1
|
Wang S, Zhou S, Han Z, Yu B, Xu Y, Lin Y, Chen Y, Jin Z, Li Y, Cao Q, Xu Y, Zhang Q, Wang YC. From gut to brain: understanding the role of microbiota in inflammatory bowel disease. Front Immunol 2024; 15:1384270. [PMID: 38576620 PMCID: PMC10991805 DOI: 10.3389/fimmu.2024.1384270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 03/12/2024] [Indexed: 04/06/2024] Open
Abstract
With the proposal of the "biological-psychological-social" model, clinical decision-makers and researchers have paid more attention to the bidirectional interactive effects between psychological factors and diseases. The brain-gut-microbiota axis, as an important pathway for communication between the brain and the gut, plays an important role in the occurrence and development of inflammatory bowel disease. This article reviews the mechanism by which psychological disorders mediate inflammatory bowel disease by affecting the brain-gut-microbiota axis. Research progress on inflammatory bowel disease causing "comorbidities of mind and body" through the microbiota-gut-brain axis is also described. In addition, to meet the needs of individualized treatment, this article describes some nontraditional and easily overlooked treatment strategies that have led to new ideas for "psychosomatic treatment".
Collapse
Affiliation(s)
- Siyu Wang
- Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
- Department of Gastroenterology, The First Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Shuwei Zhou
- Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
- Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology, Department of Radiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Zhongyu Han
- Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Bin Yu
- Department of Gastroenterology, The First Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Yin Xu
- Department of Gastroenterology, The First Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Yumeng Lin
- Eye School of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yutong Chen
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zi Jin
- Department of Anesthesiology and Pain Rehabilitation, Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai, China
| | - Yalong Li
- Anorectal Department, The Third Affiliated Hospital of Yunnan University of Chinese Medicine, Kunming, China
| | - Qinhan Cao
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine (TCM), Chengdu, China
| | - Yunying Xu
- Clinical Medical School, Affiliated Hospital of Chengdu University, Chengdu, China
| | - Qiang Zhang
- Department of Gastroenterology, The First Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Yuan-Cheng Wang
- Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
- Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology, Department of Radiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| |
Collapse
|
2
|
Belei O, Basaca DG, Olariu L, Pantea M, Bozgan D, Nanu A, Sîrbu I, Mărginean O, Enătescu I. The Interaction between Stress and Inflammatory Bowel Disease in Pediatric and Adult Patients. J Clin Med 2024; 13:1361. [PMID: 38592680 PMCID: PMC10932475 DOI: 10.3390/jcm13051361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 02/23/2024] [Accepted: 02/25/2024] [Indexed: 04/10/2024] Open
Abstract
Background: Inflammatory bowel diseases (IBDs) have seen an exponential increase in incidence, particularly among pediatric patients. Psychological stress is a significant risk factor influencing the disease course. This review assesses the interaction between stress and disease progression, focusing on articles that quantified inflammatory markers in IBD patients exposed to varying degrees of psychological stress. Methods: A systematic narrative literature review was conducted, focusing on the interaction between IBD and stress among adult and pediatric patients, as well as animal subjects. The research involved searching PubMed, Scopus, Medline, and Cochrane Library databases from 2000 to December 2023. Results: The interplay between the intestinal immunity response, the nervous system, and psychological disorders, known as the gut-brain axis, plays a major role in IBD pathophysiology. Various types of stressors alter gut mucosal integrity through different pathways, increasing gut mucosa permeability and promoting bacterial translocation. A denser microbial load in the gut wall emphasizes cytokine production, worsening the disease course. The risk of developing depression and anxiety is higher in IBD patients compared with the general population, and stress is a significant trigger for inducing acute flares of the disease. Conclusions: Further large studies should be conducted to assess the relationship between stressors, psychological disorders, and their impact on the course of IBD. Clinicians involved in the medical care of IBD patients should aim to implement stress reduction practices in addition to pharmacological therapies.
Collapse
Affiliation(s)
- Oana Belei
- First Pediatric Clinic, Disturbances of Growth and Development on Children Research Center, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timișoara, Romania; (O.B.); (O.M.)
- Department of Pediatrics, First Pediatric Clinic, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timișoara, Romania;
| | - Diana-Georgiana Basaca
- First Pediatric Clinic, Disturbances of Growth and Development on Children Research Center, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timișoara, Romania; (O.B.); (O.M.)
- Department of Pediatrics, First Pediatric Clinic, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timișoara, Romania;
| | - Laura Olariu
- Department of Pediatrics, First Pediatric Clinic, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timișoara, Romania;
| | - Manuela Pantea
- Twelfth Department, Neonatology Clinic, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timișoara, Romania; (M.P.); (I.E.)
| | - Daiana Bozgan
- Clinic of Neonatology, “Pius Brânzeu” County Emergency Clinical Hospital, 300723 Timișoara, Romania;
| | - Anda Nanu
- Third Pediatric Clinic, “Louis Țurcanu” Emergency Children Hospital, 300011 Timișoara, Romania; (A.N.); (I.S.)
| | - Iuliana Sîrbu
- Third Pediatric Clinic, “Louis Țurcanu” Emergency Children Hospital, 300011 Timișoara, Romania; (A.N.); (I.S.)
| | - Otilia Mărginean
- First Pediatric Clinic, Disturbances of Growth and Development on Children Research Center, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timișoara, Romania; (O.B.); (O.M.)
- Department of Pediatrics, First Pediatric Clinic, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timișoara, Romania;
| | - Ileana Enătescu
- Twelfth Department, Neonatology Clinic, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timișoara, Romania; (M.P.); (I.E.)
| |
Collapse
|
3
|
Liu X, Li Y, Gu M, Xu T, Wang C, Chang P. Radiation enteropathy-related depression: A neglectable course of disease by gut bacterial dysbiosis. Cancer Med 2024; 13:e6865. [PMID: 38457257 PMCID: PMC10923036 DOI: 10.1002/cam4.6865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 12/08/2023] [Accepted: 12/12/2023] [Indexed: 03/10/2024] Open
Abstract
Radiation enteropathy (RE) is common in patients treated with radiotherapy for pelvic-abdominal cancers. Accumulating data indicate that gut commensal bacteria determine intestinal radiosensitivity. Radiotherapy can result in gut bacterial dysbiosis. Gut bacterial dysbiosis contributes to the pathogenesis of RE. Mild to moderate depressive symptoms can be observed in patients with RE in clinical settings; however, the rate of these symptoms has not been reported. Studies have demonstrated that gut bacterial dysbiosis induces depression. In the state of comorbidity, RE and depression may be understood as local and abscopal manifestations of gut bacterial disorders. The ability of comorbid depression to worsen inflammatory bowel disease (IBD) has long been demonstrated and is associated with dysfunction of cholinergic neural anti-inflammatory pathways. There is a lack of direct evidence for RE comorbid with depression. It is widely accepted that RE shares similar pathophysiologic mechanisms with IBD. Therefore, we may be able to draw on the findings of the relationship between IBD and depression. This review will explore the relationship between gut bacteria, RE, and depression in light of the available evidence and indicate a method for investigating the mechanisms of RE combined with depression. We will also describe new developments in the treatment of RE with probiotics, prebiotics, and fecal microbial transplantation.
Collapse
Affiliation(s)
- Xinliang Liu
- Department of Radiation Oncology and TherapyThe First Hospital of Jilin UniversityChangchunChina
| | - Ying Li
- Department of Radiation Oncology and TherapyThe First Hospital of Jilin UniversityChangchunChina
| | - Meichen Gu
- Department of Radiation Oncology and TherapyThe First Hospital of Jilin UniversityChangchunChina
| | - Tiankai Xu
- Department of Radiation Oncology and TherapyThe First Hospital of Jilin UniversityChangchunChina
| | - Chuanlei Wang
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery CenterThe First Hospital of Jilin UniversityChangchunChina
| | - Pengyu Chang
- Department of Radiation Oncology and TherapyThe First Hospital of Jilin UniversityChangchunChina
| |
Collapse
|
4
|
Doney E, Dion-Albert L, Coulombe-Rozon F, Osborne N, Bernatchez R, Paton SE, Kaufmann FN, Agomma RO, Solano JL, Gaumond R, Dudek KA, Szyszkowicz JK, Lebel M, Doyen A, Durand A, Lavoie-Cardinal F, Audet MC, Menard C. Chronic Stress Exposure Alters the Gut Barrier: Sex-Specific Effects on Microbiota and Jejunum Tight Junctions. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2024; 4:213-228. [PMID: 38306213 PMCID: PMC10829561 DOI: 10.1016/j.bpsgos.2023.04.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 04/04/2023] [Accepted: 04/06/2023] [Indexed: 02/04/2024] Open
Abstract
Background Major depressive disorder (MDD) is the leading cause of disability worldwide. Of individuals with MDD, 30% to 50% are unresponsive to common antidepressants, highlighting untapped causal biological mechanisms. Dysfunction in the microbiota-gut-brain axis has been implicated in MDD pathogenesis. Exposure to chronic stress disrupts blood-brain barrier integrity; still, little is known about intestinal barrier function in these conditions, particularly for the small intestine, where absorption of most foods and drugs takes place. Methods We investigated how chronic social or variable stress, two mouse models of depression, impact the jejunum intestinal barrier in males and females. Mice were subjected to stress paradigms followed by analysis of gene expression profiles of intestinal barrier-related targets, fecal microbial composition, and blood-based markers. Results Altered microbial populations and changes in gene expression of jejunum tight junctions were observed depending on the type and duration of stress, with sex-specific effects. We used machine learning to characterize in detail morphological tight junction properties, identifying a cluster of ruffled junctions in stressed animals. Junctional ruffling is associated with inflammation, so we evaluated whether lipopolysaccharide injection recapitulates stress-induced changes in the jejunum and observed profound sex differences. Finally, lipopolysaccharide-binding protein, a marker of gut barrier leakiness, was associated with stress vulnerability in mice, and translational value was confirmed on blood samples from women with MDD. Conclusions Our results provide evidence that chronic stress disrupts intestinal barrier homeostasis in conjunction with the manifestation of depressive-like behaviors in a sex-specific manner in mice and, possibly, in human depression.
Collapse
Affiliation(s)
- Ellen Doney
- Department of Psychiatry and Neuroscience, Faculty of Medicine and CERVO Brain Research Center, Université Laval, Québec City, Québec, Canada
| | - Laurence Dion-Albert
- Department of Psychiatry and Neuroscience, Faculty of Medicine and CERVO Brain Research Center, Université Laval, Québec City, Québec, Canada
| | - Francois Coulombe-Rozon
- Department of Psychiatry and Neuroscience, Faculty of Medicine and CERVO Brain Research Center, Université Laval, Québec City, Québec, Canada
| | - Natasha Osborne
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Renaud Bernatchez
- Department of Computer Science and Software Engineering and Department of Electrical and Computer Engineering, Université Laval, Québec City, Québec, Canada
| | - Sam E.J. Paton
- Department of Psychiatry and Neuroscience, Faculty of Medicine and CERVO Brain Research Center, Université Laval, Québec City, Québec, Canada
| | - Fernanda Neutzling Kaufmann
- Department of Psychiatry and Neuroscience, Faculty of Medicine and CERVO Brain Research Center, Université Laval, Québec City, Québec, Canada
| | - Roseline Olory Agomma
- Department of Computer Science and Software Engineering and Department of Electrical and Computer Engineering, Université Laval, Québec City, Québec, Canada
| | - José L. Solano
- Department of Psychiatry and Neuroscience, Faculty of Medicine and CERVO Brain Research Center, Université Laval, Québec City, Québec, Canada
| | - Raphael Gaumond
- Department of Psychiatry and Neuroscience, Faculty of Medicine and CERVO Brain Research Center, Université Laval, Québec City, Québec, Canada
| | - Katarzyna A. Dudek
- Department of Psychiatry and Neuroscience, Faculty of Medicine and CERVO Brain Research Center, Université Laval, Québec City, Québec, Canada
| | - Joanna Kasia Szyszkowicz
- Douglas Mental Health University Institute and Department of Psychiatry, McGill University, Montréal, Québec, Canada
| | - Manon Lebel
- Department of Psychiatry and Neuroscience, Faculty of Medicine and CERVO Brain Research Center, Université Laval, Québec City, Québec, Canada
| | - Alain Doyen
- Department of Food Science, Institute of Nutrition and Functional Foods, Université Laval, Québec City, Québec, Canada
| | - Audrey Durand
- Department of Computer Science and Software Engineering and Department of Electrical and Computer Engineering, Université Laval, Québec City, Québec, Canada
| | - Flavie Lavoie-Cardinal
- Department of Psychiatry and Neuroscience, Faculty of Medicine and CERVO Brain Research Center, Université Laval, Québec City, Québec, Canada
| | - Marie-Claude Audet
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
- School of Nutrition Sciences, University of Ottawa, Ottawa, Ontario, Canada
| | - Caroline Menard
- Department of Psychiatry and Neuroscience, Faculty of Medicine and CERVO Brain Research Center, Université Laval, Québec City, Québec, Canada
| |
Collapse
|
5
|
Hilakivi-Clarke L, de Oliveira Andrade F. Social Isolation and Breast Cancer. Endocrinology 2023; 164:bqad126. [PMID: 37586098 DOI: 10.1210/endocr/bqad126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/10/2023] [Accepted: 08/11/2023] [Indexed: 08/18/2023]
Abstract
Although the role of life stressors in breast cancer remains unclear, social isolation is consistently associated with increased breast cancer risk and mortality. Social isolation can be defined as loneliness or an absence of perceived social connections. In female mice and rats, social isolation is mimicked by housing animals 1 per cage. Social isolation causes many biological changes, of which an increase in inflammatory markers and disruptions in mitochondrial and cellular metabolism are commonly reported. It is not clear how the 2 traditional stress-induced pathways, namely, the hypothalamic-pituitary-adrenocortical axis (HPA), resulting in a release of glucocorticoids from the adrenal cortex, and autonomic nervous system (ANS), resulting in a release of catecholamines from the adrenal medulla and postganglionic neurons, could explain the increased breast cancer risk in socially isolated individuals. For instance, glucocorticoid receptor activation in estrogen receptor positive breast cancer cells inhibits their proliferation, and activation of β-adrenergic receptor in immature immune cells promotes their differentiation toward antitumorigenic T cells. However, activation of HPA and ANS pathways may cause a disruption in the brain-gut-microbiome axis, resulting in gut dysbiosis. Gut dysbiosis, in turn, leads to an alteration in the production of bacterial metabolites, such as short chain fatty acids, causing a systemic low-grade inflammation and inducing dysfunction in mitochondrial and cellular metabolism. A possible causal link between social isolation-induced increased breast cancer risk and mortality and gut dysbiosis should be investigated, as it offers new tools to prevent breast cancer.
Collapse
Affiliation(s)
- Leena Hilakivi-Clarke
- Department of Food Science and Nutrition, The Hormel Institute, University of Minnesota, Austin, MN 55912, USA
| | - Fabia de Oliveira Andrade
- Department of Food Science and Nutrition, The Hormel Institute, University of Minnesota, Austin, MN 55912, USA
| |
Collapse
|
6
|
Feng B, Lin L, Li L, Long X, Liu C, Zhao Z, Li S, Li Y. Glucocorticoid induced group 2 innate lymphoid cell overactivation exacerbates experimental colitis. Front Immunol 2022; 13:863034. [PMID: 36032134 PMCID: PMC9411106 DOI: 10.3389/fimmu.2022.863034] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 07/14/2022] [Indexed: 11/24/2022] Open
Abstract
Abnormal activation of the innate and adaptive immune systems has been observed in inflammatory bowel disease (IBD) patients. Anxiety and depression increase the risk of IBD by activating the adaptive immune system. However, whether anxiety affects innate immunity and its impact on IBD severity remains elusive. This study investigated the mechanism by which anxiety contributes to IBD development in a murine model of acute wrap restraint stress (WRS). Here, we found that anxiety-induced overactivation of group 2 innate lymphoid cells (ILC2) aggravated colonic inflammation. Overactivation of the hypothalamic–pituitary–adrenal (HPA) axis is a hallmark of the physiological change of anxiety. Corticosterone (CORT), a stress hormone, is a marker of HPA axis activation and is mainly secreted by HPA activation. We hypothesized that the overproduction of CORT stimulated by anxiety exacerbated colonic inflammation due to the abnormally elevated function of ILC2. The results showed that ILC2 secreted more IL-5 and IL-13 in the WRS mice than in the control mice. Meanwhile, WRS mice experienced more body weight loss, shorter colon length, higher concentrations of IL-6 and TNF-α, more severely impaired barrier function, and more severe inflammatory cell infiltration. As expected, the serum corticosterone levels were elevated after restraint stress. Dexamethasone (DEX) was then injected to mimic HPA axis activation induced CORT secretion. DEX injection can also stimulate ILC2 to secrete more type II cytokines and exacerbate oxazolone (OXA) induced colitis. Blocking the IL-13/STAT6 signaling pathway alleviated colitis in WRS and DEX-injected mice. In conclusion, the overactivation of ILC2 induced by CORT contributed to the development of OXA-induced colitis in mice.
Collapse
Affiliation(s)
- Bingcheng Feng
- Department of Gastroenterology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Laboratory of Translational Gastroenterology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Lin Lin
- Department of Gastroenterology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Laboratory of Translational Gastroenterology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Lixiang Li
- Department of Gastroenterology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Laboratory of Translational Gastroenterology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xin Long
- Department of Gastroenterology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Laboratory of Translational Gastroenterology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Chao Liu
- Department of Gastroenterology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Laboratory of Translational Gastroenterology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Zixiao Zhao
- Department of Gastroenterology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Laboratory of Translational Gastroenterology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Shiyang Li
- Advanced Medical Research Institute, Shandong University, Jinan, China
- *Correspondence: Shiyang Li, ; Yanqing Li,
| | - Yanqing Li
- Department of Gastroenterology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Laboratory of Translational Gastroenterology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- *Correspondence: Shiyang Li, ; Yanqing Li,
| |
Collapse
|
7
|
Jaggers RM, DiSabato DJ, Loman BR, Kontic D, Spencer KD, Allen JM, Godbout JP, Quan N, Gur TL, Bailey MT. Stressor-Induced Reduction in Cognitive Behavior is Associated with Impaired Colonic Mucus Layer Integrity and is Dependent Upon the LPS-Binding Protein Receptor CD14. J Inflamm Res 2022; 15:1617-1635. [PMID: 35264870 PMCID: PMC8901235 DOI: 10.2147/jir.s332793] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 02/16/2022] [Indexed: 12/12/2022] Open
Abstract
Purpose Commensal microbes are impacted by stressor exposure and are known contributors to cognitive and social behaviors, but the pathways through which gut microbes influence stressor-induced behavioral changes are mostly unknown. A murine social stressor was used to determine whether host-microbe interactions are necessary for stressor-induced inflammation, including neuroinflammation, that leads to reduced cognitive and social behavior. Methods C57BL/6 male mice were exposed to a paired fighting social stressor over a 1 hr period for 6 consecutive days. Y-maze and social interaction behaviors were tested following the last day of the stressor. Serum cytokines and lipopolysaccharide binding protein (LBP) were measured and the number and morphology of hippocampal microglia determined via immunohistochemistry. Intestinal mucous thickness and antimicrobial peptide expression were determined via fluorescent staining and real-time PCR (respectively) and microbial community composition was assessed using 16S rRNA gene amplicon sequencing. To determine whether the microbiota or the LBP receptor (CD14) are necessary for stressor-induced behavioral changes, experiments were performed in mice treated with a broad-spectrum antibiotic cocktail or in CD14-/- mice. Results The stressor reduced Y-maze spontaneous alternations, which was accompanied by increased microglia in the hippocampus, increased circulating cytokines (eg, IL-6, TNF-α) and LBP, and reduced intestinal mucus thickness while increasing antimicrobial peptides and cytokines. These stressor-induced changes were largely prevented in mice given broad-spectrum antibiotics and in CD14-/- mice. In contrast, social stressor-induced alterations of social behavior were not microbe-dependent. Conclusion Stressor-induced cognitive deficits involve enhanced bacterial interaction with the intestine, leading to low-grade, CD14-dependent, inflammation.
Collapse
Affiliation(s)
- Robert M Jaggers
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, 43205, USA
| | - Damon J DiSabato
- Institute for Behavioral Medicine Research, Columbus, OH, 43210, USA
- Department of Neuroscience, The Ohio State University, Columbus, OH, 43210, USA
| | - Brett R Loman
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, 43205, USA
| | - Danica Kontic
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, 43205, USA
| | - Kyle D Spencer
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, 43205, USA
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH, USA
- Graduate Partnership Program, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, OH, USA
| | - Jacob M Allen
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, 43205, USA
| | - Jonathan P Godbout
- Institute for Behavioral Medicine Research, Columbus, OH, 43210, USA
- Department of Neuroscience, The Ohio State University, Columbus, OH, 43210, USA
| | - Ning Quan
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Jupiter, FL, 33458, USA
| | - Tamar L Gur
- Institute for Behavioral Medicine Research, Columbus, OH, 43210, USA
- Department of Psychiatry, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA
| | - Michael T Bailey
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, 43205, USA
- Institute for Behavioral Medicine Research, Columbus, OH, 43210, USA
- Department of Pediatrics, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA
| |
Collapse
|
8
|
Maltz RM, Marte-Ortiz P, Rajasekera TA, Loman BR, Gur TL, Bailey MT. Stressor-Induced Increases in Circulating, but Not Colonic, Cytokines Are Related to Anxiety-like Behavior and Hippocampal Inflammation in a Murine Colitis Model. Int J Mol Sci 2022; 23:ijms23042000. [PMID: 35216112 PMCID: PMC8877477 DOI: 10.3390/ijms23042000] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/31/2022] [Accepted: 02/08/2022] [Indexed: 01/27/2023] Open
Abstract
Stressor exposure increases colonic inflammation. Because inflammation leads to anxiety-like behavior, we tested whether stressor exposure in mice recovering from dextran-sulfate-sodium (DSS)-induced colitis enhances anxiety-like behavior. Mice received 2% DSS for five consecutive days prior to being exposed to a social-disruption (SDR) stressor (or being left undisturbed). After stressor exposure, their behavior was tested and colitis was assessed via histopathology and via inflammatory-cytokine measurement in the serum and colon. Cytokine and chemokine mRNA levels in the colon, mesenteric lymph nodes (MLNs), hippocampus, and amygdala were measured with RT-PCR. SDR increased anxiety-like behaviors, which correlated with serum and hippocampal IL-17A. The stressor also reduced IL-1β, CCL2, and iNOS in the colonic tissue, but increased iNOS, IFNγ, IL-17A, and TNFα in the MLNs. A network analysis indicated that reductions in colonic iNOS were related to elevated MLN iNOS and IFNγ. These inflammatory markers were related to serum and hippocampal IL-17A and associated with anxiety-like behavior. Our data suggest that iNOS may protect against extra-colonic inflammation, and when suppressed during stress it is associated with elevated MLN IFNγ, which may coordinate gut-to-brain inflammation. Our data point to hippocampal IL-17A as a key correlate of anxiety-like behavior.
Collapse
Affiliation(s)
- Ross M. Maltz
- Division of Pediatric Gastroenterology, Hepatology and Nutrition, Nationwide Children’s Hospital, Columbus, OH 43205, USA
- Department of Pediatrics, The Ohio State Wexner Medical Center, Columbus, OH 43210, USA;
- The Center for Microbial Pathogenesis, The Research Institute, Nationwide Children’s Hospital, Columbus, OH 43205, USA; (P.M.-O.); (B.R.L.)
- Oral and Gastrointestinal Microbiology Research Affinity Group, Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, OH 43205, USA
- Correspondence: ; Tel.: +1-614-722-5116; Fax: +1-614-722-2979
| | - Pedro Marte-Ortiz
- The Center for Microbial Pathogenesis, The Research Institute, Nationwide Children’s Hospital, Columbus, OH 43205, USA; (P.M.-O.); (B.R.L.)
| | - Therese A. Rajasekera
- Institute for Behavioral Medicine Research, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA; (T.A.R.); (T.L.G.)
- Department of Psychiatry & Behavioral Health, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Brett R. Loman
- The Center for Microbial Pathogenesis, The Research Institute, Nationwide Children’s Hospital, Columbus, OH 43205, USA; (P.M.-O.); (B.R.L.)
| | - Tamar L. Gur
- Institute for Behavioral Medicine Research, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA; (T.A.R.); (T.L.G.)
- Department of Psychiatry & Behavioral Health, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Michael T. Bailey
- Department of Pediatrics, The Ohio State Wexner Medical Center, Columbus, OH 43210, USA;
- The Center for Microbial Pathogenesis, The Research Institute, Nationwide Children’s Hospital, Columbus, OH 43205, USA; (P.M.-O.); (B.R.L.)
- Oral and Gastrointestinal Microbiology Research Affinity Group, Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, OH 43205, USA
- Institute for Behavioral Medicine Research, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA; (T.A.R.); (T.L.G.)
| |
Collapse
|
9
|
Audet MC. Beyond the neuro-immune interplay in depression: Could gut microbes be the missing link? Brain Behav Immun Health 2021; 16:100308. [PMID: 34589800 PMCID: PMC8474680 DOI: 10.1016/j.bbih.2021.100308] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 07/15/2021] [Accepted: 07/24/2021] [Indexed: 12/21/2022] Open
Abstract
Accumulating evidence have positioned inflammatory signaling pathways as crucial routes by which microbes inhabiting the gastrointestinal tract (the gut microbiota) communicate with the host brain to influence behavior, with impacts on mental illnesses. In this short review, an overview of inflammatory and gut microbiota status in human depression and in rodent models of the illness are provided. Next, potential inflammatory pathways mediating the communications between the gut and the brain under stressful conditions are described. Finally, dietary interventions targeting the gut microbiota-immune-brain axis in the context of depression are briefly discussed.
Collapse
Affiliation(s)
- Marie-Claude Audet
- School of Nutrition Sciences, University of Ottawa, Ottawa, Ontario, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada.,The Royal's Institute of Mental Health Research, Ottawa, Ontario, Canada
| |
Collapse
|
10
|
Peppas S, Pansieri C, Piovani D, Danese S, Peyrin-Biroulet L, Tsantes AG, Brunetta E, Tsantes AE, Bonovas S. The Brain-Gut Axis: Psychological Functioning and Inflammatory Bowel Diseases. J Clin Med 2021; 10:377. [PMID: 33498197 PMCID: PMC7863941 DOI: 10.3390/jcm10030377] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 01/11/2021] [Accepted: 01/18/2021] [Indexed: 02/07/2023] Open
Abstract
The brain-gut axis represents a complex bi-directional system comprising multiple interconnections between the neuroendocrine pathways, the autonomous nervous system and the gastrointestinal tract. Inflammatory bowel disease (IBD), comprising Crohn's disease and ulcerative colitis, is a chronic, relapsing-remitting inflammatory disorder of the gastrointestinal tract with a multifactorial etiology. Depression and anxiety are prevalent among patients with chronic disorders characterized by a strong immune component, such as diabetes mellitus, cancer, multiple sclerosis, rheumatoid arthritis and IBD. Although psychological problems are an important aspect of morbidity and of impaired quality of life in patients with IBD, depression and anxiety continue to be under-diagnosed. There is lack of evidence regarding the exact mechanisms by which depression, anxiety and cognitive dysfunction may occur in these patients, and whether psychological disorders are the result of disease activity or determinants of the IBD occurrence. In this comprehensive review, we summarize the role of the brain-gut axis in the psychological functioning of patients with IBD, and discuss current preclinical and clinical data on the topic and therapeutic strategies potentially useful for the clinical management of these patients. Personalized pathways of psychological supports are needed to improve the quality of life in patients with IBD.
Collapse
Affiliation(s)
- Spyros Peppas
- Department of Gastroenterology, Athens Naval Hospital, 11521 Athens, Greece;
| | - Claudia Pansieri
- Department of Biomedical Sciences, Humanitas University, 20090 Milan, Italy; (C.P.); (S.D.); (E.B.)
- Humanitas Clinical and Research Center–IRCCS, 20089 Milan, Italy
| | - Daniele Piovani
- Department of Biomedical Sciences, Humanitas University, 20090 Milan, Italy; (C.P.); (S.D.); (E.B.)
- Humanitas Clinical and Research Center–IRCCS, 20089 Milan, Italy
| | - Silvio Danese
- Department of Biomedical Sciences, Humanitas University, 20090 Milan, Italy; (C.P.); (S.D.); (E.B.)
- Humanitas Clinical and Research Center–IRCCS, 20089 Milan, Italy
| | - Laurent Peyrin-Biroulet
- Department of Gastroenterology, Inserm U1256 NGERE, Nancy University Hospital, Lorraine University, 54500 Vandoeuvre-les-Nancy, France;
| | - Andreas G. Tsantes
- Attiko Hospital, School of Medicine, National and Kapodistrian University of Athens, 12462 Athens, Greece; (A.G.T.); (A.E.T.)
| | - Enrico Brunetta
- Department of Biomedical Sciences, Humanitas University, 20090 Milan, Italy; (C.P.); (S.D.); (E.B.)
- Humanitas Clinical and Research Center–IRCCS, 20089 Milan, Italy
| | - Argirios E. Tsantes
- Attiko Hospital, School of Medicine, National and Kapodistrian University of Athens, 12462 Athens, Greece; (A.G.T.); (A.E.T.)
| | - Stefanos Bonovas
- Department of Biomedical Sciences, Humanitas University, 20090 Milan, Italy; (C.P.); (S.D.); (E.B.)
- Humanitas Clinical and Research Center–IRCCS, 20089 Milan, Italy
| |
Collapse
|
11
|
Abashina T, Vainshtein M. Hypothesis: Bacteria benefiting from electromagnetic field in peripheral neuropathy. Electromagn Biol Med 2021; 40:222-226. [PMID: 33455474 DOI: 10.1080/15368378.2021.1874974] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 12/13/2020] [Indexed: 10/22/2022]
Abstract
Recent research has already been shown widespread locations of bacteria in various tissues and organs of a healthy host organism. These bacteria (hereinafter referred to as persistent microbiota, PM) cause neither noticeable destruction nor toxins production - no immune response can be noticed either. The role of the PM is unknown. The host nervous system is not an exception and can also be inhabited by the PM. We found that various bacteria were capable of benefiting from the electromagnetic field (EMF). The main advantage of these bacteria, apparently, lies in the increasing supply of ionic forms of compounds into the cells. Since microorganisms use the energy of electrical impulses, their possible colonization of the host's nerve circuit will weaken the nerve signals. The presented hypothesis aims to draw attention to the following points: i) microbial colonization of the host nervous system will lead to the weakening of nerve signals, ii) the sensitivity of bacteria to EMF permits to affect on their activity with electromagnetic treatment.
Collapse
Affiliation(s)
- Tatiana Abashina
- Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms Russian Academy of Sciences , Pushchino, Russian Federation
| | - Mikhail Vainshtein
- Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms Russian Academy of Sciences , Pushchino, Russian Federation
| |
Collapse
|
12
|
Abstract
PURPOSE OF REVIEW We present biological and psychological factors implicated in psychiatric manifestations of SARS-CoV-2, as well as its neuroinvasive capability and immune pathophysiology. RECENT FINDINGS Preexisting mental illness leads to worse clinical outcomes in COVID-19. The presence of the virus was reported in the cerebrospinal fluid (CSF) and brain tissue post-mortem. Most common psychiatric manifestations include delirium, mood disorders, anxiety disorders, and posttraumatic stress disorder. "Long-COVID" non-syndromal presentations include "brain-fogginess," autonomic instability, fatigue, and insomnia. SARS-CoV-2 infection can trigger prior vulnerabilities based on the priming of microglia and other cells, induced or perpetuated by aging and mental and physical illnesses. COVID-19 could further induce priming of neuroimmunological substrates leading to exacerbated immune response and autoimmunity targeting structures in the central nervous system (CNS), in response to minor immune activating environmental exposures, including stress, minor infections, allergens, pollutants, and traumatic brain injury.
Collapse
|
13
|
Aktipis A, Guevara Beltran D. Can some microbes promote host stress and benefit evolutionarily from this strategy? Bioessays 2020; 43:e2000188. [PMID: 33283894 DOI: 10.1002/bies.202000188] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 09/03/2020] [Accepted: 09/08/2020] [Indexed: 12/23/2022]
Abstract
Microbes can influence host physiology and behavior in many ways. Here we review evidence suggesting that some microbes can contribute to host stress (and other microbes can contribute to increased resilience to stress). We explain how certain microbes, which we call "stress microbes," can potentially benefit evolutionarily from inducing stress in a host, gaining access to host resources that can help fuel rapid microbial replication by increasing glucose levels in the blood, increasing intestinal permeability, and suppressing the immune system. Other microbes, which we term "resilience microbes," can potentially benefit from making hosts more resilient to stress. We hypothesize that "stress microbes" use a fast life history strategy involving greater host exploitation while "resilience microbes" use a slow life history strategy characterized by more aligned evolutionary interests with the host. In this paper, we review the evidence that microbes affect host stress and explain the evolutionary pressures that could lead microbes to manipulate host stress, discuss the physiological mechanisms that are known to be involved in both stress and microbial activity, and provide some testable predictions that follow from this hypothesis.
Collapse
|
14
|
Slevin MC, Houtz JL, Bradshaw DJ, Anderson RC. Evidence supporting the microbiota-gut-brain axis in a songbird. Biol Lett 2020; 16:20200430. [PMID: 33142087 DOI: 10.1098/rsbl.2020.0430] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Recent research in mammals supports a link between cognitive ability and the gut microbiome, but little is known about this relationship in other taxa. In a captive population of 38 zebra finch(es) (Taeniopygia guttata), we quantified performance on cognitive tasks measuring learning and memory. We sampled the gut microbiome via cloacal swab and quantified bacterial alpha and beta diversity. Performance on cognitive tasks related to beta diversity but not alpha diversity. We then identified differentially abundant genera influential in the beta diversity differences among cognitive performance categories. Though correlational, this study provides some of the first evidence of an avian microbiota-gut-brain axis, building foundations for future microbiome research in wild populations and during host development.
Collapse
Affiliation(s)
- Morgan C Slevin
- Department of Biological Sciences, Florida Atlantic University, Davie, FL, USA
| | - Jennifer L Houtz
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, USA
| | - David J Bradshaw
- Harbor Branch Oceanographic Institute, Department of Biological Sciences, Florida Atlantic University, Fort Pierce, FL, USA
| | - Rindy C Anderson
- Department of Biological Sciences, Florida Atlantic University, Davie, FL, USA
| |
Collapse
|
15
|
Rengarajan S, Knoop KA, Rengarajan A, Chai JN, Grajales-Reyes JG, Samineni VK, Russler-Germain EV, Ranganathan P, Fasano A, Sayuk GS, Gereau RW, Kau AL, Knights D, Kashyap PC, Ciorba MA, Newberry RD, Hsieh CS. A Potential Role for Stress-Induced Microbial Alterations in IgA-Associated Irritable Bowel Syndrome with Diarrhea. CELL REPORTS MEDICINE 2020; 1. [PMID: 33196055 PMCID: PMC7659537 DOI: 10.1016/j.xcrm.2020.100124] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Stress is a known trigger for flares of inflammatory bowel disease (IBD) and irritable bowel syndrome (IBS); however, this process is not well understood. Here, we find that restraint stress in mice leads to signs of diarrhea, fecal dysbiosis, and a barrier defect via the opening of goblet-cell associated passages. Notably, stress increases host immunity to gut bacteria as assessed by immunoglobulin A (IgA)-bound gut bacteria. Stress-induced microbial changes are necessary and sufficient to elicit these effects. Moreover, similar to mice, many diarrhea-predominant IBS (IBS-D) patients from two cohorts display increased antibacterial immunity as assessed by IgA-bound fecal bacteria. This antibacterial IgA response in IBS-D correlates with somatic symptom severity and was distinct from healthy controls or IBD patients. These findings suggest that stress may play an important role in patients with IgA-associated IBS-D by disrupting the intestinal microbial community that alters gastrointestinal function and host immunity to commensal bacteria. Stress in mice causes diarrhea, dysbiosis, barrier defect, increased antibacterial IgA Stress-induced microbial changes are sufficient to elicit the above effects IBS-D patients from two cohorts display increased and unique antibacterial IgA Antibacterial IgA in IBS-D correlates with patient symptom severity
Collapse
Affiliation(s)
- Sunaina Rengarajan
- Department of Internal Medicine, Division of Rheumatology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Kathryn A Knoop
- Department of Internal Medicine, Division of Gastroenterology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Arvind Rengarajan
- Department of Internal Medicine, Division of Gastroenterology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jiani N Chai
- Department of Internal Medicine, Division of Rheumatology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jose G Grajales-Reyes
- Washington University Pain Center and Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Vijay K Samineni
- Washington University Pain Center and Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Emilie V Russler-Germain
- Department of Internal Medicine, Division of Rheumatology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Prabha Ranganathan
- Department of Internal Medicine, Division of Rheumatology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Alessio Fasano
- Center for Celiac Research and Treatment and Division of Pediatric Gastroenterology and Nutrition, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Gregory S Sayuk
- Department of Internal Medicine, Division of Gastroenterology, Washington University School of Medicine, St. Louis, MO 63110, USA.,Gastroenterology Section, John Cochran Veterans Affairs Medical Center, St. Louis, MO 63125, USA
| | - Robert W Gereau
- Washington University Pain Center and Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Andrew L Kau
- Center for Women's Infectious Disease Research and Department of Internal Medicine, Division of Allergy and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Dan Knights
- Biomedical Informatics and Computational Biology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Purna C Kashyap
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN 55905, USA
| | - Matthew A Ciorba
- Department of Internal Medicine, Division of Gastroenterology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Rodney D Newberry
- Department of Internal Medicine, Division of Gastroenterology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Chyi-Song Hsieh
- Department of Internal Medicine, Division of Rheumatology, Washington University School of Medicine, St. Louis, MO 63110, USA.,Lead Contact
| |
Collapse
|
16
|
Physiological Stress Mediated by Corticosterone Administration Alters Intestinal Bacterial Communities and Increases the Relative Abundance of Clostridium perfringens in the Small Intestine of Chickens. Microorganisms 2020; 8:microorganisms8101518. [PMID: 33019786 PMCID: PMC7650536 DOI: 10.3390/microorganisms8101518] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/24/2020] [Accepted: 09/27/2020] [Indexed: 12/30/2022] Open
Abstract
A model of physiological stress mediated by the administration of corticosterone (CORT) was used to investigate the impact of stress on the intestinal microbiota of chickens. Birds were administered CORT in their drinking water at 0, 10 (low dose CORT; LDC), and 30 (high dose CORT; HDC) mg/L. Digesta from the small intestine and ceca were examined after 1, 5, and 12 days post-initiation of CORT administration by 16S rRNA gene sequencing. A decrease in phylogenetic diversity and altered composition of bacteria were observed for HDC in the small intestine. Analysis by ANOVA-Like Differential Expression 2 (ALDEx2) showed that densities of Clostridium sensu stricto 1 bacteria were increased in the small intestine for LDC and HDC. Quantitative PCR confirmed that CORT administration increased densities of Clostridium perfringens in the small intestine, but only HDC was associated with increased densities of the bacterium in ceca. Predictive functional analysis by Phylogenetic Investigation of Communities by Reconstruction of Unobserved States 2 (PICRUSt2) showed pathways of carbohydrate metabolism to be enriched with CORT, and amino acid synthesis to be enriched in control birds in the small intestine. In conclusion, physiological stress mediated by CORT modulated bacterial communities in the small intestine and increased densities of C. perfringens. This implicates stress as an important mediator of this important enteric pathogen in poultry.
Collapse
|
17
|
Steinberger KJ, Bailey MT, Gross AC, Sumner LA, Voorhees JL, Crouser N, Curry JM, Wang Y, DeVries AC, Marsh CB, Glaser R, Yang EV, Eubank TD. Stress-induced Norepinephrine Downregulates CCL2 in Macrophages to Suppress Tumor Growth in a Model of Malignant Melanoma. Cancer Prev Res (Phila) 2020; 13:747-760. [PMID: 32518084 DOI: 10.1158/1940-6207.capr-19-0370] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 04/06/2020] [Accepted: 06/03/2020] [Indexed: 11/16/2022]
Abstract
Psychological stressors have been implicated in the progression of various tumor types. We investigated a role for stress in tumor immune cell chemotaxis in the B16F10 mouse model of malignant melanoma. We exposed female mice to 6-hour periods of restraint stress (RST) for 7 days, then implanted B16F10 malignant melanoma tumor cells and continued the RST paradigm for 14 additional days. We determined serum corticosterone and liver catecholamine concentrations in these mice. To evaluate the tumor microenvironment, we performed IHC and examined cytokine expression profiles using ELISA-based analysis of tumor homogenates. We found that tumors in mice subjected to RST grew significantly slower, had reduced tumor C-C motif ligand 2 (CCL2), and contained fewer F4/80-positive macrophages than tumors from unstressed mice. We observed a concomitant increase in norepinephrine among the RST mice. An in vitro assay confirmed that norepinephrine downregulates CCL2 production in both mouse and human macrophages, and that pretreatment with the pan-β-adrenergic receptor inhibitor nadolol rescues this activity. Furthermore, RST had no effect on tumor growth in transgenic CCL2-deficient mice. This study suggests that stress reduces malignant melanoma by reducing recruitment of tumor-promoting macrophages by CCL2.
Collapse
Affiliation(s)
- Kayla J Steinberger
- Department of Microbiology, Immunology, and Cell Biology, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, West Virginia.,Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, West Virginia
| | - Michael T Bailey
- Section of Oral Biology, The Ohio State University, Columbus, Ohio.,Institute for Behavioral Medicine Research, The Ohio State University, Columbus, Ohio
| | - Amy C Gross
- Division of Pulmonary Medicine, Allergy, Critical Care and Sleep Medicine, The Ohio State University, Columbus, Ohio
| | - Laura A Sumner
- Division of Pulmonary Medicine, Allergy, Critical Care and Sleep Medicine, The Ohio State University, Columbus, Ohio
| | - Jeffrey L Voorhees
- Division of Pulmonary Medicine, Allergy, Critical Care and Sleep Medicine, The Ohio State University, Columbus, Ohio
| | - Nisha Crouser
- Division of Pulmonary Medicine, Allergy, Critical Care and Sleep Medicine, The Ohio State University, Columbus, Ohio
| | - Jennifer M Curry
- Division of Pulmonary Medicine, Allergy, Critical Care and Sleep Medicine, The Ohio State University, Columbus, Ohio
| | - Yijie Wang
- Division of Pulmonary Medicine, Allergy, Critical Care and Sleep Medicine, The Ohio State University, Columbus, Ohio
| | - A Courtney DeVries
- West Virginia University Cancer Institute, Morgantown, West Virginia.,Departments of Medicine & Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, West Virginia
| | - Clay B Marsh
- Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, West Virginia
| | | | - Eric V Yang
- Institute for Behavioral Medicine Research, The Ohio State University, Columbus, Ohio. .,Department of Molecular Virology, Immunology and Medical Genetics, The Ohio State University Medical Center, Columbus, Ohio
| | - Timothy D Eubank
- Department of Microbiology, Immunology, and Cell Biology, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, West Virginia. .,West Virginia University Cancer Institute, Morgantown, West Virginia
| |
Collapse
|
18
|
Sinagra E, Utzeri E, Morreale GC, Fabbri C, Pace F, Anderloni A. Microbiota-gut-brain axis and its affect inflammatory bowel disease: Pathophysiological concepts and insights for clinicians. World J Clin Cases 2020; 8:1013-1025. [PMID: 32258072 PMCID: PMC7103973 DOI: 10.12998/wjcc.v8.i6.1013] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 02/14/2020] [Accepted: 03/05/2020] [Indexed: 02/05/2023] Open
Abstract
Despite the bi-directional interaction between gut microbiota and the brain not being fully understood, there is increasing evidence arising from animal and human studies that show how this intricate relationship may facilitate inflammatory bowel disease (IBD) pathogenesis, with consequent important implications on the possibility to improve the clinical outcomes of the diseases themselves, by acting on the different components of this system, mainly by modifying the microbiota. With the emergence of precision medicine, strategies in which patients with IBD might be categorized other than for standard gut symptom complexes could offer the opportunity to tailor therapies to individual patients. The aim of this narrative review is to elaborate on the concept of the gut-brain-microbiota axis and its clinical significance regarding IBD on the basis of recent scientific literature, and finally to focus on pharmacological therapies that could allow us to favorably modify the function of this complex system.
Collapse
Affiliation(s)
- Emanuele Sinagra
- Gastroenterology and Endoscopy Unit, Fondazione Istituto Giuseppe Giglio, Contrada Pietra Pollastra Pisciotto, Cefalù 90015, Italy
- Euro-Mediterranean Institute of Science and Technology, Palermo 90100, Italy
| | - Erika Utzeri
- Nuova Casa di Cura di Decimomannu, Cagliari 09100, Italy
| | | | - Carlo Fabbri
- Gastroenterology and Digestive Endoscopy Unit, Forlì-Cesena, Azienda USL Romagna, Forlì 47121, Italy
| | - Fabio Pace
- Unit of Gastroenterology, Bolognini Hospital, Bergamo 24100, Italy
| | - Andrea Anderloni
- Digestive Endoscopy Unit, Division of Gastroenterology, Humanitas Research Hospital, Rozzano 20089, Italy
| |
Collapse
|
19
|
Magen R, Shaoul R. Alternative & complementary treatment for pediatric inflammatory bowel disease. Transl Pediatr 2019; 8:428-435. [PMID: 31993357 PMCID: PMC6970111 DOI: 10.21037/tp.2019.09.02] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Alternative medicine includes treatments that are not considered mainstream and is suggested to replace the accepted treatment, while complementary treatment is added to the conventional treatment. The estimated prevalence of their use in patients with inflammatory bowel disease (IBD) is high, ranging between 21-60%. This review summarizes the data on these treatments and their efficacy in the setting of IBD.
Collapse
Affiliation(s)
- Ramit Magen
- Pediatric Gastroenterology and Nutrition Institute, Ruth Children's Hospital of Haifa, Rambam Medical Center, Faculty of Medicine, Technion, Haifa, Israel
| | - Ron Shaoul
- Pediatric Gastroenterology and Nutrition Institute, Ruth Children's Hospital of Haifa, Rambam Medical Center, Faculty of Medicine, Technion, Haifa, Israel
| |
Collapse
|
20
|
Duff AF, Baxter MFA, Graham BD, Hargis BM, Bielke LR. Mode of Action of Dietary Dexamethasone May Not Be Dependent Upon Microbial Mechanisms in Broilers. Microorganisms 2019; 7:microorganisms7090346. [PMID: 31547289 PMCID: PMC6780751 DOI: 10.3390/microorganisms7090346] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 09/07/2019] [Accepted: 09/09/2019] [Indexed: 12/26/2022] Open
Abstract
Dexamethasone (Dex), a synthetic glucocorticoid (GC), in feed has been shown to increase gut permeability via stress-mediated mechanisms, but the exact mode of action on gut barrier function is not fully understood. Stress has been reported to alter the profile and virulence of intestinal flora predisposing for opportunistic disease. This study aimed to evaluate the relationship between dietary Dex and recoverable intestinal microbial profile in broilers to better understand mode of action and refine future uses of the model. Three experiments were conducted that administered Dex-treated feed for one week in conjunction with the antibiotics BMD (bacitracin methylene disalicylate) or Baytril® (enrofloxacin) to evaluate if enteric microbial mechanisms were important in Dex-induced permeability. Serum fluorescein isothiocyanate-dextran (FITC-d) and bacterial translocation (BT) have been reported to increase after Dex treatment and were used to assess gut epithelial leakage. Shifts in bacterial profiles were also measured on selective agar. Combining Dex with BMD or Baytril resulted in increased (P < 0.05) serum FITC-d versus Dex-only. Additionally, Baytril did not reduce aerobic BT and bacterial profiles remained similar after Dex. These results suggest a minimal role of intestinal microbes in Dex-induced changes to intestinal barrier function.
Collapse
Affiliation(s)
- Audrey F Duff
- Department of Animal Sciences The Ohio State University, Columbus, OH 43210, USA.
| | - Mikayla F A Baxter
- Department of Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA.
| | - B Danielle Graham
- Department of Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA.
| | - Billy M Hargis
- Department of Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA.
| | - Lisa R Bielke
- Department of Animal Sciences The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
21
|
Voorhies AA, Mark Ott C, Mehta S, Pierson DL, Crucian BE, Feiveson A, Oubre CM, Torralba M, Moncera K, Zhang Y, Zurek E, Lorenzi HA. Study of the impact of long-duration space missions at the International Space Station on the astronaut microbiome. Sci Rep 2019; 9:9911. [PMID: 31289321 PMCID: PMC6616552 DOI: 10.1038/s41598-019-46303-8] [Citation(s) in RCA: 139] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 06/17/2019] [Indexed: 12/16/2022] Open
Abstract
Over the course of a mission to the International Space Station (ISS) crew members are exposed to a number of stressors that can potentially alter the composition of their microbiomes and may have a negative impact on astronauts’ health. Here we investigated the impact of long-term space exploration on the microbiome of nine astronauts that spent six to twelve months in the ISS. We present evidence showing that the microbial communities of the gastrointestinal tract, skin, nose and tongue change during the space mission. The composition of the intestinal microbiota became more similar across astronauts in space, mostly due to a drop in the abundance of a few bacterial taxa, some of which were also correlated with changes in the cytokine profile of crewmembers. Alterations in the skin microbiome that might contribute to the high frequency of skin rashes/hypersensitivity episodes experienced by astronauts in space were also observed. The results from this study demonstrate that the composition of the astronauts’ microbiome is altered during space travel. The impact of those changes on crew health warrants further investigation before humans embark on long-duration voyages into outer space.
Collapse
Affiliation(s)
- Alexander A Voorhies
- Department of Infectious Diseases, J. Craig Venter Institute, Rockville, MD, USA
| | - C Mark Ott
- NASA-Johnson Space Center, Houston, TX, USA
| | | | | | | | | | | | - Manolito Torralba
- Department of Infectious Diseases, J. Craig Venter Institute, Rockville, MD, USA
| | - Kelvin Moncera
- Department of Infectious Diseases, J. Craig Venter Institute, Rockville, MD, USA
| | - Yun Zhang
- Department of Infectious Diseases, J. Craig Venter Institute, Rockville, MD, USA
| | | | - Hernan A Lorenzi
- Department of Infectious Diseases, J. Craig Venter Institute, Rockville, MD, USA.
| |
Collapse
|
22
|
Stress-induced disturbances along the gut microbiota-immune-brain axis and implications for mental health: Does sex matter? Front Neuroendocrinol 2019; 54:100772. [PMID: 31302116 DOI: 10.1016/j.yfrne.2019.100772] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Revised: 06/07/2019] [Accepted: 07/09/2019] [Indexed: 12/17/2022]
Abstract
Women are roughly twice as likely as men to suffer from stress-related disorders, especially major depression and generalized anxiety. Accumulating evidence suggest that microbes inhabiting the gastrointestinal tract (the gut microbiota) interact with the host brain and may play a key role in the pathogenesis of mental illnesses. Here, the possibility that sexually dimorphic alterations along the gut microbiota-immune-brain axis could play a role in promoting this female bias of mood and anxiety disorders will be discussed. This review will also analyze the idea that gut microbes and sex hormones influence each other, and that this reciprocal crosstalk may come to modulate inflammatory players along the gut microbiota-immune-brain axis and influence behavior in a sex-dependent way.
Collapse
|
23
|
Heym N, Heasman BC, Hunter K, Blanco SR, Wang GY, Siegert R, Cleare A, Gibson GR, Kumari V, Sumich AL. The role of microbiota and inflammation in self-judgement and empathy: implications for understanding the brain-gut-microbiome axis in depression. Psychopharmacology (Berl) 2019; 236:1459-1470. [PMID: 30955108 PMCID: PMC6598942 DOI: 10.1007/s00213-019-05230-2] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 03/18/2019] [Indexed: 12/31/2022]
Abstract
RATIONALE The gut-brain axis includes bidirectional communication between intestinal microbiota and the central nervous system. Bifidobacterium and Lactobacillus spp. have been implicated in psychological health, such as depression, through various pathways (e.g. inflammation). Research needs a better understanding of direct and indirect effects through examination of psychological factors that make people susceptible to, or offer protection against, depression. OBJECTIVE This study investigated the relationships between gut microbiota, inflammation and psychological risk and resilience factors for depression. METHODS Forty participants (13 m/27 f) recruited from the general population completed self-report questionnaires for depression, self-judgement, over-identification and affective and cognitive empathy. Faecal and blood samples were taken to assay microbiota (Bifidobacterium; Lactobacillus spp.) and pro-inflammatory molecules (C-reactive protein, CRP and interleukin-6, IL-6), respectively. RESULTS Hierarchical regression analyses (controlling for sex, age and the shared variance of risk and resilience factors) showed that (i) cognitive depression was significantly predicted by negative self-judgement and reduced cognitive empathy; (ii) abundance of Lactobacillus spp. was directly related to positive self-judgement but only indirectly to cognitive depression and lower affective empathy (both through self-judgement); and (iii) CRP was the strongest predictor of reduced cognitive empathy, with suppression effects seen for age (negative) and IL-6 (positive) after controlling for CRP. CONCLUSIONS Findings suggest that lactobacilli and inflammation may be differentially associated with mood disorder via brain mechanisms underpinning self-judgement and cognitive empathy, respectively. Further trials investigating interventions to increase Lactobacillus spp. in depression would benefit from direct measures of self-judgement and affective empathic distress, whilst those that aim to reduce inflammation should investigate cognitive empathy.
Collapse
Affiliation(s)
- N Heym
- Division of Psychology, Nottingham Trent University, Nottingham, NG1 4FQ, UK.
| | - B C Heasman
- Division of Psychology, Nottingham Trent University, Nottingham, NG1 4FQ, UK
| | - K Hunter
- Division of Sports Science, Nottingham Trent University, Nottingham, UK
| | - S R Blanco
- Division of Psychology, Nottingham Trent University, Nottingham, NG1 4FQ, UK
| | - G Y Wang
- Department of Psychology, Auckland University of Technology, Auckland, New Zealand
| | - R Siegert
- Department of Psychology, Auckland University of Technology, Auckland, New Zealand
| | - A Cleare
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - G R Gibson
- Food and Nutritional Sciences, University of Reading, Reading, UK
| | - V Kumari
- Centre for Cognitive Neuroscience, Brunel University London, Uxbridge, UK
| | - A L Sumich
- Division of Psychology, Nottingham Trent University, Nottingham, NG1 4FQ, UK
- Department of Psychology, Auckland University of Technology, Auckland, New Zealand
| |
Collapse
|
24
|
Sun Y, Li L, Xie R, Wang B, Jiang K, Cao H. Stress Triggers Flare of Inflammatory Bowel Disease in Children and Adults. Front Pediatr 2019; 7:432. [PMID: 31709203 PMCID: PMC6821654 DOI: 10.3389/fped.2019.00432] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 10/07/2019] [Indexed: 12/15/2022] Open
Abstract
Inflammatory bowel disease (IBD) is an idiopathic inflammatory disease characterized by chronic and relapsing manifestations. It is noteworthy that the prevalence of IBD is gradually increasing in both children and adults. Currently, the pathogenesis of IBD remains to be completely elucidated. IBD is believed to occur through interactions among genetics, environmental factors, and the gut microbiota. However, the relapsing and remitting course of IBD underlines the importance of other modifiers, such as psychological stress. Growing evidence from clinical and experimental studies suggests that stress acts as a promoting or relapsing factor for IBD. Importantly, recent studies have reported an increasing incidence of anxiety or depression in both children and adults with IBD. In this article, we review the mechanisms by which stress affects IBD, such as via impaired intestinal barrier function, disturbance of the gut microbiota, intestinal dysmotility, and immune and neuroendocrine dysfunction. With regard to both children and adults, we provide recent evidence to describe how stress can affect IBD at various stages. Furthermore, we emphasize the importance of mental healing and discuss the value of approaches targeting stress in clinical management to develop enhanced strategies for the prevention and treatment of IBD.
Collapse
Affiliation(s)
- Yue Sun
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin, China
| | - Lu Li
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin, China
| | - Runxiang Xie
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin, China
| | - Bangmao Wang
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin, China
| | - Kui Jiang
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin, China
| | - Hailong Cao
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin, China
| |
Collapse
|
25
|
Engler H, Elsenbruch S, Rebernik L, Köcke J, Cramer H, Schöls M, Langhorst J. Stress burden and neuroendocrine regulation of cytokine production in patients with ulcerative colitis in remission. Psychoneuroendocrinology 2018; 98:101-107. [PMID: 30125791 DOI: 10.1016/j.psyneuen.2018.08.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 08/02/2018] [Accepted: 08/05/2018] [Indexed: 01/06/2023]
Abstract
Stress demonstrably contributes to disease course in patients with inflammatory bowel diseases but the underlying mechanisms remain elusive. Here, we investigated if neuroendocrine regulation of pro- and anti-inflammatory cytokine production by peripheral blood immune cells is altered in patients with ulcerative colitis in remission (UCR). Using a whole blood stimulation assay, we measured the sensitivity of lipopolysaccharide (LPS)-induced TNF-α and IL-10 production to the glucocorticoid receptor agonist dexamethasone (DEX), the β2-adrenergic receptor agonist terbutaline (TERB), and the α7-nicotinic acetylcholine receptor agonist 3-[2,4-dimethoxy-benzylidene]-anabaseine (GTS-21) in UCR patients (N = 26) and in healthy controls (HC, N = 25). Additionally, we assessed anxiety and depression symptoms as well as chronic perceived stress and disease-specific quality of life. Results showed that UCR patients exhibited greater anxiety, depression and chronic stress levels than HC, and reduced disease-specific quality of life. Plasma concentrations of TNF-α, IL-8, C-reactive protein (CRP) and lipopolysaccharide binding protein (LBP) were significantly higher, while LPS-induced IL-10 production was substantially lower in UCR compared to HC. Independent of group, DEX and GTS-21 dose-dependently inhibited TNF-α and IL-10 production, whereas TERB inhibited TNF-α and upregulated IL-10 production. However, at higher TERB doses (i.e., stress levels), upregulation of IL-10 production was significantly diminished in UCR compared to HC. Together, these findings demonstrate that downregulation of pro-inflammatory cytokine production in peripheral blood immune cells through glucocorticoid, adrenergic, and cholinergic mechanisms is essentially normal in UC in clinical remission and as efficient as in healthy individuals. However, UCR patients exhibited signs of systemic low-grade inflammation and dysregulation of anti-inflammatory IL-10 production. Impaired adrenergic upregulation of IL-10 production during remission could be one mechanism how stress facilitates relapse and conversion to symptomatic disease in these patients.
Collapse
Affiliation(s)
- Harald Engler
- Institute of Medical Psychology and Behavioral Immunobiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany.
| | - Sigrid Elsenbruch
- Institute of Medical Psychology and Behavioral Immunobiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Laura Rebernik
- Institute of Medical Psychology and Behavioral Immunobiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Janina Köcke
- Department of Integrative Gastroenterology, Kliniken Essen-Mitte, University of Duisburg-Essen, Essen, Germany
| | - Holger Cramer
- Department of Internal and Integrative Medicine, Kliniken Essen-Mitte, University of Duisburg-Essen, Essen, Germany
| | - Margarita Schöls
- Institute of Medical Psychology and Behavioral Immunobiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany; Department of Integrative Gastroenterology, Kliniken Essen-Mitte, University of Duisburg-Essen, Essen, Germany
| | - Jost Langhorst
- Department of Integrative Gastroenterology, Kliniken Essen-Mitte, University of Duisburg-Essen, Essen, Germany; Department of Internal and Integrative Medicine, Kliniken Essen-Mitte, University of Duisburg-Essen, Essen, Germany; Chair for Integrative Medicine and Translational Gastroenterology, Klinikum Bamberg, Bamberg, Germany
| |
Collapse
|
26
|
Duszka K, Wahli W. Enteric Microbiota⁻Gut⁻Brain Axis from the Perspective of Nuclear Receptors. Int J Mol Sci 2018; 19:ijms19082210. [PMID: 30060580 PMCID: PMC6121494 DOI: 10.3390/ijms19082210] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 07/18/2018] [Accepted: 07/23/2018] [Indexed: 12/12/2022] Open
Abstract
Nuclear receptors (NRs) play a key role in regulating virtually all body functions, thus maintaining a healthy operating body with all its complex systems. Recently, gut microbiota emerged as major factor contributing to the health of the whole organism. Enteric bacteria have multiple ways to influence their host and several of them involve communication with the brain. Mounting evidence of cooperation between gut flora and NRs is already available. However, the full potential of the microbiota interconnection with NRs remains to be uncovered. Herewith, we present the current state of knowledge on the multifaceted roles of NRs in the enteric microbiota–gut–brain axis.
Collapse
Affiliation(s)
- Kalina Duszka
- Department of Nutritional Sciences, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria.
| | - Walter Wahli
- Lee Kong Chian School of Medicine, Nanyang Technological, 11 Mandalay Road, Singapore 308232, Singapore.
- Center for Integrative Genomics, University of Lausanne, Génopode, CH-1015 Lausanne, Switzerland.
| |
Collapse
|
27
|
Gur TL, Palkar AV, Rajasekera T, Allen J, Niraula A, Godbout J, Bailey MT. Prenatal stress disrupts social behavior, cortical neurobiology and commensal microbes in adult male offspring. Behav Brain Res 2018; 359:886-894. [PMID: 29949734 DOI: 10.1016/j.bbr.2018.06.025] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 05/25/2018] [Accepted: 06/22/2018] [Indexed: 01/31/2023]
Abstract
In utero and early neonatal exposure to maternal stress is linked with psychiatric disorders, and the underlying mechanisms are currently being elucidated. We used a prenatal stressor in pregnant mice to examine novel relationships between prenatal stress exposure, changes in the gut microbiome, and social behavior. Here, we show that males exposed to prenatal stress had a significant reduction in social behavior in adulthood, with increased corticosterone release following social interaction. Male offspring exposed to prenatal stress also had neuroinflammation, decreased oxytocin receptor, and decreased serotonin metabolism in their cortex in adulthood, which are linked to decreased social behavior. Finally, we found a significant difference in commensal microbes, including decreases in Bacteroides and Parabacteroides, in adult male offspring exposed to prenatal stress when compared to non-stressed controls. Our findings indicate that gestation is a critical window where maternal stress contributes to the development of aberrant social behaviors and alterations in cortical neurobiology, and that prenatal stress is sufficient to disrupt the male gut-brain axis into adulthood.
Collapse
Affiliation(s)
- Tamar L Gur
- Department of Psychiatry & Behavioral Health, Wexner Medical Center at The Ohio State University, United States; Neuroscience, Wexner Medical Center at The Ohio State University, United States; Obstetrics & Gynecology, Wexner Medical Center at The Ohio State University, United States; Institute for Behavioral Medicine Research, Wexner Medical Center at The Ohio State University, United States.
| | - Aditi Vadodkar Palkar
- Department of Psychiatry & Behavioral Health, Wexner Medical Center at The Ohio State University, United States; Institute for Behavioral Medicine Research, Wexner Medical Center at The Ohio State University, United States
| | - Therese Rajasekera
- Department of Psychiatry & Behavioral Health, Wexner Medical Center at The Ohio State University, United States; Institute for Behavioral Medicine Research, Wexner Medical Center at The Ohio State University, United States
| | - Jacob Allen
- Center for Microbial Pathogenesis, The Research Institute, Nationwide Children's Hospital, United States; Biosciences Division, College of Dentistry, The Ohio State University, United States
| | - Anzela Niraula
- Neuroscience, Wexner Medical Center at The Ohio State University, United States; Institute for Behavioral Medicine Research, Wexner Medical Center at The Ohio State University, United States
| | - Jonathan Godbout
- Neuroscience, Wexner Medical Center at The Ohio State University, United States; Institute for Behavioral Medicine Research, Wexner Medical Center at The Ohio State University, United States
| | - Michael T Bailey
- Institute for Behavioral Medicine Research, Wexner Medical Center at The Ohio State University, United States; Center for Microbial Pathogenesis, The Research Institute, Nationwide Children's Hospital, United States; Biosciences Division, College of Dentistry, The Ohio State University, United States; Department of Pediatrics, Wexner Medical Center at The Ohio State University, United States
| |
Collapse
|
28
|
Hoggard M, Nocera A, Biswas K, Taylor MW, Douglas RG, Bleier BS. The sinonasal microbiota, neural signaling, and depression in chronic rhinosinusitis. Int Forum Allergy Rhinol 2017; 8:394-405. [PMID: 29278464 DOI: 10.1002/alr.22074] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 12/04/2017] [Accepted: 12/05/2017] [Indexed: 12/18/2022]
Abstract
BACKGROUND The complex relationships between the human microbiota, the immune system, and the brain play important roles in both health and disease, and have been of increasing interest in the study of chronic inflammatory mucosal conditions. We hypothesized that the sinonasal microbiota may act as a modifier of interkingdom neural signaling and, subsequently, mental health, in the upper respiratory inflammatory condition chronic rhinosinusitis (CRS). In this study we investigated associations between the sinonasal microbiota; local concentrations of the neurotransmitters serotonin, dopamine, and γ-aminobutyric acid (GABA); and depression severity in a cohort of 14 CRS patients and 12 healthy controls. METHODS Subject demographics, clinical severity scores, depression index scores, and sinonasal swab and mucus samples were collected at the time of surgery. Bacterial communities were characterized from swabs by 16S rRNA gene-targeted sequencing and quantified by quantitative polymerase chain reaction. Mucus concentrations of the neurotransmitters serotonin, dopamine, and GABA were quantified by enzyme-linked immunosorbent assay. RESULTS Several commonly "health-associated" sinonasal bacterial taxa were positively associated with higher neurotransmitter concentrations and negatively associated with depression severity. In contrast, several taxa commonly associated with an imbalanced sinonasal microbiota negatively associated with neurotransmitters and positively with depression severity. Few significant differences were identified when comparing between control and CRS subject groups, including neurotransmitter concentrations, depression scores, or sinonasal microbiota composition or abundance. CONCLUSION The findings obtained lend support to the potential for downstream effects of the sinonasal microbiota on neural signaling and, subsequently, brain function and behavior.
Collapse
Affiliation(s)
- Michael Hoggard
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Angela Nocera
- Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA
| | - Kristi Biswas
- School of Medicine, University of Auckland, Auckland, New Zealand
| | - Michael W Taylor
- School of Biological Sciences, University of Auckland, Auckland, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand
| | | | - Benjamin S Bleier
- Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA
| |
Collapse
|
29
|
Abstract
The brain-gut axis serves as a circuit that incorporates the human experience, the state of mind, the gut microbiome, and the immune response that ultimately drives the phenotypic expression of inflammatory bowel disease (IBD). There are several biological pathways through which stress can play a deleterious role, including through increasing intestinal permeability, which can facilitate intestinal translocation of bacteria. Stress has an impact on symptoms in IBD; however, there is limited evidence that stress triggers increased intestinal inflammation. Although attention to stress and psychiatric comorbidity is important in the management of IBD, there are few clinical trials to direct management.
Collapse
Affiliation(s)
- Charles N Bernstein
- Department of Internal Medicine, University of Manitoba IBD Clinical and Research Centre, Max Rady College of Medicine, 804-715 McDermot Avenue, Winnipeg, MB R3E3P4, Canada.
| |
Collapse
|
30
|
Foertsch S, Füchsl AM, Faller SD, Hölzer H, Langgartner D, Messmann J, Strauß G, Reber SO. Splenic glucocorticoid resistance following psychosocial stress requires physical injury. Sci Rep 2017; 7:15730. [PMID: 29146967 PMCID: PMC5691078 DOI: 10.1038/s41598-017-15897-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 11/01/2017] [Indexed: 12/29/2022] Open
Abstract
Mice exposed to chronic subordinate colony housing (CSC) stress show glucocorticoid (GC) resistance of in vitro lipopolysaccharide (LPS)-stimulated splenocytes, increased anxiety and colitis. Similar effects were reported in wounded mice exposed to social disruption (SDR). Here we show that CSC exposure induced GC resistance in isolated and in vitro LPS-stimulated, but not unstimulated, splenocytes, and these effects were absent when CD11b+ splenocytes were depleted. Moreover, re-active coping behaviour during CSC correlated with the attacks and bites received by the resident, which in turn highly correlated with the dimension of splenic GC resistance, as with basal and LPS-induced in vitro splenocyte viability. Importantly, social stress promoted spleen cell activation, independent of bite wounds or CD11b+/CD11b− cell phenotype, whereas GC resistance was dependent on both bite wounds and the presence of CD11b+ cells. Together, our findings indicate that the mechanisms underlying splenic immune activation and GC resistance following social stress in male mice are paradigm independent and, to a large extent, dependent on wounding, which, in turn, is associated with a re-active coping style.
Collapse
Affiliation(s)
- Sandra Foertsch
- Laboratory for Molecular Psychosomatics, Clinic for Psychosomatic Medicine and Psychotherapy, University Ulm, Ulm, Germany
| | - Andrea M Füchsl
- Laboratory for Molecular Psychosomatics, Clinic for Psychosomatic Medicine and Psychotherapy, University Ulm, Ulm, Germany.,Institute of Physiology, University of Regensburg, Regensburg, Germany
| | - Sandra D Faller
- Laboratory for Molecular Psychosomatics, Clinic for Psychosomatic Medicine and Psychotherapy, University Ulm, Ulm, Germany
| | - Hannah Hölzer
- Laboratory for Molecular Psychosomatics, Clinic for Psychosomatic Medicine and Psychotherapy, University Ulm, Ulm, Germany
| | - Dominik Langgartner
- Laboratory for Molecular Psychosomatics, Clinic for Psychosomatic Medicine and Psychotherapy, University Ulm, Ulm, Germany
| | - Joanna Messmann
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany
| | - Gudrun Strauß
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany
| | - Stefan O Reber
- Laboratory for Molecular Psychosomatics, Clinic for Psychosomatic Medicine and Psychotherapy, University Ulm, Ulm, Germany.
| |
Collapse
|
31
|
Exosomes, DAMPs and miRNA: Features of Stress Physiology and Immune Homeostasis. Trends Immunol 2017; 38:768-776. [PMID: 28838855 DOI: 10.1016/j.it.2017.08.002] [Citation(s) in RCA: 146] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 08/01/2017] [Accepted: 08/01/2017] [Indexed: 02/06/2023]
Abstract
Psychological/physical stressors and local tissue damage increase inflammatory proteins in tissues and blood in humans and animals, in the absence of pathogenic disease. Stress-evoked cytokine/chemokine responses, or sterile inflammation, can facilitate host survival and/or negatively affect health, depending on context. Recent evidence supports the hypothesis that systemic stress-evoked sterile inflammation is initiated by the sympathetic nervous system, resulting in the elevation of exosome-associated immunostimulatory endogenous danger/damage associated molecular patterns (DAMPs) and a reduction in immunoinhibitory miRNA, which are carried in the circulation to tissues throughout the body. We propose that sterile inflammation should be considered an elemental feature of the stress response and that circulating exosomes transporting immunomodulatory signals, may play a role fundamental role in immune homeostasis.
Collapse
|
32
|
Gur TL, Shay L, Palkar AV, Fisher S, Varaljay VA, Dowd S, Bailey MT. Prenatal stress affects placental cytokines and neurotrophins, commensal microbes, and anxiety-like behavior in adult female offspring. Brain Behav Immun 2017; 64:50-58. [PMID: 28027927 DOI: 10.1016/j.bbi.2016.12.021] [Citation(s) in RCA: 145] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 12/21/2016] [Accepted: 12/22/2016] [Indexed: 01/12/2023] Open
Abstract
Recent studies demonstrate that exposure to stress changes the composition of the intestinal microbiota, which is associated with development of stress-induced changes to social behavior, anxiety, and depression. Stress during pregnancy has also been related to the emergence of these disorders; whether commensal microbes are part of a maternal intrauterine environment during prenatal stress is not known. Here, we demonstrate that microbiome changes are manifested in the mother, and also found in female offspring in adulthood, with a correlation between stressed mothers and female offspring. Alterations in the microbiome have been shown to alter immune responses, thus we examined cytokines in utero. IL-1β was increased in placenta and fetal brain from offspring exposed to the prenatal stressor. Because IL-1β has been shown to prevent induction of brain derived neurotrophic factor (BDNF), we examined BDNF and found a reduction in female placenta and adult amygdala, suggesting in utero impact on neurodevelopment extending into adulthood. Furthermore, gastrointestinal microbial communities were different in adult females born from stressed vs. non-stressed pregnancies. Adult female offspring also demonstrated increased anxiety-like behavior and alterations in cognition, suggesting a critical window where stress is able to influence the microbiome and the intrauterine environment in a deleterious manner with lasting behavioral consequences. The microbiome may be a key link between the intrauterine environment and adult behavioral changes.
Collapse
Affiliation(s)
- Tamar L Gur
- Department of Psychiatry & Behavioral Health, Wexner Medical Center at The Ohio State University, United States; Department of Neuroscience, Wexner Medical Center at The Ohio State University, United States; Department of Obstetrics & Gynecology, Wexner Medical Center at The Ohio State University, United States; Institute for Behavioral Medicine Research, Wexner Medical Center at The Ohio State University, United States.
| | - Lena Shay
- Department of Psychiatry & Behavioral Health, Wexner Medical Center at The Ohio State University, United States
| | - Aditi Vadodkar Palkar
- Department of Psychiatry & Behavioral Health, Wexner Medical Center at The Ohio State University, United States; Institute for Behavioral Medicine Research, Wexner Medical Center at The Ohio State University, United States
| | - Sydney Fisher
- Department of Psychiatry & Behavioral Health, Wexner Medical Center at The Ohio State University, United States; Institute for Behavioral Medicine Research, Wexner Medical Center at The Ohio State University, United States; Center for Microbial Pathogenesis, The Research Institute, Nationwide Children's Hospital, The Ohio State University, United States
| | - Vanessa A Varaljay
- Center for Microbial Pathogenesis, The Research Institute, Nationwide Children's Hospital, The Ohio State University, United States; Biosciences Division, College of Dentistry, The Ohio State University, United States; Department of Pediatrics, Wexner Medical Center at The Ohio State University, United States
| | - Scot Dowd
- Research and Testing Laboratory and Medical Biofilm Research Institute, Lubbock, TX 79407, United States
| | - Michael T Bailey
- Institute for Behavioral Medicine Research, Wexner Medical Center at The Ohio State University, United States; Center for Microbial Pathogenesis, The Research Institute, Nationwide Children's Hospital, The Ohio State University, United States; Biosciences Division, College of Dentistry, The Ohio State University, United States; Department of Pediatrics, Wexner Medical Center at The Ohio State University, United States
| |
Collapse
|
33
|
Stress during pregnancy alters temporal and spatial dynamics of the maternal and offspring microbiome in a sex-specific manner. Sci Rep 2017; 7:44182. [PMID: 28266645 PMCID: PMC5339804 DOI: 10.1038/srep44182] [Citation(s) in RCA: 186] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 02/06/2017] [Indexed: 02/07/2023] Open
Abstract
The microbiome is a regulator of host immunity, metabolism, neurodevelopment, and behavior. During early life, bacterial communities within maternal gut and vaginal compartments can have an impact on directing these processes. Maternal stress experience during pregnancy may impact offspring development by altering the temporal and spatial dynamics of the maternal microbiome during pregnancy. To examine the hypothesis that maternal stress disrupts gut and vaginal microbial dynamics during critical prenatal and postnatal windows, we used high-resolution 16S rRNA marker gene sequencing to examine outcomes in our mouse model of early prenatal stress. Consistent with predictions, maternal fecal communities shift across pregnancy, a process that is disrupted by stress. Vaginal bacterial community structure and composition exhibit lasting disruption following stress exposure. Comparison of maternal and offspring microbiota revealed that similarities in bacterial community composition was predicted by a complex interaction between maternal body niche and offspring age and sex. Importantly, early prenatal stress influenced offspring bacterial community assembly in a temporal and sex-specific manner. Taken together, our results demonstrate that early prenatal stress may influence offspring development through converging modifications to gut microbial composition during pregnancy and transmission of dysbiotic vaginal microbiome at birth.
Collapse
|
34
|
Mackos AR, Maltz R, Bailey MT. The role of the commensal microbiota in adaptive and maladaptive stressor-induced immunomodulation. Horm Behav 2017; 88:70-78. [PMID: 27760302 PMCID: PMC5303636 DOI: 10.1016/j.yhbeh.2016.10.006] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 10/13/2016] [Accepted: 10/14/2016] [Indexed: 02/06/2023]
Abstract
Over the past decade, it has become increasingly evident that there are extensive bidirectional interactions between the body and its microbiota. These interactions are evident during stressful periods, where it is recognized that commensal microbiota community structure is significantly changed. Many different stressors, ranging from early life stressors to stressors administered during adulthood, lead to significant, community-wide differences in the microbiota. The mechanisms through which this occurs are not yet known, but it is known that commensal microbes can recognize, and respond to, mammalian hormones and neurotransmitters, including those that are involved with the physiological response to stressful stimuli. In addition, the physiological stress response also changes many aspects of gastrointestinal physiology that can impact microbial community composition. Thus, there are many routes through which microbial community composition might be disrupted during stressful periods. The implications of these disruptions in commensal microbial communities for host health are still not well understood, but the commensal microbiota have been linked to stressor-induced immunopotentiation. The role of the microbiota in stressor-induced immunopotentiation can be adaptive, such as when these microbes stimulate innate defenses against bacterial infection. However, the commensal microbiota can also lead to maladaptive immune responses during stressor-exposure. This is evident in animal models of colonic inflammation where stressor exposure increases the inflammation through mechanisms involving the microbiota. It is likely that during stressor exposure, immune cell functioning is regulated by combined effects of both neurotransmitters/hormones and commensal microbes. Defining this regulation should be a focus of future studies.
Collapse
Affiliation(s)
- Amy R Mackos
- Center for Microbial Pathogenesis, The Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, United States.
| | - Ross Maltz
- Center for Microbial Pathogenesis, The Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, United States; Department of Gastroenterology, Nationwide Children's Hospital, Columbus, OH 43205, United States
| | - Michael T Bailey
- Center for Microbial Pathogenesis, The Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, United States; Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH 43210, United States
| |
Collapse
|
35
|
Mackos AR, Varaljay VA, Maltz R, Gur TL, Bailey MT. Role of the Intestinal Microbiota in Host Responses to Stressor Exposure. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2016; 131:1-19. [PMID: 27793214 DOI: 10.1016/bs.irn.2016.08.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Humans have coevolved over time to not only tolerate but also rely on trillions of microbes that aid in the development of our immune system, provide nutrients, break down potentially noxious substances, and act as a barrier against potentially pathogenic organisms. These microbes, collectively known as the microbiota, live in relatively stable communities on mucosal surfaces such as the respiratory tract and gastrointestinal tract. Changes to the microbiota are often transient, due to changes in diet, antibiotic exposure, and psychological stressor exposure. This chapter will discuss how psychological stressors can shape the intestinal microbial community and how these perturbations can contribute to stressor-induced changes in immune function, neurodevelopment, and behavioral deficits.
Collapse
Affiliation(s)
- A R Mackos
- Center for Microbial Pathogenesis, The Research Institute at Nationwide Children's Hospital, Columbus, OH, United States
| | - V A Varaljay
- Center for Microbial Pathogenesis, The Research Institute at Nationwide Children's Hospital, Columbus, OH, United States
| | - R Maltz
- Center for Microbial Pathogenesis, The Research Institute at Nationwide Children's Hospital, Columbus, OH, United States; Nationwide Children's Hospital, Columbus, OH, United States
| | - T L Gur
- Wexner Medical Center at The Ohio State University, Columbus, OH, United States; The Institute for Behavioral Medicine Research (IBMR) at The Ohio State University, Columbus, OH, United States
| | - M T Bailey
- Center for Microbial Pathogenesis, The Research Institute at Nationwide Children's Hospital, Columbus, OH, United States; The Institute for Behavioral Medicine Research (IBMR) at The Ohio State University, Columbus, OH, United States; The Ohio State University College of Medicine, Columbus, OH, United States.
| |
Collapse
|
36
|
Sorokulova I, Globa L, Pustovyy O, Vodyanoy V. Prevention of Heat Stress Adverse Effects in Rats by Bacillus subtilis Strain. J Vis Exp 2016:54122. [PMID: 27500362 PMCID: PMC4993440 DOI: 10.3791/54122] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
This study was designed to evaluate the protective effect of the Bacillus subtilis strain against complications related to heat stress. Thirty-two Sprague-Dawley rats were used in this study. Animals were orally treated twice a day for two days with B. subtilis BSB3 strain or PBS. The next day after the last treatment, each group was divided and two experimental groups (one treated with PBS and one treated with B. subtilis) were placed at 45 (o)C for 25 min. Two control groups stayed for 25 min at room temperature. All rats were euthanized and different parameters were analyzed in all groups. Adverse effects of heat stress are registered by the decrease of villi height and total mucosal thickness in the intestinal epithelium; translocation of bacteria from the lumen; increased vesiculation of erythrocytes and elevation of the lipopolysaccharides (LPS) level in the blood. The protective efficacy of treatment is evaluated by prevention of these side effects. The protocol was set up for the oral treatment of rats with bacteria for prevention of heat stress complications, but this protocol can be modified and used for other routes of administration and for analysis of different compounds.
Collapse
Affiliation(s)
- Iryna Sorokulova
- Department of Anatomy, Physiology and Pharmacology, Auburn University;
| | - Ludmila Globa
- Department of Anatomy, Physiology and Pharmacology, Auburn University
| | - Oleg Pustovyy
- Department of Anatomy, Physiology and Pharmacology, Auburn University
| | - Vitaly Vodyanoy
- Department of Anatomy, Physiology and Pharmacology, Auburn University
| |
Collapse
|
37
|
Jašarević E, Morrison KE, Bale TL. Sex differences in the gut microbiome-brain axis across the lifespan. Philos Trans R Soc Lond B Biol Sci 2016; 371:20150122. [PMID: 26833840 DOI: 10.1098/rstb.2015.0122] [Citation(s) in RCA: 197] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/19/2015] [Indexed: 02/06/2023] Open
Abstract
In recent years, the bidirectional communication between the gut microbiome and the brain has emerged as a factor that influences immunity, metabolism, neurodevelopment and behaviour. Cross-talk between the gut and brain begins early in life immediately following the transition from a sterile in utero environment to one that is exposed to a changing and complex microbial milieu over a lifetime. Once established, communication between the gut and brain integrates information from the autonomic and enteric nervous systems, neuroendocrine and neuroimmune signals, and peripheral immune and metabolic signals. Importantly, the composition and functional potential of the gut microbiome undergoes many transitions that parallel dynamic periods of brain development and maturation for which distinct sex differences have been identified. Here, we discuss the sexually dimorphic development, maturation and maintenance of the gut microbiome-brain axis, and the sex differences therein important in disease risk and resilience throughout the lifespan.
Collapse
Affiliation(s)
- Eldin Jašarević
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kathleen E Morrison
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Tracy L Bale
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
38
|
Bailey MT. Psychological Stress, Immunity, and the Effects on Indigenous Microflora. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 874:225-46. [PMID: 26589222 DOI: 10.1007/978-3-319-20215-0_11] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Psychological stress is an intrinsic part of life that affects all organs of the body through direct nervous system innervation and the release of neuroendocrine hormones. The field of PsychoNeuroImmunology (PNI) has clearly demonstrated that the physiological response to psychological stressors can dramatically impact the functioning of the immune system, thus identifying one way in which susceptibility to or severity of diseases are exacerbated during stressful periods. This chapter describes research at the interface between the fields of PNI and Microbial Endocrinology to demonstrate that natural barrier defenses, such as those provided by the commensal microflora, can be disrupted by exposure to psychological stressors. These stress effects are evident in the development of the intestinal microflora in animals born from stressful pregnancy conditions, and in older animals with fully developed microbial populations. Moreover, data are presented demonstrating that exposure to different types of stressors results in the translocation of microflora from cutaneous and mucosal surfaces into regional lymph nodes. When considered together, a scenario emerges in which psychological stressors induce a neuroendocrine response that has the potential to directly or indirectly affect commensal microflora populations, the integrity of barrier defenses, and the internalization of microbes. Finally, a hypothesis is put forth in which stressor-induced alterations of the microflora contribute to the observed stressor-induced increases in inflammatory markers in the absence of overt infection.
Collapse
Affiliation(s)
- Michael T Bailey
- Center for Microbial Pathogenesis, The Research Institute at Nationwide Children's Hospital, Columbus, OH, 43205, USA.
| |
Collapse
|
39
|
Gur TL, Bailey MT. Effects of Stress on Commensal Microbes and Immune System Activity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 874:289-300. [DOI: 10.1007/978-3-319-20215-0_14] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
40
|
|
41
|
Modulation of the Interaction of Enteric Bacteria with Intestinal Mucosa by Stress-Related Catecholamines. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 874:143-66. [PMID: 26589217 DOI: 10.1007/978-3-319-20215-0_6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Stress associated with parturition, transport or mixing has long been correlated with enhanced faecal excretion of diarrhoeal zoonotic pathogens in animals such as Salmonella enterica and Escherichia coli. It may also predispose humans to infection and/or be associated with more severe outcomes. One possible explanation for this phenomenon is the ability of enteric bacterial pathogens to sense and respond to host stress-related catecholamines. This article reviews evidence of the ability of catecholamine hormones to modulate interactions between Gram-negative diarrhoeal pathogens and intestinal mucosa, as well as the molecular mechanisms that may be at work.
Collapse
|
42
|
Sandrini S, Aldriwesh M, Alruways M, Freestone P. Microbial endocrinology: host-bacteria communication within the gut microbiome. J Endocrinol 2015; 225:R21-34. [PMID: 25792117 DOI: 10.1530/joe-14-0615] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/16/2015] [Indexed: 12/28/2022]
Abstract
The human body is home to trillions of micro-organisms, which are increasingly being shown to have significant effects on a variety of disease states. Evidence exists that a bidirectional communication is taking place between us and our microbiome co-habitants, and that this dialogue is capable of influencing our health in a variety of ways. This review considers how host hormonal signals shape the microbiome, and what in return the microbiome residents may be signalling to their hosts.
Collapse
Affiliation(s)
- Sara Sandrini
- Department of Infection Immunity and Inflammation, University of Leicester, Maurice Shock Medical Sciences Building, University Road, Leicester LE1 9HN, UK
| | - Marwh Aldriwesh
- Department of Infection Immunity and Inflammation, University of Leicester, Maurice Shock Medical Sciences Building, University Road, Leicester LE1 9HN, UK
| | - Mashael Alruways
- Department of Infection Immunity and Inflammation, University of Leicester, Maurice Shock Medical Sciences Building, University Road, Leicester LE1 9HN, UK
| | - Primrose Freestone
- Department of Infection Immunity and Inflammation, University of Leicester, Maurice Shock Medical Sciences Building, University Road, Leicester LE1 9HN, UK
| |
Collapse
|
43
|
Keightley PC, Koloski NA, Talley NJ. Pathways in gut-brain communication: evidence for distinct gut-to-brain and brain-to-gut syndromes. Aust N Z J Psychiatry 2015; 49:207-14. [PMID: 25710826 DOI: 10.1177/0004867415569801] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
OBJECTIVE The rich interconnectedness between gut and brain is increasingly being identified. This article reviews the evidence for brain-gut and gut-brain syndromes, particularly recent epidemiological evidence, and animal studies demonstrating bi-directionality at the formative stage of development. METHOD Narrative literature review with selection for relevance and quality. RESULTS Population surveys show a strong correlation between anxiety, depression, and functional gastrointestinal disorders, contradicting early suspicions that the high prevalence of anxiety and depression in the clinic was mainly due to neurotic health seeking behaviour. Five and 12 year follow-up shows that psychological distress can predict later onset of a functional gastrointestinal disorder and vice versa. Brain-gut pathways include the autonomic nervous system, hypothalamic-pituitary-adrenal axis including corticotrophin releasing factor directly acting on the gut. Gut-brain pathways include ascending pain pathways, cytokines including tumour necrosis factor alpha in response to bacterial translocation and inflammation, 5-hydroxytryptamine secretion by entero-endocrine cells and psychoactive chemicals of bacterial origin which may enter the blood stream, such as gamma-aminobutyric acid, fatty acids and 5-hydroxytryptamine precursors. The ability to control rodent temperament and HPA responsiveness with early modification of gastrointestinal flora, and the effects of early stress on the barrier function of the gastrointestinal tract and flora, suggests an ability of both systems to prime each other in early life for later problems. This hypothesis seems to be supported by a possible protective effect of a probiotic strain of bacteria in a model of early rat psychological trauma. CONCLUSION Psychological treatments are known to improve functional gastrointestinal disorders, the next wave of research may involve preventative microbiological gut based treatments for primary psychological presentations, both to treat the presenting complaint and inoculate against later functional gastrointestinal disorders.
Collapse
Affiliation(s)
- Philip C Keightley
- Academic Unit of Psychiatry & Addiction Medicine, Australian National University Medical School, Canberra, Australia
| | | | | |
Collapse
|
44
|
Langgartner D, Füchsl AM, Uschold-Schmidt N, Slattery DA, Reber SO. Chronic subordinate colony housing paradigm: a mouse model to characterize the consequences of insufficient glucocorticoid signaling. Front Psychiatry 2015; 6:18. [PMID: 25755645 PMCID: PMC4337237 DOI: 10.3389/fpsyt.2015.00018] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 01/29/2015] [Indexed: 12/30/2022] Open
Abstract
Chronic, in particular chronic psychosocial, stress is a burden of modern societies and known to be a risk factor for numerous somatic and affective disorders (in detail referenced below). However, based on the limited existence of appropriate, and clinically relevant, animal models for studying the effects of chronic stress, the detailed behavioral, physiological, neuronal, and immunological mechanisms linking stress and such disorders are insufficiently understood. To date, most chronic stress studies in animals employ intermittent exposure to the same (homotypic) or to different (heterotypic) stressors of varying duration and intensity. Such models are only of limited value, since they do not adequately reflect the chronic and continuous situation that humans typically experience. Furthermore, application of different physical or psychological stimuli renders comparisons to the mainly psychosocial stressors faced by humans, as well as between the different stress studies almost impossible. In contrast, rodent models of chronic psychosocial stress represent situations more akin to those faced by humans and consequently seem to hold more clinical relevance. Our laboratory has developed a model in which mice are exposed to social stress for 19 continuous days, namely the chronic subordinate colony housing (CSC) paradigm, to help bridge this gap. The main aim of the current review article is to provide a detailed summary of the behavioral, physiological, neuronal, and immunological consequences of the CSC paradigm, and wherever possible relate the findings to other stress models and to the human situation.
Collapse
Affiliation(s)
- Dominik Langgartner
- Laboratory for Molecular Psychosomatics, Clinic for Psychosomatic Medicine and Psychotherapy, University of Ulm, Ulm, Germany
| | - Andrea M. Füchsl
- Laboratory for Molecular Psychosomatics, Clinic for Psychosomatic Medicine and Psychotherapy, University of Ulm, Ulm, Germany
| | - Nicole Uschold-Schmidt
- Laboratory of Molecular and Cellular Neurobiology, Department of Behavioural and Molecular Neurobiology, University of Regensburg, Regensburg, Germany
| | - David A. Slattery
- Department of Behavioural and Molecular Neurobiology, University of Regensburg, Regensburg, Germany
| | - Stefan O. Reber
- Laboratory for Molecular Psychosomatics, Clinic for Psychosomatic Medicine and Psychotherapy, University of Ulm, Ulm, Germany
| |
Collapse
|
45
|
Gautam A, D’Arpa P, Donohue DE, Muhie S, Chakraborty N, Luke BT, Grapov D, Carroll EE, Meyerhoff JL, Hammamieh R, Jett M. Acute and chronic plasma metabolomic and liver transcriptomic stress effects in a mouse model with features of post-traumatic stress disorder. PLoS One 2015; 10:e0117092. [PMID: 25629821 PMCID: PMC4309402 DOI: 10.1371/journal.pone.0117092] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 12/18/2014] [Indexed: 12/18/2022] Open
Abstract
Acute responses to intense stressors can give rise to post-traumatic stress disorder (PTSD). PTSD diagnostic criteria include trauma exposure history and self-reported symptoms. Individuals who meet PTSD diagnostic criteria often meet criteria for additional psychiatric diagnoses. Biomarkers promise to contribute to reliable phenotypes of PTSD and comorbidities by linking biological system alterations to behavioral symptoms. Here we have analyzed unbiased plasma metabolomics and other stress effects in a mouse model with behavioral features of PTSD. In this model, C57BL/6 mice are repeatedly exposed to a trained aggressor mouse (albino SJL) using a modified, resident-intruder, social defeat paradigm. Our recent studies using this model found that aggressor-exposed mice exhibited acute stress effects including changed behaviors, body weight gain, increased body temperature, as well as inflammatory and fibrotic histopathologies and transcriptomic changes of heart tissue. Some of these acute stress effects persisted, reminiscent of PTSD. Here we report elevated proteins in plasma that function in inflammation and responses to oxidative stress and damaged tissue at 24 hrs post-stressor. Additionally at this acute time point, transcriptomic analysis indicated liver inflammation. The unbiased metabolomics analysis showed altered metabolites in plasma at 24 hrs that only partially normalized toward control levels after stress-withdrawal for 1.5 or 4 wks. In particular, gut-derived metabolites were altered at 24 hrs post-stressor and remained altered up to 4 wks after stress-withdrawal. Also at the 4 wk time point, hyperlipidemia and suppressed metabolites of amino acids and carbohydrates in plasma coincided with transcriptomic indicators of altered liver metabolism (activated xenobiotic and lipid metabolism). Collectively, these system-wide sequelae to repeated intense stress suggest that the simultaneous perturbed functioning of multiple organ systems (e.g., brain, heart, intestine and liver) can interact to produce injuries that lead to chronic metabolic changes and disorders that have been associated with PTSD.
Collapse
Affiliation(s)
- Aarti Gautam
- US Army Center for Environmental Health Research, Fort Detrick, MD, United States of America
- The Geneva Foundation, Tacoma, WA 98402, United States of America
| | - Peter D’Arpa
- US Army Center for Environmental Health Research, Fort Detrick, MD, United States of America
- The Geneva Foundation, Tacoma, WA 98402, United States of America
| | - Duncan E. Donohue
- US Army Center for Environmental Health Research, Fort Detrick, MD, United States of America
- The Geneva Foundation, Tacoma, WA 98402, United States of America
| | - Seid Muhie
- Advanced Biomedical Computing Center, Frederick National Laboratory for Cancer Research, Frederick, MD, United States of America
| | - Nabarun Chakraborty
- US Army Center for Environmental Health Research, Fort Detrick, MD, United States of America
- The Geneva Foundation, Tacoma, WA 98402, United States of America
| | - Brian T. Luke
- Advanced Biomedical Computing Center, Frederick National Laboratory for Cancer Research, Frederick, MD, United States of America
| | - Dmitry Grapov
- NIH West Coast Metabolomics Center, University of California Davis, Davis, CA, United States of America
| | - Erica E. Carroll
- Army Institute for Public Health, Aberdeen Proving Ground, Aberdeen, MD 21010–5403, United States of America
| | - James L. Meyerhoff
- US Army Center for Environmental Health Research, Fort Detrick, MD, United States of America
- The Geneva Foundation, Tacoma, WA 98402, United States of America
| | - Rasha Hammamieh
- US Army Center for Environmental Health Research, Fort Detrick, MD, United States of America
| | - Marti Jett
- US Army Center for Environmental Health Research, Fort Detrick, MD, United States of America
| |
Collapse
|
46
|
Wohleb ES, McKim DB, Sheridan JF, Godbout JP. Monocyte trafficking to the brain with stress and inflammation: a novel axis of immune-to-brain communication that influences mood and behavior. Front Neurosci 2015; 8:447. [PMID: 25653581 PMCID: PMC4300916 DOI: 10.3389/fnins.2014.00447] [Citation(s) in RCA: 243] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 12/19/2014] [Indexed: 12/13/2022] Open
Abstract
HIGHLIGHTSPsychological stress activates neuroendocrine pathways that alter immune responses.Stress-induced alterations in microglia phenotype and monocyte priming leads to aberrant peripheral and central inflammation.Elevated pro-inflammatory cytokine levels caused by microglia activation and recruitment of monocytes to the brain contribute to development and persistent anxiety-like behavior.Mechanisms that mediate interactions between microglia, endothelial cells, and macrophages and how these contribute to changes in behavior are discussed.Sensitization of microglia and re-distribution of primed monocytes are implicated in re-establishment of anxiety-like behavior. Psychological stress causes physiological, immunological, and behavioral alterations in humans and rodents that can be maladaptive and negatively affect quality of life. Several lines of evidence indicate that psychological stress disrupts key functional interactions between the immune system and brain that ultimately affects mood and behavior. For example, activation of microglia, the resident innate immune cells of the brain, has been implicated as a key regulator of mood and behavior in the context of prolonged exposure to psychological stress. Emerging evidence implicates a novel neuroimmune circuit involving microglia activation and sympathetic outflow to the peripheral immune system that further reinforces stress-related behaviors by facilitating the recruitment of inflammatory monocytes to the brain. Evidence from various rodent models, including repeated social defeat (RSD), revealed that trafficking of monocytes to the brain promoted the establishment of anxiety-like behaviors following prolonged stress exposure. In addition, new evidence implicates monocyte trafficking from the spleen to the brain as key regulator of recurring anxiety following exposure to prolonged stress. The purpose of this review is to discuss mechanisms that cause stress-induced monocyte re-distribution in the brain and how dynamic interactions between microglia, endothelial cells, and brain macrophages lead to maladaptive behavioral responses.
Collapse
Affiliation(s)
- Eric S Wohleb
- Department of Psychiatry, Yale University School of Medicine New Haven, CT, USA
| | - Daniel B McKim
- Division of Biosciences, The Ohio State University College of Dentistry Columbus, OH, USA ; Department of Neuroscience, The Ohio State University College of Medicine Columbus, OH, USA
| | - John F Sheridan
- Division of Biosciences, The Ohio State University College of Dentistry Columbus, OH, USA ; Institute for Behavioral Medicine Research, The Ohio State University College of Medicine Columbus, OH, USA ; Center for Brain and Spinal Cord Repair, The Ohio State University College of Medicine Columbus, OH, USA
| | - Jonathan P Godbout
- Department of Neuroscience, The Ohio State University College of Medicine Columbus, OH, USA ; Institute for Behavioral Medicine Research, The Ohio State University College of Medicine Columbus, OH, USA ; Center for Brain and Spinal Cord Repair, The Ohio State University College of Medicine Columbus, OH, USA
| |
Collapse
|
47
|
Jašarević E, Rodgers AB, Bale TL. A novel role for maternal stress and microbial transmission in early life programming and neurodevelopment. Neurobiol Stress 2015; 1:81-88. [PMID: 25530984 PMCID: PMC4267059 DOI: 10.1016/j.ynstr.2014.10.005] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2014] [Revised: 10/18/2014] [Accepted: 10/20/2014] [Indexed: 12/13/2022] Open
Abstract
Perturbations in the prenatal and early life environment can contribute to the development of offspring stress dysregulation, a pervasive symptom in neuropsychiatric disease. Interestingly, the vertical transmission of maternal microbes to offspring and the subsequent bacterial colonization of the neonatal gut overlap with a critical period of brain development. Therefore, environmental factors such as maternal stress that are able to alter microbial populations and their transmission can thereby shape offspring neurodevelopment. As the neonatal gastrointestinal tract is primarily inoculated at parturition through the ingestion of maternal vaginal microflora, disruption in the vaginal ecosystem may have important implications for offspring neurodevelopment and disease risk. Here, we discuss alterations that occur in the vaginal microbiome following maternal insult and the subsequent effects on bacterial assembly of the neonate gut, the production of neuromodulatory metabolites, and the developmental course of stress regulation.
Collapse
Affiliation(s)
| | | | - Tracy L. Bale
- Department of Animal Biology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
48
|
Gur TL, Worly BL, Bailey MT. Stress and the commensal microbiota: importance in parturition and infant neurodevelopment. Front Psychiatry 2015; 6:5. [PMID: 25698977 PMCID: PMC4313583 DOI: 10.3389/fpsyt.2015.00005] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 01/12/2015] [Indexed: 12/26/2022] Open
Abstract
The body is colonized by an enormous array of microbes that are collectively called the microbiota. During quiescent periods, microbial communities within the gut are relatively resistant to change. However, several factors that disrupt homeostasis can also significantly change gut microbial community structure. One factor that has been shown to change the composition of the gut microbiota is exposure to psychological stressors. Studies demonstrate that the commensal microbiota are involved in stressor-induced immunomodulation, but other biological effects are not yet known. This review discusses emerging evidence that the microbiota can impact the brain and behavior and indicates that stressor-induced alterations in the composition of gut microbial communities contribute to stressor-induced behavioral changes. This review will also discuss the evidence that such effects are most evident early in life, where both stress and the microbiota have been linked to birth outcomes, such as prematurity, and neurodevelopment. When considered together, a paradigm emerges in which stressor-induced alterations in commensal microbial populations significantly impact parturition and infant neurodevelopment.
Collapse
Affiliation(s)
- Tamar L Gur
- Psychiatry and Behavioral Health, The Ohio State University Wexner Medical Center , Columbus, OH , USA ; Department of Obstetrics and Gynecology, The Ohio State University Wexner Medical Center , Columbus, OH , USA ; Department of Neuroscience, The Ohio State University Wexner Medical Center , Columbus, OH , USA
| | - Brett L Worly
- Psychiatry and Behavioral Health, The Ohio State University Wexner Medical Center , Columbus, OH , USA ; Department of Obstetrics and Gynecology, The Ohio State University Wexner Medical Center , Columbus, OH , USA
| | - Michael T Bailey
- Division of Biosciences, College of Dentistry, The Ohio State University , Columbus, OH , USA ; Institute for Behavioral Medicine Research, The Ohio State University Wexner Medical Center , Columbus, OH , USA ; Department of Pediatrics, The Ohio State University Wexner Medical Center , Columbus, OH , USA ; Comprehensive Cancer Center, The Ohio State University Wexner Medical Center , Columbus, OH , USA
| |
Collapse
|
49
|
Deak T, Quinn M, Cidlowski JA, Victoria NC, Murphy AZ, Sheridan JF. Neuroimmune mechanisms of stress: sex differences, developmental plasticity, and implications for pharmacotherapy of stress-related disease. Stress 2015; 18:367-80. [PMID: 26176590 PMCID: PMC4813310 DOI: 10.3109/10253890.2015.1053451] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The last decade has witnessed profound growth in studies examining the role of fundamental neuroimmune processes as key mechanisms that might form a natural bridge between normal physiology and pathological outcomes. Rooted in core concepts from psychoneuroimmunology, this review utilizes a succinct, exemplar-driven approach of several model systems that contribute significantly to our knowledge of the mechanisms by which neuroimmune processes interact with stress physiology. Specifically, we review recent evidence showing that (i) stress challenges produce time-dependent and stressor-specific patterns of cytokine/chemokine expression in the CNS; (ii) inflammation-related genes exhibit unique expression profiles in males and females depending upon individual, cooperative or antagonistic interactions between steroid hormone receptors (estrogen and glucocorticoid receptors); (iii) adverse social experiences incurred through repeated social defeat engage a dynamic process of immune cell migration from the bone marrow to brain and prime neuroimmune function and (iv) early developmental exposure to an inflammatory stimulus (carageenin injection into the hindpaw) has a lasting influence on stress reactivity across the lifespan. As such, the present review provides a theoretical framework for understanding the role that neuroimmune mechanisms might play in stress plasticity and pathological outcomes, while at the same time pointing toward features of the individual (sex, developmental experience, stress history) that might ultimately be used for the development of personalized strategies for therapeutic intervention in stress-related pathologies.
Collapse
Affiliation(s)
- Terrence Deak
- Behavioral Neuroscience Program, Department of Psychology, Binghamton University-SUNY, Binghamton, NY 13902-6000
- Address correspondence to: Terrence Deak, Ph.D., , Phone: 607-777-5918
| | - Matt Quinn
- Laboratory of Signal Transduction, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina 27709
| | - John A. Cidlowski
- Laboratory of Signal Transduction, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina 27709
| | - Nicole C. Victoria
- Neuroscience Institute, Georgia State University, Petit Science Center, PO Box 5030, Atlanta, GA 30302-5030
| | - Anne Z. Murphy
- Neuroscience Institute, Georgia State University, Petit Science Center, PO Box 5030, Atlanta, GA 30302-5030
| | - John F. Sheridan
- The Ohio State University College of Dentistry and Institute for Behavioral Medicine Research, The Ohio State University Wexner Medical Center, Columbus, OH 43210
| |
Collapse
|
50
|
Rook GAW, Raison CL, Lowry CA. Microbiota, immunoregulatory old friends and psychiatric disorders. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 817:319-56. [PMID: 24997041 DOI: 10.1007/978-1-4939-0897-4_15] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Regulation of the immune system is an important function of the gut microbiota. Increasing evidence suggests that modern living conditions cause the gut microbiota to deviate from the form it took during human evolution. Contributing factors include loss of helminth infections, encountering less microbial biodiversity, and modulation of the microbiota composition by diet and antibiotic use. Thus the gut microbiota is a major mediator of the hygiene hypothesis (or as we prefer, "Old Friends" mechanism), which describes the role of organisms with which we co-evolved, and that needed to be tolerated, as crucial inducers of immunoregulation. At least partly as a consequence of reduced exposure to immunoregulatory Old Friends, many but not all of which resided in the gut, high-income countries are undergoing large increases in a wide range of chronic inflammatory disorders including allergies, autoimmunity and inflammatory bowel diseases. Depression, anxiety and reduced stress resilience are comorbid with these conditions, or can occur in individuals with persistently raised circulating levels of biomarkers of inflammation in the absence of clinically apparent peripheral inflammatory disease. Moreover poorly regulated inflammation during pregnancy might contribute to brain developmental abnormalities that underlie some cases of autism spectrum disorders and schizophrenia. In this chapter we explain how the gut microbiota drives immunoregulation, how faulty immunoregulation and inflammation predispose to psychiatric disease, and how psychological stress drives further inflammation via pathways that involve the gut and microbiota. We also outline how this two-way relationship between the brain and inflammation implicates the microbiota, Old Friends and immunoregulation in the control of stress resilience.
Collapse
Affiliation(s)
- Graham A W Rook
- Centre for Clinical Microbiology, UCL (University College London), Royal Free Campus, Rowland Hill Street, London, NW3 2PF, UK,
| | | | | |
Collapse
|