1
|
Xiong H, Xue G, Zhang Y, Wu S, Zhao Q, Zhao R, Zhou N, Xie Y. Effect of exogenous galectin-9, a natural TIM-3 ligand, on the severity of TNBS- and DSS-induced colitis in mice. Int Immunopharmacol 2023; 115:109645. [PMID: 36610329 DOI: 10.1016/j.intimp.2022.109645] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 12/20/2022] [Accepted: 12/24/2022] [Indexed: 01/06/2023]
Abstract
Inflammatory bowel disease (IBD) have a complex pathogenesis that is yet to be completely understood. However, a strong correlation between Toll-like receptor 4 (TLR4)/nuclear factor-κB (NF-κB) signaling and IBD has been observed. T-cell immunoglobulin and mucin domain-containing-3 (Tim-3) has been reported to regulate TLR4/NF-κB by interacting with Galectin-9 (Gal-9), and recombinant Gal-9 can activate Tim-3; however, its potential properties in IBD and the underlying mechanism remain unclear. This study aimed to determine how Gal-9 affects experimental colitis in mice. Dextran sodium sulfate (DSS) and 2,4,6-trinitrobenzene sulfonic acid (TNBS) were used to establish colitis in mice, and the severity of the illness was assessed based on body weight, colon length, and histology. Therefore, we explored the effects of Gal-9 treatment on colitis. Furthermore, we analyzed the effect of Gal-9 on the expression of Tim-3 and TLR4/NF-κB pathway in colonic tissues and the serum levels of interferon-gamma (IFN-γ), interleukin (IL)-1β, and IL-6. Tim-3 expression in the colon was notably decreased in mice with TNBS-induced colitis, whereas TLR4/NF-kB expression was significantly increased. Intraperitoneal injection of Gal-9 dramatically decreased the disease activity index and attenuated the level of intestinal mucosal inflammation in TNBS-induced colitis mice (p < 0.05). Intraperitoneal administration of Gal-9 significantly increased Tim-3 expression in the colon and decreased the serum concentrations of IFN-γ, IL-1β, and IL-6. Additionally, Gal-9 treatment significantly downregulated the expression of TLR4 signaling pathway-related proteins. In contrast, Gal-9 did not reduce the severity of DSS-induced colitis. In summary, exogenous Gal-9 increased Tim-3 expression, inhibited the TLR4/NF-κB pathway, and alleviated TNBS-induced colitis in mice but not DSS-induced colitis in mice, revealing its potential therapeutic ramifications for IBD.
Collapse
Affiliation(s)
- Huifang Xiong
- Department of Gastroenterology, Digestive disease Hospital, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China; Gastroenterology Institute of Jiangxi Province, Nanchang, Jiangxi Province 330006, China; Key Laboratory of Digestive Diseases of Jiangxi Province, Nanchang, Jiangxi 330006, China; JiangXi Clinical Research Center for Gastroenterology, Nanchang, Jiangxi 330006, China
| | - Guohui Xue
- Department of Clinical Laboratory, Jiujiang NO.1 People's Hospital, Jiujiang, Jiangxi 332000, China
| | - Yuting Zhang
- Department of Gastroenterology, Digestive disease Hospital, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China; Gastroenterology Institute of Jiangxi Province, Nanchang, Jiangxi Province 330006, China; Key Laboratory of Digestive Diseases of Jiangxi Province, Nanchang, Jiangxi 330006, China; JiangXi Clinical Research Center for Gastroenterology, Nanchang, Jiangxi 330006, China
| | - Shuang Wu
- Department of Gastroenterology, Digestive disease Hospital, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China; Gastroenterology Institute of Jiangxi Province, Nanchang, Jiangxi Province 330006, China; Key Laboratory of Digestive Diseases of Jiangxi Province, Nanchang, Jiangxi 330006, China; JiangXi Clinical Research Center for Gastroenterology, Nanchang, Jiangxi 330006, China
| | - Qiaoyun Zhao
- Department of Gastroenterology, Digestive disease Hospital, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China; Gastroenterology Institute of Jiangxi Province, Nanchang, Jiangxi Province 330006, China; Key Laboratory of Digestive Diseases of Jiangxi Province, Nanchang, Jiangxi 330006, China; JiangXi Clinical Research Center for Gastroenterology, Nanchang, Jiangxi 330006, China
| | - Rulin Zhao
- Department of Gastroenterology, Digestive disease Hospital, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China; Gastroenterology Institute of Jiangxi Province, Nanchang, Jiangxi Province 330006, China; Key Laboratory of Digestive Diseases of Jiangxi Province, Nanchang, Jiangxi 330006, China; JiangXi Clinical Research Center for Gastroenterology, Nanchang, Jiangxi 330006, China
| | - Nanjin Zhou
- Jiangxi Provincial Academy of Medical Science, Nanchang, Jiangxi 330006, China
| | - Yong Xie
- Department of Gastroenterology, Digestive disease Hospital, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China; Gastroenterology Institute of Jiangxi Province, Nanchang, Jiangxi Province 330006, China; Key Laboratory of Digestive Diseases of Jiangxi Province, Nanchang, Jiangxi 330006, China; JiangXi Clinical Research Center for Gastroenterology, Nanchang, Jiangxi 330006, China.
| |
Collapse
|
2
|
Tang TT, Wang B, Li ZL, Wen Y, Feng ST, Wu M, Liu D, Cao JY, Yin Q, Yin D, Fu YQ, Gao YM, Ding ZY, Qian JY, Wu QL, Lv LL, Liu BC. Kim-1 Targeted Extracellular Vesicles: A New Therapeutic Platform for RNAi to Treat AKI. J Am Soc Nephrol 2021; 32:2467-2483. [PMID: 34127536 PMCID: PMC8722800 DOI: 10.1681/asn.2020111561] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 05/07/2021] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND AKI is a significant public health problem with high morbidity and mortality. Unfortunately, no definitive treatment is available for AKI. RNA interference (RNAi) provides a new and potent method for gene therapy to tackle this issue. METHODS We engineered red blood cell-derived extracellular vesicles (REVs) with targeting peptides and therapeutic siRNAs to treat experimental AKI in a mouse model after renal ischemia/reperfusion (I/R) injury and unilateral ureteral obstruction (UUO). Phage display identified peptides that bind to the kidney injury molecule-1 (Kim-1). RNA-sequencing (RNA-seq) characterized the transcriptome of ischemic kidney to explore potential therapeutic targets. RESULTS REVs targeted with Kim-1-binding LTH peptide (REVLTH) efficiently homed to and accumulated at the injured tubules in kidney after I/R injury. We identified transcription factors P65 and Snai1 that drive inflammation and fibrosis as potential therapeutic targets. Taking advantage of the established REVLTH, siRNAs targeting P65 and Snai1 were efficiently delivered to ischemic kidney and consequently blocked the expression of P-p65 and Snai1 in tubules. Moreover, dual suppression of P65 and Snai1 significantly improved I/R- and UUO-induced kidney injury by alleviating tubulointerstitial inflammation and fibrosis, and potently abrogated the transition to CKD. CONCLUSIONS A red blood cell-derived extracellular vesicle platform targeted Kim-1 in acutely injured mouse kidney and delivered siRNAs for transcription factors P65 and Snai1, alleviating inflammation and fibrosis in the tubules.
Collapse
Affiliation(s)
- Tao-Tao Tang
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, China
| | - Bin Wang
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, China
| | - Zuo-Lin Li
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, China
| | - Yi Wen
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, China
| | - Song-Tao Feng
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, China
| | - Min Wu
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, China
| | - Dan Liu
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, China
| | - Jing-Yuan Cao
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, China
| | - Qing Yin
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, China
| | - Di Yin
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, China
| | - Yu-Qi Fu
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, China
| | - Yue-Ming Gao
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, China
| | - Zhao-Ying Ding
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, China
| | - Jing-Yi Qian
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, China
| | - Qiu-Li Wu
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, China
| | - Lin-Li Lv
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, China
| | - Bi-Cheng Liu
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, China
| |
Collapse
|
3
|
Long W, Zhang H, Yuan W, Lan G, Lin Z, Peng L, Dai H. The Role of Regulatory B cells in Kidney Diseases. Front Immunol 2021; 12:683926. [PMID: 34108975 PMCID: PMC8183681 DOI: 10.3389/fimmu.2021.683926] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 05/04/2021] [Indexed: 01/13/2023] Open
Abstract
B cells, commonly regarded as proinflammatory antibody-producing cells, are detrimental to individuals with autoimmune diseases. However, in recent years, several studies have shown that regulatory B (Breg) cells, an immunosuppressive subset of B cells, may exert protective effects against autoimmune diseases by secretion of inhibitory cytokines such as IL-10. In practice, Breg cells are identified by their production of immune-regulatory cytokines, such as IL-10, TGF-β, and IL-35, however, no specific marker or Breg cell-specific transcription factor has been identified. Multiple phenotypes of Breg cells have been found, whose functions vary according to their phenotype. This review summarizes the discovery, phenotypes, development, and function of Breg cells and highlights their potential therapeutic value in kidney diseases.
Collapse
Affiliation(s)
- Wang Long
- Department of Kidney Transplantation, The Second Xiangya Hospital of Central South University, Changsha, China.,Graduate School of Medical and Dental Science, Department of Pathological Cell Biology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hedong Zhang
- Department of Kidney Transplantation, The Second Xiangya Hospital of Central South University, Changsha, China.,Clinical Research Center for Organ Transplantation in Hunan Province, Changsha, China
| | - Wenjia Yuan
- Department of Kidney Transplantation, The Second Xiangya Hospital of Central South University, Changsha, China.,Clinical Research Center for Organ Transplantation in Hunan Province, Changsha, China
| | - Gongbin Lan
- Department of Kidney Transplantation, The Second Xiangya Hospital of Central South University, Changsha, China.,Clinical Research Center for Organ Transplantation in Hunan Province, Changsha, China
| | - Zhi Lin
- Department of Kidney Transplantation, The Second Xiangya Hospital of Central South University, Changsha, China.,Clinical Research Center for Organ Transplantation in Hunan Province, Changsha, China
| | - Longkai Peng
- Department of Kidney Transplantation, The Second Xiangya Hospital of Central South University, Changsha, China.,Clinical Research Center for Organ Transplantation in Hunan Province, Changsha, China.,Clinical Immunology Center, Central South University, Changsha, China
| | - Helong Dai
- Department of Kidney Transplantation, The Second Xiangya Hospital of Central South University, Changsha, China.,Clinical Research Center for Organ Transplantation in Hunan Province, Changsha, China.,Clinical Immunology Center, Central South University, Changsha, China
| |
Collapse
|
4
|
Having an Old Friend for Dinner: The Interplay between Apoptotic Cells and Efferocytes. Cells 2021; 10:cells10051265. [PMID: 34065321 PMCID: PMC8161178 DOI: 10.3390/cells10051265] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/12/2021] [Accepted: 05/17/2021] [Indexed: 02/02/2023] Open
Abstract
Apoptosis, the programmed and intentional death of senescent, damaged, or otherwise superfluous cells, is the natural end-point for most cells within multicellular organisms. Apoptotic cells are not inherently damaging, but if left unattended, they can lyse through secondary necrosis. The resulting release of intracellular contents drives inflammation in the surrounding tissue and can lead to autoimmunity. These negative consequences of secondary necrosis are avoided by efferocytosis—the phagocytic clearance of apoptotic cells. Efferocytosis is a product of both apoptotic cells and efferocyte mechanisms, which cooperate to ensure the rapid and complete removal of apoptotic cells. Herein, we review the processes used by apoptotic cells to ensure their timely removal, and the receptors, signaling, and cellular processes used by efferocytes for efferocytosis, with a focus on the receptors and signaling driving this process.
Collapse
|
5
|
Catalán D, Mansilla MA, Ferrier A, Soto L, Oleinika K, Aguillón JC, Aravena O. Immunosuppressive Mechanisms of Regulatory B Cells. Front Immunol 2021; 12:611795. [PMID: 33995344 PMCID: PMC8118522 DOI: 10.3389/fimmu.2021.611795] [Citation(s) in RCA: 205] [Impact Index Per Article: 51.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 02/19/2021] [Indexed: 12/12/2022] Open
Abstract
Regulatory B cells (Bregs) is a term that encompasses all B cells that act to suppress immune responses. Bregs contribute to the maintenance of tolerance, limiting ongoing immune responses and reestablishing immune homeostasis. The important role of Bregs in restraining the pathology associated with exacerbated inflammatory responses in autoimmunity and graft rejection has been consistently demonstrated, while more recent studies have suggested a role for this population in other immune-related conditions, such as infections, allergy, cancer, and chronic metabolic diseases. Initial studies identified IL-10 as the hallmark of Breg function; nevertheless, the past decade has seen the discovery of other molecules utilized by human and murine B cells to regulate immune responses. This new arsenal includes other anti-inflammatory cytokines such IL-35 and TGF-β, as well as cell surface proteins like CD1d and PD-L1. In this review, we examine the main suppressive mechanisms employed by these novel Breg populations. We also discuss recent evidence that helps to unravel previously unknown aspects of the phenotype, development, activation, and function of IL-10-producing Bregs, incorporating an overview on those questions that remain obscure.
Collapse
Affiliation(s)
- Diego Catalán
- Programa Disciplinario de Inmunología, Facultad de Medicina, Instituto de Ciencias Biomédicas (ICBM), Universidad de Chile, Santiago, Chile.,Instituto Milenio en Inmunología e Inmunoterapia, Santiago, Chile
| | - Miguel Andrés Mansilla
- Programa Disciplinario de Inmunología, Facultad de Medicina, Instituto de Ciencias Biomédicas (ICBM), Universidad de Chile, Santiago, Chile
| | - Ashley Ferrier
- Programa Disciplinario de Inmunología, Facultad de Medicina, Instituto de Ciencias Biomédicas (ICBM), Universidad de Chile, Santiago, Chile.,Instituto Milenio en Inmunología e Inmunoterapia, Santiago, Chile
| | - Lilian Soto
- Programa Disciplinario de Inmunología, Facultad de Medicina, Instituto de Ciencias Biomédicas (ICBM), Universidad de Chile, Santiago, Chile.,Unidad de Dolor, Hospital Clínico, Universidad de Chile (HCUCH), Santiago, Chile
| | | | - Juan Carlos Aguillón
- Programa Disciplinario de Inmunología, Facultad de Medicina, Instituto de Ciencias Biomédicas (ICBM), Universidad de Chile, Santiago, Chile
| | - Octavio Aravena
- Programa Disciplinario de Inmunología, Facultad de Medicina, Instituto de Ciencias Biomédicas (ICBM), Universidad de Chile, Santiago, Chile
| |
Collapse
|
6
|
Rahimi A, Hossein-Nataj H, Hajheydari Z, Aryanian Z, Shayannia A, Ajami A, Asgarian-Omran H. Expression analysis of PD-1 and Tim-3 immune checkpoint receptors in patients with vitiligo; positive association with disease activity. Exp Dermatol 2020; 28:674-681. [PMID: 31046170 DOI: 10.1111/exd.13952] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 04/24/2019] [Indexed: 12/24/2022]
Abstract
The contribution of immune checkpoint receptors in the immunopathogenesis of various autoimmune diseases has been addressed in previous reports. In this study, the expression profile of T-cell immunoglobulin and mucin-domain containing-3 (Tim-3) and programmed cell death-1 (PD-1) checkpoint molecules was investigated in CD8+ T cells of Vitiligo patients. The association of Tim-3 and PD-1 expression with disease activity was also explored. The frequency of Tim-3+ /PD-1+ /CD8+ T cells in 30 patients with vitiligo and 30 sex- and age-matched controls was determined by flow cytometry. CD8+ T cells were then positively isolated by magnetic beads, and the mRNA expression of PD-1 and Tim-3 was determined by TaqMan-based real-time PCR. To measure the cytokines production, PBMCs were stimulated with PMA/ionomycin and concentrations of IL-4, IFN-γ and TNF-α were measured in culture supernatants by ELISA. Disease activity of patients with vitiligo was determined using the Vitiligo Area Severity Index. Patients with vitiligo have significantly shown more expression of Tim-3 and PD-1 on their CD8+ T cells compared with controls. Expression analysis of Tim-3 mRNA, but not PD-1, confirmed the results obtained from flow cytometry. While the production levels of TNF-α and IFN-γ were found higher by patients with vitiligo, IL-4 production was lower in patients compared with controls. A direct association was observed between the Tim-3 and PD-1 expression and also the production of pro-inflammatory cytokines with disease activity of patients with vitiligo. Our results indicate that Tim-3 and PD-1 are involved in immune dysregulation mechanisms of CD8+ T cells in vitiligo and may introduce as potential biomarkers for disease progression and targeted immunotherapy.
Collapse
Affiliation(s)
- Ali Rahimi
- Department of Immunology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Hadi Hossein-Nataj
- Department of Immunology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Zohreh Hajheydari
- Department of Dermatology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Zeinab Aryanian
- Department of Dermatology, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran.,Autoimmune Bullous Diseases Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Asghar Shayannia
- Department of Medical Biotechnology, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Abolghasem Ajami
- Department of Immunology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Hossein Asgarian-Omran
- Department of Immunology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.,Gastrointestinal Cancer Research Center, Mazandaran University of Medical Sciences, Sari, Mazandaran, Iran
| |
Collapse
|
7
|
Sellier Y, Marliot F, Bessières B, Stirnemann J, Encha-Razavi F, Guilleminot T, Haicheur N, Pages F, Ville Y, Leruez-Ville M. Adaptive and Innate Immune Cells in Fetal Human Cytomegalovirus-Infected Brains. Microorganisms 2020; 8:microorganisms8020176. [PMID: 31991822 PMCID: PMC7074756 DOI: 10.3390/microorganisms8020176] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 01/17/2020] [Accepted: 01/20/2020] [Indexed: 12/25/2022] Open
Abstract
Background: The understanding of the pathogenesis of cytomegalovirus (CMV)-induced fetal brain lesions is limited. We aimed to quantify adaptive and innate immune cells and CMV-infected cells in fetal brains with various degrees of brain damage. Methods: In total, 26 archived embedded fetal brains were studied, of which 21 were CMV-infected and classified in severely affected (n = 13) and moderately affected (n = 8), and 5 were uninfected controls. The respective magnitude of infected cells, immune cells (CD8+, B cells, plasma cells, NK cells, and macrophages), and expression of immune checkpoint receptors (PD-1/PD-L1 and LAG-3) were measured by immunochemistry and quantified by quantitative imaging analysis. Results: Quantities of CD8+, plasma cells, NK cells, macrophages, and HCMV+ cells and expression of PD-1/PD-L1 and LAG-3 were significantly higher in severely affected than in moderately affected brains (all p values < 0.05). A strong link between higher number of stained cells for HCMV/CD8 and PD-1 and severity of brain lesions was found by component analysis. Conclusions: The higher expression of CD8, PD-1, and LAG-3 in severely affected brains could reflect immune exhaustion of cerebral T cells. These exhausted T cells could be ineffective in controlling viral multiplication itself, leading to more severe brain lesions. The study of the functionality of brain leucocytes ex vivo is needed to confirm this hypothesis.
Collapse
Affiliation(s)
- Yann Sellier
- Service de Gynécologie-Obstétrique, Hôpital Universitaire Necker-Enfants-malades, AP-HP, 149 rue de Sèvres, 75015 Paris, France; (Y.S.); (J.S.)
- EHU 7328 PACT, 75015 Paris, France;
- Université Paris Descartes, Sorbonne Paris Cité, 75015 Paris, France; (F.M.); (B.B.); (F.E.-R.); (T.G.); (F.P.)
| | - Florence Marliot
- Université Paris Descartes, Sorbonne Paris Cité, 75015 Paris, France; (F.M.); (B.B.); (F.E.-R.); (T.G.); (F.P.)
- INSERM U872, plateforme d’Immuno-monitoring, service d’Immunologie Biologique, Hôpital Européen Georges-Pompidou, AP-HP, 75015 Paris, France;
| | - Bettina Bessières
- Université Paris Descartes, Sorbonne Paris Cité, 75015 Paris, France; (F.M.); (B.B.); (F.E.-R.); (T.G.); (F.P.)
- Service d’histologie-Embryologie-Cytogénétique Hôpital Universitaire Necker-Enfants-malades, AP-HP, 75015 Paris, France
- Institut Imagine, Université Paris Descartes (INSERM U) 1163, 75015 Paris, France
| | - Julien Stirnemann
- Service de Gynécologie-Obstétrique, Hôpital Universitaire Necker-Enfants-malades, AP-HP, 149 rue de Sèvres, 75015 Paris, France; (Y.S.); (J.S.)
- EHU 7328 PACT, 75015 Paris, France;
- Université Paris Descartes, Sorbonne Paris Cité, 75015 Paris, France; (F.M.); (B.B.); (F.E.-R.); (T.G.); (F.P.)
| | - Ferechte Encha-Razavi
- Université Paris Descartes, Sorbonne Paris Cité, 75015 Paris, France; (F.M.); (B.B.); (F.E.-R.); (T.G.); (F.P.)
- Service d’histologie-Embryologie-Cytogénétique Hôpital Universitaire Necker-Enfants-malades, AP-HP, 75015 Paris, France
| | - Tiffany Guilleminot
- Université Paris Descartes, Sorbonne Paris Cité, 75015 Paris, France; (F.M.); (B.B.); (F.E.-R.); (T.G.); (F.P.)
- Service d’histologie-Embryologie-Cytogénétique Hôpital Universitaire Necker-Enfants-malades, AP-HP, 75015 Paris, France
- Laboratoire de Virologie, Hôpital Universitaire Necker-Enfants-malades, AP-HP, Centre National de Référence, laboratoire associé Cytomégalovirus, 75015 Paris, France
| | - Nacilla Haicheur
- INSERM U872, plateforme d’Immuno-monitoring, service d’Immunologie Biologique, Hôpital Européen Georges-Pompidou, AP-HP, 75015 Paris, France;
| | - Franck Pages
- Université Paris Descartes, Sorbonne Paris Cité, 75015 Paris, France; (F.M.); (B.B.); (F.E.-R.); (T.G.); (F.P.)
- INSERM U872, plateforme d’Immuno-monitoring, service d’Immunologie Biologique, Hôpital Européen Georges-Pompidou, AP-HP, 75015 Paris, France;
| | - Yves Ville
- Service de Gynécologie-Obstétrique, Hôpital Universitaire Necker-Enfants-malades, AP-HP, 149 rue de Sèvres, 75015 Paris, France; (Y.S.); (J.S.)
- EHU 7328 PACT, 75015 Paris, France;
- Université Paris Descartes, Sorbonne Paris Cité, 75015 Paris, France; (F.M.); (B.B.); (F.E.-R.); (T.G.); (F.P.)
- Correspondence: ; Tel.: +33-1-44-49-63-32
| | - Marianne Leruez-Ville
- EHU 7328 PACT, 75015 Paris, France;
- Université Paris Descartes, Sorbonne Paris Cité, 75015 Paris, France; (F.M.); (B.B.); (F.E.-R.); (T.G.); (F.P.)
- Laboratoire de Virologie, Hôpital Universitaire Necker-Enfants-malades, AP-HP, Centre National de Référence, laboratoire associé Cytomégalovirus, 75015 Paris, France
| |
Collapse
|
8
|
Ahmad SF, Nadeem A, Ansari MA, Bakheet SA, Alshammari MA, Attia SM. The PPARδ agonist GW0742 restores neuroimmune function by regulating Tim-3 and Th17/Treg-related signaling in the BTBR autistic mouse model. Neurochem Int 2018; 120:251-261. [DOI: 10.1016/j.neuint.2018.09.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 09/06/2018] [Accepted: 09/12/2018] [Indexed: 12/12/2022]
|
9
|
Postconditioning-induced neuroprotection, mechanisms and applications in cerebral ischemia. Neurochem Int 2017; 107:43-56. [DOI: 10.1016/j.neuint.2017.01.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 01/04/2017] [Accepted: 01/08/2017] [Indexed: 02/07/2023]
|
10
|
Ocaña-Guzman R, Torre-Bouscoulet L, Sada-Ovalle I. TIM-3 Regulates Distinct Functions in Macrophages. Front Immunol 2016; 7:229. [PMID: 27379093 PMCID: PMC4904032 DOI: 10.3389/fimmu.2016.00229] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 05/26/2016] [Indexed: 12/28/2022] Open
Abstract
The transmembrane protein TIM-3 is a type I protein expressed by sub-types of lymphoid cells, such as lymphocytes Th1, Th17, Tc1, NK, as well as in myeloid cells. Scientific evidence indicates that this molecule acts as a negative regulator of T lymphocyte activation and that its expression is modified in viral infections or autoimmune diseases. In addition to evidence from lymphoid cells, the function of TIM-3 has been investigated in myeloid cells, such as monocytes, macrophages, and dendritic cells (DC), where studies have demonstrated that it can regulate cytokine production, cell activation, and the capture of apoptotic bodies. Despite these advances, the function of TIM-3 in myeloid cells and the molecular mechanisms that this protein regulates are not yet fully understood. This review examines the most recent evidence concerning the function of TIM-3 when expressed in myeloid cells, primarily macrophages, and the potential impact of that function on the field of basic immunology.
Collapse
Affiliation(s)
- Ranferi Ocaña-Guzman
- Laboratorio de Inmunología Integrativa, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosío Villegas”, México City, México
| | - Luis Torre-Bouscoulet
- Departamento de Fisiología Respiratoria, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosío Villegas”, México City, México
| | - Isabel Sada-Ovalle
- Laboratorio de Inmunología Integrativa, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosío Villegas”, México City, México
| |
Collapse
|
11
|
T-cell immunoglobulin domain and mucin domain 3 polymorphism affects cytokine expression in different cells and is associated with increased susceptibility to knee osteoarthritis. Gene 2015; 566:32-6. [DOI: 10.1016/j.gene.2015.04.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2015] [Revised: 03/24/2015] [Accepted: 04/08/2015] [Indexed: 01/06/2023]
|
12
|
Wei D, Xiong X, Zhao H. Tim-3 cell signaling and iNOS are involved in the protective effects of ischemic postconditioning against focal ischemia in rats. Metab Brain Dis 2015; 30:483-90. [PMID: 24771108 PMCID: PMC4213319 DOI: 10.1007/s11011-014-9543-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Accepted: 04/04/2014] [Indexed: 11/28/2022]
Abstract
The protective effect of ischemic postconditioning (IPostC) against stroke has been well-established, and the underlying mechanisms are known to involve inhibited-inflammation and free radical production. Nevertheless, how IPostC affects protein expression of iNOS, nitrotyrosine, and COX-2 has not been characterized. In addition, the role of the galectin-9/Tim-3 cell signaling pathway--a novel inflammatory pathway--in IPostC has not been studied. We examined whether iNOS, nitrotyrosine, and COX-2, as well as galectin-9/Tim-3 are involved in the protective effects of IpostC in a rat focal ischemia model. Western blot and confocal immunofluoresent staining results indicate that IPostC significantly inhibited Tim-3 expression, and that galectin-9 expression was also inhibited. In addition, IPostC attenuated production of iNOS and nitrotyrosine, but not COX-2, suggesting that IPostC has distinct effects on these inflammatory factors. Furthermore, the inflammation inhibitor minocycline blocked Tim-3 and iNOS expression induced by stroke. Taken together, we show that the galectin-9/Tim-3 cell signaling pathway is involved in inflammation induced by stroke, and IPostC may reduce infarction by attenuating this novel pathway as well as the inflammatory factors iNOS and nitrotyrosine, but not COX-2.
Collapse
Affiliation(s)
- Dingtai Wei
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA
- Stroke Center, Stanford University School of Medicine, Stanford, CA, USA
- Department of Radiology, Fujian Medical University Ningde Hospital, China
| | - Xiaoxing Xiong
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA
- Stroke Center, Stanford University School of Medicine, Stanford, CA, USA
| | - Heng Zhao
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA
- Stroke Center, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
13
|
Patel MA, Kim JE, Ruzevick J, Lim M. Present and future of immune checkpoint blockade: Monotherapy to adjuvant approaches. World J Immunol 2015; 5:1-15. [DOI: 10.5411/wji.v5.i1.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 10/23/2014] [Accepted: 11/19/2014] [Indexed: 02/05/2023] Open
Abstract
Immune regulation of aggressive tumor growth is often outpaced by tumor up-regulation of ligands that inhibit effector immune responses through the activation of immune checkpoints. A few of such checkpoints include programmed death-1 (PD-1), cytotoxic T lymphocyte associated antigen-4 (CTLA-4), lymphocyte activation gene-3, T-cell immunoglobulin and mucin protein-3, Glucocorticoid-induced TNFR family-related receptor (GITR), and killer cell immunoglobulin like receptor. With the exception of GITR, after binding to their respective ligands these checkpoints induce down-modulation of immune responses to prevent autoimmunity. However, such immune mechanisms are co-opted by tumors to allow rapid tumor cell proliferation. Pre-clinical studies in antibody blockade of PD-1 and CTLA-4 have led to promising augmentation of effector immune responses in murine tumor models, and human antibodies against PD-1 and CTLA-4 alone or in combination have demonstrated tumor regression in clinical trials. The development of immune checkpoint blockade as a potential future immunotherapy has led to increasing interest in combining treatment modalities. Combination checkpoint blockade with chemotherapy and radiation therapy has shown synergistic effects in pre-clinical and clinical studies, and combination checkpoint blockade with bacterial vaccine vectors have produced increased effector immune responses in pre-clinical models. The future of immune checkpoint blockade may be as a powerful adjuvant alongside the current standard of care.
Collapse
|
14
|
Xiao S, Brooks CR, Sobel RA, Kuchroo VK. Tim-1 is essential for induction and maintenance of IL-10 in regulatory B cells and their regulation of tissue inflammation. THE JOURNAL OF IMMUNOLOGY 2015; 194:1602-8. [PMID: 25582854 DOI: 10.4049/jimmunol.1402632] [Citation(s) in RCA: 106] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
T cell Ig and mucin domain (Tim)-1 identifies IL-10-producing regulatory B cells (Bregs). Mice on the C57BL/6 background harboring a loss-of-function Tim-1 mutant showed progressive loss of IL-10 production in B cells and with age developed severe multiorgan tissue inflammation. We demonstrate that Tim-1 expression and signaling in Bregs are required for optimal production of IL-10. B cells with Tim-1 defects have impaired IL-10 production but increased proinflammatory cytokine production, including IL-1 and IL-6. Tim-1-deficient B cells promote Th1 and Th17 responses but inhibit the generation of regulatory T cells (Foxp3(+) and IL-10-producing type 1 regulatory T cells) and enhance the severity of experimental autoimmune encephalomyelitis. Mechanistically, Tim-1 on Bregs is required for apoptotic cell (AC) binding to Bregs and for AC-induced IL-10 production in Bregs. Treatment with ACs reduces the severity of experimental autoimmune encephalomyelitis in hosts with wild-type but not Tim-1-deficient Bregs. Collectively, these findings suggest that in addition to serving as a marker for identifying IL-10-producing Bregs, Tim-1 is also critical for maintaining self-tolerance by regulating IL-10 production in Bregs.
Collapse
Affiliation(s)
- Sheng Xiao
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115;
| | - Craig R Brooks
- Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115
| | - Raymond A Sobel
- Veterans Affairs Palo Alto Health Care System, Palo Alto, CA 94304; and Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305
| | - Vijay K Kuchroo
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115;
| |
Collapse
|
15
|
Wang HW, Zhu XL, Qin LM, Qian HJ, Wang Y. Microglia activity modulated by T cell Ig and mucin domain protein 3 (Tim-3). Cell Immunol 2014; 293:49-58. [PMID: 25557503 DOI: 10.1016/j.cellimm.2014.12.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 12/16/2014] [Accepted: 12/17/2014] [Indexed: 12/27/2022]
Abstract
Microglia are the main innate immune cells in the central nervous system that are actively involved in maintaining brain homeostasis and diseases. T cell Ig and mucin domain protein 3 (Tim-3) plays critical roles in both the adaptive and the innate immune system and is an emerging therapeutic target for treatment of various disorders. In the brain Tim-3 is specifically expressed on microglia but its functional role is unclear. Here, we showed that Tim-3 was up-regulated on microglia by ATP or LPS stimulation. Tim-3 activation with antibodies increased microglia expression of TGF-β, TNF-α and IL-1β. Blocking of Tim-3 with antibodies decreased the microglial phagocytosis of apoptotic neurons. Tim-3 blocking alleviated the detrimental effect of microglia on neurons and promoted NG2 cell differentiation in co-cultures. Finally, MAPKs namely ERK1/2 and JNK proteins were phosphorylated upon Tim-3 activation in microglia. Data indicated that Tim-3 modulates microglia activity and regulates the interaction of microglia-neural cells.
Collapse
Affiliation(s)
- Hong-wei Wang
- Department of Neurobiology, Key Laboratory of Medical Neurobiology of Ministry of Health, Zhejiang Province Key Laboratory of Neurobiology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, PR China; Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310016, PR China
| | - Xin-li Zhu
- Department of Neurobiology, Key Laboratory of Medical Neurobiology of Ministry of Health, Zhejiang Province Key Laboratory of Neurobiology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, PR China; The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, PR China
| | - Li-ming Qin
- Department of Neurobiology, Key Laboratory of Medical Neurobiology of Ministry of Health, Zhejiang Province Key Laboratory of Neurobiology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, PR China
| | - Hai-jun Qian
- Department of Neurobiology, Key Laboratory of Medical Neurobiology of Ministry of Health, Zhejiang Province Key Laboratory of Neurobiology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, PR China
| | - Yiner Wang
- Department of Neurobiology, Key Laboratory of Medical Neurobiology of Ministry of Health, Zhejiang Province Key Laboratory of Neurobiology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, PR China.
| |
Collapse
|
16
|
Construction and characterization of bifunctional TIM-3-EGFP fusion proteins. Protein Expr Purif 2012; 86:1-6. [PMID: 22940503 DOI: 10.1016/j.pep.2012.08.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Revised: 08/05/2012] [Accepted: 08/06/2012] [Indexed: 11/20/2022]
Abstract
T cell immunoglobulin mucin-3 (TIM-3) is the first surface molecule to be found that specifically identifies Th1 cells in both mice and humans, and it negatively regulates Th1 responses. TIM-3 protein is a type I membrane protein. Overexpression of membrane proteins is a major problem to overcome in studies of membrane protein structure and function. In this study, a fusion between the gene encoding human TIM-3 and EGFP was successfully constructed and expressed in Escherichia coli. To our knowledge, this is the first time that human TIM-3 has been overexpressed in E. coli. We showed that the TIM-3-EGFP fusion protein mediates the recognition and binding of apoptotic cells. Furthermore, we demonstrated that the interactions of TIM-3-EGFP with apoptotic cells were blocked by TIM-3-Ig fusion proteins. Taken together, these results suggest that the human TIM-3 protein may act as a receptor for apoptotic cells.
Collapse
|
17
|
Wei D, Ren C, Chen X, Zhao H. The chronic protective effects of limb remote preconditioning and the underlying mechanisms involved in inflammatory factors in rat stroke. PLoS One 2012; 7:e30892. [PMID: 22347410 PMCID: PMC3275571 DOI: 10.1371/journal.pone.0030892] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2011] [Accepted: 12/23/2011] [Indexed: 11/19/2022] Open
Abstract
We recently demonstrated that limb remote preconditioning (LRP) protects against focal ischemia measured 2 days post-stroke. Here, we studied whether LRP provides long-term protection and improves neurological function. We also investigated whether LRP transmits its protective signaling via the afferent nerve pathways from the preconditioned limb to the ischemic brain and whether inflammatory factors are involved in LRP, including the novel galectin-9/Tim-3 inflammatory cell signaling pathway, which induces cell death in lymphocytes. LRP in the left hind femoral artery was performed immediately before stroke. LRP reduced brain injury size both at 2 days and 60 days post-stroke and improved behavioral outcomes for up to 2 months. The sensory nerve inhibitors capsaicin and hexamethonium, a ganglion blocker, abolished the protective effects of LRP. In addition, LRP inhibited edema formation and blood-brain barrier (BBB) permeability measured 2 days post-stroke. Western blot and immunostaining analysis showed that LRP inhibited protein expression of both galectin-9 and T-cell immunoglobulin domain and mucin domain 3 (Tim-3), which were increased after stroke. In addition, LRP decreased iNOS and nitrotyrosine protein expression after stroke. In conclusion, LRP executes long-term protective effects against stroke and may block brain injury by inhibiting activities of the galectin-9/Tim-3 pathway, iNOS, and nitrotyrosine.
Collapse
Affiliation(s)
- Dingtai Wei
- Department of Neurosurgery, Stanford University, Stanford, California, United States of America
- Stroke Center, Stanford University, Stanford, California, United States of America
- Department of Radiology, Tianjin Medical University General Hospital, Tianjin, China
- Department of Radiology, Fujian Medical University Ningde Hospital, Fujian, China
| | - Chuancheng Ren
- Department of Neurosurgery, Stanford University, Stanford, California, United States of America
- Stroke Center, Stanford University, Stanford, California, United States of America
- Shanghai No.5 Hospital, Fudan University, Shanghai, China
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, Maryland, United States of America
| | - Heng Zhao
- Department of Neurosurgery, Stanford University, Stanford, California, United States of America
- Stroke Center, Stanford University, Stanford, California, United States of America
- * E-mail:
| |
Collapse
|
18
|
Xiao S, Zhu B, Jin H, Zhu C, Umetsu DT, DeKruyff RH, Kuchroo VK. Tim-1 stimulation of dendritic cells regulates the balance between effector and regulatory T cells. Eur J Immunol 2011; 41:1539-49. [PMID: 21469101 PMCID: PMC3129006 DOI: 10.1002/eji.201040993] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2010] [Revised: 01/17/2011] [Accepted: 03/11/2011] [Indexed: 12/25/2022]
Abstract
We show that the T-cell immunoglobalin mucin, Tim-1, initially reported to be expressed on CD4(+) T cells, is constitutively expressed on dendritic cells (DCs) and that its expression further increases after DC maturation. Tim-1 signaling into DCs upregulates costimulatory molecule expression and proinflammatory cytokine production, thereby promoting effector T-cell responses, while inhibiting Foxp3(+) Treg responses. By contrast, Tim-1 signaling in T cells only regulates Th2 responses. Using a high-avidity/agonistic anti-Tim-1 antibody as a co-adjuvant enhances the immunogenic function of DCs, decreases the suppressive function of Tregs, and substantially increases proinflammatory Th17 responses in vivo. The treatment with high- but not low-avidity anti-Tim-1 not only worsens experimental autoimmune encephalomyelitis (EAE) in susceptible mice but also breaks tolerance and induces EAE in a genetically resistant strain of mice. These findings indicate that Tim-1 has an important role in regulating DC function and thus shifts the balance between effector and regulatory T cells towards an enhanced immune response. By understanding the mechanisms by which Tim-1 regulates DC and T-cell responses, we may clarify the potential utility of Tim-1 as a target of therapy against autoimmunity, cancer, and infectious diseases.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/metabolism
- Cells, Cultured
- Dendritic Cells/immunology
- Dendritic Cells/metabolism
- Dendritic Cells/pathology
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Forkhead Transcription Factors/genetics
- Forkhead Transcription Factors/metabolism
- Hepatitis A Virus Cellular Receptor 1
- Immunization
- Interleukin-17/genetics
- Interleukin-17/metabolism
- Lymphocyte Activation
- Membrane Proteins/immunology
- Membrane Proteins/metabolism
- Mice
- Mice, Transgenic
- Myelin Proteolipid Protein/immunology
- Peptide Fragments/immunology
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Signal Transduction/immunology
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/metabolism
- T-Lymphocyte Subsets/pathology
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/metabolism
- T-Lymphocytes, Regulatory/pathology
- Th1-Th2 Balance
Collapse
Affiliation(s)
- Sheng Xiao
- Center for Neurologic Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Bing Zhu
- Center for Neurologic Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Hulin Jin
- Center for Neurologic Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Chen Zhu
- Center for Neurologic Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Dale T. Umetsu
- Division of Immunology, Children’s Hospital Boston, Harvard Medical School, Boston, MA 02115, USA
| | - Rosemarie H. DeKruyff
- Division of Immunology, Children’s Hospital Boston, Harvard Medical School, Boston, MA 02115, USA
| | - Vijay K. Kuchroo
- Center for Neurologic Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
19
|
Cui MF, Gao YF, Lv F, Li N, Zhang ZH, Li X, Su F. Association between polymorphisms of the T cell immunoglobulin musin-3 gene and outcome of hepatitis B virus infection. Shijie Huaren Xiaohua Zazhi 2011; 19:1506-1510. [DOI: 10.11569/wcjd.v19.i14.1506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the relationship between single nucleotide polymorphisms (SNPs) of the T cell immunoglobulin musin-3 (Tim-3) gene and outcome of hepatitis B virus (HBV) infection in a Chinese Han population.
METHODS: Two tagSNPs of the Tim-3 gene (rs11741184 and rs13170556) were genotyped using the SNaPshot method in 996 patients with chronic HBV infection group and 301 patients with acute self-limiting HBV infection. The genotypes, allele frequencies and haplotypes of the two Tim-3 tagSNPs were compared between the two groups of patients.
RESULTS: The frequencies of CC, CG and GG genotypes at the rs11741184 locus were 84.39% (254/301), 15.28% (46/301) and 0.3% (1/301) in patients with acute self-limiting HBV infection, and 86.04% (857/996), 13.65% (136/996) and 0.3% (3/996) in patients with chronic HBV infection, respectively. There were no statistical differences in the genotype frequencies at the rs11741184 locus between the two groups of patients (all P > 0.05). The frequencies of AA, GA and GG genotypes at the rs13170556 locus were 68.77% (207/301), 28.57% (6/301) and 2.66% (8/301) in patients with acute self-limiting HBV infection, and 68.07% (678/996), 28.41% (283/996) and 3.51% (35/996) in patients with chronic HBV infection, respectively. There were also no statistical differences in the genotype frequencies at the rs13170556 locus between the two groups of patients (all P > 0.05). Three haplotypes for Tim-3 tagSNPs (C-A, C-G, G-A) were found in the Chinese Han population, and their haplotype frequencies were similar between patients with acute self-limiting HBV infection (75.08%, 16.94%, 7.97%) and those with chronic HBV infection (75.08% vs 75.15%, 16.94% vs 17.72%, 7.97% vs 7.13%, all P > 0.05).
CONCLUSION: The two Tim-3 tagSNPs may not be associated with outcome of HBV infection in Chinese Han population.
Collapse
|
20
|
Wang Y, Yang P, Li B, Zhou H, Huang X, Wang Y, Chi W, Zhu X, Zhu L, Kijlstra A. Expression of Tim-3 Is Transiently Increased before Development of Anterior Chamber-Associated Immune Deviation. Ocul Immunol Inflamm 2009; 14:151-6. [PMID: 16766398 DOI: 10.1080/09273940600693640] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
PURPOSE To assess the expression of T-cell immunoglobulin- and mucin-domain-containing molecule 3 (Tim-3) in the spleens of BALB/c mice undergoing anterior chamber-associated immune deviation (ACAID). METHODS ACAID was generated after intracameral (i.c.) injection of ovalbumin (OVA) into BALB/c mice and evaluated by assessing the delayed-type hypersensitivity (DTH) response following a subsequent subcutaneous (s.c.) injection of OVA emulsified in complete Freund's adjuvant (CFA) on Days 0, 3, 7, 14, 21 and 28. Tim-3 mRNA levels were detected using real-time RT-PCR, and the frequency of CD4+Tim-3+ T cells in splenocytes as well as the coexpression of Tim-3 with CD25 on CD4+ T cells were assessed by flow cytometry. RESULTS A significantly suppressed DTH response was observed on Days 7, 14, 21, and 28, but not on Days 0 and 3 during the development of ACAID. The levels of Tim-3 mRNA and the frequency of CD4+CD25+Tim-3+ T cells in the splenocytes reached a peak on Day 3, declined on Day 7, and returned to basal levels thereafter. CONCLUSIONS A transient upregulation of Tim-3 expression was observed in the early stage of ACAID, suggesting its possible involvement in the development of ACAID.
Collapse
Affiliation(s)
- Yuqin Wang
- Uveitis Study Center, Key Laboratory of Ophthalmology, (Sun Yat-sen University), Ministry of Education, Zhongshan Ophthalmic Center, Guangzhou, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Abstract
There is a need for new biomarkers to enable faster detection of adverse events due to drugs and disease processes. One would prefer biomarkers that are useful in multiple species (i.e., translational or bridging biomarkers) so that it would be possible to directly link responses between species and follow such injury in both preclinical and clinical settings. This chapter will explore some of the issues surrounding the use of pharmacogenomics to identify and qualify such biomarkers, and examples will be provided.
Collapse
Affiliation(s)
- Donna L Mendrick
- Department of Toxicogenomics, Gene Logic Inc., Gaithersburg, Maryland, USA
| |
Collapse
|
22
|
Anderson AC, Anderson DE, Bregoli L, Hastings WD, Kassam N, Lei C, Chandwaskar R, Karman J, Su EW, Hirashima M, Bruce JN, Kane LP, Kuchroo VK, Hafler DA. Promotion of tissue inflammation by the immune receptor Tim-3 expressed on innate immune cells. Science 2007; 318:1141-3. [PMID: 18006747 DOI: 10.1126/science.1148536] [Citation(s) in RCA: 570] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
CD4+ T helper 1 (TH1) cells are important mediators of inflammation and are regulated by numerous pathways, including the negative immune receptor Tim-3. We found that Tim-3 is constitutively expressed on cells of the innate immune system in both mice and humans, and that it can synergize with Toll-like receptors. Moreover, an antibody agonist of Tim-3 acted as an adjuvant during induced immune responses, and Tim-3 ligation induced distinct signaling events in T cells and dendritic cells; the latter finding could explain the apparent divergent functions of Tim-3 in these cell types. Thus, by virtue of differential expression on innate versus adaptive immune cells, Tim-3 can either promote or terminate TH1 immunity and may be able to influence a range of inflammatory conditions.
Collapse
Affiliation(s)
- Ana C Anderson
- Division of Molecular Immunology, Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Miyanishi M, Tada K, Koike M, Uchiyama Y, Kitamura T, Nagata S. Identification of Tim4 as a phosphatidylserine receptor. Nature 2007; 450:435-9. [PMID: 17960135 DOI: 10.1038/nature06307] [Citation(s) in RCA: 905] [Impact Index Per Article: 50.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2007] [Accepted: 09/26/2007] [Indexed: 11/09/2022]
Abstract
In programmed cell death, a large number of cells undergo apoptosis, and are engulfed by macrophages to avoid the release of noxious materials from the dying cells. In definitive erythropoiesis, nuclei are expelled from erythroid precursor cells and are engulfed by macrophages. Phosphatidylserine is exposed on the surface of apoptotic cells and on the nuclei expelled from erythroid precursor cells; it works as an 'eat me' signal for phagocytes. Phosphatidylserine is also expressed on the surface of exosomes involved in intercellular signalling. Here we established a library of hamster monoclonal antibodies against mouse peritoneal macrophages, and found an antibody that strongly inhibited the phosphatidylserine-dependent engulfment of apoptotic cells. The antigen recognized by the antibody was identified by expression cloning as a type I transmembrane protein called Tim4 (T-cell immunoglobulin- and mucin-domain-containing molecule; also known as Timd4). Tim4 was expressed in Mac1+ cells in various mouse tissues, including spleen, lymph nodes and fetal liver. Tim4 bound apoptotic cells by recognizing phosphatidylserine via its immunoglobulin domain. The expression of Tim4 in fibroblasts enhanced their ability to engulf apoptotic cells. When the anti-Tim4 monoclonal antibody was administered into mice, the engulfment of apoptotic cells by thymic macrophages was significantly blocked, and the mice developed autoantibodies. Among the other Tim family members, Tim1, but neither Tim2 nor Tim3, specifically bound phosphatidylserine. Tim1- or Tim4-expressing Ba/F3 B cells were bound by exosomes via phosphatidylserine, and exosomes stimulated the interaction between Tim1 and Tim4. These results indicate that Tim4 and Tim1 are phosphatidylserine receptors for the engulfment of apoptotic cells, and may also be involved in intercellular signalling in which exosomes are involved.
Collapse
Affiliation(s)
- Masanori Miyanishi
- Department of Medical Chemistry, Graduate School of Medicine, Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
| | | | | | | | | | | |
Collapse
|
24
|
Mann F, Chauvet S, Rougon G. Semaphorins in development and adult brain: Implication for neurological diseases. Prog Neurobiol 2007; 82:57-79. [PMID: 17537564 DOI: 10.1016/j.pneurobio.2007.02.011] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2006] [Revised: 01/18/2007] [Accepted: 02/26/2007] [Indexed: 01/17/2023]
Abstract
As a group, Semaphorins are expressed in most tissues and this distribution varies considerably with age. Semaphorins are dynamically expressed during embryonic development and their expression is often associated with growing axons. This expression decreases with maturity and several observations support the idea that in adult brain the expression of secreted Semaphorins is sensitive to electrical activity and experience. The functional role of Semaphorins in guiding axonal projections is well established and more recent evidence points to additional roles in the development, function and reorganization of synaptic complexes. Semaphorins exert the majority of their effects by binding to cognate receptor proteins through their extracellular domains. A common theme is that Semaphorin-triggered signalling induces the rearrangement of the actin and microtubule cytoskeleton. Mutations in Semaphorin genes are linked to several human diseases associated with neurological changes, but their actual influence in the pathogenesis of these diseases remains to be demonstrated. In addition, Semaphorins and their receptors are likely to mediate cross-talk between neurons and other cell types, including in pathological situations where their influence can be damaging or favourable depending on the context. We discuss how the manipulation of Semaphorin function might be crucial for future clinical studies.
Collapse
Affiliation(s)
- Fanny Mann
- CNRS UMR 6216, Université de la Méditerranée, Developmental Biology Institute of Marseille Luminy, Case 907, Parc Scientifique de Luminy, 13288 Marseille Cedex 09, France
| | | | | |
Collapse
|
25
|
Tham E, Gielen AW, Khademi M, Martin C, Piehl F. Decreased Expression of VEGF-A in Rat Experimental Autoimmune Encephalomyelitis and in Cerebrospinal Fluid Mononuclear Cells from Patients with Multiple Sclerosis. Scand J Immunol 2006; 64:609-22. [PMID: 17083617 DOI: 10.1111/j.1365-3083.2006.01851.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Vascular endothelial growth factor A (VEGF-A) stimulates angiogenesis, but is also pro-inflammatory and plays an important role in the development of neurological disease, where it can have both attenuating and exacerbating effects. VEGF-B, a related molecule, is highly expressed in the central nervous system and seems to be important in neurological injury. A few studies have indicated that VEGF-A may play a role in the pathogenesis of multiple sclerosis (MS), but the role of VEGF-B has not been studied. We have studied the expression of VEGF-A, -B and their receptors by mRNA in situ hybridization, immunohistochemistry and real-time PCR in spinal cord from LEW rats with experimental autoimmune encephalomyelitis (EAE) and in cerebrospinal fluid (CSF) and blood samples from MS patients. Whereas VEGF-A is downregulated in glia in EAE, the infiltrating inflammatory cells are positive for VEGF-A. Expression of VEGF-B and the VEGF receptors is unaltered. In addition, the levels of VEGF-A mRNA in mononuclear cells [corrected] in CSF are lower in MS patients compared with controls. These results demonstrate a complex regulation of VEGF-A during neuroinflammation and suggest that VEGF-B is not involved in the pathogenesis of MS.
Collapse
MESH Headings
- Adolescent
- Adult
- Alternative Splicing
- Animals
- Cerebrospinal Fluid/cytology
- Down-Regulation
- Encephalomyelitis, Autoimmune, Experimental/genetics
- Encephalomyelitis, Autoimmune, Experimental/metabolism
- Encephalomyelitis, Autoimmune, Experimental/pathology
- Female
- Humans
- Leukocytes, Mononuclear/chemistry
- Leukocytes, Mononuclear/metabolism
- Male
- Middle Aged
- Multiple Sclerosis/genetics
- Multiple Sclerosis/metabolism
- Multiple Sclerosis/pathology
- Neuroglia/chemistry
- Neuroglia/metabolism
- Neuroglia/pathology
- Neurons/chemistry
- Neurons/metabolism
- Neurons/pathology
- RNA, Messenger/analysis
- RNA, Messenger/metabolism
- Rats
- Rats, Inbred Lew
- Spinal Cord/metabolism
- Spinal Cord/pathology
- Vascular Endothelial Growth Factor A/analysis
- Vascular Endothelial Growth Factor A/genetics
- Vascular Endothelial Growth Factor A/metabolism
- Vascular Endothelial Growth Factor B/analysis
- Vascular Endothelial Growth Factor B/genetics
- Vascular Endothelial Growth Factor B/metabolism
- Vascular Endothelial Growth Factor Receptor-1/analysis
- Vascular Endothelial Growth Factor Receptor-1/genetics
- Vascular Endothelial Growth Factor Receptor-1/metabolism
Collapse
Affiliation(s)
- E Tham
- Department of Molecular Medicine and Surgery, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden.
| | | | | | | | | |
Collapse
|
26
|
Wiener Z, Kohalmi B, Pocza P, Jeager J, Tolgyesi G, Toth S, Gorbe E, Papp Z, Falus A. TIM-3 is expressed in melanoma cells and is upregulated in TGF-beta stimulated mast cells. J Invest Dermatol 2006; 127:906-14. [PMID: 17096021 DOI: 10.1038/sj.jid.5700616] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Many studies detect elevated numbers of mast cells in tumors, but it is still controversial whether they are beneficial or detrimental for tumor cells. Furthermore, many tumors, such as melanomas, produce large quantities of transforming growth factor (TGF)-beta and during tumorigenesis the apoptotic and growth-inhibitory effects of TGF-betas are lost. Based on these data we investigated the gene expression changes in TGF-betaI-treated human mast cells with DNA microarray and detected 45 differentially regulated genes, among them T-cell immunoglobulin and mucin domain-containing protein 3 (TIM-3). As the major sources of TIM-3 ligand galectin-9 are not tumor cells, but rather mast cells, this raises the possibility of an autocrine mechanism resulting in local immunosuppression through the elevated TIM-3 expression by TGF-betaI. Interestingly, not only melanoma tissue sections contained TIM-3-positive mast cells, but we detected this protein also in melanoma cells. Furthermore, TIM-3 was expressed in both WM35 and HT168-M1 melanoma cell lines at a higher level than in isolated epidermal melanocytes, which can contribute to the lower adhering capacity of tumor cells. In conclusion, the immunoregulatory molecule TIM-3 in TGF-beta-stimulated mast cells and melanoma cells may support the survival of this tumor type.
Collapse
Affiliation(s)
- Zoltan Wiener
- Department of Genetics, Cell and Immunobiology, Semmelweis University, Budapest, Hungary
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
van de Weyer PS, Muehlfeit M, Klose C, Bonventre JV, Walz G, Kuehn EW. A highly conserved tyrosine of Tim-3 is phosphorylated upon stimulation by its ligand galectin-9. Biochem Biophys Res Commun 2006; 351:571-6. [PMID: 17069754 DOI: 10.1016/j.bbrc.2006.10.079] [Citation(s) in RCA: 157] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2006] [Accepted: 10/17/2006] [Indexed: 02/07/2023]
Abstract
Tim-3 is a member of the TIM family of proteins (T-cell immunoglobulin mucin) involved in the regulation of CD4+ T-cells. Tim-3 is a T(H)1-specific type 1 membrane protein and regulates T(H)1 proliferation and the development of tolerance. Binding of galectin-9 to the extracellular domain of Tim-3 results in apoptosis of T(H)1 cells, but the intracellular pathways involved in the regulatory function of Tim-3 are unknown. Unlike Tim-1, which is expressed in renal epithelia and cancer, Tim-3 has not been described in cells other than neuronal or T-cells. Using RT-PCR we demonstrate that Tim-3 is expressed in malignant and non-malignant epithelial tissues. We have cloned Tim-3 from an immortalized liver cell carcinoma line and identified a highly conserved tyrosine in the intracellular tail of Tim-3 (Y265). We demonstrate that Y265 is specifically phosphorylated in vivo by the interleukin inducible T cell kinase (ITK), a kinase which is located in close proximity of the TIM genes on the allergy susceptibility locus 5q33.3. Stimulation of Tim-3 by its ligand galectin-9 results in increased phosphorylation of Y265, suggesting that this tyrosine residue plays an important role in downstream signalling events regulating T-cell fate. Given the role of TIM proteins in autoimmunity and cancer, the conserved SH2 binding domain surrounding Y265 could represent a possible target site for pharmacological intervention.
Collapse
|
28
|
Modulating the function of T cell immunoglobulin mucin cell surface proteins for therapeutic immunoregulation. Expert Opin Ther Pat 2006. [DOI: 10.1517/13543776.16.7.1017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
29
|
Chen Y, Langrish CL, Mckenzie B, Joyce-Shaikh B, Stumhofer JS, McClanahan T, Blumenschein W, Churakovsa T, Low J, Presta L, Hunter CA, Kastelein RA, Cua DJ. Anti-IL-23 therapy inhibits multiple inflammatory pathways and ameliorates autoimmune encephalomyelitis. J Clin Invest 2006; 116:1317-26. [PMID: 16670771 PMCID: PMC1450386 DOI: 10.1172/jci25308] [Citation(s) in RCA: 447] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2005] [Accepted: 01/17/2006] [Indexed: 12/18/2022] Open
Abstract
IL-23 is a member of the IL-12 cytokine family that drives a highly pathogenic T cell population involved in the initiation of autoimmune diseases. We have shown that IL-23-dependent, pathogenic T cells produced IL-17 A, IL-17 F, IL-6, and TNF but not IFN-gamma or IL-4. We now show that T-bet and STAT1 transcription factors are not required for the initial production of IL-17. However, optimal IL-17 production in response to IL-23 stimulation appears to require the presence of T-bet. To explore the clinical efficacy of targeting the IL-23 immune pathway, we generated anti-IL-23p19-specific antibodies and tested to determine whether blocking IL-23 function can inhibit EAE, a preclinical animal model of human multiple sclerosis. Anti-IL-23p19 treatment reduced the serum level of IL-17 as well as CNS expression of IFN-gamma, IP-10, IL-17, IL-6, and TNF mRNA. In addition, therapeutic treatment with anti-IL-23p19 during active disease inhibited proteolipid protein (PLP) epitope spreading and prevented subsequent disease relapse. Thus, therapeutic targeting of IL-23 effectively inhibited multiple inflammatory pathways that are critical for driving CNS autoimmune inflammation.
Collapse
Affiliation(s)
- Yi Chen
- Discovery Research, Schering-Plough Biopharma, Palo Alto, California, USA.
Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
Experimental Pathology and Pharmacology and
Protein Engineering, Schering-Plough Biopharma, Palo Alto, California, USA
| | - Claire L. Langrish
- Discovery Research, Schering-Plough Biopharma, Palo Alto, California, USA.
Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
Experimental Pathology and Pharmacology and
Protein Engineering, Schering-Plough Biopharma, Palo Alto, California, USA
| | - Brent Mckenzie
- Discovery Research, Schering-Plough Biopharma, Palo Alto, California, USA.
Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
Experimental Pathology and Pharmacology and
Protein Engineering, Schering-Plough Biopharma, Palo Alto, California, USA
| | - Barbara Joyce-Shaikh
- Discovery Research, Schering-Plough Biopharma, Palo Alto, California, USA.
Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
Experimental Pathology and Pharmacology and
Protein Engineering, Schering-Plough Biopharma, Palo Alto, California, USA
| | - Jason S. Stumhofer
- Discovery Research, Schering-Plough Biopharma, Palo Alto, California, USA.
Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
Experimental Pathology and Pharmacology and
Protein Engineering, Schering-Plough Biopharma, Palo Alto, California, USA
| | - Terrill McClanahan
- Discovery Research, Schering-Plough Biopharma, Palo Alto, California, USA.
Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
Experimental Pathology and Pharmacology and
Protein Engineering, Schering-Plough Biopharma, Palo Alto, California, USA
| | - Wendy Blumenschein
- Discovery Research, Schering-Plough Biopharma, Palo Alto, California, USA.
Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
Experimental Pathology and Pharmacology and
Protein Engineering, Schering-Plough Biopharma, Palo Alto, California, USA
| | - Tatyana Churakovsa
- Discovery Research, Schering-Plough Biopharma, Palo Alto, California, USA.
Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
Experimental Pathology and Pharmacology and
Protein Engineering, Schering-Plough Biopharma, Palo Alto, California, USA
| | - Justin Low
- Discovery Research, Schering-Plough Biopharma, Palo Alto, California, USA.
Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
Experimental Pathology and Pharmacology and
Protein Engineering, Schering-Plough Biopharma, Palo Alto, California, USA
| | - Leonard Presta
- Discovery Research, Schering-Plough Biopharma, Palo Alto, California, USA.
Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
Experimental Pathology and Pharmacology and
Protein Engineering, Schering-Plough Biopharma, Palo Alto, California, USA
| | - Christopher A. Hunter
- Discovery Research, Schering-Plough Biopharma, Palo Alto, California, USA.
Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
Experimental Pathology and Pharmacology and
Protein Engineering, Schering-Plough Biopharma, Palo Alto, California, USA
| | - Robert A. Kastelein
- Discovery Research, Schering-Plough Biopharma, Palo Alto, California, USA.
Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
Experimental Pathology and Pharmacology and
Protein Engineering, Schering-Plough Biopharma, Palo Alto, California, USA
| | - Daniel J. Cua
- Discovery Research, Schering-Plough Biopharma, Palo Alto, California, USA.
Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
Experimental Pathology and Pharmacology and
Protein Engineering, Schering-Plough Biopharma, Palo Alto, California, USA
| |
Collapse
|