of Biotechnology, HiLife, University of Helsinki, Biocenter 2, Helsinki, 00014, Finland; Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, Viikinkaari, 5E, Helsinki, 00014, Finland
| | - Mikko Airavaara
- Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, Viikinkaari, 5E, Helsinki, 00014, Finland; Neuroscience Center, HiLife, University of Helsinki, Biomedicum 1, Haartmaninkatu 8, Helsinki, 00014, Finland
| | - Tomi Laurila
- Department of Electrical Engineering and Automation, Aalto University, Maarintie 8, Espoo, 02150, Finland; Department of Chemistry and Materials Science, Aalto University, Kemistintie 1, Espoo, 02150, Finland.
| |
Collapse
|
6
|
Li K, Gong H, Qiu J, Li R, Zhao Q, Zhao X, Sun M. Neuron Contact Detection Based on Pipette Precise Positioning for Robotic Brain-Slice Patch Clamps. SENSORS (BASEL, SWITZERLAND) 2023; 23:8144. [PMID: 37836974 PMCID: PMC10575430 DOI: 10.3390/s23198144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/09/2023] [Accepted: 09/20/2023] [Indexed: 10/15/2023]
Abstract
A patch clamp is the "gold standard" method for studying ion-channel biophysics and pharmacology. Due to the complexity of the operation and the heavy reliance on experimenter experience, more and more researchers are focusing on patch-clamp automation. The existing automated patch-clamp system focuses on the process of completing the experiment; the detection method in each step is relatively simple, and the robustness of the complex brain film environment is lacking, which will increase the detection error in the microscopic environment, affecting the success rate of the automated patch clamp. To address these problems, we propose a method that is suitable for the contact between pipette tips and neuronal cells in automated patch-clamp systems. It mainly includes two key steps: precise positioning of pipettes and contact judgment. First, to obtain the precise coordinates of the tip of the pipette, we use the Mixture of Gaussian (MOG) algorithm for motion detection to focus on the tip area under the microscope. We use the object detection model to eliminate the encirclement frame of the pipette tip to reduce the influence of different shaped tips, and then use the sweeping line algorithm to accurately locate the pipette tip. We also use the object detection model to obtain a three-dimensional bounding frame of neuronal cells. When the microscope focuses on the maximum plane of the cell, which is the height in the middle of the enclosing frame, we detect the focus of the tip of the pipette to determine whether the contact between the tip and the cell is successful, because the cell and the pipette will be at the same height at this time. We propose a multitasking network CU-net that can judge the focus of pipette tips in complex contexts. Finally, we design an automated contact sensing process in combination with resistance constraints and apply it to our automated patch-clamp system. The experimental results show that our method can increase the success rate of pipette contact with cells in patch-clamp experiments.
Collapse
Affiliation(s)
- Ke Li
- Institute of Robotics and Automatic Information System, Tianjin Key Laboratory of Intelligent Robotics, Nankai University, Tianjin 300350, China; (K.L.); (H.G.); (J.Q.); (R.L.); (Q.Z.); (X.Z.)
- Institute of Intelligence Technology and Robotic Systems, Shenzhen Research Institute of Nankai University, Shenzhen 518083, China
| | - Huiying Gong
- Institute of Robotics and Automatic Information System, Tianjin Key Laboratory of Intelligent Robotics, Nankai University, Tianjin 300350, China; (K.L.); (H.G.); (J.Q.); (R.L.); (Q.Z.); (X.Z.)
- Institute of Intelligence Technology and Robotic Systems, Shenzhen Research Institute of Nankai University, Shenzhen 518083, China
| | - Jinyu Qiu
- Institute of Robotics and Automatic Information System, Tianjin Key Laboratory of Intelligent Robotics, Nankai University, Tianjin 300350, China; (K.L.); (H.G.); (J.Q.); (R.L.); (Q.Z.); (X.Z.)
- Institute of Intelligence Technology and Robotic Systems, Shenzhen Research Institute of Nankai University, Shenzhen 518083, China
| | - Ruimin Li
- Institute of Robotics and Automatic Information System, Tianjin Key Laboratory of Intelligent Robotics, Nankai University, Tianjin 300350, China; (K.L.); (H.G.); (J.Q.); (R.L.); (Q.Z.); (X.Z.)
- Institute of Intelligence Technology and Robotic Systems, Shenzhen Research Institute of Nankai University, Shenzhen 518083, China
| | - Qili Zhao
- Institute of Robotics and Automatic Information System, Tianjin Key Laboratory of Intelligent Robotics, Nankai University, Tianjin 300350, China; (K.L.); (H.G.); (J.Q.); (R.L.); (Q.Z.); (X.Z.)
- Institute of Intelligence Technology and Robotic Systems, Shenzhen Research Institute of Nankai University, Shenzhen 518083, China
| | - Xin Zhao
- Institute of Robotics and Automatic Information System, Tianjin Key Laboratory of Intelligent Robotics, Nankai University, Tianjin 300350, China; (K.L.); (H.G.); (J.Q.); (R.L.); (Q.Z.); (X.Z.)
- Institute of Intelligence Technology and Robotic Systems, Shenzhen Research Institute of Nankai University, Shenzhen 518083, China
| | - Mingzhu Sun
- Institute of Robotics and Automatic Information System, Tianjin Key Laboratory of Intelligent Robotics, Nankai University, Tianjin 300350, China; (K.L.); (H.G.); (J.Q.); (R.L.); (Q.Z.); (X.Z.)
- Institute of Intelligence Technology and Robotic Systems, Shenzhen Research Institute of Nankai University, Shenzhen 518083, China
| |
Collapse
|
7
|
Reverté J, Alkassar M, Diogène J, Campàs M. Detection of Ciguatoxins and Tetrodotoxins in Seafood with Biosensors and Other Smart Bioanalytical Systems. Foods 2023; 12:foods12102043. [PMID: 37238861 DOI: 10.3390/foods12102043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/15/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
The emergence of marine toxins such as ciguatoxins (CTXs) and tetrodotoxins (TTXs) in non-endemic regions may pose a serious food safety threat and public health concern if proper control measures are not applied. This article provides an overview of the main biorecognition molecules used for the detection of CTXs and TTXs and the different assay configurations and transduction strategies explored in the development of biosensors and other biotechnological tools for these marine toxins. The advantages and limitations of the systems based on cells, receptors, antibodies, and aptamers are described, and new challenges in marine toxin detection are identified. The validation of these smart bioanalytical systems through analysis of samples and comparison with other techniques is also rationally discussed. These tools have already been demonstrated to be useful in the detection and quantification of CTXs and TTXs, and are, therefore, highly promising for their implementation in research activities and monitoring programs.
Collapse
Affiliation(s)
- Jaume Reverté
- Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Ctra. Poble Nou km 5.5, 43540 La Ràpita, Spain
| | - Mounira Alkassar
- Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Ctra. Poble Nou km 5.5, 43540 La Ràpita, Spain
| | - Jorge Diogène
- Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Ctra. Poble Nou km 5.5, 43540 La Ràpita, Spain
| | - Mònica Campàs
- Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Ctra. Poble Nou km 5.5, 43540 La Ràpita, Spain
| |
Collapse
|
8
|
Mintz Hemed N, Melosh NA. An integrated perspective for the diagnosis and therapy of neurodevelopmental disorders - From an engineering point of view. Adv Drug Deliv Rev 2023; 194:114723. [PMID: 36746077 DOI: 10.1016/j.addr.2023.114723] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 12/14/2022] [Accepted: 01/29/2023] [Indexed: 02/05/2023]
Abstract
Neurodevelopmental disorders (NDDs) are complex conditions with largely unknown pathophysiology. While many NDD symptoms are familiar, the cause of these disorders remains unclear and may involve a combination of genetic, biological, psychosocial, and environmental risk factors. Current diagnosis relies heavily on behaviorally defined criteria, which may be biased by the clinical team's professional and cultural expectations, thus a push for new biological-based biomarkers for NDDs diagnosis is underway. Emerging new research technologies offer an unprecedented view into the electrical, chemical, and physiological activity in the brain and with further development in humans may provide clinically relevant diagnoses. These could also be extended to new treatment options, which can start to address the underlying physiological issues. When combined with current speech, language, occupational therapy, and pharmacological treatment these could greatly improve patient outcomes. The current review will discuss the latest technologies that are being used or may be used for NDDs diagnosis and treatment. The aim is to provide an inspiring and forward-looking view for future research in the field.
Collapse
Affiliation(s)
- Nofar Mintz Hemed
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, USA.
| | - Nicholas A Melosh
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
9
|
Embracing lipidomics at single-cell resolution: Promises and pitfalls. Trends Analyt Chem 2023. [DOI: 10.1016/j.trac.2023.116973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
|
10
|
Wang Y, Liu S, Wang H, Zhao Y, Zhang XD. Neuron devices: emerging prospects in neural interfaces and recognition. MICROSYSTEMS & NANOENGINEERING 2022; 8:128. [PMID: 36507057 PMCID: PMC9726942 DOI: 10.1038/s41378-022-00453-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 08/28/2022] [Accepted: 08/30/2022] [Indexed: 06/17/2023]
Abstract
Neuron interface devices can be used to explore the relationships between neuron firing and synaptic transmission, as well as to diagnose and treat neurological disorders, such as epilepsy and Alzheimer's disease. It is crucial to exploit neuron devices with high sensitivity, high biocompatibility, multifunctional integration and high-speed data processing. During the past decades, researchers have made significant progress in neural electrodes, artificial sensory neuron devices, and neuromorphic optic neuron devices. The main part of the review is divided into two sections, providing an overview of recently developed neuron interface devices for recording electrophysiological signals, as well as applications in neuromodulation, simulating the human sensory system, and achieving memory and recognition. We mainly discussed the development, characteristics, functional mechanisms, and applications of neuron devices and elucidated several key points for clinical translation. The present review highlights the advances in neuron devices on brain-computer interfaces and neuroscience research.
Collapse
Affiliation(s)
- Yang Wang
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, 300072 Tianjin, China
| | - Shuangjie Liu
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, 300072 Tianjin, China
| | - Hao Wang
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, 300072 Tianjin, China
| | - Yue Zhao
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, 300072 Tianjin, China
| | - Xiao-Dong Zhang
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, 300072 Tianjin, China
- Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, Institute of Advanced Materials Physics, School of Sciences, Tianjin University, 300350 Tianjin, China
| |
Collapse
|
11
|
Chung WG, Kim E, Song H, Lee J, Lee S, Lim K, Jeong I, Park JU. Recent Advances in Electrophysiological Recording Platforms for Brain and Heart Organoids. ADVANCED NANOBIOMED RESEARCH 2022. [DOI: 10.1002/anbr.202200081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- Won Gi Chung
- Department of Materials Science and Engineering Yonsei University Seoul 03722 Republic of Korea
- Center for Nanomedicine Institute for Basic Science (IBS) Yonsei University Seoul 03722 Republic of Korea
| | - Enji Kim
- Department of Materials Science and Engineering Yonsei University Seoul 03722 Republic of Korea
- Center for Nanomedicine Institute for Basic Science (IBS) Yonsei University Seoul 03722 Republic of Korea
| | - Hayoung Song
- Department of Materials Science and Engineering Yonsei University Seoul 03722 Republic of Korea
- Center for Nanomedicine Institute for Basic Science (IBS) Yonsei University Seoul 03722 Republic of Korea
| | - Jakyoung Lee
- Department of Materials Science and Engineering Yonsei University Seoul 03722 Republic of Korea
- Center for Nanomedicine Institute for Basic Science (IBS) Yonsei University Seoul 03722 Republic of Korea
| | - Sanghoon Lee
- Department of Materials Science and Engineering Yonsei University Seoul 03722 Republic of Korea
- Center for Nanomedicine Institute for Basic Science (IBS) Yonsei University Seoul 03722 Republic of Korea
| | - Kyeonghee Lim
- Department of Materials Science and Engineering Yonsei University Seoul 03722 Republic of Korea
- Center for Nanomedicine Institute for Basic Science (IBS) Yonsei University Seoul 03722 Republic of Korea
| | - Inhea Jeong
- Department of Materials Science and Engineering Yonsei University Seoul 03722 Republic of Korea
- Center for Nanomedicine Institute for Basic Science (IBS) Yonsei University Seoul 03722 Republic of Korea
| | - Jang-Ung Park
- Department of Materials Science and Engineering Yonsei University Seoul 03722 Republic of Korea
- Center for Nanomedicine Institute for Basic Science (IBS) Yonsei University Seoul 03722 Republic of Korea
- KIURI Institute Yonsei University Seoul 03722 Republic of Korea
| |
Collapse
|
12
|
Han M, Yang H, Yu G, Jiang P, You S, Zhang L, Lin H, Liu J, Shu Y. Application of Non-invasive Micro-test Technology (NMT) in environmental fields: A comprehensive review. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 240:113706. [PMID: 35659702 DOI: 10.1016/j.ecoenv.2022.113706] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 05/22/2022] [Accepted: 05/24/2022] [Indexed: 06/15/2023]
Abstract
Non-invasive Micro-test Technology (NMT) is a selective microelectrode technique which can detect the flux rates and three-dimensional motion directions of ions or molecules into and out of living organisms in situ without damaging the sample. It has the advantages of maintaining sample integrity, high temporal and spatial resolution, and being able to measure multiple sites simultaneously. In this paper we provide a comprehensive review on the development of NMT in recent years. Its principles, characteristics, and the differences with other microelectrode techniques are introduced. We discuss the applications of NMT in the field of phytoremediation, plant resistance, water quality monitoring, and toxicity mechanisms of heavy metals on organisms. Furthermore, the challenges and future prospects of NMT in the environmental field are presented.
Collapse
Affiliation(s)
- Mengxuan Han
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, China
| | - Huan Yang
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, China
| | - Guo Yu
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, China.
| | - Pingping Jiang
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, China
| | - Shaohong You
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, China; Technical Innovation Center of Mine Geological Environmental Restoration Engineering in Southern Karst Area, MNR, Guilin, China.
| | - Lei Zhang
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Canada
| | - Hua Lin
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, China
| | - Jie Liu
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, China; Technical Innovation Center of Mine Geological Environmental Restoration Engineering in Southern Karst Area, MNR, Guilin, China
| | - Yi Shu
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, China
| |
Collapse
|
13
|
Xiang Y, Liu H, Yang W, Xu Z, Wu Y, Tang Z, Zhu Z, Zeng Z, Wang D, Wang T, Hu N, Zhang D. A biosensing system employing nanowell microelectrode arrays to record the intracellular potential of a single cardiomyocyte. MICROSYSTEMS & NANOENGINEERING 2022; 8:70. [PMID: 35774495 PMCID: PMC9237042 DOI: 10.1038/s41378-022-00408-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 04/24/2022] [Accepted: 05/22/2022] [Indexed: 06/15/2023]
Abstract
Electrophysiological recording is a widely used method to investigate cardiovascular pathology, pharmacology and developmental biology. Microelectrode arrays record the electrical potential of cells in a minimally invasive and high-throughput way. However, commonly used microelectrode arrays primarily employ planar microelectrodes and cannot work in applications that require a recording of the intracellular action potential of a single cell. In this study, we proposed a novel measuring method that is able to record the intracellular action potential of a single cardiomyocyte by using a nanowell patterned microelectrode array (NWMEA). The NWMEA consists of five nanoscale wells at the center of each circular planar microelectrode. Biphasic pulse electroporation was applied to the NWMEA to penetrate the cardiomyocyte membrane, and the intracellular action potential was continuously recorded. The intracellular potential recording of cardiomyocytes by the NWMEA measured a potential signal with a higher quality (213.76 ± 25.85%), reduced noise root-mean-square (~33%), and higher signal-to-noise ratio (254.36 ± 12.61%) when compared to those of the extracellular recording. Compared to previously reported nanopillar microelectrodes, the NWMEA could ensure single cell electroporation and acquire high-quality action potential of cardiomyocytes with reduced fabrication processes. This NWMEA-based biosensing system is a promising tool to record the intracellular action potential of a single cell to broaden the usage of microelectrode arrays in electrophysiological investigation.
Collapse
Affiliation(s)
- Yuting Xiang
- Department of Obstetrics and Gynecology, Affiliated Dongguan People’s Hospital, Southern Medical University, Dongguan, 523058 China
| | - Haitao Liu
- Research Center for Intelligent Sensing Systems, Zhejiang Laboratory, Hangzhou, 311100 China
- Research Center for Humanoid Sensing, Zhejiang Laboratory, Hangzhou, 311100 China
| | - Wenjian Yang
- Research Center for Intelligent Sensing Systems, Zhejiang Laboratory, Hangzhou, 311100 China
| | - Zhongyuan Xu
- Research Center for Intelligent Sensing Systems, Zhejiang Laboratory, Hangzhou, 311100 China
| | - Yue Wu
- Research Center for Intelligent Sensing Systems, Zhejiang Laboratory, Hangzhou, 311100 China
| | - Zhaojian Tang
- Research Center for Intelligent Sensing Systems, Zhejiang Laboratory, Hangzhou, 311100 China
| | - Zhijing Zhu
- Key Laboratory of Novel Target and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, School of Computer & Computing Science, Zhejiang University City College, Hangzhou, 310015 China
- School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, 310058 China
| | - Zhiyong Zeng
- School of Automation, Nanjing University of Science and Technology, Nanjing, 210094 China
| | - Depeng Wang
- College of Energy and Power Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016 China
| | - Tianxing Wang
- E-LinkCare Meditech Co., Ltd, Hangzhou, 310011 China
| | - Ning Hu
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Department of Chemistry, Zhejiang University, Hangzhou, 310058 China
| | - Diming Zhang
- Research Center for Intelligent Sensing Systems, Zhejiang Laboratory, Hangzhou, 311100 China
| |
Collapse
|
14
|
Cumberland MJ, Riebel LL, Roy A, O’Shea C, Holmes AP, Denning C, Kirchhof P, Rodriguez B, Gehmlich K. Basic Research Approaches to Evaluate Cardiac Arrhythmia in Heart Failure and Beyond. Front Physiol 2022; 13:806366. [PMID: 35197863 PMCID: PMC8859441 DOI: 10.3389/fphys.2022.806366] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 01/10/2022] [Indexed: 12/20/2022] Open
Abstract
Patients with heart failure often develop cardiac arrhythmias. The mechanisms and interrelations linking heart failure and arrhythmias are not fully understood. Historically, research into arrhythmias has been performed on affected individuals or in vivo (animal) models. The latter however is constrained by interspecies variation, demands to reduce animal experiments and cost. Recent developments in in vitro induced pluripotent stem cell technology and in silico modelling have expanded the number of models available for the evaluation of heart failure and arrhythmia. An agnostic approach, combining the modalities discussed here, has the potential to improve our understanding for appraising the pathology and interactions between heart failure and arrhythmia and can provide robust and validated outcomes in a variety of research settings. This review discusses the state of the art models, methodologies and techniques used in the evaluation of heart failure and arrhythmia and will highlight the benefits of using them in combination. Special consideration is paid to assessing the pivotal role calcium handling has in the development of heart failure and arrhythmia.
Collapse
Affiliation(s)
- Max J. Cumberland
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Leto L. Riebel
- Department of Computer Science, University of Oxford, Oxford, United Kingdom
| | - Ashwin Roy
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Christopher O’Shea
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Andrew P. Holmes
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
- Institute of Clinical Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Chris Denning
- Stem Cell Biology Unit, Biodiscovery Institute, British Heart Foundation Centre for Regenerative Medicine, University of Nottingham, Nottingham, United Kingdom
| | - Paulus Kirchhof
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
- University Heart and Vascular Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Blanca Rodriguez
- Department of Computer Science, University of Oxford, Oxford, United Kingdom
| | - Katja Gehmlich
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
- Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford and British Heart Foundation Centre of Research Excellence Oxford, Oxford, United Kingdom
| |
Collapse
|
15
|
Govorunova EG, Sineshchekov OA, Spudich JL. Emerging Diversity of Channelrhodopsins and Their Structure-Function Relationships. Front Cell Neurosci 2022; 15:800313. [PMID: 35140589 PMCID: PMC8818676 DOI: 10.3389/fncel.2021.800313] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 12/28/2021] [Indexed: 12/12/2022] Open
Abstract
Cation and anion channelrhodopsins (CCRs and ACRs, respectively) from phototactic algae have become widely used as genetically encoded molecular tools to control cell membrane potential with light. Recent advances in polynucleotide sequencing, especially in environmental samples, have led to identification of hundreds of channelrhodopsin homologs in many phylogenetic lineages, including non-photosynthetic protists. Only a few CCRs and ACRs have been characterized in detail, but there are indications that ion channel function has evolved within the rhodopsin superfamily by convergent routes. The diversity of channelrhodopsins provides an exceptional platform for the study of structure-function evolution in membrane proteins. Here we review the current state of channelrhodopsin research and outline perspectives for its further development.
Collapse
|
16
|
Ozgun A, Lomboni D, Arnott H, Staines WA, Woulfe J, Variola F. Biomaterial-based strategies for in vitro neural models. Biomater Sci 2022; 10:1134-1165. [PMID: 35023513 DOI: 10.1039/d1bm01361k] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In vitro models have been used as a complementary tool to animal studies in understanding the nervous system's physiological mechanisms and pathological disorders, while also serving as platforms to evaluate the safety and efficiency of therapeutic candidates. Following recent advances in materials science, micro- and nanofabrication techniques and cell culture systems, in vitro technologies have been rapidly gaining the potential to bridge the gap between animal and clinical studies by providing more sophisticated models that recapitulate key aspects of the structure, biochemistry, biomechanics, and functions of human tissues. This was made possible, in large part, by the development of biomaterials that provide cells with physicochemical features that closely mimic the cellular microenvironment of native tissues. Due to the well-known material-driven cellular response and the importance of mimicking the environment of the target tissue, the selection of optimal biomaterials represents an important early step in the design of biomimetic systems to investigate brain structures and functions. This review provides a comprehensive compendium of commonly used biomaterials as well as the different fabrication techniques employed for the design of neural tissue models. Furthermore, the authors discuss the main parameters that need to be considered to develop functional platforms not only for the study of brain physiological functions and pathological processes but also for drug discovery/development and the optimization of biomaterials for neural tissue engineering.
Collapse
Affiliation(s)
- Alp Ozgun
- Department of Mechanical Engineering, Faculty of Engineering, University of Ottawa, Ottawa, Canada. .,Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - David Lomboni
- Department of Mechanical Engineering, Faculty of Engineering, University of Ottawa, Ottawa, Canada. .,Ottawa-Carleton Institute for Biomedical Engineering (OCIBME), Ottawa, Canada
| | - Hallie Arnott
- Department of Mechanical Engineering, Faculty of Engineering, University of Ottawa, Ottawa, Canada. .,Ottawa-Carleton Institute for Biomedical Engineering (OCIBME), Ottawa, Canada
| | - William A Staines
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - John Woulfe
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Canada.,The Ottawa Hospital, Ottawa, Canada
| | - Fabio Variola
- Department of Mechanical Engineering, Faculty of Engineering, University of Ottawa, Ottawa, Canada. .,Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Canada.,Ottawa-Carleton Institute for Biomedical Engineering (OCIBME), Ottawa, Canada.,The Ottawa Hospital, Ottawa, Canada.,Children's Hospital of Eastern Ontario (CHEO), Ottawa, Canada
| |
Collapse
|
17
|
Patch Clamp: The First Four Decades of a Technique That Revolutionized Electrophysiology and Beyond. Rev Physiol Biochem Pharmacol 2022; 186:1-28. [PMID: 35471741 DOI: 10.1007/112_2022_71] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Forty years ago, the introduction of a new electrophysiological technique, the patch clamp, revolutionized the fields of Cellular Physiology and Biophysics, providing for the first time the possibility of describing the behavior of a single protein, an ion-permeable channel of the cell plasma membrane, in its physiological environment. The new approach was actually much more potent and versatile than initially envisaged, and it has evolved into several different modalities that have radically changed our knowledge of how cells (not only the classical "electrically excitable "ones, such as nerves and muscles) use electrical signaling to modulate and organize their activity. This review aims at telling the history of the background from which the new technique evolved and at analyzing some of its more recent developments.
Collapse
|
18
|
Tukker AM, Westerink RHS. Novel test strategies for in vitro seizure liability assessment. Expert Opin Drug Metab Toxicol 2021; 17:923-936. [PMID: 33595380 PMCID: PMC8367052 DOI: 10.1080/17425255.2021.1876026] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 01/11/2021] [Indexed: 12/18/2022]
Abstract
INTRODUCTION The increasing incidence of mental illnesses and neurodegenerative diseases results in a high demand for drugs targeting the central nervous system (CNS). These drugs easily reach the CNS, have a high affinity for CNS targets, and are prone to cause seizures as an adverse drug reaction. Current seizure liability assessment heavily depends on in vivo or ex vivo animal models and is therefore ethically debated, labor intensive, expensive, and not always predictive for human risk. AREAS COVERED The demand for CNS drugs urges the development of alternative safety assessment strategies. Yet, the complexity of the CNS hampers reliable detection of compound-induced seizures. This review provides an overview of the requirements of in vitro seizure liability assays and highlights recent advances, including micro-electrode array (MEA) recordings using rodent and human cell models. EXPERT OPINION Successful and cost-effective replacement of in vivo and ex vivo models for seizure liability screening can reduce animal use for drug development, while increasing the predictive value of the assays, particularly if human cell models are used. However, these novel test strategies require further validation and standardization as well as additional refinements to better mimic the human in vivo situation and increase their predictive value.
Collapse
Affiliation(s)
- Anke M. Tukker
- School of Health Sciences, Purdue University, Hall for Discovery and Learning Research (DLR 339), INUSA
| | - Remco H. S. Westerink
- Neurotoxicology Research Group, Toxicology Division, Institute for Risk Assessment Sciences (IRAS), Faculty of Veterinary Medicine, Utrecht University, TD Utrecht, The Netherlands
| |
Collapse
|
19
|
Miranda C, Howell MR, Lusk JF, Marschall E, Eshima J, Anderson T, Smith BS. Automated microscope-independent fluorescence-guided micropipette. BIOMEDICAL OPTICS EXPRESS 2021; 12:4689-4699. [PMID: 34513218 PMCID: PMC8407805 DOI: 10.1364/boe.431372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/23/2021] [Accepted: 06/24/2021] [Indexed: 06/13/2023]
Abstract
Glass micropipette electrodes are commonly used to provide high resolution recordings of neurons. Although it is the gold standard for single cell recordings, it is highly dependent on the skill of the electrophysiologist. Here, we demonstrate a method of guiding micropipette electrodes to neurons by collecting fluorescence at the aperture, using an intra-electrode tapered optical fiber. The use of a tapered fiber for excitation and collection of fluorescence at the micropipette tip couples the feedback mechanism directly to the distance between the target and electrode. In this study, intra-electrode tapered optical fibers provide a targeted robotic approach to labeled neurons that is independent of microscopy.
Collapse
Affiliation(s)
- Christopher Miranda
- Arizona State University, School of Biological and Health Systems Engineering, Tempe, AZ 85210, USA
| | - Madeleine R. Howell
- Arizona State University, School of Biological and Health Systems Engineering, Tempe, AZ 85210, USA
| | - Joel F. Lusk
- Arizona State University, School of Biological and Health Systems Engineering, Tempe, AZ 85210, USA
| | - Ethan Marschall
- Arizona State University, School of Biological and Health Systems Engineering, Tempe, AZ 85210, USA
| | - Jarrett Eshima
- Arizona State University, School of Biological and Health Systems Engineering, Tempe, AZ 85210, USA
| | - Trent Anderson
- University of Arizona, College of Medicine – Phoenix, Phoenix, AZ 85004, USA
| | - Barbara S. Smith
- Arizona State University, School of Biological and Health Systems Engineering, Tempe, AZ 85210, USA
| |
Collapse
|
20
|
Perszyk RE, Yip MC, McConnell OL, Wang ET, Jenkins A, Traynelis SF, Forest CR. Automated Intracellular Pharmacological Electrophysiology for Ligand-Gated Ionotropic Receptor and Pharmacology Screening. Mol Pharmacol 2021; 100:73-82. [PMID: 33958481 PMCID: PMC8274318 DOI: 10.1124/molpharm.120.000195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 04/08/2021] [Indexed: 11/22/2022] Open
Abstract
Communication between neuronal cells, which is central to brain function, is performed by several classes of ligand-gated ionotropic receptors. The gold-standard technique for measuring rapid receptor response to agonist is manual patch-clamp electrophysiology, capable of the highest temporal resolution of any current electrophysiology technique. We report an automated high-precision patch-clamp system that substantially improves the throughput of these time-consuming pharmacological experiments. The patcherBotPharma enables recording from cells expressing receptors of interest and manipulation of them to enable millisecond solution exchange to activate ligand-gated ionotropic receptors. The solution-handling control allows for autonomous pharmacological concentration-response experimentation on adherent cells, lifted cells, or excised outside-out patches. The system can perform typical ligand-gated ionotropic receptor experimentation protocols autonomously, possessing a high success rate in completing experiments and up to a 10-fold reduction in research effort over the duration of the experiment. Using it, we could rapidly replicate previous data sets, reducing the time it took to produce an eight-point concentration-response curve of the effect of propofol on GABA type A receptor deactivation from likely weeks of recording to ∼13 hours of recording. On average, the rate of data collection of the patcherBotPharma was a data point every 2.1 minutes that the operator spent interacting with the patcherBotPharma The patcherBotPharma provides the ability to conduct complex and comprehensive experimentation that yields data sets not normally within reach of conventional systems that rely on constant human control. This technical advance can contribute to accelerating the examination of the complex function of ion channels and the pharmacological agents that act on them. SIGNIFICANCE STATEMENT: This work presents an automated intracellular pharmacological electrophysiology robot, patcherBotPharma, that substantially improves throughput and reduces human time requirement in pharmacological patch-clamp experiments. The robotic system includes millisecond fluid exchange handling and can perform highly efficient ligand-gated ionotropic receptor experiments. The patcherBotPharma is built using a conventional patch-clamp rig, and the technical advances shown in this work greatly accelerate the ability to conduct high-fidelity pharmacological electrophysiology.
Collapse
Affiliation(s)
- Riley E Perszyk
- George W Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia (R.E.P., M.C.Y., C.R.F.); Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, Georgia (R.E.P., A.J., S.F.T.); Department of Molecular Genetics & Microbiology, Center for Neurogenetics, Genetics Institute, University of Florida, Gainesville, Florida (O.L.M., E.T.W.); and Department of Anesthesiology, Emory University, Atlanta, Georgia (A.J.)
| | - Mighten C Yip
- George W Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia (R.E.P., M.C.Y., C.R.F.); Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, Georgia (R.E.P., A.J., S.F.T.); Department of Molecular Genetics & Microbiology, Center for Neurogenetics, Genetics Institute, University of Florida, Gainesville, Florida (O.L.M., E.T.W.); and Department of Anesthesiology, Emory University, Atlanta, Georgia (A.J.)
| | - Ona L McConnell
- George W Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia (R.E.P., M.C.Y., C.R.F.); Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, Georgia (R.E.P., A.J., S.F.T.); Department of Molecular Genetics & Microbiology, Center for Neurogenetics, Genetics Institute, University of Florida, Gainesville, Florida (O.L.M., E.T.W.); and Department of Anesthesiology, Emory University, Atlanta, Georgia (A.J.)
| | - Eric T Wang
- George W Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia (R.E.P., M.C.Y., C.R.F.); Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, Georgia (R.E.P., A.J., S.F.T.); Department of Molecular Genetics & Microbiology, Center for Neurogenetics, Genetics Institute, University of Florida, Gainesville, Florida (O.L.M., E.T.W.); and Department of Anesthesiology, Emory University, Atlanta, Georgia (A.J.)
| | - Andrew Jenkins
- George W Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia (R.E.P., M.C.Y., C.R.F.); Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, Georgia (R.E.P., A.J., S.F.T.); Department of Molecular Genetics & Microbiology, Center for Neurogenetics, Genetics Institute, University of Florida, Gainesville, Florida (O.L.M., E.T.W.); and Department of Anesthesiology, Emory University, Atlanta, Georgia (A.J.)
| | - Stephen F Traynelis
- George W Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia (R.E.P., M.C.Y., C.R.F.); Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, Georgia (R.E.P., A.J., S.F.T.); Department of Molecular Genetics & Microbiology, Center for Neurogenetics, Genetics Institute, University of Florida, Gainesville, Florida (O.L.M., E.T.W.); and Department of Anesthesiology, Emory University, Atlanta, Georgia (A.J.)
| | - Craig R Forest
- George W Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia (R.E.P., M.C.Y., C.R.F.); Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, Georgia (R.E.P., A.J., S.F.T.); Department of Molecular Genetics & Microbiology, Center for Neurogenetics, Genetics Institute, University of Florida, Gainesville, Florida (O.L.M., E.T.W.); and Department of Anesthesiology, Emory University, Atlanta, Georgia (A.J.)
| |
Collapse
|
21
|
Liang Y, de la Prida LM. Optical and genetic tools for in vivo single cell tracking. J Neurosci Methods 2021; 358:109192. [PMID: 33848560 DOI: 10.1016/j.jneumeth.2021.109192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Yajie Liang
- University of Maryland School of Medicine, 670 W. Baltimore St., Baltimore, MD, 21201, United States.
| | | |
Collapse
|
22
|
Gao J, Liao C, Liu S, Xia T, Jiang G. Nanotechnology: new opportunities for the development of patch-clamps. J Nanobiotechnology 2021; 19:97. [PMID: 33794903 PMCID: PMC8017657 DOI: 10.1186/s12951-021-00841-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 03/23/2021] [Indexed: 12/29/2022] Open
Abstract
The patch-clamp technique is one of the best approaches to investigate neural excitability. Impressive improvements towards the automation of the patch-clamp technique have been made, but obvious limitations and hurdles still exist, such as parallelization, volume displacement in vivo, and long-term recording. Nanotechnologies have provided opportunities to overcome these hurdles by applying electrical devices on the nanoscale. Electrodes based on nanowires, nanotubes, and nanoscale field-effect transistors (FETs) are confirmed to be robust and less invasive tools for intracellular electrophysiological recording. Research on the interface between the nanoelectrode and cell membrane aims to reduce the seal conductance and further improve the recording quality. Many novel recording approaches advance the parallelization, and precision with reduced invasiveness, thus improving the overall intracellular recording system. The combination of nanotechnology and the present intracellular recording framework is a revolutionary and promising orientation, potentially becoming the next generation electrophysiological recording technique and replacing the conventional patch-clamp technique. Here, this paper reviews the recent advances in intracellular electrophysiological recording techniques using nanotechnology, focusing on the design of noninvasive and greatly parallelized recording systems based on nanoelectronics.
Collapse
Affiliation(s)
- Jia Gao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.,College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chunyang Liao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China. .,College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Sijin Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.,College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Tian Xia
- Division of NanoMedicine, Department of Medicine, University of California, Los Angeles, CA, 90095, USA
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.,College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
23
|
Noguchi A, Ikegaya Y, Matsumoto N. In Vivo Whole-Cell Patch-Clamp Methods: Recent Technical Progress and Future Perspectives. SENSORS (BASEL, SWITZERLAND) 2021; 21:1448. [PMID: 33669656 PMCID: PMC7922023 DOI: 10.3390/s21041448] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/12/2021] [Accepted: 02/16/2021] [Indexed: 02/01/2023]
Abstract
Brain functions are fundamental for the survival of organisms, and they are supported by neural circuits consisting of a variety of neurons. To investigate the function of neurons at the single-cell level, researchers often use whole-cell patch-clamp recording techniques. These techniques enable us to record membrane potentials (including action potentials) of individual neurons of not only anesthetized but also actively behaving animals. This whole-cell recording method enables us to reveal how neuronal activities support brain function at the single-cell level. In this review, we introduce previous studies using in vivo patch-clamp recording techniques and recent findings primarily regarding neuronal activities in the hippocampus for behavioral function. We further discuss how we can bridge the gap between electrophysiology and biochemistry.
Collapse
Affiliation(s)
- Asako Noguchi
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan; (A.N.); (Y.I.)
| | - Yuji Ikegaya
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan; (A.N.); (Y.I.)
- Institute for AI and Beyond, The University of Tokyo, Tokyo 113-0033, Japan
- Center for Information and Neural Networks, National Institute of Information and Communications Technology, Suita City, Osaka 565-0871, Japan
| | - Nobuyoshi Matsumoto
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan; (A.N.); (Y.I.)
| |
Collapse
|
24
|
Automatic deep learning-driven label-free image-guided patch clamp system. Nat Commun 2021; 12:936. [PMID: 33568670 PMCID: PMC7875980 DOI: 10.1038/s41467-021-21291-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 01/18/2021] [Indexed: 01/13/2023] Open
Abstract
Patch clamp recording of neurons is a labor-intensive and time-consuming procedure. Here, we demonstrate a tool that fully automatically performs electrophysiological recordings in label-free tissue slices. The automation covers the detection of cells in label-free images, calibration of the micropipette movement, approach to the cell with the pipette, formation of the whole-cell configuration, and recording. The cell detection is based on deep learning. The model is trained on a new image database of neurons in unlabeled brain tissue slices. The pipette tip detection and approaching phase use image analysis techniques for precise movements. High-quality measurements are performed on hundreds of human and rodent neurons. We also demonstrate that further molecular and anatomical analysis can be performed on the recorded cells. The software has a diary module that automatically logs patch clamp events. Our tool can multiply the number of daily measurements to help brain research. Patch clamp recording of neurons is slow and labor-intensive. Here the authors present a method for automated deep learning driven label-free image guided patch clamp physiology to perform measurements on hundreds of human and rodent neurons.
Collapse
|
25
|
Dou Y, Li W, Xia Y, Chen Z, Wu Z, Ge Y, Lin Z, Zhang M, Yang K, Yuan B, Kang Z. Photo-Voltage Transients for Real-Time Analysis of the Interactions between Molecules and Membranes. ACS APPLIED BIO MATERIALS 2020. [DOI: 10.1021/acsabm.0c01180] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Yujiang Dou
- College of Electronics and Information, Soochow University, Suzhou 215006, Jiangsu, China
- Suzhou Weimu Intelligent System Co. Ltd., Suzhou 215163, Jiangsu, China
| | - Wenwen Li
- Center for Soft Condensed Matter Physics and Interdisciplinary Research & School of Physical Science and Technology, Soochow University, Suzhou 215006, Jiangsu, China
| | - Yu Xia
- Center for Soft Condensed Matter Physics and Interdisciplinary Research & School of Physical Science and Technology, Soochow University, Suzhou 215006, Jiangsu, China
| | - Zhonglan Chen
- Center for Soft Condensed Matter Physics and Interdisciplinary Research & School of Physical Science and Technology, Soochow University, Suzhou 215006, Jiangsu, China
| | - Zhenyu Wu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, Jiangsu, China
| | - Yuke Ge
- Center for Soft Condensed Matter Physics and Interdisciplinary Research & School of Physical Science and Technology, Soochow University, Suzhou 215006, Jiangsu, China
| | - Zhao Lin
- Center for Soft Condensed Matter Physics and Interdisciplinary Research & School of Physical Science and Technology, Soochow University, Suzhou 215006, Jiangsu, China
| | - Mengling Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, Jiangsu, China
| | - Kai Yang
- Center for Soft Condensed Matter Physics and Interdisciplinary Research & School of Physical Science and Technology, Soochow University, Suzhou 215006, Jiangsu, China
| | - Bing Yuan
- Center for Soft Condensed Matter Physics and Interdisciplinary Research & School of Physical Science and Technology, Soochow University, Suzhou 215006, Jiangsu, China
| | - Zhenhui Kang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, Jiangsu, China
- Institute of Advanced Materials, Northeast Normal University, 5268 Renmin Street, Changchun 130024, Jilin, China
| |
Collapse
|
26
|
Gao J, Zhang H, Xiong P, Yan X, Liao C, Jiang G. Application of electrophysiological technique in toxicological study: From manual to automated patch-clamp recording. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.116082] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
27
|
Gonçalves PJ, Lueckmann JM, Deistler M, Nonnenmacher M, Öcal K, Bassetto G, Chintaluri C, Podlaski WF, Haddad SA, Vogels TP, Greenberg DS, Macke JH. Training deep neural density estimators to identify mechanistic models of neural dynamics. eLife 2020; 9:e56261. [PMID: 32940606 PMCID: PMC7581433 DOI: 10.7554/elife.56261] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 09/16/2020] [Indexed: 01/27/2023] Open
Abstract
Mechanistic modeling in neuroscience aims to explain observed phenomena in terms of underlying causes. However, determining which model parameters agree with complex and stochastic neural data presents a significant challenge. We address this challenge with a machine learning tool which uses deep neural density estimators-trained using model simulations-to carry out Bayesian inference and retrieve the full space of parameters compatible with raw data or selected data features. Our method is scalable in parameters and data features and can rapidly analyze new data after initial training. We demonstrate the power and flexibility of our approach on receptive fields, ion channels, and Hodgkin-Huxley models. We also characterize the space of circuit configurations giving rise to rhythmic activity in the crustacean stomatogastric ganglion, and use these results to derive hypotheses for underlying compensation mechanisms. Our approach will help close the gap between data-driven and theory-driven models of neural dynamics.
Collapse
Affiliation(s)
- Pedro J Gonçalves
- Computational Neuroengineering, Department of Electrical and Computer Engineering, Technical University of MunichMunichGermany
- Max Planck Research Group Neural Systems Analysis, Center of Advanced European Studies and Research (caesar)BonnGermany
| | - Jan-Matthis Lueckmann
- Computational Neuroengineering, Department of Electrical and Computer Engineering, Technical University of MunichMunichGermany
- Max Planck Research Group Neural Systems Analysis, Center of Advanced European Studies and Research (caesar)BonnGermany
| | - Michael Deistler
- Computational Neuroengineering, Department of Electrical and Computer Engineering, Technical University of MunichMunichGermany
- Machine Learning in Science, Excellence Cluster Machine Learning, Tübingen UniversityTübingenGermany
| | - Marcel Nonnenmacher
- Computational Neuroengineering, Department of Electrical and Computer Engineering, Technical University of MunichMunichGermany
- Max Planck Research Group Neural Systems Analysis, Center of Advanced European Studies and Research (caesar)BonnGermany
- Model-Driven Machine Learning, Institute of Coastal Research, Helmholtz Centre GeesthachtGeesthachtGermany
| | - Kaan Öcal
- Max Planck Research Group Neural Systems Analysis, Center of Advanced European Studies and Research (caesar)BonnGermany
- Mathematical Institute, University of BonnBonnGermany
| | - Giacomo Bassetto
- Computational Neuroengineering, Department of Electrical and Computer Engineering, Technical University of MunichMunichGermany
- Max Planck Research Group Neural Systems Analysis, Center of Advanced European Studies and Research (caesar)BonnGermany
| | - Chaitanya Chintaluri
- Centre for Neural Circuits and Behaviour, University of OxfordOxfordUnited Kingdom
- Institute of Science and Technology AustriaKlosterneuburgAustria
| | - William F Podlaski
- Centre for Neural Circuits and Behaviour, University of OxfordOxfordUnited Kingdom
| | - Sara A Haddad
- Max Planck Institute for Brain ResearchFrankfurtGermany
| | - Tim P Vogels
- Centre for Neural Circuits and Behaviour, University of OxfordOxfordUnited Kingdom
- Institute of Science and Technology AustriaKlosterneuburgAustria
| | - David S Greenberg
- Computational Neuroengineering, Department of Electrical and Computer Engineering, Technical University of MunichMunichGermany
- Model-Driven Machine Learning, Institute of Coastal Research, Helmholtz Centre GeesthachtGeesthachtGermany
| | - Jakob H Macke
- Computational Neuroengineering, Department of Electrical and Computer Engineering, Technical University of MunichMunichGermany
- Max Planck Research Group Neural Systems Analysis, Center of Advanced European Studies and Research (caesar)BonnGermany
- Machine Learning in Science, Excellence Cluster Machine Learning, Tübingen UniversityTübingenGermany
- Max Planck Institute for Intelligent SystemsTübingenGermany
| |
Collapse
|
28
|
Cho Y, Pham Ba VA, Jeong JY, Choi Y, Hong S. Ion-Selective Carbon Nanotube Field-Effect Transistors for Monitoring Drug Effects on Nicotinic Acetylcholine Receptor Activation in Live Cells. SENSORS 2020; 20:s20133680. [PMID: 32630098 PMCID: PMC7374424 DOI: 10.3390/s20133680] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 06/27/2020] [Accepted: 06/29/2020] [Indexed: 12/23/2022]
Abstract
We developed ion-selective field-effect transistor (FET) sensors with floating electrodes for the monitoring of the potassium ion release by the stimulation of nicotinic acetylcholine receptors (nAChRs) on PC12 cells. Here, ion-selective valinomycin-polyvinyl chloride (PVC) membranes were coated on the floating electrode-based carbon nanotube (CNT) FETs to build the sensors. The sensors could selectively measure potassium ions with a minimum detection limit of 1 nM. We utilized the sensor for the real-time monitoring of the potassium ion released from a live cell stimulated by nicotine. Notably, this method also allowed us to quantitatively monitor the cell responses by agonists and antagonists of nAChRs. These results suggest that our ion-selective CNT-FET sensor has potential uses in biological and medical researches such as the monitoring of ion-channel activity and the screening of drugs.
Collapse
Affiliation(s)
- Youngtak Cho
- Department of Physics and Astronomy and Institute of Applied Physics, Seoul National University, Seoul 08826, Korea; (Y.C.); (V.A.P.B.); (J.-Y.J.); (Y.C.)
| | - Viet Anh Pham Ba
- Department of Physics and Astronomy and Institute of Applied Physics, Seoul National University, Seoul 08826, Korea; (Y.C.); (V.A.P.B.); (J.-Y.J.); (Y.C.)
- Department of Environmental Toxicology and Monitoring, Hanoi University of Natural Resources and Environment, Hanoi 11916, Vietnam
| | - Jin-Young Jeong
- Department of Physics and Astronomy and Institute of Applied Physics, Seoul National University, Seoul 08826, Korea; (Y.C.); (V.A.P.B.); (J.-Y.J.); (Y.C.)
| | - Yoonji Choi
- Department of Physics and Astronomy and Institute of Applied Physics, Seoul National University, Seoul 08826, Korea; (Y.C.); (V.A.P.B.); (J.-Y.J.); (Y.C.)
| | - Seunghun Hong
- Department of Physics and Astronomy and Institute of Applied Physics, Seoul National University, Seoul 08826, Korea; (Y.C.); (V.A.P.B.); (J.-Y.J.); (Y.C.)
- Correspondence: ; Tel.: +82-2-880-1343
| |
Collapse
|
29
|
Affiliation(s)
| | - Illana Gozes
- Sackler Faculty of Medicine, The Adams Super Center for Brain Studies and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel.
| |
Collapse
|