1
|
Alboni S, Tascedda F, Uezato A, Sugama S, Chen Z, Marcondes MCG, Conti B. Interleukin 18 and the brain: neuronal functions, neuronal survival and psycho-neuro-immunology during stress. Mol Psychiatry 2025:10.1038/s41380-025-02951-z. [PMID: 40121365 DOI: 10.1038/s41380-025-02951-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 01/27/2025] [Accepted: 03/10/2025] [Indexed: 03/25/2025]
Abstract
Interleukin 18 (IL-18) is a pleiotropic cytokine that regulates peripheral innate and adaptive immune response and is also expressed in the brain. Here, we summarize the current knowledge on the biology of IL-18 in the brain and the efforts to determine its significance concerning neurological and psychiatric conditions. The picture that emerges is that of a heavily regulated molecule that can contribute to neuroinflammatory-mediated neuronal survival but can also serve as a neuromodulator that affects behaviour. We also summarize evidence showing how the brain can control the synthesis of peripheral IL-18 during stress by hormonal and neuronal signalling, regulating tissue-specific promoter usage. We discuss how this may represent one of the mechanisms by which the brain affects immune functions and what its implications are when considering IL-18 as a biomarker of psychiatric conditions.
Collapse
Affiliation(s)
- Silvia Alboni
- University of Modena and Reggio Emilia, Department of Life Sciences via Campi 287, 41125, Modena, Italy
| | - Fabio Tascedda
- University of Modena and Reggio Emilia, Department of Life Sciences via Campi 287, 41125, Modena, Italy
| | - Akihito Uezato
- Center for Basic Medical Research, International University of Health and Welfare, 2600-1 Kitakanemaru, Otawara, Tochigi, 324-8501, Japan
| | - Shuei Sugama
- Center for Basic Medical Research, International University of Health and Welfare, 2600-1 Kitakanemaru, Otawara, Tochigi, 324-8501, Japan
| | - Zuxin Chen
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen University Town, Shenzhen, P. R. China
| | | | - Bruno Conti
- San Diego Biomedical Research Institute, 3525 John Hopkins Ct, San Diego, CA, 92121, USA.
| |
Collapse
|
2
|
Somm E, Jornayvaz FR. Interleukin-18 in metabolism: From mice physiology to human diseases. Front Endocrinol (Lausanne) 2022; 13:971745. [PMID: 36313762 PMCID: PMC9596921 DOI: 10.3389/fendo.2022.971745] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 09/23/2022] [Indexed: 11/13/2022] Open
Abstract
Interleukin-18 (IL-18) is a classical member of the IL-1 superfamily of cytokines. As IL-1β, IL-18 precursor is processed by inflammasome/caspase-1 into a mature and biologically active form. IL-18 binds to its specific receptor composed of two chains (IL-18Rα and IL-18Rβ) to trigger a similar intracellular signaling pathway as IL-1, ultimately leading to activation of NF-κB and inflammatory processes. Independently of this IL-1-like signaling, IL-18 also specifically induces IFN-γ production, driving the Th1 immune response. In circulation, IL-18 binds to the IL-18 binding protein (IL-18BP) with high affinity, letting only a small fraction of free IL-18 able to trigger receptor-mediated signaling. In contrast to other IL-1 family members, IL-18 is produced constitutively by different cell types, suggesting implications in normal physiology. If the roles of IL-18 in inflammatory processes and infectious diseases are well described, recent experimental studies in mice have highlighted the action of IL-18 signaling in the control of energy homeostasis, pancreatic islet immunity and liver integrity during nutritional stress. At the same time, clinical observations implicate IL-18 in various metabolic diseases including obesity, type 1 and 2 diabetes and nonalcoholic fatty liver disease (NAFLD)/nonalcoholic steatohepatitis (NASH). In the present review, we summarize and discuss both the physiological actions of IL-18 in metabolism and its potential roles in pathophysiological mechanisms leading to the most common human metabolic disorders, such as obesity, diabetes and NAFLD/NASH.
Collapse
Affiliation(s)
- Emmanuel Somm
- Service of Endocrinology, Diabetes, Nutrition and Therapeutic Patient Education, Department of Internal Medicine, Geneva University Hospitals, Geneva, Switzerland
- Department of Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland
- Diabetes Center, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - François R. Jornayvaz
- Service of Endocrinology, Diabetes, Nutrition and Therapeutic Patient Education, Department of Internal Medicine, Geneva University Hospitals, Geneva, Switzerland
- Department of Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland
- Diabetes Center, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
3
|
Prossin A, Koch A, Campbell P, Laumet G, Stohler CS, Dantzer R, Zubieta JK. Effects of placebo administration on immune mechanisms and relationships with central endogenous opioid neurotransmission. Mol Psychiatry 2022; 27:831-839. [PMID: 34716408 PMCID: PMC9054677 DOI: 10.1038/s41380-021-01365-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 10/05/2021] [Accepted: 10/14/2021] [Indexed: 12/19/2022]
Abstract
Behavioral conditioning and expectation can have profound impact on animal and human physiology. Placebo, administered under positive expectation in clinical trials, can have potent effects on disease pathology, obscuring active medications. Emerging evidence suggests placebo-responsive neurotransmitter systems (e.g., endogenous opioid) regulate immune function by manipulating inflammatory proteins including IL-18, a potent pro-inflammatory, nociceptive cytokine implicated in pathophysiology of various diseases. Validation that neuroimmune interactions involving brain μ-opioid receptor (MOR) activity and plasma IL-18 underlie placebo analgesic expectation could have widespread clinical applications. Unfortunately, current lack of mechanistic clarity obfuscates clinical translation. To elucidate neuroimmune interactions underlying placebo analgesia, we exposed 37 healthy human volunteers to a standardized pain challenge on each of 2 days within a Positron Emission Tomography (PET) neuroimaging paradigm using the MOR selective radiotracer, 11C-Carfentanil (CFN). Each day volunteers received an intervention (placebo under analgesic expectation or no treatment), completed PET scanning, and rated their pain experience. MOR BPND parametric maps were generated from PET scans using standard methods. Results showed placebo reduced plasma IL-18 during pain (W74 = -3.7, p < 0.001), the extent correlating with reduction in pain scores. Placebo reduction in IL-18 covaried with placebo-induced endogenous opioid release in the left nucleus accumbens (T148 = 3.33; puncorr < 0.001) and left amygdala (T148 = 3.30; puncorr < 0.001). These findings are consistent with a modulating effect of placebo (under analgesic expectation in humans) on a potent nociceptive, pro-inflammatory cytokine (IL-18) and underlying relationships with endogenous opioid activity, a neurotransmitter system critically involved in pain, stress, and mood regulation.
Collapse
Affiliation(s)
- Alan Prossin
- Department of Psychiatry and Behavioral Sciences, University of Texas McGovern Medical School, Houston, TX, USA. .,Translational Imaging Center, Houston Methodist Research Institute, Weill Cornell College of Medicine, Houston, TX, USA.
| | - Alisa Koch
- grid.214458.e0000000086837370Department of Internal Medicine, Division of Rheumatology, University of Michigan Medical School, Ann Arbor, MI USA
| | - Phillip Campbell
- grid.214458.e0000000086837370Department of Internal Medicine, Division of Rheumatology, University of Michigan Medical School, Ann Arbor, MI USA
| | - Geoffroy Laumet
- grid.17088.360000 0001 2150 1785Department of Physiology, Michigan State University, East Lansing, MI USA
| | - Christian S. Stohler
- grid.21729.3f0000000419368729College of Dental Medicine, Columbia University, New York, NY USA
| | - Robert Dantzer
- grid.240145.60000 0001 2291 4776Department of Symptom Research, Division of Internal Medicine, University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - Jon-Kar Zubieta
- grid.416477.70000 0001 2168 3646Department of Psychiatry, John T Mather Memorial Hospital, Northwell Health, Port Jefferson, NY USA
| |
Collapse
|
4
|
Mochol M, Taubøll E, Aukrust P, Ueland T, Andreassen OA, Svalheim S. Interleukin 18 (IL-18) and its binding protein (IL-18BP) are increased in patients with epilepsy suggesting low-grade systemic inflammation. Seizure 2020; 80:221-225. [PMID: 32659652 DOI: 10.1016/j.seizure.2020.05.018] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 05/09/2020] [Accepted: 05/21/2020] [Indexed: 12/15/2022] Open
Abstract
PURPOSE Proinflammatory cytokines seems to play a role in epileptogenesis independent of the underlying cause. The purpose of this study was to assess if IL-18 and its binding protein IL-18BP are related to epilepsy and could act as a predictive biomarker for epileptogenesis. METHODS In this cross-sectional study, circulating levels of IL-18 and IL-18BP were analysed in 119 epilepsy patients, and 80 healthy controls. Participants completed a questionnaire regarding epilepsy, use of drug(-s) and comorbidity. RESULTS Epilepsy patients had significantly higher serum levels of IL-18 (p = 0.003) and IL-18BP (p = 0.009) than healthy controls. The groups differed in sex, age and weight, however none of those variables were significantly correlated with IL-18 and IL-18BP in patients or controls. Weight was considered an important confounder in our study. Subgroup investigations revealed that in participants with BMI under 30 kg/m², serum IL-18 (p = 0.032) and IL-18BP (p = 0.029) remained significantly higher in patients than controls. Further analyses showed significantly higher concentration of IL-18 among participants using carbamazepine (CBZ) (p = 0.016) or lamotrigine (LTG) (p = 0.024), but not in those using levetiracetam (LEV) (p = 0.102) compared to controls. No associations were found between serum levels of IL-18 and IL-18BP and epilepsy duration, seizures type, or presence of seizures in the last six months. CONCLUSION The study shows an elevation of IL-18 and IL-18BP serum levels in epilepsy patients. This result indicates the presence of a low-grade systemic inflammation involving IL-18 in epilepsy. Further investigations should explore the character and clinical impact of IL-18 as well its possible role as a biomarker for epilepsy.
Collapse
Affiliation(s)
- Monika Mochol
- Department of Neurology, Østfold Hospital Trust, Norway; ERGO - Epilepsy Research Group of Oslo, Department of Neurology, Oslo University Hospital, Norway; Institute of Clinical Medicine, University of Oslo, Norway.
| | - Erik Taubøll
- ERGO - Epilepsy Research Group of Oslo, Department of Neurology, Oslo University Hospital, Norway; Institute of Clinical Medicine, University of Oslo, Norway
| | - Pål Aukrust
- Institute of Clinical Medicine, University of Oslo, Norway; Department of Immunology and Infectious Disease, Oslo University Hospital, Norway
| | - Thor Ueland
- Institute of Clinical Medicine, University of Oslo, Norway; Research Institute of Internal Medicine, Oslo University Hospital, Norway; K.G. Jebsen Thrombosis Research and Expertise Center, University of Tromsø, Norway
| | - Ole A Andreassen
- NORMENT Centre, Institute of Clinical Medicine, University of Oslo and Division of Mental Health and Addiction, Oslo University Hospital, Norway
| | - Sigrid Svalheim
- ERGO - Epilepsy Research Group of Oslo, Department of Neurology, Oslo University Hospital, Norway
| |
Collapse
|
5
|
Rex DAB, Agarwal N, Prasad TSK, Kandasamy RK, Subbannayya Y, Pinto SM. A comprehensive pathway map of IL-18-mediated signalling. J Cell Commun Signal 2019; 14:257-266. [PMID: 31863285 DOI: 10.1007/s12079-019-00544-4] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 12/06/2019] [Indexed: 02/07/2023] Open
Abstract
Interleukin-18 (IL-18) is a member of the IL-1 family of cytokines and was initially described as an IFN-γ-inducing factor derived from anti-CD3-stimulated T-helper (Th)1 cells. IL-18 plays a significant role in the activation of hematopoietic cell types mediating both Th1 and Th2 responses and is the primary inducer of interferon-γ in these cells. The biological activity of IL-18 is mediated through its binding to the IL-18 receptor complex and activation of nuclear factor-κB (NF-κB), culminating in the production and release of several cytokines, chemokines, and cellular adhesion molecules. In certain cell types, IL-18 also activates mitogen-activated protein kinases (MAPKs) and phosphoinositide 3-kinase/ AKT serine/threonine kinase (PI3K/AKT) signaling modules leading to the production and release of proinflammatory cytokines. IL-18-mediated signaling acts as one of the vital components of the immunomodulatory cytokine networks involved in host defense, inflammation, and tissue regeneration. Albeit its biomedical importance, a comprehensive resource of IL-18 mediated signaling pathway is currently lacking. In this study, we report on the development of an integrated pathway map of IL-18/IL-18R signaling. The pathway map was developed through literature mining from published literature based on manual curation guidelines adapted from NetPath and includes information on 16 protein-protein interaction events, 38 enzyme-catalysis events, 12 protein translocation events, 26 activations/inhibition events, transcriptional regulators, 230 gene regulation events and 84 induced protein expression events. The IL-18 signaling pathway can be freely accessed through the WikiPathways database (https://www.wikipathways.org/index.php/Pathway:WP4754).
Collapse
Affiliation(s)
- D A B Rex
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, India
| | - Nupur Agarwal
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, India
| | - T S Keshava Prasad
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, India
| | - Richard K Kandasamy
- Centre of Molecular Inflammation Research (CEMIR), and Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology, N-7491, Trondheim, Norway
| | - Yashwanth Subbannayya
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, India. .,Centre of Molecular Inflammation Research (CEMIR), and Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology, N-7491, Trondheim, Norway.
| | - Sneha M Pinto
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, India. .,Centre of Molecular Inflammation Research (CEMIR), and Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology, N-7491, Trondheim, Norway.
| |
Collapse
|
6
|
Interleukin-18 Reduces Blood Glucose and Modulates Plasma Corticosterone in a Septic Mouse Model. Shock 2018; 47:455-462. [PMID: 27648697 DOI: 10.1097/shk.0000000000000747] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND Dysregulation of glucose metabolism, including hyperglycemia with insulin resistance, is commonly observed in critically ill patients. Interleukin-18 (IL-18) improves the insulin resistance associated with obesity, but the relationship between IL-18 and glucose metabolism in sepsis was unclear. The purpose of this study was to investigate the influence of IL-18 on hyperglycemia during sepsis. METHODS Sepsis was induced using cecal ligation and puncture (CLP) in wild-type (WT) mice, IL-18 knockout (KO) mice, and IL-18 KO mice pretreated with recombinant IL-18. Blood glucose and plasma insulin, glucagon, and corticosterone were measured. The mRNAs for gluconeogenic enzymes (g6pc, pck1) and activation of insulin signaling were also analyzed. RESULTS In both WT and IL-18 KO mice, CLP operation led to hyperglycemia that lasted longer (18 h) than after sham operation (6 h). Blood glucose levels in IL-18 KO mice were significantly higher than in WT mice, without alteration of insulin or glucagon levels. In IL-18 KO mice, insulin signaling in the liver and skeletal muscle was decreased during hyperglycemia as compared with WT mice without suppression of hepatic glucose production enzymes. Pretreatment with recombinant IL-18 reduced blood glucose levels after CLP. Additionally, corticosterone levels were higher after CLP in the presence of either endogenous or exogenous IL-18. CONCLUSION IL-18 may reduce blood glucose by modulating insulin signaling in the liver during sepsis-induced hyperglycemia. IL-18 is an important factor associated with alterations in blood glucose during sepsis.
Collapse
|
7
|
Kaufmann FN, Costa AP, Ghisleni G, Diaz AP, Rodrigues ALS, Peluffo H, Kaster MP. NLRP3 inflammasome-driven pathways in depression: Clinical and preclinical findings. Brain Behav Immun 2017; 64:367-383. [PMID: 28263786 DOI: 10.1016/j.bbi.2017.03.002] [Citation(s) in RCA: 279] [Impact Index Per Article: 34.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 02/13/2017] [Accepted: 03/01/2017] [Indexed: 12/12/2022] Open
Abstract
Over the past three decades, an intricate interaction between immune activation, release of pro-inflammatory cytokines and changes in brain circuits related to mood and behavior has been described. Despite extensive efforts, questions regarding when inflammation becomes detrimental or how we can target the immune system to develop new therapeutic strategies for the treatment of psychiatric disorders remain unresolved. In this context, novel aspects of the neuroinflammatory process activated in response to stressful challenges have recently been documented in major depressive disorder (MDD). The Nod-like receptor pyrin containing 3 inflammasome (NLRP3) is an intracellular multiprotein complex responsible for a number of innate immune processes associated with infection, inflammation and autoimmunity. Recent data have demonstrated that NLRP3 activation appears to bridge the gap between immune activation and metabolic danger signals or stress exposure, which are key factors in the pathogenesis of psychiatric disorders. In this review, we discuss both preclinical and clinical evidence that links the assembly of the NLRP3 complex and the subsequent proteolysis and release of the pro-inflammatory cytokines interleukin-1β (IL-1β) and interleukin-18 (IL-18) in chronic stress models and patients with MDD. Importantly, we also focus on the therapeutic potential of targeting the NLRP3 inflammasome complex to improve stress resilience and depressive symptoms.
Collapse
Affiliation(s)
- Fernanda N Kaufmann
- Department of Biochemistry, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Ana Paula Costa
- Department of Biochemistry, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Gabriele Ghisleni
- Department of Life and Health Sciences, Catholic University of Pelotas, Rio Grande do Sul, Brazil
| | - Alexandre P Diaz
- Postgraduate Program in Health Sciences, University of Southern Santa Catarina, Santa Catarina, Brazil
| | - Ana Lúcia S Rodrigues
- Department of Biochemistry, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Hugo Peluffo
- Neuroinflammation and Gene Therapy Lab., Institut Pasteur de Montevideo, Uruguay; Dept. Histology and Embryology, Faculty of Medicine, UDELAR, Uruguay
| | - Manuella P Kaster
- Department of Biochemistry, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil.
| |
Collapse
|
8
|
Hayakawa T, Hata M, Kuwahara-Otani S, Yagi H, Okamura H. Postnatal changes of interleukin-18 receptor immunoreactivity in neurons of the retrosplenial cortex in wild-type and interleukin-18 knock out mice. Okajimas Folia Anat Jpn 2017; 94:93-99. [PMID: 29681594 DOI: 10.2535/ofaj.94.93] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Interleukin-18 (IL-18), which is involved in the inflammatory response, is also found in the cerebral cortex. IL-18 receptor-immunoreactive (IL-18R-ir) neurons are present in layer V of the retrosplenial cortex (RSC). In the adult IL-18 knock out (KO) mice, no IL-18R-ir neurons but many degenerated neurons are present in layer V of the RSC, suggesting that any changes in the neurons of layer V have occurred during postnatal development. We examined changes of IL-18R expression during postnatal development. In the wild-type mice, many IL-18R-ir neurons were present in layers II, III and VI of the RSC in 2-week-old mice, whereas they were sparsely observed in only layer III in 3-week-old mice. No IL-18R-ir neurons were present in 4- and 5-week-old mice. In older than 6-week-old mice, many IL-18R-ir neurons were present in layers V and VI. The IL-18KO mice showed IL-18R-ir neurons in layers II, III and VI at 2-weeks-old, and a few in layer III at 3-week-old mice, similar to that in the wild-type mice. No IL-18R-ir neurons were found in mice older than 4 weeks of age. Thus, IL-18 or IL-18R seem to be involved in the construction of neural circuits corresponding to events after 3-weeks of age.
Collapse
Affiliation(s)
- Tetsu Hayakawa
- Laboratory of Tumor Immunology and Cell Therapy Hyogo College of Medicine Mukogawa
| | - Masaki Hata
- Laboratory of Tumor Immunology and Cell Therapy Hyogo College of Medicine Mukogawa
| | | | - Hideshi Yagi
- Department of Anatomy Hyogo College of Medicine Mukogawa
| | - Haruki Okamura
- Laboratory of Tumor Immunology and Cell Therapy Hyogo College of Medicine Mukogawa
| |
Collapse
|
9
|
The role of IL18-607C>A and IL18-137G>C promoter polymorphisms in antidepressant treatment phenotypes: A preliminary report. Neurosci Lett 2016; 622:107-12. [DOI: 10.1016/j.neulet.2016.03.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Revised: 03/02/2016] [Accepted: 03/14/2016] [Indexed: 11/22/2022]
|
10
|
Prossin AR, Koch AE, Campbell PL, Barichello T, Zalcman SS, Zubieta JK. Acute experimental changes in mood state regulate immune function in relation to central opioid neurotransmission: a model of human CNS-peripheral inflammatory interaction. Mol Psychiatry 2016; 21:243-51. [PMID: 26283642 PMCID: PMC4720915 DOI: 10.1038/mp.2015.110] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Revised: 05/08/2015] [Accepted: 06/16/2015] [Indexed: 01/18/2023]
Abstract
Although evidence shows depressed moods enhance risk for somatic diseases, molecular mechanisms underlying enhanced somatic susceptibility are ill-defined. Knowledge of these molecular mechanisms will inform development of treatment and prevention strategies across comorbid depressive and somatic illnesses. Existing evidence suggests that interleukin-18 (IL-18; an IL-1 family cytokine) is elevated in depression and implicated in pathophysiology underlying comorbid medical illnesses. We previously identified strong associations between baseline IL-18 and μ-opioid receptor availability in major depressive disorder (MDD) volunteers. Combined with the evidence in animal models, we hypothesized that experimental mood induction would change IL-18, the extent proportional to opioid neurotransmitter release. Using the Velten technique in a [(11)C]carfentanil positron emission tomography neuroimaging study, we examined the impact of experimentally induced mood (sad, neutral) on plasma IL-18 and relationships with concurrent changes in the central opioid neurotransmission in 28 volunteers (healthy, MDD). Results showed mood induction impacted IL-18 (F2,25=12.2, P<0.001), sadness increasing IL-18 (T27=2.6, P=0.01) and neutral mood reducing IL-18 (T27=-4.1, P<0.001). In depressed volunteers, changes in IL-18 were more pronounced (F2,25=3.6, P=0.03) and linearly proportional to sadness-induced μ-opioid activation (left ventral pallidum, bilateral anterior cingulate cortices, right hypothalamus and bilateral amygdala). These data demonstrate that dynamic changes of a pro-inflammatory IL-1 superfamily cytokine, IL-18, and its relationship to μ-opioid neurotransmission in response to experimentally induced sadness. Further testing is warranted to delineate the role of neuroimmune interactions involving IL-18 in enhancing susceptibility to medical illness (that is, diabetes, heart disease and persistent pain states) in depressed individuals.
Collapse
Affiliation(s)
- A R Prossin
- Department of Psychiatry and Behavioral Sciences, University of Texas Health Science Center at Houston, Houston, TX, USA,Department of Psychiatry and Behavioral Sciences, University of Texas Health Sciences Center at Houston, 1941 East Road, BBSB #2308, Houston, TX 77054, USA. E-mail:
| | - A E Koch
- Division of Rheumatology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA,Medical Service, Veteran's Administration Ann Arbor, Ann Arbor, MI, USA
| | - P L Campbell
- Division of Rheumatology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | - T Barichello
- Center for Experimental Models in Psychiatry, Department of Psychiatry and Behavioral Sciences, University of Texas Health Science Center at Houston, Houston, TX, USA,Laboratório de Microbiologia Experimental, Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - S S Zalcman
- Department of Psychiatry, New Jersey Medical School, University of Medicine and Dentistry of New Jersey, Newark, NJ, USA
| | - J-K Zubieta
- Department of Psychiatry, University of Michigan Medical School, Ann Arbor, MI, USA,Molecular and Behavioral Neuroscience Institute, Department of Psychiatry, University of Michigan Medical School, Ann Arbor, MI, USA,Department of Radiology, University of Michigan Medical School, Ann Arbor, MI, USA
| |
Collapse
|
11
|
Si LF, Zhang SY, Gao CS, Chen SL, Zhao J, Cheng XC. Effects of IFN-γ on IL-18 Expression in Pregnant Rats and Pregnancy Outcomes. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2014; 26:1399-405. [PMID: 25049723 PMCID: PMC4093076 DOI: 10.5713/ajas.2013.13101] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Revised: 07/10/2013] [Accepted: 05/29/2013] [Indexed: 01/12/2023]
Abstract
The present study focused on establishing the effects of interferon-gamma (IFN-γ) on interleukin-18 (IL-18) expression patterns and pregnancy outcomes in pregnant rats. Pregnant rats at the post-implantation stage were randomized into control, low IFN-γ (L-IFN-γ) and high IFN-γ groups (H-IFN-γ) that received normal saline, 100 IU/g of IFN-γ and 500 IU/g of IFN-γ vaginal muscular injection, respectively. The effects of IFN-γ on IL-18 expression and pregnancy outcomes were assessed systematically using several methods, including immunohistochemistry streptavidin-perosidase (SP), image pattern analysis, enzyme-linked immune-sorbent assay (ELISA), whole blood count (WBC) count, microscopy and visual observation. IL-18 was detected in the uteri of all pregnant rats, and mainly distributed in the endometrium, decidual cells, vascular endothelium and myometrium. Immunohistochemistry and image pattern analyses revealed significantly lower IL-18 expression in the H-IFN-γ group compared to the L-IFN-γ and control groups (p<0.01), indicating that high doses of IFN-γ induce downregulation of IL-18 in the uterus of pregnant rats. ELISA results disclosed that IL-18 expression in peripheral blood of the H-IFN-γ group was lower than that of the L-IFN-γ group (p<0.05), and significantly reduced compared to the control group (p<0.01). Moreover, the number of peripheral leukocytes in the H-IFN-γ group was significantly higher than those in the control and L-IFN-γ groups (p<0.01). Morphology analysis showed no evident differences between the L-IFN-γ and control groups. However, for the H-IFN-γ group, uterine mucosa bleeding, necrosis and excoriation were observed using microscopy. Visual observation revealed marroon, swelling, crassitude and no embryo in the uterus, which are obvious indicators of abortion. These results indicate that IFN-γ plays a regulatory role in IL-18 expression in the uterus and peripheral blood of pregnant rats at the post-implantation stage. Moreover, high levels (500 IU/g) of IFN-γ influence normal pregnancy at the early stages in rats by downregulating IL-18 expression in the uterus and peripheral blood and increasing the number of peripheral leukocytes, consequently triggering termination of pregnancy.
Collapse
Affiliation(s)
- Li-Fang Si
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan 471003, China
| | - Shou-Yan Zhang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan 471003, China
| | - Chun-Sheng Gao
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan 471003, China
| | - Shu-Lin Chen
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan 471003, China
| | - Jin Zhao
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan 471003, China
| | - Xiang-Chao Cheng
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan 471003, China
| |
Collapse
|
12
|
Zhou J, Ping FF, Lv WT, Feng JY, Shang J. Interleukin-18 directly protects cortical neurons by activating PI3K/AKT/NF-κB/CREB pathways. Cytokine 2014; 69:29-38. [PMID: 25022959 DOI: 10.1016/j.cyto.2014.05.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Revised: 04/12/2014] [Accepted: 05/01/2014] [Indexed: 12/11/2022]
Abstract
Interleukin-18 (IL-18), a member of the IL-1 family of cytokines, was initially identified as an interferon (IFN)-γ-inducing factor. IL-18 is expressed in both immune and non-immune cells and participates in the adjustment of multitude cellular functions. Nonetheless, the effects of IL-18 on cortical neurons have not been explored. The present study was conducted to investigate the influence of IL-18 on rat primary cortical neurons and elucidate the underlying mechanisms. We proved that rrIL-18 increased the brain-derived neurotrophic factor (BDNF) expression in a time-dependent manner. Treatment with rrIL-18 (50 ng/ml) deactivated phosphatase and tensin homolog deleted on chromosome 10 (PTEN) by facilitating its phosphorylation, enhanced the expression of Phosphoinositide 3-OH kinase (PI3K) and p-Akt, standing for the activation of the PI3K/Akt pathway. As its pivotal downstream pathways, nuclear factor-kappa B (NF-κB), cAMP-responsive element binding protein (CREB)/Bcl-2 and glycogen synthase kinase-3β (GSK-3β) were examined in further steps. Our data revealed that rrIL-18 stimulated NF-κB activation, improved p-CREB and anti-apoptotic Bcl-2 expression levels. But rrIL-18 had little or no effect on GSK-3β pathway. Besides, rrIL-18 increased levels of BDNF and Bcl-2/Bax ratio and decreased cleaved caspase-3 expression to protect cortical neurons from damage induced by oxygen-glucose deprivation (OGD). These results in vitro showed the protection of IL-18 on cortical neurons. And this direct neuroprotective effect of IL-18 is crippled by PI3K inhibitor wortmannin.
Collapse
Affiliation(s)
- Jia Zhou
- Center for Drug Screening, China Pharmaceutical University, Nanjing 210009, China; State Key Laboratory of Natural Medicines, China Pharmaceutical University, China
| | - Feng-feng Ping
- Center for Drug Screening, China Pharmaceutical University, Nanjing 210009, China; Department of Clinical Laboratory Science, Wuxi People's Hospital affiliated to Nanjing Medical University, China
| | - Wen-ting Lv
- Center for Drug Screening, China Pharmaceutical University, Nanjing 210009, China; State Key Laboratory of Natural Medicines, China Pharmaceutical University, China
| | - Jun-yi Feng
- Center for Drug Screening, China Pharmaceutical University, Nanjing 210009, China; State Key Laboratory of Natural Medicines, China Pharmaceutical University, China
| | - Jing Shang
- Center for Drug Screening, China Pharmaceutical University, Nanjing 210009, China; State Key Laboratory of Natural Medicines, China Pharmaceutical University, China.
| |
Collapse
|
13
|
Zorrilla EP, Conti B. Interleukin-18 null mutation increases weight and food intake and reduces energy expenditure and lipid substrate utilization in high-fat diet fed mice. Brain Behav Immun 2014; 37:45-53. [PMID: 24316258 PMCID: PMC4219830 DOI: 10.1016/j.bbi.2013.12.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Revised: 12/01/2013] [Accepted: 12/01/2013] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVE The proinflammatory cytokine interleukin-18 (IL-18) putatively modulates food intake and energy metabolism, but the effects of IL-18 in high-fat diet fed animals are unknown. Whether IL-18 alters basal metabolic rate or metabolic processes of living is unknown. Here, we tested the hypothesis that IL-18 modulates weight gain, energy intake, whole-body energy expenditure, and utilization of lipid as a fuel substrate in high-fat diet fed mice. METHODS Food intake, whole-body metabolism, and motor activity of IL-18 knockout mice were compared to those of wildtype littermates; anorectic effects of intracerebroventricular IL-18 administration were compared between IL-18 receptor knockout, IL-18/IL-18R knockout and wildtype mice. RESULTS Chow-reared IL-18 knockout mice were overweight at 6 months of age and then gained excess weight on both low-fat and high-fat diets, ate more high-fat diet, and showed reduced whole-body energy expenditure and increased respiratory exchange ratios. Reductions in energy expenditure of IL-18 knockout mice were seen across fasting vs. feeding conditions, low- vs. high-fat diets, high vs. low levels of physical activity and times of day, suggesting actions on basal metabolic rate. The circadian amplitude of energy expenditure, but not respiratory exchange ratio, food intake, or motor activity, also was blunted in IL-18 knockout mice. Central IL-18 administration reduced high-fat diet intake in wildtype mice, but not in mice lacking the IL-18 receptor. CONCLUSION The loss-of-function results support the hypothesis that endogenous IL-18 suppresses appetite and promote energy expenditure and lipid fuel substrate utilization not only during sickness, but also in healthy adults consuming high-fat diets.
Collapse
Affiliation(s)
- Eric P. Zorrilla
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, 10550 N. Torrey Pines Rd. La Jolla, California, 92037, USA,Molecular and Integrative Neurosciences Department, The Scripps Research Institute, 10550 N. Torrey Pines Rd. La Jolla, California, 92037, USA
| | - Bruno Conti
- Molecular and Integrative Neurosciences Department, The Scripps Research Institute, 10550 N. Torrey Pines Rd. La Jolla, California, 92037, USA
| |
Collapse
|
14
|
Wang Y, Zhang X, Zhang Y, Xu H, Fang G. Expression and localization of IL-18 in the hypothalamic-pituitary-ovarian axis of non-pregnant, pregnant, and abortive rats. J Reprod Immunol 2011; 92:45-53. [PMID: 21920610 DOI: 10.1016/j.jri.2011.07.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2010] [Revised: 07/05/2011] [Accepted: 07/19/2011] [Indexed: 12/14/2022]
Abstract
Cytokines present in the reproductive system play an important role both in the modulation of immune responses to infectious challenge and in the establishment and maintenance of pregnancy. Interleukin 18 (IL-18) has been regarded as an important regulator of innate and acquired immune response, but its expression and distribution in the hypothalamic-pituitary-ovarian axis remain unclear. In this paper, the expression and distribution of IL-18 in non-pregnant, pregnant, and early abortive rats were examined using an ultra-sensitive immunohistochemical streptavidin-peroxidase method, enzyme-linked immunosorbent assay, and reverse transcription-polymerase chain reaction. The results showed that IL-18 expression in the pituitary, in follicular ovaries, and in the corpus luteum of abortive rats were significantly lower than that of pregnant and non-pregnant rats. However, the staining of IL-18 in the hypothalamus, interstitial glands of the ovary, and uterus of abortive rats was strikingly stronger than those of the non-pregnant ones. IL-18 mRNA expression in rat uterus was detected in all groups, whereas IL-18 mRNA content in abortive rat uterus was significantly higher than in normal pregnant rats. Further, IL-18 in the peripheral blood serum of abortive rats was significantly lower than in same-period normal pregnant rats. The differential expression of IL-18 in early abortion suggests that IL-18 may be related to the underlying mechanisms of abortion.
Collapse
Affiliation(s)
- Yuesi Wang
- Institute of Stem cell and tissue engineering, Binzhou Medical University, Yantai, Shandong 264003, China
| | | | | | | | | |
Collapse
|
15
|
Alboni S, Cervia D, Sugama S, Conti B. Interleukin 18 in the CNS. J Neuroinflammation 2010; 7:9. [PMID: 20113500 PMCID: PMC2830964 DOI: 10.1186/1742-2094-7-9] [Citation(s) in RCA: 221] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2009] [Accepted: 01/29/2010] [Indexed: 12/16/2022] Open
Abstract
Interleukin (IL)-18 is a cytokine isolated as an important modulator of immune responses and subsequently shown to be pleiotropic. IL-18 and its receptors are expressed in the central nervous system (CNS) where they participate in neuroinflammatory/neurodegenerative processes but also influence homeostasis and behavior. Work on IL-18 null mice, the localization of the IL-18 receptor complex in neurons and the neuronal expression of decoy isoforms of the receptor subunits are beginning to reveal the complexity and the significance of the IL-18 system in the CNS. This review summarizes current knowledge on the central role of IL-18 in health and disease.
Collapse
Affiliation(s)
- Silvia Alboni
- Department of Biomedical Sciences, University of Modena and Reggio Emilia, Italy
| | | | | | | |
Collapse
|
16
|
Alboni S, Cervia D, Ross B, Montanari C, Gonzalez AS, Sanchez-Alavez M, Marcondes MCG, De Vries D, Sugama S, Brunello N, Blom J, Tascedda F, Conti B. Mapping of the full length and the truncated interleukin-18 receptor alpha in the mouse brain. J Neuroimmunol 2009; 214:43-54. [PMID: 19640592 PMCID: PMC2745497 DOI: 10.1016/j.jneuroim.2009.06.016] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2009] [Accepted: 06/18/2009] [Indexed: 11/16/2022]
Abstract
The cytokine IL-18 acts on the CNS both in physiological and pathological conditions. Its action occurs through the heterodimeric receptor IL-18Ralpha\beta. To better understand IL-18 central effects, we investigated in the mouse brain the distribution of two IL-18Ralpha transcripts, a full length and an isoform lacking the intracellular domain hypothesized to be a decoy receptor. Both isoforms were expressed in neurons throughout the brain primarily with overlapping distribution but also with some unique pattern. These data suggest that IL-18 may modulate neuronal functions and that its action may be regulated through expression of a decoy receptor.
Collapse
Affiliation(s)
- Silvia Alboni
- Department of Biomedical Sciences, University of Modena and Reggio Emilia, Italy
| | - Davide Cervia
- Department of Environmental Sciences, University of Tuscia, Viterbo
| | - Brendon Ross
- Harold L. Dorris Neurological Research Center, Molecular and Integrative Neurosciences Department, The Scripps Research Institute, CA, USA
| | - Claudia Montanari
- Department of Biomedical Sciences, University of Modena and Reggio Emilia, Italy
| | - Alejandro Sanchez Gonzalez
- Harold L. Dorris Neurological Research Center, Molecular and Integrative Neurosciences Department, The Scripps Research Institute, CA, USA
| | - Manuel Sanchez-Alavez
- Harold L. Dorris Neurological Research Center, Molecular and Integrative Neurosciences Department, The Scripps Research Institute, CA, USA
| | - Maria Cecilia Garibaldi Marcondes
- Harold L. Dorris Neurological Research Center, Molecular and Integrative Neurosciences Department, The Scripps Research Institute, CA, USA
| | - David De Vries
- Harold L. Dorris Neurological Research Center, Molecular and Integrative Neurosciences Department, The Scripps Research Institute, CA, USA
| | - Shuei Sugama
- Department of Physiology, Nippon Medical School, Tokyo, Japan
| | - Nicoletta Brunello
- Department of Biomedical Sciences, University of Modena and Reggio Emilia, Italy
| | - Joan Blom
- Department of Paediatrics, University of Modena and Reggio Emilia, Italy
| | - Fabio Tascedda
- Department of Biomedical Sciences, University of Modena and Reggio Emilia, Italy
| | - Bruno Conti
- Harold L. Dorris Neurological Research Center, Molecular and Integrative Neurosciences Department, The Scripps Research Institute, CA, USA
| |
Collapse
|
17
|
Moro JA, Carretero J, Alonso MI, Martín C, Gato A, Mano ADL. Prenatal expression of interleukin 1beta and interleukin 6 in the rat pituitary gland. Cytokine 2008; 44:315-22. [PMID: 19041259 DOI: 10.1016/j.cyto.2008.08.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2008] [Revised: 07/22/2008] [Accepted: 08/05/2008] [Indexed: 02/05/2023]
Abstract
It is known that interleukin 1beta (IL-1beta) and interleukin 6 (IL-6) are expressed post-natally in normal and tumoral cells in the anterior pituitary, and that they play a role in both the liberation of different hormones and in the growth, proliferation and tumor formation of the pituitary gland. However, their expression and role during embryonic and fetal development remain unknown. We have performed an immunocytochemistry study of prenatal expression and distribution of IL-1beta and IL-6 in isolated embryonic rat Rathke's pouch prior to birth, more specifically between 13.5 and 19.5 days p.c. Western-blot analysis carried out on 19.5-day p.c. embryos showed positive immunolabelling for IL-1beta and IL-6. These interleukins were initially expressed simultaneously in the rostral and ventral portions of Rathke's pouch in 15.5-day p.c. embryos, and this expression progressed caudodorsally in later developmental stages, extending to most of the hypophysis before birth. The number of cells expressing these interleukins increased throughout this period: 48.22% of anterior pituitary cells expressed IL-6 in 19.5-day embryos, whilst IL-1beta was positive in 39.8% of the cells. Moreover, we have demonstrated that some adenohypophyseal cells co-express both interleukins. Such findings represent the first step towards an understanding of the physiological role of these interleukins in anterior pituitary development.
Collapse
Affiliation(s)
- J A Moro
- Departamento de Anatomía y Radiología, Facultad de Medicina, Universidad de Valladolid, C/Ramón y Cajal 7-47005-Valladolid, Spain.
| | | | | | | | | | | |
Collapse
|
18
|
Nagai Y, Ogasawara H, Taketa Y, Aso H, Tanaka S, Kanaya T, Watanabe K, Ohwada S, Muneta Y, Yamaguchi T. Bovine anterior pituitary progenitor cell line expresses interleukin (IL)-18 and IL-18 receptor. J Neuroendocrinol 2008; 20:1233-41. [PMID: 18761716 DOI: 10.1111/j.1365-2826.2008.01779.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In the anterior pituitary gland, inflammatory mediators regulate cell function through an immuno-endocrine pathway. Recent studies have shown that undifferentiated stem cells act as immunomodulators. These studies prompted us to establish a progenitor cell line from the bovine anterior pituitary gland and to detail its function. First, we localised interleukin (IL)-18 by immunohistochemistry to the marginal cell layer of Rathke's pouch that is assumed to embody a stem/progenitor cell compartment of the postnatal pituitary gland. A cloned anterior pituitary-derived cell line from the bovine anterior pituitary gland was established from single cell clone by the limiting dilution method and was designated as bovine anterior pituitary-derived cell line (BAPC)-1. BAPC-1 cells constantly expressed mRNAs for IL-18 and IL-18 receptor, and grew steadily and rapidly in the medium containing epidermal growth factor and basic fibroblast growth factor. The cell line also expressed the mRNAs for the stem/progenitor cell- related factors such as Nanog, Oct-4, Ptch1, Nestin, Notch1, Hes1, Lrp and Fzd4, and the mRNAs for embryonic pituitary-related factors, such as Lhx3, PitX1 and Pit-1. The nuclei of BAPC-1 were immunostained positively for Pit-1, Hes1 and beta-catenin antibodies. Furthermore, BAPC-1 cells expressed mRNAs for cytokine such as IL-1alpha, IL-6, IL-7, IL-12 and IL-15. Stimulation of BAPC-1 cells with IL-18 increased expression of mRNAs for IL-1alpha, IL-6, IL-1beta and IL-8. At day 6 in culture, BAPC-1 cells also express growth hormone mRNA. These results strongly suggest that BAPC-1 is a stem/progenitor cell line and modulates the immuno-endocrine function of the anterior pituitary cells through its cytokine production.
Collapse
Affiliation(s)
- Y Nagai
- Laboratory of Functional Morphology, Graduate School of Agricultural Science, Tohoku University, Aoba-ku, Sendai, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Nagai Y, Aso H, Ogasawara H, Tanaka S, Taketa Y, Watanabe K, Ohwada S, Rose MT, Kitazawa H, Yamaguchi T. Anterior Pituitary Progenitor Cells Express Costimulatory Molecule 4Ig-B7-H3. THE JOURNAL OF IMMUNOLOGY 2008; 181:6073-81. [DOI: 10.4049/jimmunol.181.9.6073] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
20
|
Nagai Y, Ogasawara H, Taketa Y, Aso H, Kanaya T, Miyake M, Watanabe K, Ohwada S, Muneta Y, Yamaguchi T. Expression of inflammatory-related factors in porcine anterior pituitary-derived cell line. Vet Immunol Immunopathol 2008; 124:201-8. [PMID: 18440649 DOI: 10.1016/j.vetimm.2008.03.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2007] [Revised: 02/25/2008] [Accepted: 03/14/2008] [Indexed: 10/22/2022]
Abstract
Recent studies have shown that undifferentiated stem cells act as immunomodulators. To investigate the immunomodulatory function of the progenitor cells of the anterior pituitary gland, we attempted to establish a stem/progenitor cell line from the porcine anterior pituitary gland, and to detail its inflammatory cytokine expression. A cloned cell line from the porcine anterior pituitary gland was established and was designated as the porcine anterior pituitary-derived cell line (PAPC). PAPC expressed the mRNA of Nanog and Oct-4, and showed positive immunoreactivity for beta-catenin and Hes1 in its nucleus. PAPC grew stably by repeated passage and rapidly in the EGF and bFGF containing medium. RT-PCR showed that PAPC expressed mRNA of IL-1alpha, IL-6, IL-12, IL-15, IL-18 and TLR4. PAPC expressed S100alpha and IL-18 protein, which was localized in the marginal epithelial cells of Rathke's pouch. These results suggest that PAPC is a stem/progenitor cell and may regulate anterior pituitary cell function through an immuno-endocrine pathway.
Collapse
Affiliation(s)
- Yasuhiro Nagai
- Laboratory of Functional Morphology, Graduate School of Agricultural Science, Tohoku University, 1-1 Tsutsumidori-Amamiyamachi, Aoba-ku, 981-8555 Sendai, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Sugama S, Conti B. Interleukin-18 and stress. ACTA ACUST UNITED AC 2007; 58:85-95. [PMID: 18295340 DOI: 10.1016/j.brainresrev.2007.11.003] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2007] [Revised: 11/02/2007] [Accepted: 11/16/2007] [Indexed: 01/15/2023]
Abstract
Interleukin-18 (IL-18) is a pro-inflammatory cytokine believed to play a role in a variety of conditions and diseases including infections, autoimmunity, cancer, diabetes and atherosclerosis. IL-18 is also a possible contributor to the sickness syndrome by inducing anorexia and sleep. Originally recognized to be produced by cells of the immune system, IL-18 is also found in endocrine tissues, including the adrenal and the pituitary glands, and in the central nervous system where it is produced by microglial and ependymal cells as well as by neurons of the medial habenular nucleus. IL-18 is produced constitutively and its levels can increase during infection but also during stress in the absence of an exogenous stimulus. IL-18 levels are elevated by activation of the hypothalamic-pituitary-adrenal (HPA) axis in a tissue specific way via differential promoter and splicing usage, and may be down-regulated by the activation of the para-sympathetic system. This suggested the possibility that IL-18 may participate in the regulation of the HPA axis or that it may have a role in mediating the CNS dependent effects on the susceptibility to or the progression of diseases. This review summarizes the evidence linking stress and IL-18 and discusses the possible implication of the neuro-immuno-modulatory action of IL-18.
Collapse
Affiliation(s)
- Shuei Sugama
- Department of Physiology, Nippon Medical School, 1-1-5 Sendagi Bunkyo-ku, Tokyo 113-8602, Japan.
| | | |
Collapse
|
22
|
Zorrilla EP, Sanchez-Alavez M, Sugama S, Brennan M, Fernandez R, Bartfai T, Conti B. Interleukin-18 controls energy homeostasis by suppressing appetite and feed efficiency. Proc Natl Acad Sci U S A 2007; 104:11097-102. [PMID: 17578927 PMCID: PMC1904154 DOI: 10.1073/pnas.0611523104] [Citation(s) in RCA: 142] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Circulating levels of the cytokine interleukin 18 (IL-18) are elevated in obesity. Here, we show that administration of IL-18 suppresses appetite, feed efficiency, and weight regain in food-deprived male and female C57BL/6J mice. Intraperitoneal vs. intracerebroventricular routes of IL-18 administration had similar potency and did not promote formation of a conditioned taste aversion (malaise-like behavior). Mice partially (Il18(+/-)) or totally (Il18(-/-)) deficient in IL-18 were hyperphagic by young adulthood, with null mutants then becoming overweight by the fifth month of life. Adult Il18(-/-) mice gained 2- to 3-fold more weight than WT mice per unit energy consumed of low- or high-fat diet. Indirect calorimetry revealed reduced energy expenditure in female Il18(-/-) mice and increased respiratory exchange ratios [volume of carbon dioxide production (VCO(2))/volume of oxygen consumption (VO(2))] in mutants of both sexes. Hyperphagia continued in maturity, with overeating greatest during the mid- to late-dark cycle. Relative white fat-pad mass of Il18(-/-) mice was approximately 2- to 3-fold greater than that of WT, with gonadal, mesenteric, and inguinal depots growing most. The data suggest that endogenous IL-18 signaling modulates food intake, metabolism, and adiposity during adulthood and might be a central or peripheral pharmacological target for controlling energy homeostasis.
Collapse
Affiliation(s)
- Eric P. Zorrilla
- *Harold L. Dorris Neurological Research Institute
- Committee on the Neurobiology of Addictive Disorders, and
- To whom correspondence may be addressed. E-mail: or
| | - Manuel Sanchez-Alavez
- *Harold L. Dorris Neurological Research Institute
- Molecular and Integrative Neurosciences Department, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037; and
| | - Shuei Sugama
- Department of Physiology, Nippon Medical School, 1-1-5 Sendagi Bunkyo-ku, Tokyo 113-8602, Japan
| | - Molly Brennan
- *Harold L. Dorris Neurological Research Institute
- Committee on the Neurobiology of Addictive Disorders, and
| | - Rosette Fernandez
- *Harold L. Dorris Neurological Research Institute
- Molecular and Integrative Neurosciences Department, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037; and
| | - Tamas Bartfai
- *Harold L. Dorris Neurological Research Institute
- Molecular and Integrative Neurosciences Department, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037; and
| | - Bruno Conti
- *Harold L. Dorris Neurological Research Institute
- Molecular and Integrative Neurosciences Department, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037; and
- To whom correspondence may be addressed. E-mail: or
| |
Collapse
|