1
|
Leitzke M, Roach DT, Hesse S, Schönknecht P, Becker GA, Rullmann M, Sattler B, Sabri O. Long COVID - a critical disruption of cholinergic neurotransmission? Bioelectron Med 2025; 11:5. [PMID: 40011942 DOI: 10.1186/s42234-025-00167-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 01/30/2025] [Indexed: 02/28/2025] Open
Abstract
BACKGROUND Following the COVID-19 pandemic, there are many chronically ill Long COVID (LC) patients with different symptoms of varying degrees of severity. The pathological pathways of LC remain unclear until recently and make identification of path mechanisms and exploration of therapeutic options an urgent challenge. There is an apparent relationship between LC symptoms and impaired cholinergic neurotransmission. METHODS This paper reviews the current literature on the effects of blocked nicotinic acetylcholine receptors (nAChRs) on the main affected organ and cell systems and contrasts this with the unblocking effects of the alkaloid nicotine. In addition, mechanisms are presented that could explain the previously unexplained phenomenon of post-vaccination syndrome (PVS). The fact that not only SARS-CoV-2 but numerous other viruses can bind to nAChRs is discussed under the assumption that numerous other post-viral diseases and autoimmune diseases (ADs) may also be due to impaired cholinergic transmission. We also present a case report that demonstrates changes in cholinergic transmission, specifically, the availability of α4β2 nAChRs by using (-)-[18F]Flubatine whole-body positron emission tomography (PET) imaging of cholinergic dysfunction in a LC patient along with a significant neurological improvement before and after low-dose transcutaneous nicotine (LDTN) administration. Lastly, a descriptive analysis and evaluation were conducted on the results of a survey involving 231 users of LDTN. RESULTS A substantial body of research has emerged that offers a compelling explanation for the phenomenon of LC, suggesting that it can be plausibly explained because of impaired nAChR function in the human body. Following a ten-day course of transcutaneous nicotine administration, no enduring neuropathological manifestations were observed in the patient. This observation was accompanied by a significant increase in the number of free ligand binding sites (LBS) of nAChRs, as determined by (-)-[18F]Flubatine PET imaging. The analysis of the survey shows that the majority of patients (73.5%) report a significant improvement in the symptoms of their LC/MEF/CFS disease as a result of LDTN. CONCLUSIONS In conclusion, based on current knowledge, LDTN appears to be a promising and safe procedure to relieve LC symptoms with no expected long-term harm.
Collapse
Affiliation(s)
- Marco Leitzke
- Department of Nuclear Medicine, University of Leipzig Medical Centre, Leipzig, 04103, Germany.
- Department of Anesthesiology, Intensive Care Medicine, Pain- and Palliative Therapy Helios Clinics, Colditzer Straße 48, Leisnig, 04703, Germany.
| | - Donald Troy Roach
- School of Comillas University, Renegade Research, Madrid, 28015, Spain
| | - Swen Hesse
- Department of Nuclear Medicine, University of Leipzig Medical Centre, Leipzig, 04103, Germany
| | - Peter Schönknecht
- Department of Psychiatry and Neurology Altscherbitz, Schkeuditz, 04435, Germany
- Outpatient Department for Forensic-Psychiatric Research, University of Leipzig, Leipzig, 04103, Germany
| | - Georg-Alexander Becker
- Department of Nuclear Medicine, University of Leipzig Medical Centre, Leipzig, 04103, Germany
| | - Michael Rullmann
- Department of Nuclear Medicine, University of Leipzig Medical Centre, Leipzig, 04103, Germany
| | - Bernhardt Sattler
- Department of Nuclear Medicine, University of Leipzig Medical Centre, Leipzig, 04103, Germany
| | - Osama Sabri
- Department of Nuclear Medicine, University of Leipzig Medical Centre, Leipzig, 04103, Germany
| |
Collapse
|
2
|
Qu HQ, Kao C, Hakonarson H. Implications of the non-neuronal cholinergic system for therapeutic interventions of inflammatory skin diseases. Exp Dermatol 2024; 33:e15181. [PMID: 39422283 DOI: 10.1111/exd.15181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 09/05/2024] [Accepted: 09/07/2024] [Indexed: 10/19/2024]
Abstract
The pivotal roles of acetylcholine (ACh) in physiological processes encompass both the nervous and non-neuronal cholinergic systems (NNCS). This review delineates the synthesis, release, receptor interactions, and degradation of ACh within the nervous system, and explores the NNCS in depth within skin cells including keratinocytes, endothelial cells, fibroblasts, macrophages, and other immune cells. We highlight the NNCS's essential functions in maintaining epidermal barrier integrity, promoting wound healing, regulating microcirculation, and modulating inflammatory responses. The potential of the NNCS as a therapeutic target for localized ACh regulation in the skin is discussed, though the translation of these findings into clinical practice remains uncertain due to the complexity of cholinergic signalling and the lack of comprehensive human studies. The review progresses to therapeutic modulation strategies of the NNCS, including AChE inhibitors, nicotinic and muscarinic receptor agonists and antagonists, choline uptake enhancers, and botulinum toxin, highlighting their relevance in dermatology. We highlight the impact of the NNCS on prevalent skin diseases such as psoriasis, atopic dermatitis, rosacea, acne, bullous diseases, hyperhidrosis and hypohidrosis, illustrating its significance in disease pathogenesis and therapy. This comprehensive overview aims to enhance understanding of the NNCS's role in skin health and disease, offering a foundation for future research and therapeutic innovation.
Collapse
Affiliation(s)
- Hui-Qi Qu
- The Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Charlly Kao
- The Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Hakon Hakonarson
- The Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pediatrics, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Division of Pulmonary Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| |
Collapse
|
3
|
Kawashima K, Mashimo M, Nomura A, Fujii T. Contributions of Non-Neuronal Cholinergic Systems to the Regulation of Immune Cell Function, Highlighting the Role of α7 Nicotinic Acetylcholine Receptors. Int J Mol Sci 2024; 25:4564. [PMID: 38674149 PMCID: PMC11050324 DOI: 10.3390/ijms25084564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/13/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
Loewi's discovery of acetylcholine (ACh) release from the frog vagus nerve and the discovery by Dale and Dudley of ACh in ox spleen led to the demonstration of chemical transmission of nerve impulses. ACh is now well-known to function as a neurotransmitter. However, advances in the techniques for ACh detection have led to its discovery in many lifeforms lacking a nervous system, including eubacteria, archaea, fungi, and plants. Notably, mRNAs encoding choline acetyltransferase and muscarinic and nicotinic ACh receptors (nAChRs) have been found in uninnervated mammalian cells, including immune cells, keratinocytes, vascular endothelial cells, cardiac myocytes, respiratory, and digestive epithelial cells. It thus appears that non-neuronal cholinergic systems are expressed in a variety of mammalian cells, and that ACh should now be recognized not only as a neurotransmitter, but also as a local regulator of non-neuronal cholinergic systems. Here, we discuss the role of non-neuronal cholinergic systems, with a focus on immune cells. A current focus of much research on non-neuronal cholinergic systems in immune cells is α7 nAChRs, as these receptors expressed on macrophages and T cells are involved in regulating inflammatory and immune responses. This makes α7 nAChRs an attractive potential therapeutic target.
Collapse
Grants
- 19-31: TF; 20-25: TF. Individual Research Grants from the Doshisha Women's College of Liberal Arts
- 24590120, K.K., T.F., K.H.; 22K06638, T.F., A.N., 15K18871, M.M.; 15K07979, T.F., 15K07969-m, K.K.; 18K06903, T.F. The Ministry of Education, Science, Sports and Culture of Japan
Collapse
Affiliation(s)
- Koichiro Kawashima
- Department of Molecular Pharmacology, Kitasato University School of Pharmaceutical Sciences, Minato-ku, Tokyo 108-8641, Japan
| | - Masato Mashimo
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Doshisha Women’s College of Liberal Arts, Kyotanabe 610-0395, Japan; (M.M.); (A.N.)
| | - Atsuo Nomura
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Doshisha Women’s College of Liberal Arts, Kyotanabe 610-0395, Japan; (M.M.); (A.N.)
| | - Takeshi Fujii
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Doshisha Women’s College of Liberal Arts, Kyotanabe 610-0395, Japan; (M.M.); (A.N.)
| |
Collapse
|
4
|
Severi I, Perugini J, Ruocco C, Coppi L, Pedretti S, Di Mercurio E, Senzacqua M, Ragni M, Imperato G, Valerio A, Mitro N, Crestani M, Nisoli E, Giordano A. Activation of a non-neuronal cholinergic system in visceral white adipose tissue of obese mice and humans. Mol Metab 2024; 79:101862. [PMID: 38141849 PMCID: PMC10792749 DOI: 10.1016/j.molmet.2023.101862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 12/07/2023] [Accepted: 12/20/2023] [Indexed: 12/25/2023] Open
Abstract
BACKGROUND AND OBJECTIVES Since white adipose tissue (WAT) lacks parasympathetic cholinergic innervation, the source of the acetylcholine (ACh) acting on white adipocyte cholinergic receptors is unknown. This study was designed to identify ACh-producing cells in mouse and human visceral WAT and to determine whether a non-neuronal cholinergic system becomes activated in obese inflamed WAT. METHODS Mouse epididymal WAT (eWAT) and human omental fat were studied in normal and obese subjects. The expression of the key molecules involved in cholinergic signaling was evaluated by qRT-PCR and western blotting whereas their tissue distribution and cellular localization were investigated by immunohistochemistry, confocal microscopy and in situ hybridization. ACh levels were measured by liquid chromatography/tandem mass spectrometry. The cellular effects of ACh were assessed in cultured human multipotent adipose-derived stem cell (hMADS) adipocytes. RESULTS In mouse eWAT, diet-induced obesity modulated the expression of key cholinergic molecular components and, especially, raised the expression of choline acetyltransferase (ChAT), the ACh-synthesizing enzyme, which was chiefly detected in interstitial macrophages, in macrophages forming crown-like structures (CLSs), and in multinucleated giant cells (MGCs). The stromal vascular fraction of obese mouse eWAT contained significantly higher ACh and choline levels than that of control mice. ChAT was undetectable in omental fat from healthy subjects, whereas it was expressed in a number of interstitial macrophages, CLSs, and MGCs from some obese individuals. In hMADS adipocytes stressed with tumor necrosis factor α, ACh, alone or combined with rivastigmine, significantly blunted monocyte chemoattractant protein 1 and interleukin 6 expression, it partially but significantly, restored adiponectin and GLUT4 expression, and promoted glucose uptake. CONCLUSIONS In mouse and human visceral WAT, obesity induces activation of a macrophage-dependent non-neuronal cholinergic system that is capable of exerting anti-inflammatory and insulin-sensitizing effects on white adipocytes.
Collapse
Affiliation(s)
- Ilenia Severi
- Department of Experimental and Clinical Medicine, Marche Polytechnic University, 60126 Ancona, Italy
| | - Jessica Perugini
- Department of Experimental and Clinical Medicine, Marche Polytechnic University, 60126 Ancona, Italy
| | - Chiara Ruocco
- Center for Study and Research on Obesity, Department of Medical Biotechnology and Translational Medicine, University of Milan, 20129 Milano, Italy
| | - Lara Coppi
- Department of Pharmacological and Biomolecular Sciences, University of Milan, 20122 Milano, Italy
| | - Silvia Pedretti
- Department of Pharmacological and Biomolecular Sciences, University of Milan, 20122 Milano, Italy
| | - Eleonora Di Mercurio
- Department of Experimental and Clinical Medicine, Marche Polytechnic University, 60126 Ancona, Italy
| | - Martina Senzacqua
- Department of Experimental and Clinical Medicine, Marche Polytechnic University, 60126 Ancona, Italy
| | - Maurizio Ragni
- Center for Study and Research on Obesity, Department of Medical Biotechnology and Translational Medicine, University of Milan, 20129 Milano, Italy
| | - Gabriele Imperato
- Department of Pharmacological and Biomolecular Sciences, University of Milan, 20122 Milano, Italy
| | - Alessandra Valerio
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Nico Mitro
- Department of Pharmacological and Biomolecular Sciences, University of Milan, 20122 Milano, Italy; Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milano, Italy
| | - Maurizio Crestani
- Department of Pharmacological and Biomolecular Sciences, University of Milan, 20122 Milano, Italy
| | - Enzo Nisoli
- Center for Study and Research on Obesity, Department of Medical Biotechnology and Translational Medicine, University of Milan, 20129 Milano, Italy
| | - Antonio Giordano
- Department of Experimental and Clinical Medicine, Marche Polytechnic University, 60126 Ancona, Italy; Center of Obesity, Marche Polytechnic University-United Hospitals, Ancona, Italy.
| |
Collapse
|
5
|
Zeng Q, Wang S, Li M, Wang S, Guo C, Ruan X, Watanabe R, Lai Y, Huang Y, Yin X, Zhang C, Chen B, Yang N, Zhang H. Spleen fibroblastic reticular cell-derived acetylcholine promotes lipid metabolism to drive autoreactive B cell responses. Cell Metab 2023; 35:837-854.e8. [PMID: 37019104 DOI: 10.1016/j.cmet.2023.03.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 02/02/2023] [Accepted: 03/10/2023] [Indexed: 04/07/2023]
Abstract
Autoreactive B cell responses are essential for the development of systemic lupus erythematosus (SLE). Fibroblastic reticular cells (FRCs) are known to construct lymphoid compartments and regulate immune functions. Here, we identify spleen FRC-derived acetylcholine (ACh) as a key factor that controls autoreactive B cell responses in SLE. In SLE, CD36-mediated lipid uptake leads to enhanced mitochondrial oxidative phosphorylation in B cells. Accordingly, the inhibition of fatty acid oxidation results in reduced autoreactive B cell responses and ameliorated diseases in lupus mice. Ablation of CD36 in B cells impairs lipid uptake and differentiation of autoreactive B cells during autoimmune induction. Mechanistically, spleen FRC-derived ACh promotes lipid influx and generation of autoreactive B cells through CD36. Together, our data uncover a novel function of spleen FRCs in lipid metabolism and B cell differentiation, placing spleen FRC-derived ACh in a key position in promoting autoreactive B cells in SLE.
Collapse
Affiliation(s)
- Qin Zeng
- Department of Rheumatology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Shuyi Wang
- Department of Rheumatology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China.
| | - Mengyuan Li
- Department of Rheumatology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Shuang Wang
- Department of Rheumatology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Chaohuan Guo
- Department of Rheumatology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Xinyuan Ruan
- Department of Rheumatology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Ryu Watanabe
- Department of Clinical Immunology, Osaka Metropolitan University, Graduate School of Medicine, Osaka 5458585, Japan
| | - Yimei Lai
- Department of Rheumatology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Yuefang Huang
- Department of Pediatrics, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Xiaoyu Yin
- Department of Pancreato-Biliary Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Chuanzhao Zhang
- Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Binfeng Chen
- Department of Rheumatology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Niansheng Yang
- Department of Rheumatology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China.
| | - Hui Zhang
- Department of Rheumatology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; Institue of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China.
| |
Collapse
|
6
|
Chen AQ, He SM, Lv SJ, Qiu CZ, Zhou R, Zhang L, Zhang SR, Zhang Z, Ren DL. Muscarinic acetylcholine receptors regulate inflammatory responses through arginases 1/2 in zebrafish. Biomed Pharmacother 2022; 153:113321. [PMID: 35759868 DOI: 10.1016/j.biopha.2022.113321] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/15/2022] [Accepted: 06/20/2022] [Indexed: 11/17/2022] Open
Abstract
Muscarinic acetylcholine receptors (mAChRs) are widely expressed in various effector cells and have been proved to play vital roles in smooth muscle contraction and digestive secretion. However, there are relatively few literatures revealing the roles of mAChRs in inflammatory processes, and its underlying regulatory mechanisms have not been elucidated. Taking the advantages of live imaging of zebrafish, we found that inhibition of mAChRs resulted in increased neutrophils recruitment and proinflammatory cytokines expression, whereas activation of mAChRs led to opposite outcome. Subsequently, we found that mAChRs regulated the expression of arginases (args), and pharmacological intervention of args level could reverse the effects of mAChRs on neutrophils migration and cytokines expression, suggesting that args are important downstream proteins of mAChRs that mediate the regulation of inflammatory response. In this study, we identified args as novel downstream proteins of mAChRs in inflammatory responses, providing additional evidence for system immune regulation of cholinergic receptors.
Collapse
Affiliation(s)
- An-Qi Chen
- Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Bio-breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Shi-Min He
- Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Bio-breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Shi-Jie Lv
- Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Bio-breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Cheng-Zeng Qiu
- Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Bio-breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Ren Zhou
- Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Bio-breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Ling Zhang
- Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Bio-breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Shang-Rong Zhang
- Anhui Province Key Laboratory of Environmental Hormone and Reproduction, Fuyang Normal University, Fuyang, China
| | - Zijun Zhang
- Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Bio-breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China.
| | - Da-Long Ren
- Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Bio-breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
7
|
Mashimo M, Kawashima K, Fujii T. Non-neuronal Cholinergic Muscarinic Acetylcholine Receptors in the Regulation of Immune Function. Biol Pharm Bull 2022; 45:675-683. [PMID: 35650095 DOI: 10.1248/bpb.b21-01005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Immune cells such as T and B cells, monocytes and macrophages all express most of the cholinergic components of the nervous system, including acetylcholine (ACh), choline acetyltransferase (ChAT), high affinity choline transporter, muscarinic and nicotinic ACh receptors (mAChRs and nAChRs, respectively), and acetylcholinesterase (AChE). Because of its efficient cleavage by AChE, ACh synthesized and released from immune cells acts only locally in an autocrine and/or paracrine fashion at mAChRs and nAChRs on themselves and other immune cells located in close proximity, leading to modification of immune function. Immune cells generally express all five mAChR subtypes (M1-M5) and neuron type nAChR subunits α2-α7, α9, α10, β2-β4. The expression pattern and levels of mAChR subtypes and nAChR subunits vary depending on the tissue involved and its immunological status. Immunological activation of T cells via T-cell receptor-mediated pathways and cell adhesion molecules upregulates ChAT expression, which facilitates the synthesis and release of ACh. At present, α7 nAChRs expressed in macrophages are receiving much attention because they play a central role in anti-inflammatory cholinergic pathways. However, it now appears that through modification of cytokine synthesis, Gq/11-coupled mAChRs play a prominent role in regulation of T cell proliferation and differentiation and B cell immunoglobulin class switching. It is anticipated that greater understanding of Gq/11-coupled mAChRs on immune cells will provide an opportunity to develop new and effective treatments for immunological disorders.
Collapse
Affiliation(s)
- Masato Mashimo
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Doshisha Women's College of Liberal Arts
| | - Koichiro Kawashima
- Department of Molecular Pharmacology, Kitasato University School of Pharmaceutical Sciences
| | - Takeshi Fujii
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Doshisha Women's College of Liberal Arts
| |
Collapse
|
8
|
Mashimo M, Fujii M, Sakagawa N, Fukuda Y, Imanaka R, Fujii T. Muscarinic Acetylcholine Receptors Modulate Interleukin-6 Production and Immunoglobulin Class Switching in Daudi Cells. Biol Pharm Bull 2021; 43:1950-1953. [PMID: 33268714 DOI: 10.1248/bpb.b20-00461] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
B cells express muscarinic and nicotinic acetylcholine receptors (mAChRs and nAChRs, respectively). Following immunization with ovalbumin, serum immunoglobulin G (IgG) and interleukin (IL)-6 levels were lower in M1 and M5 mAChR double-deficient mice and higher in α7 nAChR-deficient mice than in wild-type mice. This suggests mAChRs participate in the cytokine production involved in B cell differentiation into plasma cells, which induces immunoglobulin class switching from IgM to IgG. However, because these results were obtained with conventional knockout mice, in which all cells in the body were affected, the specific roles of these receptors expressed in B cells remains unclear. In the present study, Daudi B lymphoblast cells were used to investigate the specific roles of mAChRs and nAChR in B cells. Stimulating Daudi cells using Pansorbin cells (heat-killed, formalin-fixed Staphylococcus aureus coated with protein A) upregulated expression of M1-M4 mAChRs and the α4 nAChR subunit. Under these conditions, mAChRs, but not nAChRs, mediated immunoglobulin class switching to IgG. This effect was blocked by scopolamine, a non-selective mAChR antagonist, and 4-diphenylacetoxy-N-methyl-piperidine methiodide (4-DAMP), a Gq/11-coupled M1, M3, M5 antagonist. In addition, IL-6 secretion was further enhanced following mAChR activation. Thus, Gq/11-coupled mAChRs expressed in B cells thus appear to contribute to IL-6 production and B cell maturation into IgG-producing plasma cells.
Collapse
Affiliation(s)
- Masato Mashimo
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Doshisha Women's College of Liberal Arts
| | - Marina Fujii
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Doshisha Women's College of Liberal Arts
| | - Natsumi Sakagawa
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Doshisha Women's College of Liberal Arts
| | - Yoshika Fukuda
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Doshisha Women's College of Liberal Arts
| | - Rika Imanaka
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Doshisha Women's College of Liberal Arts
| | - Takeshi Fujii
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Doshisha Women's College of Liberal Arts
| |
Collapse
|
9
|
Regulation of Immune Functions by Non-Neuronal Acetylcholine (ACh) via Muscarinic and Nicotinic ACh Receptors. Int J Mol Sci 2021; 22:ijms22136818. [PMID: 34202925 PMCID: PMC8268711 DOI: 10.3390/ijms22136818] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 06/16/2021] [Accepted: 06/22/2021] [Indexed: 12/14/2022] Open
Abstract
Acetylcholine (ACh) is the classical neurotransmitter in the cholinergic nervous system. However, ACh is now known to regulate various immune cell functions. In fact, T cells, B cells, and macrophages all express components of the cholinergic system, including ACh, muscarinic, and nicotinic ACh receptors (mAChRs and nAChRs), choline acetyltransferase, acetylcholinesterase, and choline transporters. In this review, we will discuss the actions of ACh in the immune system. We will first briefly describe the mechanisms by which ACh is stored in and released from immune cells. We will then address Ca2+ signaling pathways activated via mAChRs and nAChRs on T cells and B cells, highlighting the importance of ACh for the function of T cells, B cells, and macrophages, as well as its impact on innate and acquired (cellular and humoral) immunity. Lastly, we will discuss the effects of two peptide ligands, secreted lymphocyte antigen-6/urokinase-type plasminogen activator receptor-related peptide-1 (SLURP-1) and hippocampal cholinergic neurostimulating peptide (HCNP), on cholinergic activity in T cells. Overall, we stress the fact that ACh does not function only as a neurotransmitter; it impacts immunity by exerting diverse effects on immune cells via mAChRs and nAChRs.
Collapse
|
10
|
Halder N, Lal G. Cholinergic System and Its Therapeutic Importance in Inflammation and Autoimmunity. Front Immunol 2021; 12:660342. [PMID: 33936095 PMCID: PMC8082108 DOI: 10.3389/fimmu.2021.660342] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 03/26/2021] [Indexed: 12/11/2022] Open
Abstract
Neurological and immunological signals constitute an extensive regulatory network in our body that maintains physiology and homeostasis. The cholinergic system plays a significant role in neuroimmune communication, transmitting information regarding the peripheral immune status to the central nervous system (CNS) and vice versa. The cholinergic system includes the neurotransmitter\ molecule, acetylcholine (ACh), cholinergic receptors (AChRs), choline acetyltransferase (ChAT) enzyme, and acetylcholinesterase (AChE) enzyme. These molecules are involved in regulating immune response and playing a crucial role in maintaining homeostasis. Most innate and adaptive immune cells respond to neuronal inputs by releasing or expressing these molecules on their surfaces. Dysregulation of this neuroimmune communication may lead to several inflammatory and autoimmune diseases. Several agonists, antagonists, and inhibitors have been developed to target the cholinergic system to control inflammation in different tissues. This review discusses how various molecules of the neuronal and non-neuronal cholinergic system (NNCS) interact with the immune cells. What are the agonists and antagonists that alter the cholinergic system, and how are these molecules modulate inflammation and immunity. Understanding the various functions of pharmacological molecules could help in designing better strategies to control inflammation and autoimmunity.
Collapse
Affiliation(s)
- Namrita Halder
- Laboratory of Autoimmunity and Tolerance, National Centre for Cell Science, Ganeshkhind, Pune, India
| | - Girdhari Lal
- Laboratory of Autoimmunity and Tolerance, National Centre for Cell Science, Ganeshkhind, Pune, India
| |
Collapse
|
11
|
Acetylcholine ameliorates colitis by promoting IL-10 secretion of monocytic myeloid-derived suppressor cells through the nAChR/ERK pathway. Proc Natl Acad Sci U S A 2021; 118:2017762118. [PMID: 33836585 DOI: 10.1073/pnas.2017762118] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The alteration of the enteric nervous system (ENS) and its role in neuroimmune modulation remain obscure in the pathogenesis of inflammatory bowel diseases (IBDs). Here, by using the xCell tool and the latest immunolabeling-enabled three-dimensional (3D) imaging of solvent-cleared organs technique, we found severe pathological damage of the entire ENS and decreased expression of choline acetyltransferase (ChAT) in IBD patients. As a result, acetylcholine (ACh), a major neurotransmitter of the nervous system synthesized by ChAT, was greatly reduced in colon tissues of both IBD patients and colitis mice. Importantly, administration of ACh via enema remarkably ameliorated colitis, which was proved to be directly dependent on monocytic myeloid-derived suppressor cells (M-MDSCs). Furthermore, ACh was demonstrated to promote interleukin-10 secretion of M-MDSCs and suppress the inflammation through activating the nAChR/ERK pathway. The present data reveal that the cholinergic signaling pathway in the ENS is impaired during colitis and uncover an ACh-MDSCs neuroimmune regulatory pathway, which may offer promising therapeutic strategies for IBDs.
Collapse
|
12
|
Mashimo M. [Dual Roles of α7 Nicotinic Acetylcholine Receptors Expressed in Immune Cells in T Cell Differentiation -α7 nAChRs Exert Different Actions between Antigen-presenting Cells and CD4 + T Cells]. YAKUGAKU ZASSHI 2020; 140:1421-1425. [PMID: 33268683 DOI: 10.1248/yakushi.20-00151] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Immune cells such as T cells, macrophages and dendritic cells express various cholinergic system components, including muscarinic and nicotinic acetylcholine receptors (mAChRs and nAChRs, respectively) and choline acetyltransferase (ChAT), depending on the status of the immune system. The cholinergic system which these components comprise has important effects on the regulation of immune and inflammatory responses. α7 nAChR is a neuronal-type nAChR composed of a homopentamer of the α7 subunit and is characterized by high permeability to Ca2+. It is also expressed in immune cells. For example, α7 nAChRs expressed in B cells suppress IgG production by suppressing B cell maturation into plasma cells. In addition, α7 nAChRs expressed in macrophages suppress production and release of tumor necrosis factor (TNF)-α in a mouse lipopolysaccharide (LPS)-induced sepsis model, thereby protecting the mice from lethal shock. In this review, we summarize the functions of α7 nAChRs expressed in CD4+ helper T (Th) cells and antigen-presenting cells (APCs), such as dendritic cells and macrophages. We focus in particular on their role in Th cell differentiation. α7 nAChRs on APCs interfere with antigen presentation, which leads to suppression of Th cell differentiation. By contrast, α7 nAChRs on naïve Th cells enhance their differentiation. These distinct roles of α7 nAChRs expressed in APCs and Th cells could be useful for development of drugs and therapeutic strategies for the treatment of immune- and inflammation-related diseases and cancers.
Collapse
|
13
|
Grando SA, Kawashima K, Wessler I. A historic perspective on the current progress in elucidation of the biologic significance of non-neuronal acetylcholine. Int Immunopharmacol 2020; 81:106289. [PMID: 32113128 PMCID: PMC10612399 DOI: 10.1016/j.intimp.2020.106289] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Accepted: 02/03/2020] [Indexed: 01/05/2023]
Abstract
The "5th International Symposium on Non-neuronal Acetylcholine: from bench to bedside" was held on September 27-29, 2019 in Hyatt Regency, Long Beach, CA, USA. Approximately 50 scientists from 11 countries over 6 continents participated in this meeting. The major topics included an overall biologic significance of non-neuronal acetylcholine (ACh) and the roles of the non-neuronal cholinergic systems in mucocutaneous, respiratory, digestive, immunologic, endocrine, cardiovascular, musculoskeletal and kidney diseases, and cancer. This meeting facilitated continued work to advance the fundamental science and translational aspects of the interdisciplinary studies on non-neuronal ACh. The progress made has opened a new chapter in the field of cholinergic pharmacology, and advanced our knowledge beyond regulation of individual cell- and tissue-types, defining a new paradigm of selective pharmacological regulation of vital function of practically all types of non-neuronal cells. It is now clear that the autocrine and paracrine control of non-neuronal cells by non-neuronal ACh is implemented through synergistic, additive, and reciprocal effects triggered by two different cholinergic receptor classes. Each biologic effect of ACh is determined by a unique combination of cholinergic receptors subtype expressed at each stage of cell development and differentiation. The plasticity of the non-neuronal cholinergic system helps adjust homeostasis to new environmental conditions.
Collapse
Affiliation(s)
- Sergei A Grando
- Department of Dermatology, University of California, Irvine, CA 92697, USA
| | - Koichiro Kawashima
- Department of Molecular Pharmacology, Kitasato University School of Pharmacy, Tokyo 108-8641, Japan
| | - Ignaz Wessler
- Institute of Pathology, University Medical Center, Johannes Gutenberg-University, Mainz D-55101, Germany
| |
Collapse
|
14
|
Yang MW, Tao LY, Jiang YS, Yang JY, Huo YM, Liu DJ, Li J, Fu XL, He R, Lin C, Liu W, Zhang JF, Hua R, Li Q, Jiang SH, Hu LP, Tian GA, Zhang XX, Niu N, Lu P, Shi J, Xiao GG, Wang LW, Xue J, Zhang ZG, Sun YW. Perineural Invasion Reprograms the Immune Microenvironment through Cholinergic Signaling in Pancreatic Ductal Adenocarcinoma. Cancer Res 2020; 80:1991-2003. [PMID: 32098780 DOI: 10.1158/0008-5472.can-19-2689] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 01/09/2020] [Accepted: 02/21/2020] [Indexed: 12/29/2022]
Abstract
Perineural invasion is a common feature of pancreatic ductal adenocarcinoma (PDAC). Here, we investigated the effect of perineural invasion on the microenvironment and how this affects PDAC progression. Transcriptome expression profiles of PDAC tissues with different perineural invasion status were compared, and the intratumoral T-cell density and levels of neurotransmitters in these tissues were assessed. Perineural invasion was associated with impaired immune responses characterized by decreased CD8+ T and Th1 cells, and increased Th2 cells. Acetylcholine levels were elevated in severe perineural invasion. Acetylcholine impaired the ability of PDAC cells to recruit CD8+ T cells via HDAC1-mediated suppression of CCL5. Moreover, acetylcholine directly inhibited IFNγ production by CD8+ T cells in a dose-dependent manner and favored Th2 over Th1 differentiation. Furthermore, hyperactivation of cholinergic signaling enhanced tumor growth by suppressing the intratumoral T-cell response in an orthotopic PDAC model. Conversely, blocking perineural invasion with bilateral subdiaphragmatic vagotomy in tumor-bearing mice was associated with an increase in CD8+ T cells, an elevated Th1/Th2 ratio, and improved survival. In conclusion, perineural invasion-triggered cholinergic signaling favors tumor growth by promoting an immune-suppressive microenvironment characterized by impaired CD8+ T-cell infiltration and a reduced Th1/Th2 ratio. SIGNIFICANCE: These findings provide a promising therapeutic strategy to modulate the immunosuppressive microenvironment of pancreatic ductal adenocarcinoma with severe perineural invasion.
Collapse
Affiliation(s)
- Min-Wei Yang
- State Key Laboratory of Oncogenes and Related Genes, Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Ling-Ye Tao
- State Key Laboratory of Oncogenes and Related Genes, Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Yong-Sheng Jiang
- State Key Laboratory of Oncogenes and Related Genes, Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Jian-Yu Yang
- State Key Laboratory of Oncogenes and Related Genes, Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Yan-Miao Huo
- State Key Laboratory of Oncogenes and Related Genes, Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - De-Jun Liu
- State Key Laboratory of Oncogenes and Related Genes, Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Jiao Li
- Department of Hepatobiliary Pancreas Surgery, Shanghai East Hospital, Tong Ji University School of Medicine, Shanghai, P.R. China
| | - Xue-Liang Fu
- State Key Laboratory of Oncogenes and Related Genes, Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Ruizhe He
- State Key Laboratory of Oncogenes and Related Genes, Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Chaoyi Lin
- State Key Laboratory of Oncogenes and Related Genes, Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Wei Liu
- State Key Laboratory of Oncogenes and Related Genes, Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Jun-Feng Zhang
- State Key Laboratory of Oncogenes and Related Genes, Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Rong Hua
- State Key Laboratory of Oncogenes and Related Genes, Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Qing Li
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Shu-Heng Jiang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Li-Peng Hu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Guang-Ang Tian
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Xiao-Xin Zhang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Ningning Niu
- State Key Laboratory of Oncogenes and Related Genes, Stem Cell Research Center, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Ping Lu
- State Key Laboratory of Oncogenes and Related Genes, Stem Cell Research Center, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Juanjuan Shi
- State Key Laboratory of Oncogenes and Related Genes, Stem Cell Research Center, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Gary G Xiao
- Department of Pharmacy at School of Chemical Engineering, Dalian University of Technology, Dalian, P.R. China.,Functional Genomics and Proteomics Laboratories, Osteoporosis Research Center, Creighton University Medical Center, Omaha, Nebraska
| | - Li-Wei Wang
- State Key Laboratory of Oncogenes and Related Genes, Department of Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Cancer Institute, Shanghai, P.R. China
| | - Jing Xue
- State Key Laboratory of Oncogenes and Related Genes, Stem Cell Research Center, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China.
| | - Zhi-Gang Zhang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China.
| | - Yong-Wei Sun
- State Key Laboratory of Oncogenes and Related Genes, Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China.
| |
Collapse
|
15
|
Elkhatib SK, Case AJ. Autonomic regulation of T-lymphocytes: Implications in cardiovascular disease. Pharmacol Res 2019; 146:104293. [PMID: 31176794 DOI: 10.1016/j.phrs.2019.104293] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 04/22/2019] [Accepted: 05/31/2019] [Indexed: 12/20/2022]
Abstract
The nervous and immune systems both serve as essential assessors and regulators of physiological function. Recently, there has been a great interest in how the nervous and immune systems interact to modulate both physiological and pathological states. In particular, the autonomic nervous system has a direct line of communication with immune cells anatomically, and moreover, immune cells possess receptors for autonomic neurotransmitters. This circumstantial evidence is suggestive of a functional interplay between the two systems, and extensive research over the past few decades has demonstrated neurotransmitters such as the catecholamines (i.e. dopamine, norepinephrine, and epinephrine) and acetylcholine have potent immunomodulating properties. Furthermore, immune cells, particularly T-lymphocytes, have now been found to express the cellular machinery for both the synthesis and degradation of neurotransmitters, which suggests the ability for both autocrine and paracrine signaling from these cells independent of the nervous system. The details underlying the functional interplay of this complex network of neuroimmune communication are still unclear, but this crosstalk is suggestive of significant implications on the pathogenesis of a number of autonomic-dysregulated and inflammation-mediated diseases. In particular, it is widely accepted that numerous forms of cardiovascular diseases possess imbalanced autonomic tone as well as altered T-lymphocyte function, but a paucity of literature exists discussing the direct role of neurotransmitters in shaping the inflammatory microenvironment during the progression or therapeutic management of these diseases. This review seeks to provide a fundamental framework for this autonomic neuroimmune interaction within T-lymphocytes, as well as the implications this may have in cardiovascular diseases.
Collapse
Affiliation(s)
- Safwan K Elkhatib
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, United States
| | - Adam J Case
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, United States.
| |
Collapse
|
16
|
Covantes-Rosales CE, Toledo-Ibarra GA, Díaz-Resendíz KJG, Ventura-Ramón GH, Girón-Pérez MI. Muscarinic acetylcholine receptor expression in brain and immune cells of Oreochromis niloticus. J Neuroimmunol 2019; 328:105-107. [PMID: 30691695 DOI: 10.1016/j.jneuroim.2019.01.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 01/21/2019] [Accepted: 01/22/2019] [Indexed: 02/02/2023]
Abstract
Nervous and immune systems maintain a bidirectional communication, expressing receptors for neurotransmitters and cytokines. Despite being well established in mammals, this has been poorly described in lower vertebrates as fishes. Experimental evidence shows that the neurotransmitter acetylcholine (ACh) regulates the immune response. In this research, we evaluated mRNA levels of muscarinic acetylcholine receptor (mAChR) in spleen mononuclear cells of Nile tilapia (Oreochromis niloticus) and compared the expression levels of immune cells with the brain. The mAChR subtypes (M2-M5A) were detected in both tissues, but mAChRs mRNA levels were higher in immune cells. This data have a potential use in biomedical and comparative immunology fields.
Collapse
Affiliation(s)
- C E Covantes-Rosales
- Universidad Autónoma de Nayarit, Secretaría de Investigación y Posgrado, Laboratorio de Inmunotoxicología, Boulevard Tepic-Xalisco s/n. Cd, de la Cultura Amado Nervo, C.P. 63000 Tepic, Nayarit, Mexico
| | - G A Toledo-Ibarra
- Universidad Autónoma de Nayarit, Secretaría de Investigación y Posgrado, Laboratorio de Inmunotoxicología, Boulevard Tepic-Xalisco s/n. Cd, de la Cultura Amado Nervo, C.P. 63000 Tepic, Nayarit, Mexico
| | - K J G Díaz-Resendíz
- Universidad Autónoma de Nayarit, Secretaría de Investigación y Posgrado, Laboratorio de Inmunotoxicología, Boulevard Tepic-Xalisco s/n. Cd, de la Cultura Amado Nervo, C.P. 63000 Tepic, Nayarit, Mexico
| | - G H Ventura-Ramón
- Centro Nayarita de Innovación y Transferencia de Tecnología A.C., Laboratorio Nacional para la Investigación en Inocuidad Alimentaria-Unidad Nayarit, Calle Tres s/n. Cd Industrial, Tepic, Nayarit, Mexico
| | - M I Girón-Pérez
- Universidad Autónoma de Nayarit, Secretaría de Investigación y Posgrado, Laboratorio de Inmunotoxicología, Boulevard Tepic-Xalisco s/n. Cd, de la Cultura Amado Nervo, C.P. 63000 Tepic, Nayarit, Mexico; Centro Nayarita de Innovación y Transferencia de Tecnología A.C., Laboratorio Nacional para la Investigación en Inocuidad Alimentaria-Unidad Nayarit, Calle Tres s/n. Cd Industrial, Tepic, Nayarit, Mexico.
| |
Collapse
|
17
|
Paul KC, Chuang YH, Cockburn M, Bronstein JM, Horvath S, Ritz B. Organophosphate pesticide exposure and differential genome-wide DNA methylation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 645:1135-1143. [PMID: 30248838 PMCID: PMC6400463 DOI: 10.1016/j.scitotenv.2018.07.143] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 07/10/2018] [Accepted: 07/11/2018] [Indexed: 05/23/2023]
Abstract
BACKGROUND Organophosphates (OP) are widely used insecticides that acutely inhibit acetylcholinesterase enzyme activity. There is great interest in improving the understanding of molecular mechanisms related to chronic OP exposure induced toxicity. We aim to elucidate epigenetic changes associated with OP exposure, using untargeted analysis of genome-wide DNA methylation data. METHODS In a population-based case control study of Parkinson's disease (PD), we assessed ambient OP exposure via residential and workplace proximity to commercial applications. We investigated associations between OP exposure and genome-wide DNA methylation (Illumina 450 k) in 580 blood samples (342 PD patients, 238 controls) and 259 saliva samples (128 patients, 131 controls). To identify differential methylation related to OP exposure, we controlled for age, sex, European ancestry, and PD status; in addition, we stratified by disease status. RESULTS We identified 70 genome-wide significant CpGs, including cg01600516 in ALOX12 (cor = 0.27, p = 1.73E-11) and two CpGs in HLA genes, cg01655658 (cor = -0.24, p = 2.80E-09) in HLA-L (pseudogene) and cg15680603 (cor = 0.20, p = 7.94E-07) in HLA-DPA1. Among the 70 CpGs located in 41 genes, 14 were also differentially methylated in saliva samples. The most overrepresented pathway was the nicotinic acetylcholine receptor signaling pathway (fold enrichment = 15.63, p = 1.01E-03, FDR = 1.64E-01). Expanding to a larger number of genes (CpG p < 5E-04, FDR < 2.25E-01; 1077 CpGs, 662 genes), the most enriched pathway shifted to the muscarinic acetylcholine receptor 1 and 3 signaling pathway (p-value = 5.36E-04, FDR = 4.73E-02). When we stratified by PD status, results were similar. Of the 70 significant CpGs, 63 were detected among both patients and controls and 7 were only associated with OP exposure among patients. CONCLUSIONS This study finds chronic low-level OP exposure is associated with differential DNA methylation in blood and saliva, both in elderly population controls and PD patients. Our study results suggest that long-term sub-acute OP exposure influences methylation in genes enriched for muscarinic and nicotinic acetylcholine receptor pathways.
Collapse
Affiliation(s)
- Kimberly C Paul
- Department of Epidemiology, UCLA Fielding School of Public Health, Los Angeles, CA, USA.
| | - Yu-Hsuan Chuang
- Department of Epidemiology, UCLA Fielding School of Public Health, Los Angeles, CA, USA
| | - Myles Cockburn
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, CA, USA
| | - Jeff M Bronstein
- Department of Neurology, David Geffen School of Medicine, Los Angeles, CA, USA
| | - Steve Horvath
- Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA; Department of Biostatistics, UCLA Fielding School of Public Health, Los Angeles, CA, USA
| | - Beate Ritz
- Department of Epidemiology, UCLA Fielding School of Public Health, Los Angeles, CA, USA; Department of Neurology, David Geffen School of Medicine, Los Angeles, CA, USA.
| |
Collapse
|
18
|
Yamada M, Ichinose M. The Cholinergic Pathways in Inflammation: A Potential Pharmacotherapeutic Target for COPD. Front Pharmacol 2018; 9:1426. [PMID: 30559673 PMCID: PMC6287026 DOI: 10.3389/fphar.2018.01426] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 11/19/2018] [Indexed: 12/14/2022] Open
Abstract
In COPD, the activity of the cholinergic system is increased, which is one of the reasons for the airflow limitation caused by the contraction of airway smooth muscles. Therefore, blocking the contractive actions with anticholinergics is a useful therapeutic intervention to reduce the airflow limitation. In addition to the effects of bronchoconstriction and mucus secretion, accumulating evidence from animal models of COPD suggest acetylcholine has a role in inflammation. Experiments using muscarinic M3-receptor deficient mice or M3 selective antagonists revealed that M3-receptors on parenchymal cells, but not on hematopoietic cells, are involved in the pro-inflammatory effect of acetylcholine. Recently, combinations of long-acting β2 adrenergic agonists (LABAs) and long-acting muscarinic antagonists (LAMAs) have become available for COPD treatment. These dual long-acting bronchodilators may have synergistic anti-inflammatory effects because stimulation of β2 adrenergic receptors induces inhibitory effects in inflammatory cells via a different signaling pathway from that by antagonizing M3-receptor, though these anti-inflammatory effects have not been clearly demonstrated in COPD patients. In contrast to the pro-inflammatory effects by ACh via muscarinic receptors, it has been demonstrated that the cholinergic anti-inflammatory pathway, which involves the parasympathetic nervous systems, regulates excessive inflammatory responses to protect organs during tissue injury and infection. Stimulation of acetylcholine via the α7 nicotinic acetylcholine receptor (α7nAChR) exerts inhibitory effects on leukocytes including macrophages and type 2 innate lymphoid cells. Although it remains unclear whether the inhibitory effects of acetylcholine via α7nAChR in inflammatory cells can regulate inflammation in COPD, neuroimmune interactions including the cholinergic anti-inflammatory pathway might serve as potential therapeutic targets.
Collapse
Affiliation(s)
- Mitsuhiro Yamada
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Masakazu Ichinose
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
19
|
The mouse autonomic nervous system modulates inflammation and epithelial renewal after corneal abrasion through the activation of distinct local macrophages. Mucosal Immunol 2018; 11:1496-1511. [PMID: 29988115 DOI: 10.1038/s41385-018-0031-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Revised: 04/02/2018] [Accepted: 04/05/2018] [Indexed: 02/04/2023]
Abstract
Inflammation and reepithelialization after corneal abrasion are critical for the rapid restoration of vision and the prevention of microbial infections. However, the endogenous regulatory mechanisms are not completely understood. Here we report that the manipulation of autonomic nervous system (ANS) regulates the inflammation and healing processes. The activation of sympathetic nerves inhibited reepithelialization after corneal abrasion but increased the influx of neutrophils and the release of inflammatory cytokines. Conversely, the activation of parasympathetic nerves promoted reepithelialization and inhibited the influx of neutrophils and the release of inflammatory cytokines. Furthermore, we observed that CD64+CCR2+ macrophages in the cornea preferentially expressed the β-2 adrenergic receptor (AR), whereas CD64+CCR2- macrophages preferentially expressed the α-7 nicotinic acetylcholine receptor (α7nAChR). After abrasion, the topical administration of a β2AR agonist further enhanced the expression of the proinflammatory genes in the CD64+CCR2+ cell subset sorted from injured corneas. In contrast, the topical administration of an α7nAChR agonist further enhanced the expression of the anti-inflammatory genes in the CD64+CCR2- subset. Thus crosstalk between the ANS and local macrophage populations is necessary for the progress of corneal wound repair. Manipulation of ANS inputs to the wounded cornea may represent an alternative approach to the treatment of impaired wound healing.
Collapse
|
20
|
Differential DNA methylation of potassium channel KCa3.1 and immune signalling pathways is associated with infant immune responses following BCG vaccination. Sci Rep 2018; 8:13086. [PMID: 30166570 PMCID: PMC6117309 DOI: 10.1038/s41598-018-31537-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 08/21/2018] [Indexed: 12/14/2022] Open
Abstract
Bacillus Calmette–Guérin (BCG) is the only licensed vaccine for tuberculosis (TB) and induces highly variable protection against pulmonary disease in different countries. We hypothesised that DNA methylation is one of the molecular mechanisms driving variability in BCG-induced immune responses. DNA methylation in peripheral blood mononuclear cells (PBMC) from BCG vaccinated infants was measured and comparisons made between low and high BCG-specific cytokine responders. We found 318 genes and 67 pathways with distinct patterns of DNA methylation, including immune pathways, e.g. for T cell activation, that are known to directly affect immune responses. We also highlight signalling pathways that could indirectly affect the BCG-induced immune response: potassium and calcium channel, muscarinic acetylcholine receptor, G Protein coupled receptor (GPCR), glutamate signalling and WNT pathways. This study suggests that in addition to immune pathways, cellular processes drive vaccine-induced immune responses. Our results highlight mechanisms that require consideration when designing new TB vaccines.
Collapse
|
21
|
Fujii T, Mashimo M, Moriwaki Y, Misawa H, Ono S, Horiguchi K, Kawashima K. Expression and Function of the Cholinergic System in Immune Cells. Front Immunol 2017; 8:1085. [PMID: 28932225 PMCID: PMC5592202 DOI: 10.3389/fimmu.2017.01085] [Citation(s) in RCA: 248] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 08/21/2017] [Indexed: 12/29/2022] Open
Abstract
T and B cells express most cholinergic system components—e.g., acetylcholine (ACh), choline acetyltransferase (ChAT), acetylcholinesterase, and both muscarinic and nicotinic ACh receptors (mAChRs and nAChRs, respectively). Using ChATBAC-eGFP transgenic mice, ChAT expression has been confirmed in T and B cells, dendritic cells, and macrophages. Moreover, T cell activation via T-cell receptor/CD3-mediated pathways upregulates ChAT mRNA expression and ACh synthesis, suggesting that this lymphocytic cholinergic system contributes to the regulation of immune function. Immune cells express all five mAChRs (M1–M5). Combined M1/M5 mAChR-deficient (M1/M5-KO) mice produce less antigen-specific antibody than wild-type (WT) mice. Furthermore, spleen cells in M1/M5-KO mice produce less tumor necrosis factor (TNF)-α and interleukin (IL)-6, suggesting M1/M5 mAChRs are involved in regulating pro-inflammatory cytokine and antibody production. Immune cells also frequently express the α2, α5, α6, α7, α9, and α10 nAChR subunits. α7 nAChR-deficient (α7-KO) mice produce more antigen-specific antibody than WT mice, and spleen cells from α7-KO mice produce more TNF-α and IL-6 than WT cells. This suggests that α7 nAChRs are involved in regulating cytokine production and thus modulate antibody production. Evidence also indicates that nicotine modulates immune responses by altering cytokine production and that α7 nAChR signaling contributes to immunomodulation through modification of T cell differentiation. Together, these findings suggest the involvement of both mAChRs and nAChRs in the regulation of immune function. The observation that vagus nerve stimulation protects mice from lethal endotoxin shock led to the notion of a cholinergic anti-inflammatory reflex pathway, and the spleen is an essential component of this anti-inflammatory reflex. Because the spleen lacks direct vagus innervation, it has been postulated that ACh synthesized by a subset of CD4+ T cells relays vagal nerve signals to α7 nAChRs on splenic macrophages, which downregulates TNF-α synthesis and release, thereby modulating inflammatory responses. However, because the spleen is innervated solely by the noradrenergic splenic nerve, confirmation of an anti-inflammatory reflex pathway involving the spleen requires several more hypotheses to be addressed. We will review and discuss these issues in the context of the cholinergic system in immune cells.
Collapse
Affiliation(s)
- Takeshi Fujii
- Faculty of Pharmaceutical Sciences, Department of Pharmacology, Doshisha Women's College of Liberal Arts, Kyoto, Japan
| | - Masato Mashimo
- Faculty of Pharmaceutical Sciences, Department of Pharmacology, Doshisha Women's College of Liberal Arts, Kyoto, Japan
| | - Yasuhiro Moriwaki
- Faculty of Pharmacy, Department of Pharmacology, Keio University, Tokyo, Japan
| | - Hidemi Misawa
- Faculty of Pharmacy, Department of Pharmacology, Keio University, Tokyo, Japan
| | - Shiro Ono
- Laboratory of Immunology, Faculty of Pharmacy, Osaka Ohtani University, Osaka, Japan
| | - Kazuhide Horiguchi
- Department of Anatomy, Division of Medicine, University of Fukui Faculty of Medical Sciences, Fukui, Japan
| | - Koichiro Kawashima
- Department of Molecular Pharmacology, Kitasato University School of Pharmaceutical Sciences, Tokyo, Japan
| |
Collapse
|
22
|
Fujii T, Mashimo M, Moriwaki Y, Misawa H, Ono S, Horiguchi K, Kawashima K. Physiological functions of the cholinergic system in immune cells. J Pharmacol Sci 2017; 134:1-21. [DOI: 10.1016/j.jphs.2017.05.002] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2017] [Revised: 04/30/2017] [Accepted: 05/08/2017] [Indexed: 02/07/2023] Open
|
23
|
Acetylcholine released from T cells regulates intracellular Ca 2+, IL-2 secretion and T cell proliferation through nicotinic acetylcholine receptor. Life Sci 2016; 172:13-18. [PMID: 28025040 DOI: 10.1016/j.lfs.2016.12.015] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 12/20/2016] [Accepted: 12/21/2016] [Indexed: 11/23/2022]
Abstract
AIMS T lymphocytes synthesize acetylcholine (ACh) and express muscarinic and nicotinic ACh receptors (mAChR and nAChR, respectively) responsible for increases in the intracellular Ca2+ concentration ([Ca2+]i). Our aim in the present study was to assess whether autocrine ACh released from T lymphocytes regulates their physiological functions. MAIN METHODS MOLT-3 human leukemic cell line and murine splenocytes were loaded with fura-2 to monitor [Ca2+]i changes in the absence or presence of several AChR antagonists, including mecamylamine, methyllycaconitine and scopolamine. Real-time PCR and ELISA were performed to measure interleukin-2 (IL-2) mRNA and protein levels. KEY FINDINGS T lymphocytes constitutively produce sufficient amounts of ACh to elicit autocrine changes in [Ca2+]i. These autocrine ACh-evoked [Ca2+]i transients were mediated by nAChRs and then influx of extracellular Ca2+. Mecamylamine, a nAChR inhibitor, suppressed not only these [Ca2+]i transients, but also IL-2 release and T cell proliferation. SIGNIFICANCE Here, we confirmed that T lymphocytes utilize ACh as a tool to interact with each other and that autocrine ACh-activated nAChRs are involved in cytokine release and cell proliferation. These findings suggest the possibility that nAChR agonists and antagonists and smoking are able to modulate immune function, which in turn suggests the therapeutic potential of immune activation or suppression using nAChR agonists or antagonists.
Collapse
|
24
|
Mashimo M, Yurie Y, Kawashima K, Fujii T. CRAC channels are required for [Ca(2+)]i oscillations and c-fos gene expression after muscarinic acetylcholine receptor activation in leukemic T cells. Life Sci 2016; 161:45-50. [PMID: 27474128 DOI: 10.1016/j.lfs.2016.07.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 07/21/2016] [Accepted: 07/25/2016] [Indexed: 11/30/2022]
Abstract
AIMS T lymphocytes express muscarinic acetylcholine receptors (mAChRs) involved in regulating their proliferation, differentiation and cytokine release. Activation of M1, M3 or M5 mAChRs increases the intracellular Ca(2+) concentration ([Ca(2+)]i) through inositol-1,4,5-phosphate (IP3)-mediated Ca(2+) release from endoplasmic reticulum Ca(2+) stores. In addition, T lymphocytes express Ca(2+)-release activated Ca(2+) (CRAC) channels to induce Ca(2+) influx and to regulate diverse immune functions. Our aim in the present study was to assess the role of CRAC channels during mAChR activation in the Ca(2+)-dependent transduction that contributes to the regulation of T cell function. MAIN METHODS Changes in [Ca(2+)]i following mAChR activation on human leukemic T cells, CCRF-CEM (CEM), were monitored using fura-2, based on the ratio of 510nm fluorescences elicited by excitation at 340nm and 380nm (R340/380). KEY FINDINGS We demonstrate that CEM cells express mainly M3 and M5 mAChRs, but little the M1 subtype, and that oxotremorine-M (Oxo-M), an mAChR agonist, induces an initial transient increase in [Ca(2+)]i followed by repetitive [Ca(2+)]i oscillations. Removing extracellular Ca(2+) or pharmacological blockade of CRAC channels abolished the [Ca(2+)]i oscillations without affecting the initial [Ca(2+)]i transient induced by Oxo-M. Moreover, CRAC channel blockade also suppressed Oxo-M-induced c-fos and interleukin-2 expression. SIGNIFICANCE These results suggest that upon M3 or M5 mAChR activation, IP3-mediated Ca(2+) release induces extracellular Ca(2+) influx through CRAC channels, which generates repetitive [Ca(2+)]i oscillations and, in turn, enhances c-fos gene expression in T lymphocytes.
Collapse
Affiliation(s)
- Masato Mashimo
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Doshisha Women's College of Liberal Arts, Kyotanabe, Kyoto 610-0395, Japan
| | - Yukako Yurie
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Doshisha Women's College of Liberal Arts, Kyotanabe, Kyoto 610-0395, Japan
| | - Koichiro Kawashima
- Department of Molecular Pharmacology, Kitasato University School of Pharmaceutical Sciences, Minato-ku, Tokyo 108-8641, Japan
| | - Takeshi Fujii
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Doshisha Women's College of Liberal Arts, Kyotanabe, Kyoto 610-0395, Japan.
| |
Collapse
|
25
|
Grando SA, Kawashima K, Kirkpatrick CJ, Kummer W, Wessler I. Recent progress in revealing the biological and medical significance of the non-neuronal cholinergic system. Int Immunopharmacol 2015; 29:1-7. [PMID: 26362206 DOI: 10.1016/j.intimp.2015.08.023] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2015] [Accepted: 08/17/2015] [Indexed: 10/23/2022]
Abstract
This special issue of International Immunopharmacology is the proceedings of the Fourth International Symposium on Non-neuronal Acetylcholine that was held on August 28-30, 2014 at the Justus Liebig University of Giessen in Germany. It contains original contributions of meeting participants covering the significant progress in understanding of the biological and medical significance of the non-neuronal cholinergic system extending from exciting insights into molecular mechanisms regulating this system via miRNAs over the discovery of novel cholinergic cellular signaling circuitries to clinical implications in cancer, wound healing, immunity and inflammation, cardiovascular, respiratory and other diseases.
Collapse
Affiliation(s)
- Sergei A Grando
- Department of Dermatology, University of California, Irvine, CA 92697, USA
| | - Koichiro Kawashima
- Department of Molecular Pharmacology, Kitasato University School of Pharmacy, Tokyo 108-8641, Japan
| | - Charles J Kirkpatrick
- Institute of Pathology, University Medical Center, Johannes Gutenberg-University, Mainz D-55101, Germany
| | - Wolfgang Kummer
- Institute for Anatomy and Cell Biology, Justus-Liebig-University, Giessen D-35385, Germany
| | - Ignaz Wessler
- Institute of Pathology, University Medical Center, Johannes Gutenberg-University, Mainz D-55101, Germany
| |
Collapse
|
26
|
Granja MG, Braga LEG, Carpi-Santos R, de Araujo-Martins L, Nunes-Tavares N, Calaza KC, dos Santos AA, Giestal-de-Araujo E. IL-4 Induces Cholinergic Differentiation of Retinal Cells In Vitro. Cell Mol Neurobiol 2015; 35:689-701. [PMID: 25682112 PMCID: PMC11486224 DOI: 10.1007/s10571-015-0164-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 02/03/2015] [Indexed: 12/01/2022]
Abstract
Interleukin-4 (IL-4) is a pleiotropic cytokine that regulates several phenomena, among them survival and differentiation of neuronal and glial cells. The aim of this work was to investigate the effect of IL-4 on the cholinergic differentiation of neonatal rat retinal cells in vitro, evaluating its effect on the levels of cholinergic markers (CHT1-high-affinity choline transporter; VAChT-vesicular acetylcholine transporter, ChAT-choline acetyltransferase, AChE-acetylcholinesterase), muscarinic receptors, and on the signaling pathways involved. Lister Hooded rat pups were used in postnatal days 0-2 (P0-P2). Our results show that IL-4 treatment (50 U/mL) for 48 h increases the levels of the cholinergic transporters VAChT and CHT1, the acetylcholinesterase activity, and the number of ChAT-positive cells. It also induces changes in muscarinic receptor levels, leading to a small decrease in M1 levels and a significant increase in M3 and M5 levels after 48 h of treatment. We also showed that IL-4 effect on M3 receptors is dependent on type I IL-4 receptor and on an increase in NFκB phosphorylation. These results indicate that IL-4 stimulates cholinergic differentiation of retinal cells.
Collapse
Affiliation(s)
- Marcelo Gomes Granja
- Programa de Neurociências, Departamento de Neurobiologia, Instituto de Biologia, Universidade Federal Fluminense, Outeiro de São João Batista s/n –Campus Valonguinho. Centro – Niterói, Rio de Janeiro, CEP: 24020-140 Brazil
| | - Luis Eduardo Gomes Braga
- Programa de Neurociências, Departamento de Neurobiologia, Instituto de Biologia, Universidade Federal Fluminense, Outeiro de São João Batista s/n –Campus Valonguinho. Centro – Niterói, Rio de Janeiro, CEP: 24020-140 Brazil
- Departamento de Fisiologia e Farmacologia, Instituto Biomédico, Universidade Federal Fluminense, Rua Hernani Pires de Mello, 101- São Domingos, Niterói, Rio de Janeiro, CEP: 24210-130 Brazil
| | - Raul Carpi-Santos
- Programa de Neurociências, Departamento de Neurobiologia, Instituto de Biologia, Universidade Federal Fluminense, Outeiro de São João Batista s/n –Campus Valonguinho. Centro – Niterói, Rio de Janeiro, CEP: 24020-140 Brazil
| | - Leandro de Araujo-Martins
- Programa de Neurociências, Departamento de Neurobiologia, Instituto de Biologia, Universidade Federal Fluminense, Outeiro de São João Batista s/n –Campus Valonguinho. Centro – Niterói, Rio de Janeiro, CEP: 24020-140 Brazil
| | - Nilson Nunes-Tavares
- Laboratório de Neuroquímica – Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Karin C. Calaza
- Programa de Neurociências, Departamento de Neurobiologia, Instituto de Biologia, Universidade Federal Fluminense, Outeiro de São João Batista s/n –Campus Valonguinho. Centro – Niterói, Rio de Janeiro, CEP: 24020-140 Brazil
| | - Aline Araujo dos Santos
- Departamento de Fisiologia e Farmacologia, Instituto Biomédico, Universidade Federal Fluminense, Rua Hernani Pires de Mello, 101- São Domingos, Niterói, Rio de Janeiro, CEP: 24210-130 Brazil
| | - Elizabeth Giestal-de-Araujo
- Programa de Neurociências, Departamento de Neurobiologia, Instituto de Biologia, Universidade Federal Fluminense, Outeiro de São João Batista s/n –Campus Valonguinho. Centro – Niterói, Rio de Janeiro, CEP: 24020-140 Brazil
| |
Collapse
|
27
|
Hainke S, Wildmann J, Del Rey A. Deletion of muscarinic type 1 acetylcholine receptors alters splenic lymphocyte functions and splenic noradrenaline concentration. Int Immunopharmacol 2015; 29:135-42. [PMID: 26002586 DOI: 10.1016/j.intimp.2015.05.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Revised: 04/26/2015] [Accepted: 05/07/2015] [Indexed: 11/18/2022]
Abstract
The existence of interactions between the immune and the sympathetic nervous systems is well established. Noradrenaline can promote or inhibit the immune response, and conversely, the immune response itself can affect noradrenaline concentration in lymphoid organs, such as the spleen. It is also well known that acetylcholine released by pre-ganglionic neurons can modulate noradrenaline release by the postsynaptic neuron. The spleen does not receive cholinergic innervation, but it has been reported that lymphocytes themselves can produce acetylcholine, and express acetylcholine receptors and acetylcholinesterase. We found that the spleen of not overtly immunized mice in which muscarinic type 1 acetylcholine receptors have been knocked out (M1KO) has higher noradrenaline concentrations than that of the wildtype mice, without comparable alterations in the heart, in parallel to a decreased number of IgG-producing B cells. Splenic lymphocytes from M1KO mice displayed increased in vitro-induced cytotoxicity, and this was observed only when CD4(+) T cells were present. In contrast, heterozygous acetylcholinesterase (AChE+/-) mice, had no alterations in splenic noradrenaline concentration, but the in vitro proliferation of AChE+/- CD4(+) T cells was increased. It is theoretically conceivable that reciprocal effects between neuronally and non-neuronally derived acetylcholine and noradrenaline might contribute to the results reported. Our results emphasize the need to consider the balance between the effects of these mediators for the final immunoregulatory outcome.
Collapse
Affiliation(s)
- Susanne Hainke
- Research Group Immunophysiology, Division of Neurophysiology, Inst. of Physiology and Pathophysiology, Deutschhausstrasse 2, 35037 Marburg, Germany
| | - Johannes Wildmann
- Research Group Immunophysiology, Division of Neurophysiology, Inst. of Physiology and Pathophysiology, Deutschhausstrasse 2, 35037 Marburg, Germany
| | - Adriana Del Rey
- Research Group Immunophysiology, Division of Neurophysiology, Inst. of Physiology and Pathophysiology, Deutschhausstrasse 2, 35037 Marburg, Germany.
| |
Collapse
|
28
|
Non-neuronal cholinergic system in regulation of immune function with a focus on α7 nAChRs. Int Immunopharmacol 2015; 29:127-34. [PMID: 25907239 DOI: 10.1016/j.intimp.2015.04.015] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Revised: 04/05/2015] [Accepted: 04/07/2015] [Indexed: 11/20/2022]
Abstract
In 1929, Dale and Dudley described the first reported natural occurrence of acetylcholine (ACh) in an animal's body. They identified this ACh in the spleens of horses and oxen, which we now know suggests possible involvement of ACh in the regulation of lymphocyte activity and immune function. However, the source and function of splenic ACh were left unexplored for several decades. Recent studies on the source of ACh in the blood revealed ACh synthesis catalyzed by choline acetyltransferase (ChAT) in CD4(+) T cells. T and B cells, macrophages and dendritic cells (DCs) all express all five muscarinic ACh receptor subtypes (mAChRs) and several subtypes of nicotinic AChRs (nAChRs), including α7 nAChRs. Stimulation of these mAChRs and nAChRs by their respective agonists causes functional and biochemical changes in the cells. Using AChR knockout mice, we found that M(1)/M(5) mAChR signaling up-regulates IgG(1) and pro-inflammatory cytokine production, while α7 nAChR signaling has the opposite effect. These findings suggest that ACh synthesized by T cells acts in an autocrine/paracrine fashion at AChRs on various immune cells to modulate immune function. In addition, an endogenous allosteric and/or orthosteric α7 nAChR ligand, SLURP-1, facilitates functional development of T cells and increases ACh synthesis via up-regulation of ChAT mRNA expression. SLURP-1 is expressed in CD205(+) DCs residing in the tonsil in close proximity to T cells, macrophages and B cells. Collectively, these findings suggest that ACh released from T cells along with SLURP-1 regulates cytokine production by activating α7 nAChRs on various immune cells, thereby facilitating T cell development and/or differentiation, leading to immune modulation.
Collapse
|
29
|
Julio-Pieper M, Bravo JA, Aliaga E, Gotteland M. Review article: intestinal barrier dysfunction and central nervous system disorders--a controversial association. Aliment Pharmacol Ther 2014; 40:1187-201. [PMID: 25262969 DOI: 10.1111/apt.12950] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Revised: 08/14/2014] [Accepted: 08/14/2014] [Indexed: 12/18/2022]
Abstract
BACKGROUND Central nervous system (CNS) development and physiopathology are greatly affected by environmental stimuli. The intestinal barrier restricts the entrance of toxins, pathogens, and antigens while modulating the expression of various neuroactive compounds. The existence of a rich gut-to-brain communication raises the possibility that intestinal barrier alterations may take part in the pathophysiology of CNS disorders. AIM To review evidence associating intestinal barrier dysfunction with the development of CNS disorders. METHODS Literature search was conducted on PubMed using the following terms: intestinal barrier, intestinal permeability, central nervous system, mental disorders, schizophrenia, autism, stress, anxiety, depression, and neurodegeneration. RESULTS Clinical and animal model studies of the association between intestinal barrier and schizophrenia, autism spectrum disorders, neurodegenerative diseases or depression were reviewed. The majority of reports concentrated on schizophrenia and autism spectrum disorders. About half of these described increased intestinal permeability/mucosal damage in patients compared with healthy controls, with up to 43% of children with autism spectrum disorders and up to 35% of schizophrenia patients displaying abnormally high urinary excretion of the sugars used as permeability markers. However, another substantial group of studies did not find such differences. In autism spectrum disorders, some reports show that the use of diets such as the gluten-free casein-free diet may contribute to the normalisation of lactulose/mannitol ratio, but to date there is no adequately controlled study showing improvement in behavioural symptoms following these dietary interventions. CONCLUSIONS Evidence of altered intestinal permeability in individuals suffering from CNS disorders is limited and cannot be regarded as proven. Moreover the efficacy of targeting gut barrier in the management of neurological and behavioural aspects of CNS disorders has not yet been established, and needs further investigation.
Collapse
Affiliation(s)
- M Julio-Pieper
- Instituto de Química, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | | | | | | |
Collapse
|
30
|
Fujii T, Horiguchi K, Sunaga H, Moriwaki Y, Misawa H, Kasahara T, Tsuji S, Kawashima K. SLURP-1, an endogenous α7 nicotinic acetylcholine receptor allosteric ligand, is expressed in CD205+ dendritic cells in human tonsils and potentiates lymphocytic cholinergic activity. J Neuroimmunol 2014; 267:43-9. [DOI: 10.1016/j.jneuroim.2013.12.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Revised: 12/01/2013] [Accepted: 12/04/2013] [Indexed: 10/25/2022]
|
31
|
Nonneuronal Cholinergic System in Breast Tumors and Dendritic Cells: Does It Improve or Worsen the Response to Tumor? ACTA ACUST UNITED AC 2013. [DOI: 10.1155/2013/486545] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Besides being the main neurotransmitter in the parasympathetic nervous system, acetylcholine (ACh) can act as a signaling molecule in nonneuronal tissues. For this reason, ACh and the enzymes that synthesize and degrade it (choline acetyltransferase and acetylcholinesterase) as well as muscarinic (mAChRs) and nicotinic receptors conform the non-neuronal cholinergic system (nNCS). It has been reported that nNCS regulates basal cellular functions including survival, proliferation, adhesion, and migration. Moreover, nNCS is broadly expressed in tumors and in different components of the immune system. In this review, we summarize the role of nNCS in tumors and in different immune cell types focusing on the expression and function of mAChRs in breast tumors and dendritic cells (DCs) and discussing the role of DCs in breast cancer.
Collapse
|
32
|
Chen Y, Chauhan SK, Lee HS, Stevenson W, Schaumburg CS, Sadrai Z, Saban DR, Kodati S, Stern ME, Dana R. Effect of desiccating environmental stress versus systemic muscarinic AChR blockade on dry eye immunopathogenesis. Invest Ophthalmol Vis Sci 2013; 54:2457-64. [PMID: 23482465 DOI: 10.1167/iovs.12-11121] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
PURPOSE A majority of experimental data on dry eye disease (DED) immunopathogenesis have been derived from a murine model of DED that combines desiccating environmental stress with systemic muscarinic acetylcholine receptor (mAChR) inhibition. However, to our knowledge the effects of pharmacologic mAChR blockade on the pathogenesis of experimental DED have not been evaluated systemically. The purpose of our study was to investigate the differential effects of desiccating environmental stress and mAChR inhibition on the pathogenesis of DED. METHODS DED was induced in female C57BL/6 mice by exposure to a desiccating environment in the controlled-environment chamber or to systemic scopolamine, or by performing extraorbital lacrimal gland excision. Clinical disease was assessed using corneal fluorescein staining (CFS) and the cotton thread test (CTT). Corneal CD11b(+) and conjunctival CD3(+) T-cell infiltration were evaluated by flow cytometry. T-cells from draining cervical lymph nodes (CLN) and distant inguinal lymph nodes (ILN) were analyzed for Th1, Th2, Th17, and Treg responses by flow cytometry and ELISA. RESULTS Desiccating environmental stress and systemic mAChR blockade induced similar clinical signs of DED. However, desiccating environmental stress imparted higher conjunctival CD3(+) T-cell infiltration, and greater Th17-cell activity and Treg dysfunction than mAChR blockade, while mAChR blockade decreased tear secretion to a greater extent than desiccating environmental stress. Systemic mAChR blockade attenuated Th17 activity and enhanced Th2 and Treg responses without affecting Th1 activity. CONCLUSIONS In vivo inhibition of mAChRs variably affects CD4(+) T-cell subsets, and desiccating environmental stress and systemic mAChR blockade induce DED through different primary pathogenic mechanisms.
Collapse
Affiliation(s)
- Yihe Chen
- Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts 02114, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Grando SA, Kawashima K, Kirkpatrick CJ, Meurs H, Wessler I. The non-neuronal cholinergic system: Basic science, therapeutic implications and new perspectives. Life Sci 2012; 91:969-72. [DOI: 10.1016/j.lfs.2012.10.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
34
|
Critical roles of acetylcholine and the muscarinic and nicotinic acetylcholine receptors in the regulation of immune function. Life Sci 2012; 91:1027-32. [DOI: 10.1016/j.lfs.2012.05.006] [Citation(s) in RCA: 121] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Revised: 03/25/2012] [Accepted: 05/03/2012] [Indexed: 12/17/2022]
|
35
|
Kawashima K, Fujii T, Moriwaki Y, Misawa H, Horiguchi K. Reconciling neuronally and nonneuronally derived acetylcholine in the regulation of immune function. Ann N Y Acad Sci 2012; 1261:7-17. [PMID: 22823388 DOI: 10.1111/j.1749-6632.2012.06516.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Immune cells, including lymphocytes, express muscarinic and nicotinic acetylcholine (ACh) receptors (mAChRs and nAChRs, respectively), and agonist stimulation of these AChRs causes functional and biochemical changes in the cells. The origin of the ACh that acts on immune cell AChRs has remained unclear until recently, however. In 1995, we identified choline acetyltransferase mRNA and protein in human T cells, and found that immunological T cell activation potentiated lymphocytic cholinergic transmission by increasing ACh synthesis and AChR expression. We also found that M(1) /M(5) mAChR signaling upregulates IgG(1) and proinflammatory cytokine production, whereas α7 nAChR signaling has the opposite effect. These findings suggest that ACh synthesized by T cells acts as an autocrine and/or paracrine factor via AChRs on immune cells to modulate immune function. In addition, a recently discovered endogenous allosteric α7 nAChR ligand, SLURP-1, also appears to be involved in modulating normal T cell function.
Collapse
Affiliation(s)
- Koichiro Kawashima
- Department of Molecular Pharmacology, Kitasato University School of Pharmacy, Tokyo, Japan.
| | | | | | | | | |
Collapse
|
36
|
Verbout NG, Jacoby DB. Muscarinic receptor agonists and antagonists: effects on inflammation and immunity. Handb Exp Pharmacol 2012:403-27. [PMID: 22222708 DOI: 10.1007/978-3-642-23274-9_17] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
In this chapter, we will review what is known about muscarinic regulation of immune cells and the contribution of immune cell muscarinic receptors to inflammatory disease and immunity. In particular, immune cell expression of cholinergic machinery, muscarinic receptor subtypes and functional consequences of agonist stimulation will be reviewed. Lastly, this chapter will discuss the potential therapeutic effects of selective antagonists on immune cell function and inflammatory disease in recent animal studies and human clinical trials.
Collapse
Affiliation(s)
- Norah G Verbout
- School of Public Health, Harvard University, 665 Huntington Avenue, Boston, MA 02115, USA.
| | | |
Collapse
|
37
|
Haley GE, Urbanski HF, Kohama SG, Messaoudi I, Raber J. Spatial Memory Performance Associated with Measures of Immune Function in Elderly Female Rhesus Macaques. Eur Geriatr Med 2011; 2:117-121. [PMID: 21603071 PMCID: PMC3097089 DOI: 10.1016/j.eurger.2011.01.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
We recently reported that in aged female rhesus macaques, spatial learning and memory correlates with circadian sleep-wake measures and hippocampal muscarinic type 1 (M(1)) receptor binding. To investigate if spatial memory also correlates with measures of immune function, we now assessed the magnitude of the adaptive immune response to vaccination in the same old female rhesus macaques. Cognitively characterized animals were classified as good spatial performers (GSP) or poor spatial performers (PSP) based on performance in the Spatial Foodport maze. The GSP group had higher frequency of CD8, but not CD4, interferon-γ (IFN-γ) producing cells following vaccination compared to the PSP group, suggesting a stronger CD8 T cell response in the GSP group. In addition, the number of CD-8 IFN-γ positive cells correlated with measures of sleep quality. Interestingly, the PSP group had a significantly higher antibody titer compared to the GSP group, and antibody titer negatively correlated with day-time activity. Thus, in aged female rhesus macaques, superior cognitive performance is correlated with a more robust CD8 T cell response but a reduced antibody response to vaccination.
Collapse
Affiliation(s)
- Gwendolen E. Haley
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR 97239
- Division of Neuroscience Oregon National Primate Research Center, Beaverton, OR 97006
| | - Henryk F. Urbanski
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR 97239
- Division of Neuroscience Oregon National Primate Research Center, Beaverton, OR 97006
- Department of Physiology and Pharmacology, Oregon Health and Science University, Portland, OR 97239
| | - Steven G. Kohama
- Division of Neuroscience Oregon National Primate Research Center, Beaverton, OR 97006
| | - Ilhem Messaoudi
- Division of Neuroscience Oregon National Primate Research Center, Beaverton, OR 97006
- Division of Pathobiology and Immunology, Oregon National Primate Research Center Vaccine and Gene Therapy Institute, Beaverton, OR 97006
| | - Jacob Raber
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR 97239
- Division of Neuroscience Oregon National Primate Research Center, Beaverton, OR 97006
- Department of Neurology, Oregon Health and Science University, Portland OR 97239
| |
Collapse
|
38
|
Qian J, Galitovskiy V, Chernyavsky AI, Marchenko S, Grando SA. Plasticity of the murine spleen T-cell cholinergic receptors and their role in in vitro differentiation of naïve CD4 T cells toward the Th1, Th2 and Th17 lineages. Genes Immun 2011; 12:222-30. [PMID: 21270829 DOI: 10.1038/gene.2010.72] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Acetylcholine (ACh) regulates vital functions of T cells by acting on the nicotinic and muscarinic classes of cholinergic receptors, nAChR and mAChRs, respectively. This study was performed in murine splenic T cells. In freshly isolated CD4 and CD8 T cells, we detected mRNAs encoding α5, α9, α10, β1, β2, β4 nAChR subunits and M₁, M₃, M₄ and M₅ mAChR subtypes, whereas α2 was detected only in CD8 T cells. In vitro activation of CD4 T cells through T-cell receptor (TCR)/CD3 cross-linking was associated with the appearance of α4 and α7, upregulation of α5, α10, β4, M₁ and M₅ and downregulation of α9 and β2, whereas in vitro activation of CD8 T cells also featured the appearance of α4 and α7, as well as upregulation of α2, α5, β4, M₁ and M₄, and downregulation of α10, β1, β2 and M₃. In vitro polarization toward T helper (Th) 1 lineage was associated with a decrease of β2, β4 and M₃ expression; that toward Th2 cells with downregulation of α9 and M₃, and upregulation of M₁ and M₅; and that toward Th17 phenotype with downregulation of α9, α10, β2 and M₃ mAChR. Polarized T cells also expressed α4, but not α1, α2, α3, α6, β3 or M₂. To determine the role of cholinergic receptors in mediating the immunoregulatory action of autocrine/paracrine ACh, we analyzed the effects of nicotinic and muscarinic agonists±antagonists on cytokine production in the CD4+CD62L+ T cells co-stimulated via TCR/CD3 cross-linking. The nicotinergic stimulation upregulated interferon-γ (IFN-γ) and downregulated interleukin (IL)-17 secretion, whereas the muscarinic stimulation enhanced IL-10 and IL-17 and inhibited INF-γ secretion. These results demonstrated plasticity of the T-cell cholinergic system.
Collapse
Affiliation(s)
- J Qian
- Department of Dermatology, Institute of Immunology, University of California Irvine, Irvine, CA 92697, USA
| | | | | | | | | |
Collapse
|
39
|
Liu T, Xie C, Chen X, Zhao F, Liu AM, Cho DB, Chong J, Yang PC. Role of muscarinic receptor activation in regulating immune cell activity in nasal mucosa. Allergy 2010; 65:969-77. [PMID: 19951374 DOI: 10.1111/j.1398-9995.2009.02281.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND The prevalence of airway inflammatory disorders keeps rising; its pathogenic mechanism is still not fully understood. OBJECTIVE The present study aimed to investigate the role of muscarinic receptor (M receptor) in regulating the immune cell activity in nasal mucosa by using surgical removed nasal mucosa from patients with nasal polyposis (NP) as a study platform. METHODS Human nasal mucosal sample was collected from inferior turbinectomy of 86 patients with NP or/and allergic rhinitis. Expression of tumor necrosis factor alpha (TNF-alpha), M receptor, OX40 ligand was measured in nasal mucosa by enzyme-linked immunosorbent assay, flow cytometry, and Western blotting assay. RESULTS When compared with non-NP (nNP) nasal mucosa, contents of TNF-alpha and TNF-alpha+ cells markedly increased in NP nasal mucosa; immune staining colocalized M3 receptor+ and TNF-alpha+ cells in NP nasal mucosa; exposure of isolated CD4+ T cells to methacholine induced the release of TNF-alpha. We also found CD11c+/M3 receptor+ cells in NP nasal mucosa. Methacholine increased the expression of OX40L in dendritic cells. Staphylococcal (S) aureus and S. enterotoxin B (SEB) were detected in NP nasal mucosa. Exposure of dendritic cells or naïve CD4+ T cells to SEB initiated the expression of M3 receptor at mRNA and protein levels. CONCLUSIONS The present data demonstrate that parasympathetic activity has the capacity to activate dendritic cells to release OX40 ligand, the latter induces CD4+ T cells to produce IL-4 and TNF-alpha that may further contribute to the pathogenesis of NP.
Collapse
Affiliation(s)
- T Liu
- Department of Otolaryngology, Head & Neck Surgery, the First Hospital, Shanxi Medical University, Taiyuan, Shanxi, China
| | | | | | | | | | | | | | | |
Collapse
|
40
|
The M5 muscarinic acetylcholine receptor third intracellular loop regulates receptor function and oligomerization. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2010; 1803:813-25. [DOI: 10.1016/j.bbamcr.2010.04.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2009] [Revised: 04/01/2010] [Accepted: 04/05/2010] [Indexed: 11/15/2022]
|
41
|
De Rosa MJ, Dionisio L, Agriello E, Bouzat C, Esandi MDC. Alpha 7 nicotinic acetylcholine receptor modulates lymphocyte activation. Life Sci 2009; 85:444-9. [PMID: 19632243 DOI: 10.1016/j.lfs.2009.07.010] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2009] [Revised: 07/15/2009] [Accepted: 07/18/2009] [Indexed: 10/20/2022]
Abstract
AIMS Even though the presence of alpha7 nicotinic receptor (nAChR) in lymphocytes has been demonstrated, its functional role still remains elusive. The aim of our study was to characterize alpha7 nAChRs in human lymphocytes upon phytohemagglutinin (PHA) stimulation. MAIN METHODS Lymphocytes were activated with the mitogen PHA. alpha7 nAChRs were studied by reverse transcription-polymerase chain reaction (RT-PCR), real time PCR, flow cytometry and confocal laser scanning microscopy. The effects of nicotinic drugs on PHA-induced proliferation was evaluated by the [(3)H]-thymidine incorporation assay. KEY FINDINGS We show that the expression of functional alpha7 receptors increases after PHA stimulation. The activation of peripheral lymphocytes by PHA increases 2.2-fold the alpha7 subunit mRNA expression and 4-fold the binding of the antagonist alpha-bungarotoxin (alpha-BTX) with respect to non activated lymphocytes. By measuring the increase of intracellular calcium in response to nicotine we determine that alpha7 receptors in lymphocytes are functional. Nicotinic drugs differentially modulate T cell activation. While nicotine tends to inhibit proliferative responses, specific alpha7 antagonists, such as alpha-BTX and methyllycaconitine, enhance cell division. SIGNIFICANCE This study reveals that the alpha7 receptor modulates lymphocyte activation and contributes to clarifying the role of the non neuronal cholinergic system in the immune response.
Collapse
Affiliation(s)
- María José De Rosa
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, UNS-CONICET, Camino La Carrindanga Km7, B8000FWB Bahía Blanca, Argentina
| | | | | | | | | |
Collapse
|
42
|
Dinan TG, Clarke G, Quigley EMM, Scott LV, Shanahan F, Cryan J, Cooney J, Keeling PWN. Enhanced cholinergic-mediated increase in the pro-inflammatory cytokine IL-6 in irritable bowel syndrome: role of muscarinic receptors. Am J Gastroenterol 2008; 103:2570-6. [PMID: 18785949 DOI: 10.1111/j.1572-0241.2008.01871.x] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVES Irritable bowel syndrome (IBS) is a functional disorder, which has recently been linked to immune activation. We tested the hypothesis that the pro-inflammatory cytokine profile in IBS is driven by the cholinergic system and determined if the responses are mediated by muscarinic receptors. METHODS Eighty-eight subjects took part in two studies, 37 IBS patients (Rome II), 14 depressed patients, and 37 healthy volunteers. Eighteen IBS patients had diarrhea predominant IBS, 14 were alternators, and 5 were predominantly constipated. In study 1, blood was drawn for baseline measurement of growth hormone (GH) and cytokines IL-6, IL-8, and IL-10. Pyridostigmine 120 mg was administered orally and further blood sampling took place for 180 min. In study 2, patients with IBS, depressed patients, and healthy subjects underwent the pyridostigmine test on two separate occasions with procyclidine (antimuscarinic) pre-treatment on one test occasion. Both GH and IL-6 were monitored. RESULTS In study 1, baseline IL-6 (P= 0.003) and IL-8 levels (P= 0.001) were higher in IBS than in controls. Pyridostigmine stimulated the release of IL-6 and GH, but not IL-8 or IL-10; these responses were significantly augmented in IBS patients relative to controls. The IL-6 level following pyridostigmine administration correlated significantly with the symptom score (P < 0.01). In study 2, IL-6 rose following pyridostigmine in IBS but not depression and procyclidine blocked the rise. The GH response was abolished by procyclidine in all three groups. CONCLUSIONS IBS and major depression are characterized by a pro-inflammatory profile, whereas IBS patients alone exhibit an exaggerated muscarinic receptor-mediated IL-6 response.
Collapse
Affiliation(s)
- Timothy G Dinan
- Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Fujii T, Takada-Takatori Y, Kawashima K. Basic and clinical aspects of non-neuronal acetylcholine: expression of an independent, non-neuronal cholinergic system in lymphocytes and its clinical significance in immunotherapy. J Pharmacol Sci 2008; 106:186-92. [PMID: 18285654 DOI: 10.1254/jphs.fm0070109] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
Lymphocytes possess all the components required to constitute an independent, non-neuronal cholinergic system. These include acetylcholine (ACh); choline acetyltransferase (ChAT), its synthesizing enzyme; and both muscarinic and nicotinic ACh receptors (mAChRs and nAChRs, respectively). ACh modifies T and B cell function via both mAChR- and nAChR-mediated pathways. Stimulation of lymphocytes with the T cell activator phytohemagglutinin, protein kinase C activator phorbol ester, or cell surface molecules enhances the synthesis and release of ACh and up-regulates ChAT and/or M(5) mAChR gene expression. Furthermore, animal models of immune disorders exhibit abnormal lymphocytic cholinergic activity. The cholesterol-lowering drug simvastatin attenuates the lymphocytic cholinergic activity of T cells by inhibiting LFA-1 signaling in a manner independent of its cholesterol-lowering activity. This suggests that simvastatin exerts its immunosuppressive effects in part by modifying lymphocytic cholinergic activity. Nicotine, an active ingredient of tobacco, ameliorates ulcerative colitis but exacerbates Crohn's disease. Expression of mRNAs encoding the nAChR alpha7 and alpha5 subunits are significantly diminished in peripheral mononuclear leukocytes from smokers, as compared with those from nonsmokers. In addition, long-term exposure of lymphocytes to nicotine reduces intracellular Ca(2+) signaling via alpha7 nAChR-mediated pathways. In fact, studies of humoral antibody production in M(1)/M(5) mAChR-deficient and alpha7 nAChR-deficient animals revealed the role of lymphocytic cholinergic activity in the regulation of immune function. These results provide clues to understanding the mechanisms underlying immune system regulation and could serve as the basis for the development of new immunomodulatory drugs.
Collapse
Affiliation(s)
- Takeshi Fujii
- Department of Pharmacology, Kyoritsu College of Pharmacy, Minato-ku, Tokyo, Japan.
| | | | | |
Collapse
|